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Bounds for Weight  Balanced Trees 

Abstract: It has  been  shown that  the  cost W of a weight  balanced  binary  tree  satisfies  the  inequalities, H 5 W 5 H + 3, where H is the 
entropy of the  set of the  leaves.  For a class of “smooth”  distributions  the inequalities, H 5 W 5 H + 2, are  derived. 

These  results imply that  for  sets with large  entropy the search times provided by such trees cannot be substantially shortened when 
binary decisions are being used. 

1. Introduction 
A basic technique  for  repeatedly  searching  for  the ele- 
ments of a  given ordered finite set is to  store  the  elements 
in the given order  as  the  leaves in a binary  tree. By a 
suitable marking of the nodes of the  tree  any given ele- 
ment can  be found  by making a series of binary  compari- 
sons, which, in effect, determine  the unique path  from  the 
root  to  the leaf corresponding to  the element being 
searched for. The  tree is constructed by  taking into  ac- 
count  the relative frequencies with which the  elements 
are being searched. 

In [ 1 -41 algorithms  were  given for  constructing  trees 
with the  shortest mean path length or “cost.” In general, 
such an optimal search  tree  does not  provide an optimal 
way to  retrieve  the  elements of the given set, optimality 
being measured  by the mean path  length. The  reason is 
that  the  order condition  imposed on  the  leaves is a re- 
striction. However,  as shown in [ l ]  the optimal cost is 
not greater  than H + 2, where H is  the  entropy of the 
set of leaves. This  means  that  as  the  set  to  be  stored gets 
bigger and bigger-not in terms of its  cardinality,  but in 
terms of its  entropy-  then  the  ratio of the optimal  mean 
path  length to  the ultimate, the  entropy,  approaches 1. 

We  shall study  the question of how good is the classi- 
cal weight balanced tree  constructed by the  rule  that  each 
internal node in the  tree is chosen so as  to equalize the 
probabilities of the  sets of the  leaves in the left and the 
right subtrees of that node. This  question in the  more 
general case  where  even  the internal nodes  have weights 
was raised by Knuth in 131. We shall show  that  the  cost 
of such a leaf-weighted tree  is  not  greater  than H + 3, 
so that for sets with  large entropy this cost in  relation 
to  the optimal cost  is  close to one. 
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This should be of practical interest, since in data  stor- 
ing, in contrast with  communication  and  encoding, the 
sets of messages  considered are large indeed, and since 
the  search probabilities are  estimates  anyway, an easily 
constructed asymptotically  optimal tree could  be fully 
adequate.  The savings in construction of such an asymp- 
totically  optimal tree would be  particularly important 
when the  search probabilities  and the  set  to be stored 
undergo a gradual  change so that an updating of the  tree 
is needed. 

In  the last section we sharpen  the general  bound  de- 
rived in Section 2 by restricting the  class of the allowable 
distributions. 

We should  mention that in 151 a  different kind of 
asymptotic optimality of the weight balanced tree  was 
shown in statistical  terms. The statistics  involve an  as- 
sumed distribution of the probability  distributions 
(pl, . . ., p,) of the  leaves; i.e., the  trees  themselves  are 
samples of an assumed  population. While such statistical 
estimates  are of independent interest they do not  provide 
an answer  to  the  questions considered  here. 

2. General  case 
To establish the  notations  for  trees  and  subtrees, let the 
ordered  set of the leaves be the interval [ 1 , n ]  of the first 
n natural numbers, and  let the nonnegative weight of i 
be pi. There will be no loss in generality in assuming that 
Cy=, pi = 1, so that we may speak of pi as  the probability 
of i being searched for. Figure 1 shows  schematically  a 
tree T ,  with the subinterval [i,j] as  the  ordered  set of 
the leaves. 

The root of this tree is denoted by the  pair (i,j). The 101 
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Figure 1 Tree T ,  having  subinterval [i,,j] as its ordered set of 
leaves. 

figure also indicates the  roots of the left and  the right 
subtrees, T ,  and T k + l , j ,  respectively. The  leafk is called 
the index of the  root (ij). 

If e, denotes  the length of the  path  from  the  root ( i , j )  
to  the leaf r in [ij], i.e., the  number of edges in the unique 
path from (i,j) to r ,  then the weighted path length of T ,  
is defined as 

r= i 

The mean path length of T,,  or  its cost,  is then defined as 

Wij  = q , .  . . a) 
P ,  ’ P ,  

where  the  second equality  follows  from the linearity of 
(1 ). The definition (1) immediately leads  to  the recur- 
sion, 

From (2)  and (3) we get the  formula, 

i5 k < j ,  W i i  = 0, (4 1 
which is valid for any  binary tree with [iJ] as the  ordered 
set of leaves. 

Next, let H , ( p i ,  . . ., p j )  = -xi=! p ,  log p, denote  the 
102 entropy of the  set [i,j] in bits. In analogy to (2)  write 
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Then by a direct verification we  have  the  basic identity 
( ink) ,  [6]: 

where H ( p ,  1 - p )  =-p log p -  (1 - p )  log (1 - p ) .  
The formula ( 5 )  looks like (4) except  for  the first 

terms in the right hand  sides. In  the  context of a given 
tree T , ,  both (4 j and ( 5  j express a cost of the  subtree 
T i j  in terms of the  costs of the left and the right subtrees 
T ,  and T k + , , j ,  respectively. In (4) the first term, 1,  is 
then a constant incremental cost reflecting the  fact  that 
the  path lengths  grow  by steps of one unit no matter with 
what  probabilities, PikIPij and P k + l , j l P i j ,  the left and  the 
right subtrees  are picked. In  the  case of (5 j ,  in contrast, 
the incremental  change in the normalized entropy de- 
pends clearly on  these  two probabilities. 

There is also  another difference between (4) and ( 5 ) :  
W i j  depends  on k in that if we consider  trees T i j  with 
the fixed interval [i,j] as the  set of the  leaves  for various 
values for k then W i j  will not  remain constant; in ( 5 ) ,  
in contrast, Hi ,  is not  dependent  on k at all. 

Even if W i j  depends on k it cannot be less than Hi, ,  
which immediately  follows  from (4) and ( 5 )  with the 
fact that 

, D  n 

We shall now  give a useful formula  for  the difference 
W , ,  - H I ,  for any  binary tree T, , :  

Lemma 1. If T I ,  with cost W , ,  is a binary tree with the 
interval [ l , n ]  as the  set of its leaves,  then, 

where (i,j) runs  through all the internal nodes of TI,, 
and k is the index of the root (ij). 

Proof. Let Eij  = W i j  - H i j .  By (4) and (5) we get, 

E . . = e . . + - E .  Pi,  Pk+l,j 
l J  ‘ J  p i j  lk + p, E k + l , j ,  i5 k < j ,  Eii=O, (6) 

where ei j  = 1 - H for i < j and eii = 0. We 

shall verify that 

E . ,  11 T: C. Prs ers 

Pij (r, s) 
(7 

satisfies (6). In fact, write  this sum  as 

IBM J. RES. DEVELOP 



Where 2" and x" denote summations over  the  nodes 
in the left and  the right subtrees Ti, and  Tk+,,jof T,, re- 
spectively.  But these  summands  are  just P i ,   E ,  and p,,,, 
ER+I, l .  As P I ,  = 1 and err = 0 Eq. (7) ,  then, implies the 
lemma. 

We shall  now consider  the well-known weight balanced 
tree TI, defined as follows: For  each  node  (i,j) of the  tree 
the root index k(i,j) is  the  least integer satisfying the in- 
equality, 

As an example of such a tree  consider  the interval [ 1 , 1 1 1 ,  
where  the probabilities are given by (1/62) . (8,6,2,3,4, 
7,11,9,8,1,3). By calculating the cumulative sums  from 
left to right, (1/62) . (8,14,16,19,23,30,41,50,58,59,62), 
we can pick the sequence of the  root indices k(i,j) by 
(8)  as follows: k ( 1 , l l )  = 6,  k(1,6) = 2, k ( 7 , l l )  = 8, 
k(1,2) = 1 ,  k(3,6) = 5,  k ( 3 , 5 )  = 4,  k(3,4) = 3 ,  k ( 7 , l l )  
= 8 ,  k(7,8) = 7 ,   k ( 9 , l l )  = 9 ,  k(10, l l )  = 10. These 
nodes define a tree, which, in fact,  is optimal (the ex- 
ample is from [4]). This  is more the  rule than the  excep- 
tion; it requires a bit of searching to  construct a tree 
where (8)  holds that  is  not optimal. 

We shall find an upper bound for  the incremental cost 
eij for  trees satisfying ( 8 ) .  The  two mutually exclusive 
cases  arise according to  the position of k(i,j) = k :  A 

1 .  "=-, 'ik ' 
Pi,  - 2 

2. ->-.  Pi, ' 
P i j  2 

Since = Pi, + pktl we  have in the  two  cases: 

2 .  a)  - - -<&  fork  > i pi,  1 P 

P i j  2 P i j  

b) <& fork = i. 2 P ,  

The function e(p) = 1 - H(p, 1 - p )  is an  even  convex 
function about  the point 1/2; it has  the value 1 for p = 0 
and p = 1 .  Hence,  the line  connecting the points (1/2,0) 
and ( 1 , l )  is not  below the graph of e(p) for 1/2 5 p 5 1 ,  
and we have  the inequality 

l - H ( p , l - p ) Z 2 1 p - l / 2 / ;   0 5 p P  1 ,   ( 1 1 )  
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where  the equality  holds for p = 0 ,  112 and 1. 
Theorem 1. Let [ 1 ,n]  have  the probabilities (p,; . ., p , ) .  
The cost W , ,  of the  associated weight balanced tree 
where (8) holds satisfies the inequalities 

HI, 5 W,, I H I ,  + 3. 

Proof. By Lemma 1 and ( 1  1 )  we  have 

w,, - HI, 5 2 b(i , j )  , (12) 
( i J )  

where b( i , j )  denotes pk+l in case ( l a )  of ( lo ) ,  p,+J2 in 
case ( lb ) ,  pr in case (2a), and p ,  in case (2b). We shall 
have  to  analyze this a bit further. 

In  case ( 1 a) of (10) the  root index of the  subtree T i j  
is  at k (ij) = k ,  and b (ij) = pk+,. Only a subtree T,+,,r of 
T i j  can have  its  root index at k + 1 ,  and hence b (k f 1 , r )  
be p,+,/2 if case (2b) holds for this subtree.  Any  other 
b(i ' , j ' )  must  therefore  be  either ps  or ps/2 for  some 
s # k + 1. Similarly, in case (2a) of (10) b ( i j )  = pk, 
and only b (s,k) for  some s can  be p,/2 if case ( l b )  holds 
for this subtree Ts,. Any  other b (i' j '  ) is either ps or 
ps/2 for  some s # k .  

All told, (12) then gives 

With the basic  inequality W i j  1 H i j  this proves  the 
theorem. 

It  follows from  Theorem 1 that  the relative cost 
W,,/H,, approaches 1 with the  rate  better than 3/H,, as 
HI, approaches infinity; i.e., as  the size of the weighted 
set [ 1 p ] ,  measured in terms of entropy,  approaches in- 
finity. For  the  tree in our  example  above H,, = 3.18 and 
W,, = 3.29, so that  the relative cost 1.03 is only a frac- 
tion above  one. 

3. Special cases 
It  is not  known to us whether  the  upper bound given in 
Theorem 1 can  be lowered. However, if we impose a 
smoothness condition that  requires  the  quotient p i / p i + ,  
to be near  one,  we  can  reduce  the maximum difference 
W , ,  - HI,; we shall aim at reducing this difference to 2 ,  
which is what  one gets with the optimal tree [ 11. (We 
should  mention that  the  upper bound H,, + 2 for  the  best 
alphabetical code was derived only for  the special case 
that  the  alphabet in question is the nth extension of an 
alphabet. The derivation extends easily, however,  to  the 
general case).  Such a smoothness condition does  not, 
perhaps,  restrict  too seriously the allowable  probability 
distributions for large  values for n,  because often the 
data  adjacent  to  each  other  are  requested roughly with 
the  same  frequency. 

It is also  possible to  derive  from  Lemma 1 a  different 
sort of bound, applicable to all binary trees satisfying a 
smoothness condition similar to  the preceding  one. Since 103 
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this  bound is of some interest  and  more easily  obtained 
we begin with its  derivation. 

Let p i j  be the smaller of the two  numbers Pik/Pij and 
1 - (Pik/Pi,j),  and  let /3 be the minimum of the pij's as 
(ij) runs through the internal  nodes of a tree T,,,. Here, 
k is the index of the  root (ij) of the  subtree  Tij of TI,. 
Then 

I 1 -H(/3,1 -j3), 

and  Lemma 1 gives 

W, ,  - HI, 5 (1 - H(/3,1 - /3)) Pij. 

The  sum in the right hand  side is W,,  by [lo,  p. 4051; 
this  can also  be  seen by  putting ei j  = 1 in (6),  which re- 
duces it to  (4).  Hence, 

( i d  

which is meaningful for /3 > 0; or,  whenever all pi > 0. 
This bound reduces  to  one given in [8-91 if we put 
pi = l / n .  

Returning to  the main task we begin with the inequality, 

l - H ( p , l - p ) 5 -  p - -  f o r O . l Z p 5 0 . 9 ,  (14) 

which can  be  directly verified. The reason why we put 
the indicated bounds  for p is to  reduce  the coefficient in 
front of ( p  - 1/21 to 4/3 (compare with ( 11) ). 

Theorem 2.  If 1/1.6 5 pi /p i+,  5 1.6 for all i in [ l p  - 11, 
then the  cost W, ,  of the weight balanced tree satisfies: 

HI, 5 W,, 5 H I ,  + 2. 

Proof. We shall show  that  the inequality, 

4 
3 I :I 

holds for all subintervals [ij] of [ 1 ,n].  This  then  ensures 
that (14) holds for p = Pik/Pij, rather than the  weaker 
estimate (1 1) .  The  theorem is then proved just  as 
Theorem 1 was done by replacing (1 1 ) by (14). 

To  show  (1  5) we shall consider  the  four mutually ex- 
clusive cases according to  the value of m = j  - i + 1: 
1) m = 2 , 2 )  rn=3,3)  m = 4 , a n d 4 )   m > 4 . L e t r =  
maxi,,l,n-l, (p , /pi+],  ~ ~ + ~ / p , ) .  Consider  case 1). We  have, 

A 

In  case  2)  let pi+t I pi. Then  either pi+, 3 pi  or pi+] < p i .  
In  the  former  case (8) is true  for k = i, and. 

Therefore,  (15) holds. In  the  latter  case we first verify 
that 

Pi < 1 1 
pi + pi+, + pi+z 1 + r-' + r-' 2 

- < -. 

Next,  the left-most expression  cannot  be smaller than 
1/3. Hence, again (15) holds. Finally, if pi+2 > pi then 
(8) is true  for k = i + 1, and  by symmetry of Pij with  re- 
spect  to pi and pi+' this case reduces to the preceding one 
and  (15) holds true. 

In case 3)  we  have by (8 ) :  

Let first 

Pi,i+ 1 1 1 
- 2' 

- < -  

'ij 1 + pi+2 + pi+? 
Pi + Pi+l 

The largest  value the  quotient (p i+2  + ~ , + ~ ) / ( p ~  + p i + , )  
possibly  can have is (r' + r 3 ) / (  1 + r )  = r2. Therefore, 

and  (15) holds  true. Consider  next  the  case, Pi,i+l/Pij > 
1/2.  We  have 

and, again, (15) is satisfied. 

obtain: 
In the final case, m > 4,  we  use  the  estimates (10) to 

The sum is not  smaller than 1 + r-l + r-' +. . . + Y - ~ ,  
and,  therefore, 

Hence (15) holds. This is where we got the value 1.6 
for r; the  term (1 + r-l +. . . + r-5) -' is then  about 0.4. 
The proof is complete. 

Let us point out  to this end  that in the  extreme  case 
with the uniform distribution, pi = l/n,  one  can easily 
show using the  formula  for  the optimal cost [ 10, p. 4001 
that  the balanced tree is optimal, and  that its cost is 
bounded  from  above by H , ,  + (1 + log,log,e - log'e), 
where H I ,  now  equals log,n. The  second  term  is  about 
0.08, and  it provides the  lowest  upper  bound  for  the dif- 
ference W,,  - H , ,  that  can  be achieved  by smoothness 
conditions of the  type studied. 
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