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Abstract: Based  on a statistical  analysis of actual computer program address  traces,  some  results  are  presented of a  study  aimed at  de- 
riving empirically valid stochastic models for program reference  patterns in a computer  system operating under  demand paging. For the 
address  traces examined, a semi-Markov  model for the  (univariate) point process of page exceptions is formulated and found to  be  an 
adequate  characterization of the data.* 

1. Introduction 
We  present in this paper  the initial results of an  extensive 
study aimed at deriving  by the statistical  analysis of 
actual  program traces empirically valid stochastic models 
for program reference  patterns in a demand paged com- 
puter  system having a two-level  memory. 

Several related  stochastic  processes  can  be  studied  to 
characterize page reference  patterns: 

1. Reference strings {Ri}, i.e., sequences of page refer- 
ences,  where Ri is the  name of the page referenced  at 
time i. These can be  thought of as a  multivariate  point 
process [ 11 in discrete time, the multivariate aspect 
being the  fact  that  the  events  (references to a page) 
are of several  types (different pages). 

2. Distance strings {Di} ,  e.g., sequences of stack dis- 
tances  for LRU (least recently used)  replacement,  as 
defined in [2],  where Di is the total number of distinct 
pages  referenced since  the  last  reference  to Ri. 

3. The point processes corresponding to page exceptions 
for various  memory  capacities c, i.e., (discrete) 
times i at which Di exceeds  the memory  capacity. 
Denote this  by { Tj  ( c )  }, where Tj  ( c )  is the time of 
the  jth page  exception in memory of capacity c. It is 
also possible to  consider page exception  processes 
marked by the page  name. 

It  is not  necessarily  simple to go (probabilistically) 
from  one of these  representations to another,  nor is it 
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clear  yet which one  is simplest to  characterize probabilis- 
tically. It may, of course,  be  that  one of the  representa- 
tions would be more convenient than  any of the  others 
in a particular  application. The  distance string represen- 
tation suppresses page names, which may be advan- 
tageous in that  the  process should be  more  nearly sta- 
tionary. 

Modeling and analysis of page exceptions  as a univari- 
ate, unmarked  point process is a simpler  task than  that 
for  the  distance  strings,  since, especially for large 
memory  size,  available theory  on  rare  events  and thin- 
ning of point processes [3, Section 5.31 suggests that 
these relatively rare  events (i.e.,  page exceptions) 
should be approximately a Poisson  process. 

This  paper  describes  an  attempt  to model page  ex- 
ception  processes.  The initial basis for  the modeling 
was the  rare-event  theory  and its  prediction of a Poisson 
process  for  the page exception  process;  an  extensive 
analysis of data  was  then  undertaken  to reject or con- 
firm and  extend  the model. The analysis showed quickly 
that  the  Poisson model for page exceptions  was grossly 
inadequate,  but,  on  the basis of a  previous  analysis of 
distance strings and certain  sample characteristics  from 
the  present  data, a semi-Markov model for  the (uni- 
variate) point process of page exceptions was  for- 
mulated and found to  characterize  the  data  adequately. 
We  start,  however, with  a brief discussion of the model- 
ing of the  distance strings, since this  provided the key 
to  the derivation of the semi-Markov  model. 

Note  that  the  paper  does  not  attempt  to  derive multi- 
variate models for  the page exception  processes at dif- 
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ferent levels c. The analysis is limited to comparison 
of the estimated parameters of the univariate  point pro- 
cess models for different  capacities c. Nor have  we ex- 
amined the marked  univariate  point processes consisting 
of times of page exceptions and  page  name. These  present 
far  greater difficulties of statistical  analysis. The main 
rationale for deriving  models of the univariate page ex- 
ception processes  alone is their utility in analytic studies 
of multiprogrammed computers operating under  demand 
paging (e.g., [4,51). 

C 2. Preliminary analysis of distance strings 

In  the sequel we shall use  the  term  “distance string” to 
mean LRU distance string. Models  for  distance strings 
{ D i }  that  assume  that  the Di’s are  independent  and iden- 
tically distributed random  variables on 1,2,. . ., ,c, where 
A: is the total number of pages, are intuitively suspect  and 
for particular address  traces  have been  shown  formally 
(by  Lewis  and  Yue in [6]) to be inadequate. Tests of 
independence of a stationary sequence of random vari- 
ables will be used later in the  paper  and  are  therefore 
outlined  here. The most useful are  the following. 
1.  Nonparametric  tests  such  as runs-up-and-down [7]. 

The  nonparametric  property is bought at the price of 

pothesis of independence  when  it is false. 
2. Tests  based  on estimated  serial  correlation coeffi- 

cients. The estimated serial correlations of lag k are, 
for a sequence of n observed values di of a process 

b smaller power, i.e., probability of rejecting the hy- 

{Oil, 

where ;i = di/n.  The  alternative  estimator Pk is  also 
sometimes used. 

For first-order Markovian normal sequences [8,9] 
the  test based on b1 is the asymptotically  most  power- 
ful test. This is also  true asymptotically for testing that 
a point process  is a Poisson process  (independent 
exponentially  distributed  intervals between  events) 
against the  alternative  that  the intervals between 
events  have  (marginal) exponential  distributions,  but 
first-order  serial dependence,  the  independence being 
rejected if bl is  too large or too small [lo]. 

Asymptotically bl is normally  distributed with 
E ( b l )  - 0, var (bl)  - ( n  - 1 ) - 1  under  very general 
conditions  when p1 = 0. 

3. Lastly,  there  are  tests  based  on  the periodogram,  es- 
sentially  testing for a flat spectrum [ 1 1,121. The spec- 
tral density  function of the  sequence {Di}  is, when it 
exists, 

1 + 2 2 pr cos ( k w )  
k11 I 

( k  = 0,  -cl, 2 2 ; . . )  ( 3  1 
Thus  the pk’s are  the  Fourier coefficients off( w ). Since 
f ( w )  is  an  even function of w ,  i.e.,f(w) = f ( - w ) ,  it is 
usual to  use only  positive w’s and definef, ( w )  = 2f(w) 
for 0 5 w 5 lr. 

The periodogram (see [ 1 1,13]) ,  which is the basis for 
estimation and testing that f ( w )  = 1/2lr (i.e., pk = 0, 
k # O ) ,  is 

I ( 0 )  =- I 2 bk cos ( k w )  (+T 5 w 5 l r )  (4) 
271 k = - ( n - l )  

It is thus  the  Fourier  transform of bk (see [ 131 for  other 
interpretations). At  the  values wt = 2lrL/n, L = 1 ,  . . . u, 
where u is the largest  integer  less than or equal to n/2 
minus one,  the I (w,)  would be independently  exponen- 
tially distributed  random variables if the { D i }  were inde- 
pendent normally distributed  random variables. Conse- 
quently [ 1 1 ,  p. 48; 9, p. 761 

* 2 
k = l  

are  the  order  statistics  from a random sample of size 
( u  - 1 ) of uniform ( 0 , l )  random  variables. The distri- 
bution theory is approximately true  for  independent  but 
nonnormal { D i } ,  and a test  for  independence can  there- 
fore  be obtained by testing the uniformity of the S;‘s 
with  a  Kolmogorov-Smirnov statistic [ 1 1 ,  Ch. 61. The 
distribution  when the Di’s are  independent exponentially 
distributed  random  variables is given by Lewis in [4]. 

Spectral tests  were used by Lewis  and  Yue [6] to 
show  that  the  distance strings they studied are correlated. 
Such  dependence can  be shown much more simply, but 
the estimated spectra  have  direct  interpretations in terms 
of program  behavior. 

A  more  general alternative model for  the  distance 
strings is a representation of the Di’s as a first-order 
(Markov)  chain, which is useful since  it  permits a  formu- 
lation of “locality of reference” [ 51. Asymptotic-theory 
maximum-likelihood tests of the  hypothesis  that  the D;s 
are a  first-order Markov chain  against a hypothesis of 
higher-order dependence  are available [ 151, but  are  not 87 
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Table 1 Counts of one  step transitions for stack distances for 
tape A with LRU replacement algorithm. Page size is 4K.  The 
table entries are n.,, the number of times di = j and di+,  = k for 
i = 1 , .  . ., to = 8,832,464. 

Counts of one step transitions for LRU distances 
j l k  1 2  3 4 5 6 7  

1 2,943,817  840,912  210,914  78,002  41,500  24,281  16,792 
2  1,048,310  2,151,371  146,163  35,192  26,012  13,591  7,931 
3  130,957  271,850  176,386  16,570  5,693  2,804  2,318 
4  22,878  70,630  35,013  10,338  3,721  1,516  1,643 
5 18,512  36,744  16,366  5,258  4,017  393 235 
6  10,685  20,180  7,959  1,650  812  1,914 223 
7  11,549  11,324  3,596  846  280  233 271 
8 7,957  9,934  4,405 1,261 182 128 61 
9  9,451  8,248  3,457  834  184 145 56 

10 7,274  8,657  2,641  769  639  268  76 

prob (0, = x} = ( 1  - plI)pE-l (x= 1 , 2 ; . . ) ,  (7)  

where pI1 is the 1-1 transition  probability in the  chain; 
the distribution  given by (7 )  is actually the “geometric 
plus  one” distribution,  the geometric  distribution usually 
being defined on 0, 1 ,  2 , .  . .. 

The  geometric assumption is very strong, implying that 
no matter how  long the program has been  referencing the 
page, the time to  exit is still geometric  (see [ 161 for a 
discussion of this “lack of memory” property) ; 

applicable because  the  transition matrix of the {Di} pro- 
cess  is highly skewed and  has many nonzero entries. The 
skewness is roughly the  idea of locality and  can be seen 
in the  upper left  hand corner of the  transition matrix of 
the di’s (Table 1 )  for  the  tape  used in this study.  The 
entry nj, gives the  number of times an  observed  distance 
k (di+l = k )  immediately followed an  observed  distance 
j (di  = j ) .  The maximum likelihood estimator of the transi- 
tion  probability  in  a  first-order Markov chain is pjk = 

An informal test of the first-order hypothesis, which 
relates  to  the length of dependence in the  sequence {Di}, 
is to estimate directly [ 1 1 ,  p. 711 a variance-time se- 
quence 

V ,  = var (Di + Di+,  +. . . + Di+k- l )  

njk In.  

= k var (Di) [l  + 2 (1 -$)pt] ,  

and also to  estimate Vk using the  estimated transition 
probabilities pj,. The length of dependence of the  process 
for  the  distance strings studied by Lewis  and  Yue [6], 
estimated  by  observing the  time k for ?, to reach a steady 
state,  was much  longer than  those predicted by the first- 
order  Markov model. 

An  alternative analysis that  can be  used to  test  for de- 
pendence of order  greater  than  one, and  which has po- 
tential for building an  alternative model to  the first-order 
Markov  chain, is to  examine  the  successive  intervals 0, 
during  which the D,’s equal 1 .  The  interpretation of these 
runs of ones is that  they  are times  during  which the pro- 
gram references  the  same page. Under a  first-order 
Markov  chain model  (including the model of independent 
IDi)) the 0,’s are a sequence of independent, geomet- 
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This analysis,  based on  the  sequence of runs of ones in 
the  distance strings, is attractive  because long depen- 
dence could be built into a  model simply by making the 
0,’s nongeometric. Moreover  the  one-one  transitions  are 
the bulk of the transitions in the  distance string. In 
Table 1 for a  particular address  trace, called tape A, there 
are a total of 2,943,817 1-1  transitions  out of a total of 
8,802,464 giving p,, = 0.3344 and  an  estimated  expected 
value for 0, under  the first-order Markov chain model of 
1 / ( 1  - i ll) = 1.502. 

Statistical  analysis of the 0,’s in tape A showed the 
marginal distribution of the 0,’s to  be highly positively 
skewed and nongeometric,  and the  sequence to have 
strong  dependencies.  In  fact  spectral analysis showed a 
strong quasicycle in the  sequence reminiscent of those 
seen in autoregressive  sequences [8]. This  prompted a 
closer look at  the transition  matrix in Table 1 to see 
what this would reveal. 

Two  features  stand  out. Although 1- 1 transitions domi- 
nate,  there  are  almost  as many 2-2 transitions. Moreover 
there  are generally more  transitions fromj  states, j > 2, 
to k = 2 than fromj  states,j > 2, to k = 1.  Recalling that 
distance strings suppress page names and that we are 
considering LRU  distance strings [ 21, an  interpretation 
of the  above is that  there  are at least  two  types of paging 
behavior. In  one,  the program stays mainly in one page, re- 
ferring  occasionally to a  very  small  group of other pages 
(strong locality of reference); in the  other  the program re- 
fers  to its  pages  almost at  random (i.e., uniformly over 
the  set of pages and with no time dependence).  Thus 
locality  becomes  a  dynamic,  possibly two-state phe- 
nomenon. The analysis of page exceptions given  below, 
however, suggests the possibility of having to include  a 
third state in a model for  the  distance strings {Di}. 

This insight into  the { D i }  sequence will be  pursued 
elsewhere. The  importance  at  present is in explaining and 
modeling the  sequences of page exceptions.  Distance 
strings of several programs have been  examined and ap- 
pear  to exhibit  similar  behavior. 
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3. Data and  preliminaries 
We display in this paper results for  the particular address 
trace referred to  as  tape A. From  the  sequence of ad- 
dresses  traced,  the  distance string  was  derived by stack 
processing  techniques [2] for a  page  size of 4096 
bytes. Conventionally  this page size is referred to  as 4K. 
The  data consisted of to = 8,802,464 references  to a 
total of 5 17 distinct pages. Results  are given for  three 
values of the memory  capacity c ;  the values chosen  for 
c (respectively, 76, 197, and 512) correspond  to  execu- 
tion of the program in a relatively constrained, moderate- 
ly constrained,  and essentially  unconstrained  memory. 

Much of the statistical  analysis  was done using the 
SASE IV program [ 171 developed for analyzing  series 
of events. SASE IV can also  be  used for analyzing posi- 
tive  valued  time series  such  as {Oil. 

4. Point processes-discrete and continuous time 
Given a  memory  capacity c and  a sequence of page ref- 
erences, a page exception  can occur  on  any of the suc- 
cessive  page references. We consider  the page references 
to  occur  at equidistant  time  points (this is very  nearly 
true),  and  the intervals  between references  are  taken  to 
be the unit of time in this study. The page exceptions 
therefore  constitute a point process  (series of events) in 
discrete time. Since  the  average times between page ex- 
ceptions is so large ( f i  in Table 2 ) ,  it would be possible to 
treat  the  process  as if it occurred in continuous time. 
Much of the  continuous time  analysis [ I  1 1  has in fact 
been used;  the main problem with using it throughout 
was  the  discovery  that  about 10% of the intervals be- 
tween page exceptions had  a  value of 1024, and thus 
could  only  be  modeled as a discrete  component in the 
distribution of times between page  exceptions. 

In considering discrete point processes  there  are two 
main stochastic  processes  that can  be  and are considered. 
One is the binary sequence {Si (c) }, where 

1 if event  at time i , 

0 if no  event  at time i , 
S i ( C )  = 

and we explicitly represent  dependence  on c ,  the memory 
size, if necessary.  The use of 0 and 1 to  represent  the 
two  states is convenient  since  then  the cumulative 
process 

1 

N , ( c )  = S i ( C )  ( i =  I , . ' . )  (8)  
k = l  

gives the number of events  (page  exceptions) up to  and 
including time i .  The  process { N i  (c)} is called the count- 
ing process and is the basic  representation of the point 
process. In particular,  stationarity of the point process 
means  that { N i  (c) } has  stationary increments. The spec- 
trum of Si ( c )  , following the definition Eq. (2 ) ,  is  denoted 

Table 2 Sample characteristics of times-between-events.  Page 
exception  process  for  tape A with LRU replacement  algorithm. 
Page  size is 4K. Number of references to = 8,802,464. 

n -number of page exceptions 
b-estimated mean time between ,., page exceptions 
C (X) -estimated coefficient of 

variation of times  between 
page exceptions 

skewness of times  between 
page  exceptions 

X,,,-maximum  time  between 
page  exceptions 

Xmi, - minimum  time  between 
page exceptions 

X,,,-median  time  between 
page exceptions 

t, -estimated coefficient of 

Memory  capacity c ( p a g e s )  
76 197 512 

1,807 820 517 

4,871 10,735 17,026 

3.34 3.27 3.70 
(0.25) 

10.34 7.14  6.87 
(1.95) 

333,374 420,786 704,921 

1 2  2 

1,024 1,024 1,024 

by g ( w )  and called the count spectrum, or Bartlett 
spectrum, of the  process: 

x cos ( 4  (- 7r5 w 5  7r). (9 1 
Note  that  frequency  here is the reciprocal of periods T 

in page  exception time: w = 27rf = 2 d T .  Thus  the 
highest  possible frequency is o = 7r, or T = 2 page ref- 
erences,  and, although we  have  assumed  the density to 
exist, a delta function component in g ( w )  at w = 7r would 
represent a strict alternation of period 2 ,  i.e., page excep- 
tions  every  second reference. 

The  other  process considered in the analysis of point 
processes is the  sequence of times between page excep- 
tions { X j  (c) }, or  the  (cumulative) times to page  ex- 
ceptions Tj  ( c )  = X , ( c )  , where  the  sum  on / is from 
L = 1 to / = j .  The two processes { N , ( c ) }  and { T j ( c ) }  
are related by the identity 

T j ( c )  > i  8 N i ( c ) z j -  1 ( j =  1 ,  2;. .) ,  (10) 

so that 

prob { T j ( c )  > i} = prob {Ni(c) 5 j -  l }  

( j =  1 ,  2 ; . . ) .  ( 1 1 )  

In  actual  fact  the  sequence { X j  ( c ) }  is not stationary if 
{ N i ( c )  } is stationary [ 1 1 ,  Sect. 4.21. The  stationary in- 
terval process usually analyzed is the  sequence of inter- 
vals following an arbitrarily selected page  exception in 
the  stationary  process. We do not press this  distinction 
here  (see [ 1 1 ,  Ch. 41 for  details),  and refer to  both inter- 
val sequences  as X j  (c). The serial  correlation coefficients 
for this sequence will be denoted,  as in Eq. ( 2 ) ,  by p k  and 89 
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Table 3 Tests for Poisson process and trend.  Page exception 
process  for  tape A with  LRU replacement  algorithm.  Page size 
is 4K. Number of references to = 8,802,464. 

Transformed  data- Memory  capacity  c  (pages) 
Kolmogorov  statistic* 197 512 

18.57  15.56  14.43 
U =  {S- -2.83 -8.67 -18.11 

*Upper I%point i s  1.518. 

the  spectrum of intervals ( 2 )  by f(o). Note  here  that 
frequency is related to serial numberj of page exceptions, 
not page reference time i ,  and w = T corresponds  to an 
alternation on exception  number. 

The  two  spectra, beside their different interpretations, 
are  not equivalent,  although  related,  and analyses  based 
on  both will be used. 

The null process  for a discrete time  point process cor- 
responding to  the  Poisson  process in continuous time is a 
Bernoulli process in which ai(c) = 0 with  probability p ,  
independently of previous values of {a i ( c ) } .  For  the 
Bernoulli process  the pr’s equal 0 fork # 0, the  spectrum 
is flat, f ( 0 )  = 1 / 2 ~ ,  and  the  intervals  between page ex- 
ceptions  are  independent with identical geometric  (plus 
one) distributions (i.e., a particular  renewal process) 

prob {Xj(c) = x} = ( 1  - p)p”” 

(x= 1,2; . . ;  0 < p < 1 ) .  (12) 

We  have  then  for this  “geometric  plus one” distribution: 

p = E{X,(c)} =- 
1 

( 1  - P )  ’ 
I 1  

cr = [var {Xj(c)}]T = pT/( 1 - p ) ,  

[var {~~(c)}lf 
C ( X )  = coefficient of variation = 

E{Xj(c) 1 
I 

=pT < 1 .  

Note  that  as p becomes large, i.e.,  close  to 1 ,  the mean 
time between  exceptions  becomes large  and C(X) ap- 
proaches 1 ,  its value for  the exponential  distribution of 
times between  events in a Poisson  process.  The coef- 
ficient of skewness y1 and coefficient of kurtosis y p  for 
this geometric distribution are complicated functions of p .  
For large p they  are approximately equal  to  the values 
for  an exponential  distribution. For  an exponential  distri- 
bution y ,  = 2, y p  = 6. 

Two  points should  be made here. The serial  correla- 
tion coefficient for a Bernoulli process must  be  inter- 
preted with care.  In particular, pr = 0, k # 0 does not 
necessarily  mean the  process  is Bernoulli. In a method- 

90 ological sense  the Bernoulli variable is  as  far  away  from 
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the normal  distribution as one  can  get,  and  statements 
and  interpretations  based  on normal  distribution theory 
can be  very misleading. 

5. Tests for trend and Poisson process 
In estimating  serial  correlation coefficients, moments of 
marginal distribution of intervals,  etc., in point processes, 
the assumption is made  that  the  process is stationary. 
Lack of stationarity can make a hash of estimated  param- 
eters and therefore  an analysis of page exceptions must 
begin with tests  for  trend in the  data.  In  the  case of gross 
inhomogeneity it might be required to characterize  the 
trend;  see [11,14,18]. 

We follow here  tests  for  trend given  in [ 1 1 ,  Ch. 31, and 
in particular  the  test  for a monotone  trend in the  rate of 
events  based on the  centroid of the times-to-events, 

n 

s = I: T j ( c ) / n ,  
j=1 

where n is the  number of page exceptions in the period of 
observation. 

For a Poisson  process (Bernoulli process with p close 
to 1 ) this statistic  has, conditional on observing n events 
in the fixed period of observation, to, mean to/2 and vari- 
ance t:/ (12n). The normalized statistic 

U =  
s - t,/2 

to/  (12n)i 

is asymptotically  normally distributed with  mean 0 and 
variance 1 .  

It  is particularly important  to  test  the  three  series con- 
sidered ( e  = 76, 197, 5 12) with a test  for  trend,  since in 
the  test runs the memory  was started  empty  and pages 
brought in as  requested by the program. Thus  the page 
exception  process  up until the time the memory was filled 
could be  expected  to  be  nonstationary.  For  the  three 
capacities,  time to filling the memory  was 199,363, 
1,08 1,730, and 7,940,780 page references, respectively. 
Thus while for c = 76 and 197 there is probably  only a 
transient effect, the effect will be  marked  for c = 512 and 
a stationary analysis of this data is to  be viewed  with 
caution. 

The values of U for  the  three memory  capacities are 
given in Table 3. The negative sign is  consistent with a 
decreasing trend,  but  the  statistic is probably not signif- 
icantly  large for c = 76, c = 197. This is because  the 
variance of S under a Poisson  hypothesis  has  been  used; 
it can  be  shown to be inflated if the  process is overdis- 
persed relative to a Poisson  process, although exact re- 
sults  are not  known. The  overdispersion in the  data can 
be seen by  examining the sampling characteristics of the 
three  series given in Table 2. We  return  to this later in 
this  section. 
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Tests  for  trends  that  are  not  smooth, e.g., changes be- 
tween  discrete  levels,  are performed in the  SASE IV 
program [ 171, and confirm stationarity for levels 76 and 
197. However, it should  be borne in mind that  for long 
programs discrete  changes in the  structure of the page 
exception processes will almost certainly occur.  This is 
the  case  for a longer address  trace  (tape B )  we  have ex- 
amined. An investigation of whether  these level changes 
are  stochastic  but  stationary would be in order,  but con- 
stitutes a separate investigation. The  models derived in 
this paper should thus be considered to be micromodels. 

In summary the  trend analysis  suggests that  for capaci- 
ties of 76  and 197 the  observed page  exception processes 
can be treated  as coming from  stationary point  processes. 
The  data  for c = 5 12 has  to be treated with care  as almost 
all sample characteristics  except  the  spectra will be con- 
founded by lack of stationarity. In  the  spectra  these long 
term  trends will primarily affect the low  frequencies. 

Returning to  the  tests  for a Poisson  process (Bernoulli 
process with p close to 1 ) for  the page exception  proces- 
ses, little time has  to be spent  on a  formal  analysis. The 
skewness of the times  between page exceptions is so 
marked in Table 2 that  it  is evident that  the distribution is 
not  exponential. If the geometric  assumption is used,  the 
maximum likelihood estimate of p under  the assumption 
of independent  intervals is = ( f i  - l ) / f i .  For c = 76, 
p = 0.99979  and C ( X )  should bxpproximately one. 
However,  the  estimate of C ( X )  is C ( X )  = 3.34. This esti- 
mate is obtained by averaging estimates in four time  sec- 
t* of the  data.  The resulting  estimated  variance of 
C ( X )  (three  degrees of freedom) is 0.25. Clearly  any 
reasonable test would show C ( X )  # 1. 

We  return  to analysis of the intervals in a later section 
after  independence of the  intervals  has been  examined. 

Results of formal tests  for a Poisson  process  are given 
in Table 3 (see [ 1 1,  p. 1521 for  details).  The  upper 1 % 
point of the Kolmogorov statistic is 1.628, well below the 
value  18.57 observed  for capacity  76. 

6. Tests for renewal process 
The  next  step in the analysis of the  data  and  the  search 
for a model for  the page exception processes is to  test  for 
a renewal process [ 19,11,9], i.e., that  the intervals X j ( c )  
are independent  and identically distributed. These  tests 
have been  described in Section 2;  the results for  the  data 
are given in Table 4. For a capacity of 76  the estimated 
serial  correlation of  lag 1, b1,  using either  the  asymptotic 
variance ( n  - 1 )-? or  the  estimate of the  variance from 
the  sections  (0.08,  three degrees of freedom), is too large 
to be consistent with  a true value p1 = 0. Similarly the 
tests based on the cumulated  periodogram Eq. (5) and 
described in Cox and Lewis [ 11,  Ch.  6, p. 1641  indicate 
rejection of the renewal  hypothesis. The  upper 1 % point 
of Dnin,  for large n,  is 1.518. 
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Table 4 Tests for dependence on  serial number and depen- 
dence between  intervals. Page exception process  for  tape A 
with LRU replacement algorithm. Page  size  is  4K.  Number of 
references f, = 8,802,464. 

n 
p ,  - estimated  serial  correlation 

coefficient of order I 
for times between page 
exceptions 

( n  - l)Tpl 

- estimated  partial  serial 
correlation of order 1 

Test for serial independence 
based on cumulated 
periodogram 

Kolmogorov-Smirnov 
statistic* - Dni2 

Anderson-Darling 
statistic** - w njP ' 

T Memory  Capacity c 

76 197 512 
(pages) 

1807 820 517 
tO.188 i4.177  i4.130 
(0.08) 

+8.01 +5.1 1 +3.00 
(1.7) 

(0.002) 
0.035 0.065 0.002 

3.82 2.61 1.65 

36.43 14.91 6.94 
~ 

*Upper  I%pointis 1.518. 
**Upper  I%point i s  3.857. 

Using the  results informally there is an indication of 
decreasing dependence as the memory capacity in- 
creases,  the estimated  serial  correlation coefficients, for 
instance, decreasing as c increases.  (Again c = 5 12 must 
be used  carefully;  a smooth trend will generally  inflate 
the value of the  estimate dl . )  This  trend in the value of 6, 
may indicate that  the  rare  event  theory is becoming 
valid as c increases. In addition Table 2 indicates that  the 
intervals are becoming  less skewed,  but not  inordinately 
so. Thus a  Poisson  hypothesis would be out of the ques- 
tion. 

The  estimated partial serial  correlation  given in Table 4 

The  next  step is to find, if possible,  a model for  the page 
exception processes in which the  dependence  between 
intervals is accounted for. To  do this we examine first in 
more  detail the marginal interval process {Xj (c) }. 

will be defined and discussed later. 

7. Interval  properties 
A further  search  for a model, the Poisson and renewal 
hypothesis having been rejected, could start with either 
examination of the interval sequence {Xj ( c )  } or  the 
counting sequence { N j ( c )  j. Actually the semi-Markov 
model we describe below was derived from  the analysis 
of the  distance strings { D j  j and the marginal and  second- 
order  joint  properties of the intervals { X j  (c) j, the second- 
order properties of counts being used to verify the model. 

We attempt now to  describe this process of modeling, 
although the description is of necessity truncated. 91 
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Figure 1 Empirical log-survivor function In R ( x )   f o r H e  exception process for  tape A with LRU replacement  algorithm.  Page size 
4K, capacity = 76, n = 1807, I; = 4,871 references, C ( X )  = 3.34, i ,  = 10.34, q2 = 151.22. Solid line is the fitted  semi-Markov  log 
survivor function with estimated parameters 7jl = 0.066, 9 = 0.950, lj, = 0.99997813, 6, = 0.99977748, k = 0.45. 

Marginal  distribution of intervals 
We  discuss first in further detail the  estimated marginal 
distribution of intervals,  the sampling properties being 
given in Table 2. The striking feature is the  extreme 
skewness of the distribution of the  intervals b 2 e e n  
page  exceptions. For c = 76, we  have  estimates C ( X )  = 
3.34,+, = 10.34 and q2 = 151.22, compared  to  the values 
for  an exponential  distribution of C ( X )  = 1.0, y1 = 2, 
yz = 6. Moreover  the maximum  time between  exceptions 
for c = 76 is 333,374, the minimum value is 1 ,  compared 
to a mean of 4,87 1 and a median of 1024. 

Graphical  presentation  for  such a skewed empirical 
distribution is difficult. On a scale  such  that  the largest 
observation  is included, the logarithm of the empirical 
survivor  function, R ( x ) ,  where 

number of intervals greater than x 
total  number of intervals, n 

= 

92 (x= 1 ,  2 ; . . )  , (13 )  
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drops rapidly and  then becomes  linear for large x. If in 
fact  the sample came  from a geometric distribution,  this 
plot would be linear, within the limits  imposed  by  sam- 
pling fluctuations, since 

R ( x )  =p”= e-x In (l /p) ( x =  1 ,  2; . . ) ,   (14)  

In R (x) = x In p % - x / p ,  (15) 

the approximation holding with p close  to one. 
The nonlinearity of the plot is consistent with the re- 

jection of the  Poisson  (geometric) hypothesis. The initial 
part of the log survivor function  plot for c = 76 is shown 
in Fig. 1.  At  the bottom of the figure we give a numerical, 
rather  than a graphical,  histogram for  an  interval of 
length 100. Both the individual cell counts  and  the cumu- 
lative cell counts  are given. The plot encompasses only 
2,0001333,374 = 0.006 of the  observed range of the in- 
tervals  between page exceptions,  but a  fraction 1 124/ 
1807 = 0.62 of the  observed  number of intervals. Note 

IBM J .  RES. DEVELOP. 



Table 5 Estimated parameters for semi-Markov model. Page exception process for tape A with LRU replacement algorithm. Page 
size is 4K. Number of references to = 8,802,464. 

Memory  Capacity c (pages) 
197 512 

6, -estimated transition  prob. of type 1 Jtype 1 
ii2 - estimated transition  prob. of type 2 I type 2 
+*-estimated proportion of type 2 intervals 
f i ,  - mean of type 1 interval, assumed geometric 
C;, - mean of type 2 interval 
k^ - parameter of negative binomial  distribution for type 2 

?-proportion of type 2 intervals of length other than 1024 
interval 

f12'- mean negative binomial 

*Based on conditional mean greater than 30,000 
**Based on conditional mean greater than 50,000 
***Basedonconditionalmeangreaterthan75,000 

the large number of very short  intervals, e.g., there  are 
192 intervals  less than x = 50. 

There  are  several  other  outstanding  features in the 

1. The plot is roughly convex, being  always  below the 
dashed line -x/b = -x/4,87  1, suggesting that  the 
model for  the marginal distribution of intervals  should 
have a  decreasing hazard  and  an exponential tail 
(for details, see [ 11, p. 1401).  For a continuous vari- 
able, models  with these  properties  are  the mixed ex- 
ponential and  the gamma  distribution. Discrete ana- 
logs are, respectively, the mixed geometric  and  the 
negative binomial plus  one: 

plot. 

p ( x )  = prob { X i  = x }  

0.458 
0.962 
0.934 

45,715* 
1,973.1 

0.45 
0.950 

2022.8 

0.453 
0.941 
0.903 

82,422** 
3,033.0 

0.45 
0.880 

3307.4 

0.346 
0.937 
0.9 13  

155,230*** 
3,780.5 

0.35 
0.898 

4,092.7 

First,  there  is a suggestion of a two-state phenomenon 
from  the  distance string  analysis, and  second, a mix- 
ture model is generated by the semi-Markov model for 
the page exception  times,  the semi-Markov model 
being strongly  suggested by the  second-order  joint 
properties of intervals  given in the  next subsection. 

2.  Note  the  jump in the plot at x = 1024. For capacity 
c = 76  there  were in fact  83 intervals between page 
exceptions with this value. This is examined in Table 5 
where  the  parameter 9 is such  that ( 1  - 7jl ) f  is the 
proportion of intervals of length other  than 1024. The 
feature  appears at all capacities; it appears  to be a 
situtation in which the program references sequential- 
ly each of the  (4-byte)  words in a (4K-byte) page. 

We  return  to  the problem of incorporating  this feature 

=-rpX-l( l   -p)  + ( I  ---r)rX-'(1 -1-1 into  the model later;  the problem is whether it is a  fea- 
ture of one  state in a two-state model, or a separate  state 
or mode of referencing  pages. The  short  table in Fig. 1 (0  < -r < l , x =   1 , 2 ; . . )  

( O < p < l ; O < r < l )  shows  that this feature  does not recur  at harmonics or 
(mixed geometric)  (16)  subharmonics of 1024. 

p ( x )  = prob { X j  = x} = ( k;:;2)py1 - p y  Second-order joint properties of intervals 
The sample (estimated)  second-order  joint moments of 

(k > 0, x = 1, 2;..)  the intervals are shown in Table 4. We  have already re- 

(0 < p < 1)  (negative binomial plus one) . (17) marked that  the estimated  serial  correlation coefficient 
of lag 1, &, is significantly large for all capacities. 

Note  that  for  the negative binomial plus one Another  outstanding  feature is that the  estimated par- 
tial serial correlations  (Table 4) ,  &, are very  small, 
suggesting  first-order Markov  dependence of intervals. 

(18)  The partial  serial correlation of order  one is [20, p. 
64-51 simply the  correlation  between X i  and Xi+* with 

the mixed geometric  (exponential)  for  two reasons. Note  that with  first-order Markov  dependence pk = PIc, 
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1 / 3 1  < 1, so that 

The semi-Markov model for intervals is not quite 
Markovian  (hence  its  name)  as we will show below,  but 
it does give a small partial  correlation coefficient. This 
and  the  observed interval properties  and  the  results of 
the analysis of the  distance strings  suggest  adopting  a 
two-state semi-Markov process  as a tentative model for 
the  data.  We now give the details of the model and the 
results of fitting the model to  the data. 

8. Two-state  semi-Markov  model for univariate point 
processes 
A two-state semi-Markov model for univariate  point 
processes is discussed in detail  by Cox and Lewis 
[ 1 1, p. 194 -71. We  summarize  these  results  here  and 
give  extensions. Note  that  the model is usually used as a 
model for bivariate  point processes (e.g., [ 1 I ) .  

The model is defined on  the intervals { X j }  rather than 
on  the  counts {Si}. Thus we suppose  there  are  two  types 
of intervals  with  probability density  functions (con- 
tinuous time)  or probability  distributions (discrete 
time), p1 ( x )  and p , ( x ) .  The model postulates  that  there 
is a two-state  Markov chain with transition  matrix 

so that given that Xj-l has p.d.f. p1 ( x ) ,  the probability 
that X j  has p.d.f. p , ( x )  is 1 - a l ,  the probability that X j  
has p.d.f. p l ( x )  is al,  etc., independently of the  type  or 
length of previous  intervals. 

Note that while  this  is the  underlying  structure, it is 
assumed  that  the  type of interval is not  observable,  i.e., 
we  have  a  univariate  point  process. Further, while the 
probabilistic  properties of the bivariate process  are 
simple to  derive,  those of the univariate process  are more 
difficult. Moreover, like the renewal process,  the two- 
state semi-Markov  process  has very  special  indepen- 
dence properties that  are not likely to be true in real 
situations. It is thus simply a convenient model, not  gos- 
pel truth; possible  relaxations of the  assumptions  are 
discussed  later. 

Now  the equilibrium  distribution associated with P, 
the probability vector solution of the matrix  equation 
nP = n, is 

?TI = 
1 - 01’ 1 - C Y 1  

, r ,= l - r l=  
2 - CY1 - a! 2“] -a2  , (23)  

so that in equilibrium the probability is rl that  at  the time 
when an event  occurs we choose  the  next interval  with 

94 p.d.f. p ,  ( x ) ,  etc. Thus  the marginal p.d.f. of intervals is 

P ( X )  = TIP1 ( x )  + r 2 p 2  ( x )  . (24) 

Also 

P = E ( X )  = T,P1 + n-2p’ , (25 1 

IT’ = var ( X )  = rIul2 + r2u2’ + rlr2(pl - p2)’ ,  (26) 

where pl,  u,’ and p2, cr2* are  the mean and  variance of 
intervals of the first and second  types, respectively. 

In  Cox  and  Lewis [ l  1 ,  p. 196-71  an  elementary der- 
ivation of the serial  correlation coefficients p k  is given: 

(k  = 1,2;. .) , (27) 

where p = a1 + aq - 1. Note  that p = a1 - (1 - a2) 
5 a1 5 1 ,  since a1 is a  probability; in fact 5 1 .  We 
have p =-1 when a1 = 0 and  1 - 01, = 1 ,  the  case of 
strict alternation between the two  types of intervals. 
When = (1 - a2),  p = 0 and  therefore pk = 0 for 
k # 0. In this case a1 + a2 = 1 ,  and the  process  can be 
shown  to  be a  renewal process with the mixture  interval 
p.d.f. Eq.  (24). 

Note  that while the p k  decrease geometrically,  they 
are modulated by M ,  which is  zero,  for  instance, if 
pl = p2 or p1 ( X )  = p,(x), the  latter  case giving a re- 
newal  process. Otherwise M lies between  zero  and  one. 
It is close  to  one,  for  example, if the difference in the 
location of the  two  types of intervals (p2 - pl) is large 
relative to  the  dispersions c r l  and cr, of the intervals. 

The  spectrum f+ (a), for this  univariate semi-Markov 
process is derived from (2) and (27),  and is 

f+ (o)  =‘[1 + 2 M p [  ‘Os O - p  }]. 7T 1 + p2 - 2p cos 0 

The outstanding feature of the serial  correlations and 
the  spectrum is that they  depend on p1 (x) and p 2  ( x )  only 
through their  Jirst  two  moments.  This  characteristic of 
the  two-state  semi-Markov  process  makes it attractive 
for  modeling the page-exception  process. It  also  says 
that a good deal of the detail of the process is not given 
by the  second-order  joint moments of intervals. 

The serial  partial  correlation of order  one, +1, defined 
by (20) is 

Mp2 - M2p2 MP”1 - M )  
< 1_ P2 

$1 = 
- - 

1 - M2p2  4 1 - (Mp)’  
- 

- 1 
4 (  1/p’ - M’)  ’ 

- (29) 

Thus  no  matter  whether p1 is positive or negative, $, 
is positive  and  relatively small. Note in particular  that 
there is not  jirst-order  Markovian  dependence in the 
intervals  between  events in the  semi-Markov  model 



f o r  univariate  point  processes, i.e., given X i ,  the distri- 
bution of X,+1 is not completely  determined. 

Properties of the counting process { S i }  can  be derived 
by  straight  renewal-theoretic  methods. They  are, how- 
ever, messy and  depend on the functional form of p1 ( x )  
and p p  ( x ) .  The  spectrum of counts, in particular,  follows 
from  results in Cox  and Lewis [ 1 1 ,  p. 1971 and will not 
be  given  here. 

9. Estimation of parameters  in  the model 
Estimation of parameters of the semi-Markov model is 
intimately connected with the detailed assumptions made 
in the model, and  has been done in an ad  hoc  manner 
for  the  three capacities c = 76, 197 and 512. The  results 
were shown in Table 5. 

We now describe this  estimation process, giving de- 
tails of the  further  assumptions  made,  these being pri- 
marily the functional  form of p1 ( x )  and p , ( x ) .  Recalling 
the detailed  discussion of the empirical log survivor func- 
tion in Section 7, the linear tail of the empirical  plot, 
plus the rare-event theory, suggested using a geometric- 
plus-one  distribution for p ,  ( x ) ,  this being the interval, 
referred to as type 1 ,  with the largest mean value: 

p1 ( x )  = p,"" ( 1  - p , )  (0 < p ,  < 1: x = 1,2,. . .) , (30) 

To obtain the  convex  shape of the log survivor function 
in Fig. 1 ,  it would be sufficient to mix p1 (x) with another 
geometric distribution, but  the large  number of short 
intervals and  the  extreme  skewness of the interval be- 
tween page exception distribution  suggested using a 
distribution for  the  type 2 interval, p p  ( x ) ,  which is  more 
skewed  than  the geometric  distribution and  has a de- 
creasing  hazard. A fairly arbitrary  choice,  made  to  keep 
the  number of parameters  down, is the "negative- 
binomial-plus-one  distribution" (17): 

(0  < p 2  < 1 ;  k > 0; x =  l ; . . ) .   (32)  

It remains to take  care of the  discrete  component  at 
x = 1024. As remarked  above, this could be  the result of 
a third state,  but  on  the  same rough grounds it was de- 
cided to include  this in with the  type 2 intervals  as  a 
mixture. Thus  we  have, in toto,  for  the marginal distri- 
bution of the  intervals  between page exceptions 

prob {X = x }  = px ( x )  

=.rr,p,(x)+ ( 1  -r,)[yp,(x:k) + ( 1  - y ) S h -  1024)I 

( x =  1 , 2 ; . . ) ,  ( 3 3 )  

where 1 - y is the probability that a type 2 interval comes 

from  the distinct degenerate distribution  with all its mass 
at x = 1024 and 

1 x = 1024 

0 otherwise. 
S ( x  - 1024) = (34) 

There  are now  six parameters  to estimate: 

(i) a,, the  transition probability of type 1 /type 
1 intervals, (22); 

(ii) a2, the transition  probability of type  2ltype 
2 intervals, (22); 

(iii) pl = 1 / ( 1  - p1 ) , the mean of the  type 1 in- 
terval; 

(iv) p p  = 1 + kp,/( 1 - p 2 ) ,  the mean of the 
negative binomial distribution in the  type 2 
interval  distribution  mixture, ( 3 3 )  ; 

(v) k,  the  second  parameter of the negative 
binomial distribution in the  type 2 interval 
distribution mixture, (3  3 ) ; 

(vi) y ,  where 1 - y is the probability that a 
type 2 interval comes from the distribution 
with all its mass at 1024, (34). 

The  estimated  parameters  are shown in Table 5. The 
parameter pl was  estimated  as  the  slope of the linear 
tail of the log survivor  function; this  involved an eyeball 
judgement of where  the linearity set  in;  for c = 76 this 
point was  taken  to  be x = 30,000 and actually G, was 
taken  to  be  the estimated  conditional  mean of the ob- 
servations  greater  than 30,000. Specifically, take all ob- 
served intervals X with value  greater  than 30,000, sub- 
tract 30,000 from  each  such  observation  and  take  the 
average. We  are assuming here  that r 2 c p 2  ( x ) ,  where  the 
sum is for x greater  than 30,000, is so small that with very 
high probability all the  observations  greater  than 30,000 
came  from  the tail of the geometric  distribution p ,  ( x ) .  

The  parameter y was estimated by setting 6, ( 1  - y )  
equal  to  the  proportion of intervals  between page ex- 
ceptions with length 1024. This involves  a  very small 
bias of picking up  intervals from p ,  ( x )  or p 2  (x;k). 

The remaining four  parameters can be estimated by 
the method of moments, i.e., solving the  equations  for 
pl, E ( X ) ,   E ( X 2 ) ,  E ( X 3 ) ,  using estimates of these quanti- 
ties  from Tables 2 and 4. The equation for p1 is given in 
(27): E ( X )  = p in terms of the  parameters, using ( 3 3 )  
and ( 18) is, for example, 

P = E  
VI + ( 1  - ~ , ) [ y ( l  ++I+ ( 1  -y)1024 . 1 

This estimation  method is not a  simple procedure and 
there is no  guarantee of a unique  solution. Consequently 
a modified method was used in which estimates of 01,' a2 
and p 2  were  obtained using p, = I;, - l /@,,  +, and a fixed 95 
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Figure 2 Fitted semi-Markov spectrum of intervals for page exception  process for tape A with LRU replacement algorithm. Page size 
4K, capacity = 76,  n = 1807. Theoretical (solid  line) spectrum for semi-Markov process with estimated parameters f i ,  = 0.066, l= 
0.45, i = 0.950, &z = 0.962, G1 = 0.458, I;, = 45,715, I ; z  = 1,973.1. 

k. Estimates  for  several values of k were  then used  in an 
expression  for  the log survivor  function  and  that k that 
gave  the  best fit to  the empirical log survivor  function 
(Fig. 1 )  was  chosen.  The fitted log survivor function is 
shown  as a solid line in Fig. 1 .  

The estimated parameters  are  shown in Table 5, and 
again the nonstationarity for capacity c = 5 12 should  be 
recalled. Nevertheless  the overall  impression is that  the 
estimated  structural  parameters ail, ai,, k^ and 9 are fairly 
consistent  over  the  range of capacities  examined, the 
main difference at diferent  capacities being the scale 
of the process,  measured  by &' and b,. 

We  have  not  used serial correlations  beyond  the first 
in  this parameter estimation  scheme. The serial  correla- 
tion of lag two  enters  into  the partial  serial correlation 
coefficient of order  one, 41, given  by (20). For capacity 
c = 76 this was  estimated  (Table 4) to  be 0.035. Using 
the  estimated  parameter values in (29), we  get fi - 0.42, 

96 M - 0.45 and & - 0.02. The values are roughly com- 
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parable, indicating a reasonable goodness-of-fit of the 
model. This is explored further in the  next  two  sec- 
tions. 

10. Test of fit based on the spectrum of intervals 
We now consider  the fit  of the model, using the  estimated 
parameters, by  examining the  computed and estimated 
spectrum of intervals for capacity c = 76. 

The  computed  spectrum f +  (o), obtained by using the 
estimates &,, h2, f i l ,  f i 2 ,  k^ and 9 from  Table 5 to calculate 
the  constants in the  expression (28), is shown in Fig. 2. 
It  has  the  characteristic  shape of the  spectrum of a first- 
order  process with  positive dependence. 

Two  smoothed  estimates f+(o )  of the  spectrum of 
intervals  are  shown in Fig. 2.  These  were obtained using 
a Parzen lag window Aj [ 1 1 ,  p. 1081 directly on  the esti- 
mated  serial correlations p j  given by ( 1  ) :  
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where (e.g., [ 1 1 ,  p. 1081): 

The  reason  for smoothing  directly on  the estimated 
correlation coefficients instead of on  the periodogram is 
that this is the way it was written into  the SASE IV pro- 
gram. The  two  methods  are equivalent [ 131.  

The coefficient of variation of individual estimates 
f+ (of) ,  wc = 2~r&/n, using the  Parzen window with a 
given m is approximately (mln) . Thus  as m decreases 
(bandwidth  increases)  the coefficient of variation  de- 
creases,  the  curve  gets  smoother, and  individual  esti- 
mates become more  biased. The  question of which rn 
gives the  best “resolution” is purely  empirical; estimates 
for m = 50 and m = 150 are  shown  as black  circles and 
triangles,  respectively. The m = 50 window seems  to 
give the  best resolution. 

The  estimates were  actually  obtained by applying the 
Parzen window estimate (36) to  four distinct sections 
of the intervals between  events  and averaging the  four 
estimates obtained at  each  frequency of = 2.ir//(n/4) 
(see [ 131 for  details).  This allows one  to  obtain  estimates 
(three  degrees of freedom) of the  standard deviation of 
the  averaged  estimates  off+ (w,). The estimated standard 
deviations  are shown in Fig. 2 as horizontal lines ( m  = 

50) ,  one  estimated  standard deviation on  either side of 
the  smoothed  estimated  spectral value. These  are not 
true confidence intervals but are shown  only to give an 
idea of the precision of the smoothed spectral  estimate. 

One  such  estimate  for m = 150 is shown at / = 80 as 
round brackets  about  the estimated  value y+ ( w s o ~ ,  desig- 
nated by A. It should be approximately ( 150/50)2 = ( 3 ) 7  

as wide as  the band for m = 50. 
Within the limits of the sampling  fluctuations the esti- 

mated and  computed  spectra tally well. A formal test of 
fit [ 11, p. 1721 based  on  the  adjusted cumulated  periodo- 
gram (from  Eq. ( 4 ) )  

k= 1 

was not  made because of computational limitations. The 
estimated and computed  spectra  for capacities c = 197 
and c = 512 have not  been  displayed in the  paper. 

Note  that this is a relatively weak form of goodness-of- 
fit since the theoretical spectrum (28) does not depend on 
detailed assumptions  about p1 (x)  and p B  (x), and the com- 
puted spectrum ?+ (0) has been  adjusted to fit ?+ ( w )  to 

some  extent by  estimating the  parameters in the semi- 
Markov model from  the  data. 

A far  more critical test of the model is obtained  by  com- 
paring estimated  and computed  spectra of counts,  and 
this we do  next. 

11. Tests of fit based on the spectrum of counts 
We now consider  the  count  spectrum g ( w )  given by (9) ,  
the  spectrum of the binary count  sequence {Gi(c)), for 
capacity c = 76. Again we will normalize and actually 
work with a spectrum  for positive w; g ,  (0) = 2~rg(w). 
For a Bernoulli process  (Poisson) g +  ( w )  = 1 for all w. 

Again it is important  to  note  that this is a spectrum  for 
page reference time,  not  serial number of the page  ex- 
ceptions.  Thus w = 2.ir/T, where T is the period of the 
cycle in page reference time, T = 2 being the  shortest 
possible  period, corresponding  to page exceptions  every 
other  reference. 

With the highly skewed marginal distribution of inter- 
vals between page exceptions  seen in this study,  there  is 
an  extreme problem of resolution of spectral  components. 
Thus with the many short intervals there might be signifi- 
cant  dynamic effects  with periods of 2, 3,  etc;  there might 
also be dynamic effects around periods  corresponding to 
the  estimated mean  time between page exceptions,  to  the 
mean  times between page exceptions of the  two  types of 
intervals  and to  the period 1024 of the  discrete com- 
ponent in the intervals. The  latter is of particular interest 
as  the estimated spectrum should tell us whether  to model 
the  discrete (1024) component  as a  third state in a semi- 
Markov model, rather than lumping it with type 2 inter- 
vals. 

Let t j  be the  observed  value of Tj ( c ) ,  the  number of 
page references to  the  jth page exception.  Then  the 
periodogram for {6,(c)} is, using (9) and (4) ,  

tn-l  

2/(w,) = 1 + 2 x bk cos (w ,k )  
k = l  

where 
1. t,,(=8,802,464) is the  number of page references  ob- 

2. n is the  number of page exceptions  observed in (OJ,,]; 
3. here or = 2v&/tO, and not 2.ir&/n as  for  the  spectrum 

of intervals; 
4. the period T, corresponding  to wl, since wt = 2rr/T, = 

2 ~ / / t , , ,  is T,  = to/&; 
5. the  quantity within the  absolute value sign is the finite 

Fourier transform of 6, ( c )  or the finite Fourier-Stieljes 
transform of Ni ( c )  : 

served.  or  the total  time of observation; 
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Figure 3 Fitted  semi-Markov  spectrum of counts  for  page  exception  process for tape A with LRU replacement  algorithm.  Page  size 
4K, capacity = 76, n = 1807.  Smoothed spectrum, average of four  sections, each smoothed with  quadratic  window. 50 points (dashed 
line). Theoretical  spectrum  (solid line) for semi-Markov  process  with  estimated  parameters f = 0.950, k = 0.45, p, = 0.99977748, 
p ,  = 0.99997813, ai, = 0.458, ai, = 0.962. 

since 6 , ( c )  only equals  one  where k = tj ,  for some j .  
No further  details of the estimation of g+ (w) are given 

here  (see [ll, Ch.  5; 211). In Fig. 3 we give an  estimate 
2g+(w,) of 2g+(w) obtained by smoothing the periodo- 
gram 21 (wJ. The smoothing  involved a 50-point quad- 
ratic  window [ 1 1, p. 13 1 1  applied  directly to periodo- 
grams  for  four nonoverlapping sections of the  data.  The 
four  estimates  were  then  averaged, at each wt, to give  a 
final estimate. 

state in the  semi-Markov  model,  instead of being  lumped 
in with state 2 .  

Computation of the  spectra of counts  for  the  other 
capacities was not done.  It should  be  noted that  these 
computations  are  extremely  expensive if the whole  spec- 
trum is required. It now seems possible, however,  to  use 
fast  Fourier transform techniques [22] and this type of 
analysis  should become  more feasible. 

Again the sectioning  was done to save  computation 
time and  to  obtain  estimates of the  variances of the in- 
dividual estimates 22,  (ac), and the  adequacy of the 

12. Summary and conclusions 
The  result of this study  has  been  the following. 

amount of smoothing was judged  empirically. 
The  estimate 2g+(w,) in Fig. 3 is shown  as a jagged 

dashed line, the straight line dashed segments  connecting 
the individual estimates.  It was only computationally  feas- 
ible to go out  to / = 4900, or wt = 2~ X 490018,802,464 - 0.0035~. Up  to  that point the estimated spectrum lies 
above  the  value 2, which is  the  theoretical  value  for a 
Bernoulli process. 

The  computed  spectrum of counts, 2k+(o), for the 
two-state semi-Markov model, using the  estimated 
parameters, is shown  as a solid line in Fig. 3. In general 
it agrees very well with the estimated spectrum. 

The main anomaly in the figure is the small peaks in 
the estimated spectrum  at periods of approximately 
T = 2 X 1024, T = 1024, and T = 102412 = 512. These 
are multiples or submultiples of the length 1024 of the 
distinct group of intervals between page exceptions  seen 
in Fig. 1. The conclusion from  the spectral  analysis would 

98 be that  these intervals  should be modeled as a separate 

1. On  the basis of observation of data  on page reference 
patterns and (LRU) page exceptions, we have  postu- 
lated a two-state semi-Markov model for  the univari- 
ate page exception  process  for a  given  memory  ca- 
pacity c .  

2. Parameters of the model have been estimated in an 
ad  hoc  manner  from  the  data. 

3. The goodness-of-fit of the model to  the  data  has been 
examined by estimating the  spectra of counts  and in- 
tervals  and comparing these  to theoretical spectra. 
The fit is generally  good, the main exception being 
the conclusion that  the distinct group of intervals of 
length 1024 should  be modeled dynamically as a third 
state in the model. 

4. The effect of the  change in the capacity c on  the model 
seems  to be roughly to  change  the scale of the distri- 
butions of times between  exceptions without changing 
structural  parameters, e.g., transition  probabilities, 
drastically. 
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Limitations of the  study  have been the following. 

1. The  ad  hoc method of estimating the  parameters in 
the model. The main need here is to formalize the  es- 
timation procedure. 

2. Estimates of parameters from sections of the  data  are 
needed to  examine  the sensitivity of the estimation 
procedure. 

3. The  study  needs  to be done  for more  capacities c in 
order  to  get a better idea of the change of the param- 
eters with c. Other  (smaller) page sizes  should also 
be  studied. The effect of other  replacement algorithms 
is also of interest. 

4. Eventually  a study of the  joint  properties of page  ex- 
ception processes { T j ( c ) }  at different capacities c 
would have to be done.  It might be simpler, rather than 
to deal  directly with multivariate page exception pro- 
cesses,  to  go back to  the  distance strings {Di} and 
model them. 

5. The page exception  process of only one  other  tape 
was  examined, showing roughly the  same  character- 
istics on a  different  scale. 

The model for  the page exception  process itself has 
utility for driving models of uniprogrammed or multipro- 
grammed paging machines (see, e.g., [4] ). Recalling 
that  it is at  best a model that fits the  details  observable 
from finite samples, there  are  also  other limitations. 

1 .  There is a  need to relate parameter values  not  only 
to different  capacities c ,  but to  some  measurable  char- 
acteristic of the program. This is a difficult calssifica- 

In available “rare-event”  theory,  events  are deleted 
independently with probability p ,  and  as p +. 1 the pro- 
cess of remaining events  on a suitably  scaled  time axis, 
goes to a Bernoulli or Poisson process  (see  [3]  for  de- 
tails). We  know of no work in which the deletion process 
is more general. 

However, a situation in which  a type of thinning occurs 
on a  self-generated  basis is in level-crossing theory  [24]. 
Again Poisson or Bernoulli limits occur.  For  discrete 
time, join  the points {Di,i> and {Di+l,i + 1) by  a  straight 
line. If the line goes up across a level c, we say we have  an 
upcrossing event  at i + 1, if it goes down  across a level 
c we  have a  downcrossing at i + 1 ; see  [25].  The page 
exception  process we have considered in this paper is 
slightly different.  A page exception occurs  at  each up- 
crossing  time plus the times i between an up-crossing 
and  the  successive down-crossing. No theory  exists  for 
this process, although for high c this process is very close 
to  the up-crossing process. No other limits than Poisson 
limits are known. 

One special case is that in which the { D i }  are inde- 
pendent.  Then  the page exception  process is a Bernoulli 
process. If the Di have  two distributions that  occur during 
different  alternating  periods of random duration,  and if 
the Di are  independent, given the period, the level cross- 
ings are a  doubly stochastic Bernoulli process  [26].  It 
is known then  that  the  spectrum of counts is just  the spec- 
trum of the alternating process, but is not  known  how 
close the  exception  process is to a semi-Markov  process. 

tion problem. 
2. There is a  need to model the changes in parameters 

over time. As remarked before, the model is a micro- 
model in time, and  dynamic  changes with time will 
occur.  Are  these simply changes in parameter values, 
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or is the model particular to  certain  sections of the 
data? 

3. Details of the model may not  be correct  and it might 
perhaps  have been better  to  use generalizations such 
as  the  pseudo-Markov model of Ekholm [23].  This, 
however,  introduces additional parameters,  and it does 
not seem possible to differentiate such fine points 
from the available data. 

Finally we remark on theoretical  underpinnings for 
the model.  Semi-Markov  models, like renewal  models, 
have very  special dependency  structure  that seldom  oc- 
curs in practice.  Allusion has been  made to  the  theory of 
rare  events  to suggest a Poisson process.  In  the  face of 
two-state  phenomena in the basic distance string process, 
will the  “rare”  events of page exceptions { D i  > c }  lead 
to  approximate semi-Markov  models? The  question is 
difficult and will be addressed elsewhere.  We note, how- 
ever,  two points. 
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