Communication

R. A. Kelley

APLGOL, an Experimental Structured Programming

Language

Abstract: An experimental programming language called APLGOL adds structured programming facilities to the existing framework of
APL. The conventional semantics of APL is unaltered and only minor changes are incorporated in the syntax. The advantages of the

proposed interstatement structuring and control are outlined.

Programs designed and written using “‘structured” pro-
gramming techniques have been demonstrated to be
more readily produced, more reliable, and more easily
maintained than unstructured programs [1]. These tech-
niques essentially involve arranging the application
into principal components, which in turn, are further
organized to produce a set of highly structured pro-
cedures. For this purpose, key programming language
constructs have been used in conjunction with many
languages to highlight interstatement structuring and
control.

Since structured programming techniques have been
successful when applied to programming in other lan-
guages, they should be equally advantageous for APL
programming efforts. In APL the compact and concise
operators extend to vector or array operands, and single
expressions often can subsume the equivalent of several
statements in a language such as ALGOL or PL/1. How-
ever, even in spite of the famous APL ‘“‘one-liners”’, many
APL programs do require quite a few statements and fre-
quently utilize rather complicated control flow. If this
were highlighted by structured programming language
constructs, the resulting programs should prove easier to
write and debug, and more importantly, easier for others
to read and understand.

Consequently, the APLGOL language [2], based on a
notation of Abrams [3], is an experiment to add struc-
tured programming language constructs to the basic APL
framework. In adding the structured statements, a
deliberate effort has been made to augment APL in the
areas where these constructs are absent, and to avoid

JANUARY 1973

establishing other constructs, e.g., a new rule for name
scope, that would tend to compete with existing APL fa-
cilities. Close attention has been paid to the relation
between the new APLGOL facilities and existing APL
operations. In this sense, APL was considered the target
machine language to which APLGOL source programs
could be compiled readily without materially affecting
the speed or size of the object program or the compiler,
or otherwise distorting the APL system.

APLGOL semantics

Before any new features were incorporated in APLGOL,
it was decided first that all the semantic functions of APL
should appear in APLGOL without change, since remov-
ing or altering any of them would be a step in the wrong
direction. To achieve this (and still attain the goal of
furnishing structured programming functions), the APL
procedure format with its procedural header and num-
bered statements was abandoned in favor of a free form
in which statements could span lines in an arbitrary
manner. Thus, a new PROCEDURE statement having a
different syntax but identical semantics, and a new END
PROCEDURE statement were incorporated to contain the
procedure body.

Also, a slight change was introduced in the original
APL statement syntax to permit a semicolon not en-
closed in subscript brackets to terminate a statement.
The semicolon formerly used to catenate items for print-
ing was replaced with the union symbol, “uU”. The syn-
tax for comments was changed to require the comment
delimiter to follow as well as to precede the comment. In

69

APLGOL




70

this way comments can now be embedded within state-
ments. Otherwise, the syntax of APL was left unaltered,
and an APL program written in this new format can be
compiled to one identical to the original form.

To this basic APL framework were added new state-
ments for interstatement control, conditional statement
execution, and statement structuring, as well as a few
statements (such as the RETURN statement) to clarify
the intent of the algorithm. The most fundamental of
these statements was the JF statement, optiohally hav-
ing an ZLSE clause. The following example shows an
APLGOL IF statement, together with the corresponding
APL object text:

APLGOL Source APL Object Text

IF A=0 THEN +(~A#0)/Q001
B«C:A; B+CtA
ELSE +0002
DeBtlg @001 :D«B+4
Q002: . . .

The conditional expression can be any APL expression
producing a scalar 0 or 1. The true part and the optional
false part are compiled into separate APL statements to
be executed depending on the condition. This feature is,
of course, defined recursively to permit the nesting of IF
statements to any arbitrary depth. In APL this facility
can be obtained only by using several statements requir-
ing branches and labels that quickly obscure the intent
of the program. The function is far more clearly identifi-
able in the APLGOL IF statement form. Appendix 3
shows examples of APLGOL source statements and the
corresponding APL object text for the remaining new
statement types.

Additionally, a simple statement block analogous to
the DO-END statement pair in PL/1 was incorporated into
group statements for a common purpose, such as to de-
limit a block of statements representing either the true or
false portion of an TF statement. Used with graphic for-
matting to indent statements common to a block, this
simple block facility, together with the IF statement,
provides much of the necessary structured programming
facilities. Other facilities, however, add more conve-
nience for the programmer and help further to highlight
the intent of the algorithm.

Several other types of blocks were included for more
concise expression of common functions. These includ-
ed a WHILE block, used in both ALGOL and PL/1, a RE-
PEAT block similar to the WAILE, except that the condi-
tion is tested at the end of the block, a CASE block [4]
for selective execution of one of the statements (or
blocks) contained in it, and finally an iteration state-
ment, as in the ALGOL FOR statement or the PL/1 itera-
tive DO statement, for iterative execution of a statement

R. A. KELLEY

or block. In these blocks the conditional expressions are
permitted to be any APL expression producing a scalar 0
or 1. The index expression in the CASE block can be
any APL expression producing a positive scalar integer
to index one of the statements or blocks contained with-
in it. (The index origin of the target APL interpreter still
must be implicitly understood by the programmer.) Fi-
nally, any scalar APL expression can be used for the ini-
tialization, step, and test in the iteration statement; the
latter two are recomputed on each cycle.

To complete the language extensions, a RETURN state-
ment and a null statement are incorporated, respectively,
to effect a return from the current procedural level and
to provide an empty statement for use in conjunction
with CASE blocks. An optional expression in the RE-
TURN statement may be used for any computation prior
to returning. This differs from the pL/1 version, in which
the expression may only relate to the value to be re-
turned from a function-procedure.

APLGOL syntax

Once the semantic functions had been determined, the
question of syntax seemed to be a matter of personal
preference. APLGOL semantics essentially can be repre-
sented in either an ALGOL or a PL/1 syntax, and the user
community could be expected to be familiar with either.
Technically, table-driven syntax recognizers could easily
make the recognition of either syntax a simple matter; so
both an ALGOL-like and a PL/1-like syntax were created
(see Appendices 1, 2, respectively). An APLGOL pro-
cedure employing either syntax may be written and
compiled, but mixtures of the two are not permitted.

Perhaps an example of a standard APL program should
now be contrasted with its two APLGOL counterparts
(see Figures 1, 2, and 3). The example used is the ‘““deal”
operator written in APL, cf, [5].

Because the blocks are enclosed by keywords such as
BEGIN, DO, WHILE, CASE, FOR, and END, the pro-
grammer is far more aware of the statements which they
comprise. These programs are relatively short and un-
complicated, yet the control flow in the conventional
APL program is not at all obvious. On the other hand,
the blocks in the APLGOL programs are quickly discern-
ible — especially if they are indented as shown. Also, no-
tice that the algorithms in these samples are basically an
IF .. .THEN. . . ELSE statement.

The APLGOL compiler

The same APLGOL compiler accommodates either syn-
tax by selecting the appropriate set of syntax tables. It
generates APL object text in one pass with an additional
pass over the object text to remove extraneous labels
and branches resulting from nested blocks or user-de-
fined labels.

IBM J. RES. DEVELOP.




Figure 1 The unstructured APL version.

V2«4 DEAL B;I:J
[1]  AGLOBAL VARIABLES:Q
[2] USES:ROLL
[3]  'RANK' ERROR 1%x/pA
[4]  'RANK' ERROR 1#x/pB
[5] 'DOMAIN' ERROR 0=TYPE A
[6] *DOMAIN' ERROR (A<0)VAz[A
[7] 'DOMAIN' ERROR 0#TYPE B
[8] 'DOMAIN' ERRCR Bv\B
{91 'DOMAIN' ERROR A>B
[10] ~SHORT IF A<LB:16
[11] Z«(Q-1)+\B
{121 -END IF A=0
[13] I«0
[14] ZLOOP:J«1+I+(ROLL B~I)-0
[15] I<I+1
[16] 2z[I,J}2[J,I]
[17] -»LOOP IF A>I
[18] END:2«A4Z
[19] =0
[20] SHORT:Z+10
(21] OUTER:+0 IF A=pZ
{22] INNER:I<ROLL B
[23) +INNER IF IeR
[24] 2z+Z,I
[25] -OUTER

v

The entire compiler, * written in APL (and APLGOL)
comprises 12 procedures containing a total of 250 APL
object statements. It was completed in well under one
man-month and can compile approximately 100 APL
object statements per CPU minute of IBM System/360-
75 time, using less than a 30,000-byte workspace.

Discussion

The facilities incorporated in APLGOL have already
proven useful in the context of other less powerful pro-
gramming languages. However, the basic power in APL
tends to lie at the expression level, where elegant opera-
tors can be associated with scalar, vector, or array data
to perform functions requiring quite a few statements in
other languages. The new facilities in APLGOL are realiy
concerned with interstatement control structure, which
is weak in APL. Thus it would appear that the expres-
sion power of APL is complemented by these interstate-
ment structuring facilities.

The APLGOL compiler itself still remains among the
largest examples of APLGOL programming. It has been
used as a model of structured programming and has
served as an excellent aid in teaching beginners the intri-
cacies of compiler design. Of course it is not an exceed-
ingly complex compiler, but the structured algorithms
clearly permit one rapidly to discern its overall frame-
work and to examine the various sections in greater de-
tail.

*The APLGOL compiler was written as an experimental project and is not avail-
able for external distribution.

JANUARY 1973

Figure 2 APLGOL version using ALGOL-like syntax.

PROCEDURE Z+A DEAL B,I,J;
n GLOBAL VARIABLES: Q m
A USES: ROLL na
"RANK' ERROR 1#x/pA; 'RANK' ERROR 1#x/pB;

'"DOMAIN' ERROR 0=TYPE A; 'DOMAIN' ERROR (A<D)VA=zLA;

'DOMAIN' ERROR 0=TYPE B; 'DOMAIN' ERROR BzlB;
'DOMAIN' ERROR A>B;
IF A3LB16 THEN
BEGIN

Z+(0-1)+1B;

IF A=0 THEN BETURN Z+At7;

I+0;

REPEAT

Je1+I+(ROLL B-I)-Q; I«I+1; Z(I,JI«2{J,T]1;

UNTIL A<I;
RETURN Z<«A*Z;
END
ELSE
BEGIN
Z«10;
WHILE AzpZ DO
PEPEAT I«ROLL 33 UNTIL ~IeR;
247,13
END
END
END PROCEDURE

Figure 3 APLGOL version using PL/1-like syntax.

PROCEDURE Z<+A DEAL B,I,J;
A GLOBAL VARIABLES: O a
a USES: ROLL n
'"RANK' ERROR 1#x/pA; 'RANK' ERROR 1zx/pB;

'DOMAIN' ERROR 0#TYPE A; 'DOMAIN' ERROR (A<0)VAzlA;

'DOMAIN' ERROR 0#TYPE B; ‘'DOMAIN' ERROR Bz|B;
'DOMAIN' ERROR A>B;
IF A>LB+16 THEN
" 10
Z«(0-1)+1B;
IF A=0 THEN EETURN Z<A4Z;
I«0;
REPEAT

J«1+I+(ROLL B-I)-Q; I«I+1; Z[I,J1«Z[J,I1;

UNTIL A<I;
RETURN Z+AAZ;
END;
LLSE
Do,
Z+10;
DO WHILE A#p7;
REPEAT I«ROLL B; UNTIL ~Ie¢R;
Z«Z ,I;
END;
END;
END PROCEDURE ;

APLGOL does not represent new programming lan-
guage technology; it was never intended to do so. In-
stead, it has served as an experimental means for pro-
viding known structured programming language facilities
in APL without otherwise destroying the basic APL phi-
losophy. This has not entailed major changes in APL;
indeed, the APL semantics remain unaltered, and only
minor changes have been made in the APL syntax. The

A

APLGOL




72

R. A. KELLEY

compiler approach has provided this function without
changing the standard APL system.

References

1. F. T. Baker, *“Chief Programmer Team Management of Pro-
duction Programming”, IBM Systems Journal, 11, No. 1, 56
(1972).

2. R. A. Kelley, “APLGOL, A Structured Programming Lan-
guage for APL”, IBM Palo Alto Scientific Center Report No.
320-3299, August 1972.

3. P. S. Abrams, “An APL Machine”, SLAC Report No. 114,
Computer Science Department, Stanford University, Febru-
ary 1970.

4. N. Wirth, and C. Hoare, “A Contribution to the Develop-
ment of ALGOL”, Communications of the ACM, 9, No. 6,
413-432 (June 1962).

5. R. H. Lathwell and J. E. Mezei, “A Formal Description of
APL”, IRIA Colloque APL, pp. 181-215, September 1971.

6. Richard Sites, “ALGOL-w,” Stanford Computer Science Re-
port 71-230, February 1972.

Received April 25, 1972

The author is located at the IBM Data Processing Divi-
sion Scientific Center, 2670 Hanover Street, Palo Alto,
California 94304.

Appendix 1. ALGOL-like syntax for apLGcoL

1 <PROGRAM> ::= _|_ <PROCEDURE> ; <STATEMENT LIST> END PROCEDURE _|_

2 <PROCEDURE> ::= PROCEDURE <EXPRESSION>

3 <STATEMENT LIST> ::= <STATEMENT>

4 | <STATEMENT LIST> <STATEMENT>
S <STATEMENT> ::= <BASIC STATEMENT>

6 | <IF STATEMENT>

7 | <FOR>

8 <LABELIST> ::= <LABEL> :

9 <IF STATEMENT> ::= <IF CLAUSE> <STATEMENT>

10 | <IF CLAUSE> <TRUE PART> <STATEMENT>
1 | <LABELIST> <IF STATEMENT>
12 <IF CLAUSE> ::= IF <EXPRESSION> THEN

.
13 <TRUE PART> ::= <BASIC STATEMENT> ELSE
14 <FOR> ::= <FOR MAX> <STATEMENT>
15 { <LABELIST> <FOR>
16 <FOR MAX> ::= <FOR LIMIT> DO
17 | <FOR STEP> DO
18 <FOR STEP> ::= <FOR LIMIT> BY <EXPRESSION>
19 <PFOR LIMIT> ::= <FOR HEAD> TO <EXPRESSION>
20 <FOR HEAD> ::= FOR <EXPRESSION>

21 <BASIC STATEMENT> ::= <BASIC STATEMENT-A> ;

22 | <GROUP> <STATEMENT LIST> END
23 [

2n | <LABELIST> <BASIC STATEMENT>
25 <BASIC STATEMENT-A> ::= <EXPRESSION>

26 | BETURN

27 | BETURN <EXPRESSION>

28 | REPEAT <STATEMENT LIST> UNTIIL <EXPRESSION>
29 <GROUP> ::= BEGIN

30 | <CASE /WHILE>

31 <CASE/WHILE> ::= <CASE HEAD> DO

32 | <WHILE HEAD> DO

33 <WHILE HEAD> ::= YHILE <EXPRESSION>

34  <CASE HEAD> ::= <CASE HEAD-A> QF <EXPRESSION>

35 <CASE HEAD-A> ::= CASE <EXPRESSION>

*The ALGOL cited here is modeled after ALGOL-W from Stanford University.’

Appendix 2. PL/1-like syntax for APLGOL

1 <PROGRAM> ::= _|_ <PROCEDURE> ; <STATEMZNT LIST> END PROCEDURE ; _|

2 <PROCEDURE> ::= PROCEDURE <EXPRESSION>

3 <STATEMENT LIST> ::= <STATEMENT>

4 | <STATEMENT LIST> <STATEMENT>
5 <STATEMENT> ::= <BASIC STATEMENT>

6 | <IF STATEMENT>

7 | <FOR> <END>

8 <LABELIST> ::= <LABEL> :

9 <IF STATEMENT> ::= <IF CLAUSE> <STATEMENT>

10 | <IF CLAUSE> <TRUF PART> <STATEMENT>
11 | <IABRLIST> <IF STATEMENT>
12 <IF CLAUSE> ::= IF <EXFRESSION> THEN

13 <TRUE PART> ::= <BASIC STATEMENT> LLSE

14 <FOR> ::= <FOR MAX> <STATEMENT LIST>

15 | <ILABELIST> <FOR>

16 <FOR MAX> ::= <FOR LIMIT> ;

17 | <FOR STEP> ;

18 <FOR STEP> ::= <FOR LIMIT> BY <FXPRESSION>
19 <FOR LIMIT> ::= <FOR HEAD> TO <FXPRESSION>
20 <FOR IEAD> ::= DO <EXPRESSION>

21 <BASIC STATEMENT> ::
22
23

<BASIC STATEMENT-A>
<GROUP> <STATEMENT LIST> <END>

<LABELIST> <BASIC STATEMENT>

24

25 <BASIC STATEMENT-A> ::= <EXPRESSION>

2 | EETURN

27 | RETURN <EXPRESSION>
28 | BEPEAT <STATEMFNT LIST> UNTIL <EXPRESSION>
29 <GROUP> ::= <DO BLOCK>

a0 | <CASE/WHILE>

31 <CASE/WHILE> ::= <CASE HEAD> ;

32 | <UIILE HEAD> ;

33 <WHILE HEAD> ::= <WHILE HEAD-A> <EXPRESSION>
34 <CASE HEAD> ::= <CASE HEAD-A> QF <EXPRESSION>
35 <CASE HEAD-A> ::= DO CASE <EXPRESSION>

36 <WHILE HEAD-A> ::= DO WIILE
37 <D0 BLOCK> ::= DO ;

38 <END> :i:= END ;

Appendix 3. APLGOL statement semantics

1. IF STATEMENT

ALGOL SYNTAX PL/I SYNTAX APL OBJECT TEXT <
IF A=0 THEN IF A=0 THEN +>(~420) /0001
BeCtA; B+C3d; B«C:A
Qool: . . .

IF STATEMENT (WITH ELSE)

ALGOL SYNTAX PL/T SYNTAX APL OBJECT TEXT
IF A=0 THEN IF A=0 THEN +(~A%0) /@001 A
BeCh; BeC:A; BeC3A -
ELSE ELSE +(002
BeB+h; B+B+4; 0001 :B+B+4
. e PN 2002: , . .

2. WHILE STATEMENT

ALGOL SYNTAX PL/I SYNTAX APL OBJECT TEXT
WHILE AeB DO DO WIILE AeB; Q001 :+(~AeB) /0002 =
END END; 0001

PR PRETSEN goo2: ., ., . ’

IBM J. RES. DEVELOP.




>

R

3. REPEAT STATEMENT
ALGOL SYNTAX
REPEAT

UNTIL 4eB;

4, CASE STATEMENT
ALGOL SYNTAX

CASE BTLI] OF % DO
A+B;

0D
E«F;

G+l
END

PL/I SYNTAX
REPEAT
UNTIL AeB;

PL/I SYNTAX

DO CASE BT(I] OF 4;

A<B;
C+D;
EeF;

Gy
ZND;

5. ITERATION STATEMENT

ALGOL SYNTAX

FOR I+J+1 TO pA DO

JANUARY 1973

PL/I SYNTAX
DO I+«J+1 Z0 pA;

END;

APL OBJECT TEXT
£001: . . .

*(:'Asl?)/Q()Ol

APL OBJECT TEXT

>(0001,9002,0003,2004 ) BTLI1]
0001:4+B
0005

2004 : G+l
g005: . . .

APL OBJECT TEXT

I+«(J+1)-1

Q001 :+({pA)>I+I+1)/Q002
0001

£o02: « . .

6. RETURN STATEMENT
ALGOL SYNTAX PL/I SYNTAX

RETURN; BETURN
RETURN [W'ERROR'; RETURN ('ERROR';

7. SIMPLE BLOCK STATEMENT

ALGOL SYNTAX PL/T SYNTAX

BEGIN s
A«B+1+4/C; AeB+1++/C;
cots” ool

END END;

8. NULL STATEMENT

ALGOL SYNTAX PL/I SYNTAX

A+/B; A++/B;3

tecia; cecla;

APL OBJECT TEXT

-0
=0 ,p(}'FRROR*

APL OBJECT TEXT

A«B+1+4 /C

C+A

APL OBJECT TEXT

A++/B
cCla

73

APLGOL




