J. Rissanen

Bounds for Weight Balanced Trees

Abstract: It has been shown that the cost W of a weight balanced binary tree satisfies the inequalities, H = W = H + 3, where H is the
entropy of the set of the leaves. For a class of “smooth™ distributions the inequalities, H = W = H + 2, are derived.

These results imply that for sets with large entropy the search times provided by such trees cannot be substantially shortened when

binary decisions are being used.

1. Introduction

A basic technique for repeatedly searching for the ele-
ments of a given ordered finite set is to store the elements
in the given order as the leaves in a binary tree. By a
suitable marking of the nodes of the tree any given ele-
ment can be found by making a series of binary compari-
sons, which, in effect, determine the unique path from the
root to the leaf corresponding to the element being
searched for. The tree is constructed by taking into ac-
count the relative frequencies with which the elements
are being searched.

In [1-4] algorithms were given for constructing trees
with the shortest mean path length or ““cost.” In general,
such an optimal search tree does not provide an optimal
way to retrieve the elements of the given set, optimality
being measured by the mean path length. The reason is
that the order condition imposed on the leaves is a re-
striction. However, as shown in [1] the optimal cost is
not greater than H + 2, where H is the entropy of the
set of leaves. This means that as the set to be stored gets
bigger and bigger—not in terms of its cardinality, but in
terms of its entropy — then the ratio of the optimal mean
path length to the ultimate, the entropy, approaches 1.

We shall study the question of how good is the classi-
cal weight balanced tree constructed by the rule that each
internal node in the tree is chosen so as to equalize the
probabilities of the sets of the leaves in the left and the
right subtrees of that node. This question in the more
general case where even the internal nodes have weights
was raised by Knuth in [3]. We shall show that the cost
of such a leaf-weighted tree is not greater than H + 3,
so that for sets with large entropy this cost in relation
to the optimal cost is close to one.

MARCH 1973

This should be of practical interest, since in data stor-
ing, in contrast with communication and encoding, the
sets of messages considered are large indeed, and since
the search probabilities are estimates anyway, an easily
constructed asymptotically optimal tree could be fully
adequate. The savings in construction of such an asymp-
totically optimal tree would be particularly important
when the search probabilities and the set to be stored
undergo a gradual change so that an updating of the tree
is needed.

In the last section we sharpen the general bound de-
rived in Section 2 by restricting the class of the allowable
distributions.

We should mention that in [5] a different kind of
asymptotic optimality of the weight balanced tree was
shown in statistical terms. The statistics involve an as-
sumed distribution of the probability distributions
(p,» -+~ p,) of the leaves; i.e., the trees themselves are
samples of an assumed population. While such statistical
estimates are of independent interest they do not provide
an answer to the questions considered here.

2. General case
To establish the notations for trees and subtrees, let the
ordered set of the leaves be the interval [1,n] of the first
n natural numbers, and let the nonnegative weight of i
be p,. There will be no loss in generality in assuming that
2:;1 p; = 1, so that we may speak of p, as the probability
of i being searched for. Figure 1 shows schematically a
tree T with the subinterval [i,j] as the ordered set of
the leaves.

The root of this tree is denoted by the pair (i,j). The
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Figure 1 Tree T having subinterval [i,j] as its ordered set of
leaves.

figure also indicates the roots of the left and the right
subtrees, T, and T, ;, respectively. The leaf k is called
the index of the root (i,j).

If £, denotes the length of the path from the root (i,j)
to the leaf rin [, /], i.e., the number of edges in the unique
path from (i,j) to r, then the weighted path length of T,
is defined as

) =S pl,. (1)

r=i

Vij (pi’ n
The mean path length of T,

_ pi pj
W,= Vij(F’ Y F)
i

Y

;> OT its cost, is then defined as

J
Py=23pr (2)

where the second equality follows from the linearity of
(1). The definition (1) immediately leads to the recur-
sion,

Vij (Pi, T
fori=k <j,V,(p

K p') :P + Vik(pp' T Pk) + Vk+1,j(pk+l’. 5 pj)
) =0. (3)

From (2) and (3) we get the formula,

P, P
Wy=1+4p5 Wyt W,
J u
ik <j,W;=0, (4)

which is valid for any binary tree with [4,j] as the ordered
set of leaves. '

Next, let H (p, "+ p) = = P, log p, denote the
entropy of the set [i,j] in bits. In analogy to (2) write

H;=H, P_j”P—)

1)

Then by a direct verification we have the basic identity
(in k), [6]:

Py Py Py Pkﬂd
Hu:H<1‘>f’ =p >+F_H TP, Hyp Hy =0,

vt (5)

where H(p, 1 —p)=—p log p— (1 —p) log (1—p).

The formula (5) looks like (4) except for the first
terms in the right hand sides. In the context of a given
tree 7,, both (4) and (5) express a cost of the subtree
T, in terms of the costs of the left and the right subtrees
T, and T, , . respectively. In (4) the first term, 1, is
then a constant incremental cost reflecting the fact that
the path lengths grow by steps of one unit no matter with
what probabilities, P, /Pl.]. and P, J/P the left and the
right subtrees are picked. In the case of (5), in contrast,
the incremental change in the normalized entropy de-
pends clearly on these two probabilities.

There is also another difference between (4) and (5):
W.; depends on £ in that if we consider trees T; with
the fixed interval [/,;] as the set of the leaves for various
values for k then W,; will not remain constant; in (5),
in contrast, H; is not dependent on & at all.

Even if WU depends on k it cannot be less than Hi].,
which immediately follows from (4) and (5) with the
fact that

P. P,
ik oy k) <
HE -5 =1

ij ij

We shall now give a useful formula for the difference
w.,— H,, for any binary tree T

Lemma [. If T,, with cost W, is a binary tree with the
interval [1,n] as the set of its leaves, then,

P, P,
2 Pl]<1 . ( ik 1 — Ik‘))’
@) P ij Pij

where (i,j) runs through all the internal nodes of T,
and k is the index of the root (i,;).

Proof. Let E;; =W, —H,;. By (4) and (5) we get,

+ Pk+1,j E

k+1,j
P,

_ Pik
E;=e;+ P E,
ij

i<k<jE,=0, (6)

P, P,
where e;; = 1 — <—"i —*)forz<jande = 0. We

P, j’ P
shall verify that
Ei]' = i E PTS €rs (7)
ij (r,8)

satisfies (6). In fact, write this sum as
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E, =

ij P <Pij eij+ EL Prs ers+ ZR Prs ers)

i r,8) (r,s)

Where EL and ZR denote summations over the nodes
in the left and the right subtrees T, and T, of T, re-

k+1,j ij>

spectively. But these summands are just P, £, and P, ;

E,, ; As P,=1and ¢, =0 Eq. (7), then, implies the
lemma.

We shall now consider the well-known weight balanced
tree T,, defined as follows: For each node (i,/) of the tree
the root index k (i,j) is the least integer satisfying the in-
equality,
P.,.. 1 )

’l’[’,‘ff”’—ﬂ < %—% forall refi,j—1]. 8)

1) Y

As an example of such a tree consider the interval [1,11],
where the probabilities are given by (1/62) - (8,6,2,3 4,
7,11,9,8,1,3). By calculating the cumulative sums from
left to right, (1/62) - (8,14,16,19,23,30,41,50,58,59,62),
we can pick the sequence of the root indices & (i,j) by
(8) as follows: k(1,11) =6, k(1,6) =2, k(7,11) =8,
k(1,2) =1, k(3,6) =S5, k(3,5) =4, k(3,4) =3, k(7,11)
=8, k(7,8) =7, k(9,11) =9, k(10,11) =10. These
nodes define a tree, which, in fact, is optimal (the ex-
ample is from [4]). This is more the rule than the excep-
tion; it requires a bit of searching to construct a tree
where (8) holds that is not optimal.

We shall find an upper bound for the incremental cost
e for trees satisfying (8). The two mutually exclusive
cases arise according to the position of k (i,j) = k:

i 9)

Since P,

i1 = P T Pryy WE have in the two cases:

ik 143
ok Tkl P
1. a) TP =P fork <j—1,

1 1

b) s%k;lfork=j—1,
y (10)

P, 1
2. a) F"i—§<£—" for k > i

ij ij

b) < 7”}!}:—}_ for k = .
The function e(p) = 1 — H(p, 1 — p) is an even convex
function about the point 1/2; it has the value 1 for p =0
and p = 1. Hence, the line connecting the points (1/2,0)
and (1,1) is not below the graph of e(p) for 1/2=<p =1,
and we have the inequality

1—-Hp,1-p)y=<2lp—12|; 0=p=1, (1)
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where the equality holds for p =0, 1/2 and 1.

Theorem 1. Let [1,n] have the probabilities (p,,- -, p,).
The cost W, of the associated weight balanced tree
where (8) holds satisfies the inequalities

H <W,<H, +3.
Proof. By Lemma 1 and (11) we have
Wi,.—H,=27% bj), (12)

(@)
where b(i,j) denotes p,,, in case (1a) of (10}, p,,,/2 in
case (1b), p, in case (2a), and p, in case (2b). We shall
have to analyze this a bit further.

In case (1a) of (10) the root index of the subtree T;
is at k(i,j) = k, and b(i,j) = p,,,. Only asubtree T, , of
T can have its root index at k + 1, and hence b(k + 1.r)
be p,,,/2 if case (2b) holds for this subtree. Any other
b(i’,j’) must therefore be either p_ or p /2 for some
s # k + 1. Similarly, in case (2a) of (10) b(i,j) = p,,
and only b (s.,k) for some s can be p,/2 if case (1b) holds
for this subtree T,. Any other b(i',j’) is either p, or
p,/2 for somes #* k.

All told, (12) then gives

n

n
W, —H,, < 2(2 pr—f—%;pr):&
With the basic inequality W = H, ; this proves the
theorem.

1t follows from Theorem 1 that the relative cost
W ./H,, approaches 1 with the rate better than 3/H , as
H,, approaches infinity; i.e., as the size of the weighted
set [1,n], measured in terms of entropy, approaches in-
finity. For the tree in our example above H,, = 3.18 and
W,,=3.29, so that the relative cost 1.03 is only a frac-
tion above one.

3. Special cases
It is not known to us whether the upper bound given in
Theorem 1 can be lowered. However, if we impose a
smoothness condition that requires the quotient p,/p,.,
to be near one, we can reduce the maximum difference
w.,— H,,; we shall aim at reducing this difference to 2,
which is what one gets with the optimal tree [1]. (We
should mention that the upper bound H,, + 2 for the best
alphabetical code was derived only for the special case
that the alphabet in question is the nth extension of an
alphabet. The derivation extends easily, however, to the
general case). Such a smoothness condition does not,
perhaps, restrict too seriously the allowable probability
distributions for large values for n, because often the
data adjacent to each other are requested roughly with
the same frequency.

It is also possible to derive from Lemma 1 a different
sort of bound, applicable to all binary trees satisfying a
smoothness condition similar to the preceding one. Since
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this bound is of some interest and more easily obtained
we begin with its derivation.

Let g;; be the smaller of the two numbers P, /P,; and
1 —(P,/P, ), and let B be the minimum of the B;’s as
(i) runs through the internal nodes of a tree T,,. Here,
k is the index of the root (i,j) of the subtree T; of T',.
Then

1—11(i 1—@)<1—H(B1—ﬂ)
P, P —_ b b

i i
and Lemma 1 gives
W,—H,= (1-H@1=p) 3 Py
(i,4)
The sum in the right hand side is W,, by [10, p. 405];

this can also be seen by putting e;=1in (6), which re-
duces it to (4). Hence,

1
W <— , 13
v HE—p T >
which is meaningful for 8 > 0; or, whenever all p, > 0.
This bound reduces to one given in [8§-9] if we put
.= 1/n.
Returning to the main task we begin with the inequality,

for0.1=p=0.9, (14)

4 1
J— — < = _——
1 —H(pl p)—3)p >

which can be directly verified. The reason why we put
the indicated bounds for p is to reduce the coefficient in
front of [p — 1/2| to 4/3 (compare with (11)).

Theorem 2. 1f 1/1.6 = p,/p,,, = 1.6 foralliin [1,n — 1],

i+1 —
then the cost W, of the weight balanced tree satisfies:

H, =W, ,=H_,+2

Proof. We shall show that the inequality,
P, 1

ik

P 2) < 04,

1]

(15)

holds for all subintervals [i,j] of [1,x]. This then ensures
that (14) holds for p = Pik/Pij, rather than the weaker
estimate (11). The theorem is then proved just as
Theorem 1 was done by replacing (11) by (14).

To show (15) we shall consider the four mutually ex-
clusive cases according to the value of m=j;—i+ I:
1)m=2,2)y m=3,3) m=4,and 4) m > 4. Let r=
max,, , ,_,; (Pi/P;,»> Py IP;). Consider case 1). We have,

P 2" R TeA S0

i,i+1

p el

i+2 —
In the former case (8) is true for k =i, and.

In case 2) let p,,, = p,. Then either p;,, = p,orp,,, < p,

P 1 1
= > =

1+pi+1+pi+2~2+r
p;

1
3.6

- ik
P

ST

Therefore, (15) holds. In the latter case we first verify
that
pi < 1 < l

P+ Py +pi+2— 14+rt+r2 2

Next, the left-most expression cannot be smaller than

1/3. Hence, again (15) holds. Finally, if p,,, > p, then

(8) is true for k = i + 1, and by symmetry of P, with re-

spect to p; and p,,, this case reduces to the preceding one

and (15) holds true. ‘
In case 3) we have by (8):

.ﬁc._l‘<liﬂil_ll

P, 21 Pij 2

Let first

Pi,i+1_ 1 <1

P, L+ P +p., 2
Pt Py

The largest value the quotient (p,,, + p,..)/(p;, +p;,,)
possibly can have is (¥ + r*)/(1 + r) = /*. Therefore,

0.28 < Eiﬁlfﬁfl,
1+7 P, P, 2

and (15) holds true. Consider next the case, PLM/P” >
1/2. We have

P.. 1 1

—l=1— =1- - <0.72,

P 1+pi+pi+1 L+r
pi+2+pi+3

and, again, (15) is satisfied.
In the final case, m > 4, we use the estimates (10) to
obtain:

ﬁ_1[<£=<§&>
P. 217 P p

ij ij r=i

-1

, P=max p,.
keli, j]

2 ~5

The sum is not smaller than 1+ ' 4+ r 24+,

and, therefore,

P 1
ik | < ot T -5y —1
P 2'~(1+r +-4+ 1) <04

ij

Hence (15) holds. This is where we got the value 1.6
for r; the term (1 + r " +-+-4 )" is then about 0.4.
The proof is complete.

Let us point out to this end that in the extreme case
with the uniform distribution, p,= 1/n, one can easily
show using the formula for the optimal cost [10, p. 400]
that the balanced tree is optimal, and that its cost is
bounded from above by H,, + (1 + log,log,e — log,e),
where H, now equals log,n. The second term is about
0.08, and it provides the lowest upper bound for the dif-
ference W,, — H,, that can be achieved by smoothness
conditions of the type studied.
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