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Age-specific, Deterministic Model of Predator-Prey
Populations: Application to Isle Royale

Abstract: A deterministic model is proposed for the description of predator-prey systems in which the prey has an age-specific vulnera-
bility to predation. The model is developed on the basis of observations of the moose and wolf populations of Isle Royale, Michigan.
The moose are divided into three groups, the very young, the adults, and the very old or sick. The three groups have different vulnera-
bility to predation by a single population of wolves. The model incorporates a saturation effect for the moose population and a satiation
effect for the wolf population. 1t appears to reproduce quite well the almost monotonic trend toward equilibrium observed since the

arrival of wolves on the island.

1. Introduction

Interest in mathematical models of populations of spe-
cies, growing alone or in competition with other species,
has been increasing as a result of growing concern for
the preservation of an ecological balance. Among the
most interesting population studies are those concerning
a population of predators feeding on a population of
prey. The first mathematical model for predator-prey
interaction was proposed independently by A. J. Lotka
[1] and Vito Volterra [2]. Although quite primitive, this
model reproduced one observable feature of some pred-
ator-prey populations: the fact that cyclic variation of
the number of predators is out of phase with a similar
variation of the number of prey. Many improvements on
the Lotka-Volterra model have been suggested for the
purpose of increasing its realism. The rationale for some
of these improvements is discussed in Section 2 of this
paper, as an introduction to a mathematical model pro-
posed in Section 3 for a specific case of predator-prey
interaction: the moose and wolf populations of Isle Roy-
ale, Michigan.

During the past decade this island has been the sub-
ject of many studies. An interesting account of the ani-
mal life on Isle Royale has been written by L. D. Mech
[3]. It contains a detailed description of the life habits of
moose and wolves and some basic data concerning the
ecological balance of the island. More recently, Jordan,
et al. [4] have given some additional information on the
biomass balance on the island, and a computer simula-
tion of this balance.
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If one examines the available data on Isle Royale and
compares it with the Lotka-Volterra model, or variations
thereof, he finds that none of these simple models
matches the data very well. Among the most important
sources of mismatch is the fact that individual moose are
not equally vulnerable to predation. Very young and
very old or sick moose are vulnerable; but healthy adults
are almost invulnerable. This and other characteristics
of the Isle Royale populations point to the need for a
more elaborate, age-specific, model for the description of
these populations. In what follows, we discuss the de-
velopment of a model that matches some essential fea-
tures of the Isle Royale ecosystem.

Before discussing this model, we give some remarks
on Lotka-Volterra types of models and the effect of vari-
ous alterations on these models. Then we construct a
model describing the interaction of three different cate-
gories of moose with each other and with a single popula-
tion of wolves. In developing the model, our main ob-
jectives were to provide it with sufficient versatility to
realistically reproduce population trends and simulta-
neously to keep it simple enough to hold promise of its
being validated against available data.

2. The Lotka-Volterra model and various
elaborations

In its primitive form, the Lotka-Volterra model [1,2]
concerns two species labelled 1 and 2. It is postulated
that the population of species 1, N,, would grow expo-
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Figure 1 A typical trajectory in state space showing the peri-
odic behavior of the Lotka-Volterra model.

nentially in the absence of its predator species while the
population of species 2, N,, would decline exponentially
in the absence of its prey species 1. Thus, without inter-
action

dN,
ar kN

dN M
g = kN,

The interaction mechanism proposed by Lotka and Vol-
terra is that of binary collisions, so that the death rate of
1 due to interaction with 2 is proportional to N N,, as is
the rate of population growth of 2. This mechanism
yields the Lotka-Volterra equations

dN,
= kN, = AN,
(2)
dN,
2 =—k,N, + NN, .

These equations have been investigated and generalized
by a number of authors. We note in passing several char-
acteristics of their solution. First, equilibrium popula-
tions ¢; are obtained by setting dN,/d: =0. They are
given by
q,=k,Jr,,

)]
g, =k, I\,

If we define f;= N Jq, (i=1,2), it can be shown that
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the normalized state variables, f,, f,, satisfy the relation-
ship

G(f.f,) = (=, +Inf)lk, + (f, + nf)lk,=C,, (4)

where the constant, C,, depends on the initial condi-
tions.

From this observation, one can deduce that the solu-
tions of the basic equations (2) are periodic. There ex-
ists a closed trajectory in the state-plane f,, f, for each
value of C,. We have plotted the solution of Eq. (4) for a
typical case in Fig. 1. Volterra generalized the two-spe-
cies equations to # species, and it can be shown that in
the latter case a “‘constant of motion” like C still exists.

A deficiency of the Lotka-Volterra model, which is
important in some applications, is the nonexistence of a
saturation level of the population of species 1 in the abs-
ence of predator species 2. Generally, a population in a
given environment, in a limited space, cannot exceed
some saturation level, which we denote by 6. Typical
equations for population growth of a single species with
saturation are the Verhulst [5] equation

dN N

a1 G2
and the Gompertz [6] equation

dN _ _ N

N kN In (0> (5b)
which are special cases (with a = 1,0) of

dN _kN [, _ <ﬂ>°‘]

dt a [1 0 ) (5¢)

The extension of the Lotka-Volterra equations that in-
cludes a Verhuist term for species 1 is

dN, N,
T=k1N1 [1 _7]_)\1N1N2’ (6a)
dN,

a - k,N, + A,N/N, . (6b)

The equilibrium solution of these equations is
4, = kI,

_ k2 kl
qz—[l—@])\—l- (7)
Since there is no “constant of motion” for the set of
Eqgs. (6), the curve in the state plane f,, f, is not a closed
loop as in the solution of Eq. (4). Solutions of (6) are
not periodic; but in the stable regime, with (k,/A,8) < 1,
the variation of N, with N, spirals into the equilibrium
point (gq,, g,), as is evident in Fig. 2. The variation
of the normalized species populations with time is
plotted in Fig. 3, where the time 7 is a normalized vari-
able given by 7 =k,t. In an experimental or observa-
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tional situation in which the ratio of the initial population
of species 1, N,(0), to the saturation level 6, is very
small, a large number of cycles may be necessary before
the system comes close to its equilibrium point. The
experiment may be discontinued, or the environment
may change significantly in a natural situation, before
equilibrium is achieved. In that case, the appropriate-
ness of a Verhulst type of nonlinearity in (6) is difficult
to ascertain.

A second type of saturation effect might be important
in the interaction terms of the system of Eqs. (2) and (6)
in the regime of small N, and large N,. The appetite
of a given predator is limited, so that the total number of
prey eaten per day cannot exceed a number proportional
to N, and independent of N, provided that N, is large
compared with the number required to satiate the preda-
tors. Hence, the N -dependent factor on the collision
term should be proportional to N, when N, is small and
should tend to a constant when N, is large. A simple func-
tion with this property, first introduced by Watt [7], is

(A Je) [1 —exp (—cN)I,

where the constant ¢ is proportional to the biomass of a
unit of prey and reflects the contribution of such a unit
to the satiation of the prey population.

With this satiation term, Eq. (6a) becomes

dN N AN
kN, [1 —7‘] ~ BT[] —exp (—eN)]. (8a)

When the same saturation effect is introduced into (6b)
it yields an expression of the form

dN,

AN
7= kN, + =2 [1—exp (—cN))]. (8b)

c

As ¢ — 0, the system (8) reduces to (6).

All the above elaborations on the Lotka-Volterra
model appear to be essential for the Isle Royale ecosys-
tem. Prey saturation is needed if we do not want to con-
sider explicitly the limitation on growth imposed by the
limited supply of plants consumed by the moose. Also,
the number of wolves ranges between 20 and 30, while
the population of moose is generally upwards of 500.
Hence, the satiation of the predators, as in the Watt-type
model, is essential in the ecosystem.

Other possible elaborations to the Lotka-Volterra
model are the introduction of a time-lag between the
consumption of prey and the birth of a predator, and
age-specificity in either the predator or the prey popula-
tions or both. The time-lag between a prey kill and a
predator birth, while important, is not considered as a
major correction to the model, which anyway neglects
seasonal variations in the behavior of the populations.
However, the age-specificity is particularly important,
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Figure 2 Effect of a Verhulst-type saturation correction on the
Lotka-Volterra model. The two populations spiral toward equi-
librium.

Figure 3 Variation of the populations with time for a Lotka-
Volterra model with a Verhulst-type saturation correction.
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because of the different vulnerability of the various age
groups of moose to predation. Wolves exercise not only
population control on the moose, but also some form of
eugenics. They kill many of the young calves, thus limit-
ing the number of moose (and saving them from cycles
of famine); they also kill the old and sick moose, and
leave a robust adult population on the island.

With these observations in mind, let us now propose a
basic mathematical model for the Isle Royale ecosystem.

3. The modei
The basic assumptions of the model are the foliowing:
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dN,
= h Ny Ny kN, V

a) The moose and wolf populations are assumed isolat-
ed from the rest of the ecosystem. That is, we as-
sume that there is always enough food for the moose,
except as indicated in (e) below, and any other ani-
mal species provides a negligible percentage of the
wolves’ diet.

b) There are three main age groups of the moose, the
very young, N, the “adults”, N,, and the very old or
sick, N,. The first and third groups are vulnerable to
predation, but the adult group is not.

¢) The wolves are lumped together into one population,
N,

d) Calves are born to both the “adult” group 2 of
moose, and group 3 of old and sick moose, but with
different birth rates.

e) The birth rate of moose is limited according to a
Verhulst-type correction, to account for the satura-
tion effect due to limited space and browse.

Accordingly, we propose the following model for the
description of the moose and wolf populations:

D1N1N4
““D N, + D,N,

x [1—exp (=D,N,—D,N,)],

d

dNZ:k N, —k,N
dr it Pt
dN3=k N,—k,N,—C. _ DN,
dr 72 Tws M DN+ DN,
x [1 —exp (DN, — D,N,)],
dN

5 = kuN,{=1+c[l —exp (=D,N, = D,N,)]}, (9a)

where V is the Verhulst saturation factor given by

V=<1————‘——2——'—>. (9b)

N,, N,, N, are the population sizes of the three moose
groups, 6,, 6,, 6, their saturation levels, and N, is the
number of wolves. The various coefficients of Eqs. (9a)
describe the rates of birth, death, kill, and “graduation”
from one class of moose to another. Some of these coef-
ficients describe more than one process. For example,
k,, describes the graduation from the calf to the adult
class of moose plus infant mortality. This is why &, is,
in general, different from k,,, which represents the ratio
of calves who reach adulthood. The biological interpre-
tations of most of the constants in Eqs. (9a) are shown
in Table 1. We note that we have used the Watt modifi-
cation [7] to the kill terms in the first and third equation.
In addition, Egs. (9) express the idea that the probabili-
ty of a kill of a member from the class N, is proportional
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Table 1 Biological interpretation of the constants used in Eqgs.
(9a).

k,, = Graduation rate from the calf to the adult class of moose
plus infant mortality.

k,, = Fertility rate of adult moose
k,, = Fertility rate of old or sick moose
k,, = Graduation rate from the calf to the adult class of moose

k,, = Graduation rate from the adult to the old or sick class of
moose, plus adult mortality

k,, = Graduation rate from the adult to the old or sick class of
moose

k,, = Natural mortality rate of old or sick moose

k,, = Rate of depletion of the wolf population in the absence of
moose

D, = Contribution (proportional to the weight) of a single calf
to the satiation effect (abundance of prey) on the wolf
population

D, = Contribution (proportional to the weight) of an old or sick
moose to the satiation effect on the wolf population

¢, ¢,y ¢y, = Constants to be determined so that all populations
remain stable at their equilibrium values.

to the relative abundance of the ‘“biomass” D,N,, com-
pared to the total prey biomass, (D,N, + D,N.,).

Equations (9) are now reduced to a canonical form,
with the minimum number of parameters. Let g, repre-
sent the equilibrium values for N,, corresponding to the
solution of Eqgs. (9) when we set dN,/dt =0 for all |,
and

Si=N,lg, (i=1,-4). (10)
Then, Egs. (9) may be reduced to the form
df, L+
:1—;: K, [(1 _f__irz—f?) (—fl + )\mfz + Nafy)
- (1 _%) (A + A5 — 1)f1f:16] >
df,
ar s K,(fi= 1),
df,

—a,f=K3 [)‘32fz —f3 - (}‘32 - l)f:;f:;G] ’

df, [_1 4 1 —exp (—d,f,— djg)}’

d-r=f“ 1 —exp (—d, —d,) (1)
where
- d} + d3 1 —exp (_dlf] - d%fs)
dlfl + d?fs l: 1 —exp (_dl - dr;) :l (12)

and the Verhulst saturation factor was chosen so that
the saturation levels of the three classes are proportional
to the equilibrium levels. The latter choice was made
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because it is plausible, and in order to limit the number
of independent parameters. The new parameters are re-
lated to the ones of Egs. (9) according to the relation-
ships

ki .
K_:——, (’= 1’293) ’
Pk
k k. )
A, =z Ky
2 kykyy T kg,
_ kg,
Mo Ry

d;=gqD, (i=1,3),
T="th. (13)

The biological interpretation of the constants K, can be
seen by referring to Table 1. They are the ratios of the
three rates,

k,, = Graduation plus mortality rate of calves,
k,, = Graduation plus mortality rate of adult moose, and
k4, = Natural death rate of old or sick moose,

to the depletion rate of the wolf population in the ab-
sence of prey, k,,. The constants A, are best interpreted
by referring to the equilibrium state of the system, in
which N, = g,. Thus we find that, in this steady-state sit-
uation.

___Number of calves born to adult moose
127 Number of calves graduating to adult class

A

__ Number of calves born to old or sick moose
137 Number of calves graduating to adult class

A

__ Number of adults graduating to old or sick class
327 Number of old or sick moose dying naturally

It is seen that the A; are constrained by physical consid-
erations. For example, we cannot have more calves
graduating to the adult class than those that are born,
therefore, A, + A, = 1. Also, we must have at least as
many adult moose graduating to the old or sick class as
the number of moose from the latter class that die; there-
fore, A, = 1.
Equations (11) have the equilibrium solution

=1
g }<i=1,~~,4). (14)
df; _
@ =0

The population variation near equilibrium may be in-
vestigated by a study of the stability about equilibrium.

4. Stability investigation
Let us assume a small perturbation about equilibrium,
namely

fi=lte, ¢<1,(i=1,"--4). (15)
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Entering Eqgs. (15) into Egs. (11), expanding in power
series of €, and retaining only first-order terms, we ob-
tain a linearized set of equations

de; 4
E—-ZMU.E}, (16)
where
_ 3
MH—KI{—(I—F)+(1—)\12—)\13)
[ (-3 25 752
F F/\I—E " d +d, }

3 1
12 K1 [(1_[7))‘12_"17(1_)‘12_)‘13)J’

<
I

[r - a7l

M14=K1 (l_f) (1_)\12_}‘13)’

M,=—M,=K,,
M31=1<3(1~>\32)(—d—‘ff7+1—E_%),
\+dy
My, =K\,
M=K [ 0o (1))
1 3
M,,=K,(1—\,),
P
“TI—E
o Eds
©“"1—E
M,=M,=M,=M, =0,
E=exp[—d —d,]. (17)

The stability of the equilibrium solution, Eqgs. (14),
against small perturbations is determined by the nature
of the eigenvalues of the matrix M. The equilibrium
solution is stable if, and only if, all eigenvalues have a
negative real part. A complete investigation of stability
would require a search of regions of stability in the do-
main of the nine independent parameters, F, K, K,, K,,
}\12’ )\13’ )\32’ dl’ and d3'

We have determined numerically that stability is par-
ticularly sensitive to a variation of the parameters A ,,
A, and A,,. Therefore, we have determined the bound of
stability in the plane \,, versus \,, for some representa-
tive values of the other five parameters. The results are
shown in Fig. 4, where the stable region lies above the
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Figure 4 Boundary between stable and unstable regions in the
plane \j, versus A ,, for small perturbations about equilibrium.
The curves A, B, and C correspond to the values of the param-
eter A, = 1, 2, and 3, respectively. The other parameter values
are K, =0.0125, K, = 0.00075, K, = 0.006, d, = 2.0, d,=2.4
and F = 8.0.

Figure 5 Variation of the four normalized populations versus
normalized time derived from the model of Eqs. (11). One year
corresponds approximately to 7 = 40.
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appropriate one of the curves labeled A, B, and C.
These curves were determined numerically as the loci of
the zero of the largest real part of an eigenvalue. It may
be seen that the bound of stability corresponding to the
curves A, B, and C changes relatively little as A,
changes between the values of 1 and 3. In all three cases
shown, the physically acceptable domain, A, = 1, lies
within the stable region.
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5. Numerical computations and discussion

The existence or lack of stability against small pertufba-
tions gives, in general, only partial information concern-
ing large fluctuations about equilibrium. For example, a
system of equations that is stable against small perturba-
tions may be unstable against large ones. On the other
hand, a system that is unstable against small perturba-
tions about equilibrium may have a limit cycle, as for
example, does the Watt modification [7] of the Lotka-
Volterra equations.

We have carried out numerical computations of sever-
al test cases, using Egs. (11). The computations appear
to indicate that the bounds of stability shown in Fig. 4
are bounds of transition from amplified to attenuated
behavior of the perturbations about equilibrium, even
when the initial perturbations are large. However, for
sufficiently large perturbations, a choice of parameters in
the stable region may yield physically unacceptable neg-
ative values for some of the population functions and
certain periods of time. The differential equations must
then be solved under some additional non-negativity
constraints.

In modeling Isle Royale, the parameters of the com-
putations were chosen on the basis of information avail-
able about life —and death —on Isle Royale. Specifically,
we used the following realistic values for the thirteen
parameters of Egs. (9) which are needed in order to
determine the constants entering in Eqs. (11).

k,=k,=k,=k, =05]yr

1
kyy = kg, = 0.25]yr
kg, =0.031/yr

k, = 40]yr

g, = 160 moose

g, = 320 moose

g, = 160 moose

D, = 0.0125/moose
D, = 0.015/moose

The class of “adult” moose is assumed to consist rough-
ly of the wear classes I through IV, in the standard clas-
sification given, for example, by Mech [3].

The constants of Egs. (11) are then the following:

K,=0.0125  A,=20
K,=0.00075 A,=1.0
K, =0.006 Ay = 16.0
d,=2.0 F=8.0
d,=2.4
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The saturation constant F was selected so that the
moose population cannot exceed a combined total of
about 1700.

The numerical computations were made using a
fourth-order Runge-Kutta integration procedure. Typical
results are given in Figs. 5 and 6. Figure 5 shows the
variation of the four functions f; versus the normalized
time 7, (and the natural time in years), and Fig. 6 shows
the corresponding plot in the state space f* =4 (f, +
f, +f,) versus f,. (The value of f* gives a weighted
average of the population sizes of the three moose class-
es, and tends to 1 at equilibrium.) The initial conditions
were chosen to approximate the conditions when wolves
came to Isle Royale [3] in 1946; namely, a fairly large
population of moose and small population of wolves.
The numerical results show some initial damped oscilla-
tions, and then an almost monotonic trend toward equi-
librium, which is reached within about 20 years. The
almost monotonic trend toward equilibrium appears to
be a fairly good representation of the events of the last
two decades. Whether or not the initial fluctuations are
realistic is rather difficult to ascertain from available
data. There are some indications that they are not, be-
cause of one feature of the wolf population that is not
contained in the model. The wolves appear to exercise
some control over their number, through social rather
than logistical pressures. Formation of packs, pack life,
territorial dominance, and other social determinants
appear to impose a ceiling on the wolf population. There
is evidence that a surplus of wolves may emigrate from
the island during the winter, over the frozen lake. The
growth of the moose population, on the other hand, is
limited by the availability of food, and this limitation is
not properly accounted for by the Verhulst-type satura-
tion factor. A three-species model, taking into account
plants, moose, and wolves, would more adequately de-
scribe the periods when the number of moose becomes
large and/or the number of wolves becomes small, when
the moose population is in danger of starvation. It may
be pointed out that over the last two decades or so there
has been no evidence of moose starvation. However,
some signs of vegetation shortage have been seen in the
last few years [8].

In summary, the present model gives a better descrip-
tion of the trend toward equilibrium, observed since the
arrival of the wolves on Isle Royale, than that given by
simpler, two-population models. With proper calibration,
it could be used to describe quite well the effect of in-
creasing the wolf population on the ecological balance of
the island. It probably needs some improvements, and
possibly an explicit consideration of plant life, before it
can be used to describe the effect of limiting the wolf
population, and consequently increasing the moose pop-
ulation.
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