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Age-specific, Deterministic  Model of Predator-Prey 
Populations: Application  to Isle Royale 

Abstract: A deterministic model is proposed for the description of predator-prey systems in which the prey  has an age-specific vulnera- 
bility to predation. The model is developed on  the basis of observations of the  moose and wolf populations of Isle Royale, Michigan. 
The moose are divided into  three  groups,  the very  young, the adults, and  the very old or sick. The  three groups have different  vulnera- 
bility to predation by a single population of wolves. The model incorporates a saturation effect for the moose  population and a  satiation 
effect for the wolf population. It appears to reproduce  quite well the almost  monotonic trend  toward  equilibrium observed  since the 
arrival of wolves on the  island. 

1.  Introduction 
Interest in mathematical models of populations of spe- 
cies, growing alone  or in  competition with other  species, 
has been  increasing as a  result of growing concern  for 
the  preservation of an ecological balance.  Among the 
most  interesting  population studies  are  those concerning 
a population of predators feeding on a  population of 
prey.  The first mathematical model for  predator-prey 
interaction  was proposed independently by A. J. Lotka 
[ 1 ] and Vito Volterra [ 21. Although quite primitive,  this 
model reproduced  one  observable  feature of some  pred- 
ator-prey populations: the  fact  that cyclic  variation of 
the  number of predators is out of phase with a similar 
variation of the  number of prey. Many improvements  on 
the  Lotka-Volterra model have been  suggested for  the 
purpose of increasing  its  realism. The rationale for some 
of these  improvements is discussed in Section 2 of this 
paper,  as  an introduction to a  mathematical model pro- 
posed in Section 3 for a specific case of predator-prey 
interaction: the moose and wolf populations of Isle Roy- 
ale, Michigan. 

During the past decade this island has  been the sub- 
ject of many studies. An interesting account of the ani- 
mal life on Isle Royale  has been written  by L.  D. Mech 
[3]. It contains  a  detailed  description of the life habits of 
moose and wolves and some  basic data concerning the 
ecological  balance of the island. More  recently,  Jordan, 
et al. [4] have given some additional  information on  the 
biomass  balance on  the island,  and  a computer simula- 
tion of this  balance. 

If one  examines  the available data  on  Isle  Royale  and 
compares it with the  Lotka-Volterra model, or variations 
thereof, he finds that  none of these simple  models 
matches  the  data  very well. Among the most important 
sources of mismatch is the  fact  that individual  moose are 
not equally  vulnerable to predation. Very young and 
very old or sick moose are vulnerable; but healthy adults 
are almost  invulnerable. This and other  characteristics 
of the  Isle  Royale populations  point to  the need for a 
more  elaborate, age-specific, model for  the description of 
these populations. In what  follows, we discuss  the de- 
velopment of a model that  matches  some essential  fea- 
tures of the Isle  Royale ecosystem. 

Before  discussing  this  model, we give some  remarks 
on  Lotka-Volterra  types of models  and the effect of vari- 
ous alterations  on  these models. Then  we  construct a 
model describing the  interaction of three different cate- 
gories of moose with each  other  and with  a single popula- 
tion of wolves. In developing the model, our main ob- 
jectives  were  to provide it with sufficient versatility to 
realistically reproduce population trends and  simulta- 
neously to  keep it simple enough to hold promise of its 
being validated  against  available data. 

2. The  Lotka-Volterra  model  and various 
elaborations 
In its  primitive form,  the  Lotka-Volterra model [1,2] 
concerns  two  species labelled 1 and 2. I t  is postulated 
that  the population of species I ,  N , ,  would grow expo- 
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~Normalizedpreypopulation,fl=N,h,lkl 

Figure 1 A typical trajectory in state space showing the  peri- 
odic behavior of the Lotka-Volterra model. 

nentially in the  absence of its predator species while the 
population of species 2 ,  N, ,  would decline  exponentially 
in the absence of its  prey  species 1. Thus, without  inter- 
action 

The interaction  mechanism  proposed by Lotka and Vol- 
terra is that of binary collisions, so that  the  death  rate of 
1 due  to interaction with 2 is proportional to N , N , ,  as is 
the rate of population  growth of 2. This mechanism 
yields the Lotka-Volterra  equations 

These equations have been  investigated and generalized 
by a number of authors.  We  note in passing several  char- 
acteristics of their  solution. First, equilibrium popula- 
tions qi are obtained by setting dN,ldt = 0. They  are 
given by 

If we define f i  = Ni/qj, (i = 1,2) ,  it can be shown that 
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the normalized state variables, f , ,  f , ,  satisfy  the  relation- 
ship 

G (&, f , )  = (-fl + Inf,)/k, + (-f2 f 1nf2)lk, = C, , (4) 

where the  constant, C,, depends on the initial condi- 
tions. 

From this  observation, one  can  deduce  that  the solu- 
tions of the basic  equations ( 2 )  are periodic. There ex- 
ists a closed  trajectory in the state-plane f , ,   f ,  for each 
value of C,. We have plotted the solution of Eq. (4) for  a 
typical case in Fig. 1. Volterra generalized the two-spe- 
cies  equations to n species,  and  it can be shown that in 
the  latter  case a “constant of motion” like C ,  still exists. 

A deficiency of the  Lotka-Volterra model, which is 
important in some  applications, is the nonexistence of a 
saturation level of the population of species 1 in the abs- 
ence of predator species 2 .  Generally, a  population in a 
given environment, in a limited space,  cannot exceed 
some  saturation level, which we denote by 0. Typical 
equations for population  growth of a single species with 
saturation are  the Verhulst [5] equation 

” d N - k N  [l-;] 
dt 

and the Gompertz [6] equation 

- = - k N   d N  In ($), dt 

which are special cases (with a = 1,o)  of 

The extension of the Lotka-Volterra  equations that in- 
cludes a Verhulst  term  for  species 1 is 

-= 
dt 

-=_ d N 2  k,N, f A,N,N, .  
dt 

The equilibrium solution of these equations is 

41 = k , h ,  , 

Since there is no “constant of motion”  for the  set of 
Eqs. (6),  the  curve in the state  planef,, f, is not a closed 
loop as in the solution of Eq. (4). Solutions of (6) are 
not  periodic;  but in the stable regime, with (k2/A,0)  < 1 ,  
the  variation of N ,  with N ,  spirals into  the equilibrium 
point (q,, q,), as is evident in Fig. 2. The variation 
of the normalized species  populations  with  time is 
plotted in Fig. 3, where the time 7 is a normalized vari- 
able given by 7 = k,t. In  an experimental or observa- 
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tional  situation in which the ratio of the initial population 
of species 1, N, (0), to  the  saturation level 8,  is very 
small, a large number of cycles may be necessary  before 
the  system comes  close to its equilibrium point. The 
experiment may be discontinued, or  the environment 
may change significantly in a natural  situation,  before 
equilibrium is achieved. In  that  case,  the appropriate- 
ness of a Verhulst  type of nonlinearity in (6) is difficult 
to ascertain. 

A second type of saturation effect might be important 
in the interaction terms of the  system of Eqs. ( 2 )  and (6) 
in the regime of small N ,  and large N , .  The  appetite 
of a given predator is limited, so that  the total  number of 
prey eaten  per day cannot exceed a number  proportional 
to N ,  and  independent of N,, qrovided that  N, is large 
compared with the  number requlred to  satiate  the preda- 
tors.  Hence,  the  N,-dependent  factor on  the collision 
term should be proportional to N ,  when N, is small and 
should  tend to a constant when N, is large. A simple  func- 
tion with this property, first introduced by Watt [7], is 

(A,/c) [1 - exp (-cN,)l, 

where the constant c is proportional to the  biomass of a 
unit of prey  and  reflects  the  contribution of such a  unit 
to  the satiation of the  prey population. 

With  this  satiation term, Eq. (6a) becomes 

When the  same  saturation effect is introduced into  (6b) 
it yields an expression of the  form 

As c +  0, the system (8) reduces to  (6). 

All the  above elaborations on  the  Lotka-Volterra 
model appear  to  be essential  for the Isle  Royale  ecosys- 
tem.  Prey  saturation is needed if  we do  not want to con- 
sider explicitly the limitation on  growth  imposed by the 
limited supply of plants  consumed by the  moose. Also, 
the  number of wolves  ranges  between 20 and 30, while 
the population of moose is generally upwards of 500. 
Hence, the  satiation of the predators,  as in the Watt-type 
model, is essential in the  ecosystem. 

Other possible  elaborations to  the  Lotka-Volterra 
model are  the introduction of a time-lag between the 
consumption of prey  and the birth of a predator, and 
age-specificity in either  the  predator or the prey  popula- 
tions or  both.  The time-lag between a prey kill and a 
predator birth, while important, is not considered as a 
major correction to  the model, which anyway  neglects 
seasonal  variations in the behavior of the  populations. 
However,  the age-specificity is particularly  important, 
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iormalized prey population, f ,  = N X , I k ,  

Figure 2 Effect of a Verhulst-type saturation correction on the 
Lotka-Volterra model. The two populations spiral toward equi- 
librium. 

Figure 3 Variation of the populations with time for a Lotka, 
Volterra model  with a Verhulst-type saturation correction. 
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because of the different vulnerability of the various  age 
groups of moose to predation. Wolves exercise not only 
population  control  on the moose, but also  some  form of 
eugenics. They kill many of the young calves, thus limit- 
ing the  number of moose (and saving them  from  cycles 
of famine); they  also kill the old and  sick  moose,  and 
leave a robust adult  population  on the island. 

With these observations in mind, let  us now propose  a 
basic  mathematical model for the Isle Royale  ecosystem. 

3. The model 
The basic  assumptions of the model are  the following: 49 
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a) The moose and wolf populations are  assumed isolat- 
ed  from  the  rest of the  ecosystem.  That is, we  as- 
sume that  there is always  enough  food for  the  moose, 
except  as indicated in (e) below, and any other ani- 
mal species provides  a negligible percentage of the 
wolves’ diet. 

b)  There  are  three main age  groups of the moose, the 
very  young, N , ,  the  “adults”, N , ,  and  the  very old or 
sick, N,.  The first and  third groups  are vulnerable to 
predation, but  the  adult  group is not. 

c )  The wolves are lumped together  into  one population, 

d )  Calves  are  born  to  both  the  “adult”  group 2 of 
moose,  and group 3 of old and  sick  moose, but with 
different birth rates. 

e)   The birth  rate of moose is limited according to a 
Verhulst-type  correction,  to  account  for  the  satura- 
tion effect due  to limited space and browse. 

N4. 

Accordingly, we propose  the following model for  the 
description of the moose and wolf populations: 

dN 
= k,,N, - k3,N3 - C: D 3 N P 4  

dt j 4  D I N ,  + D 3 N ,  

N , ,  N,, N:, are  the population sizes of the  three moose 
groups, O,, e,, O3 their  saturation levels,  and N 4  is  the 
number of wolves. The various coefficients of Eqs.  (9a) 
describe  the  rates of birth, death, kill, and “graduation” 
from  one  class of moose to  another.  Some of these  coef- 
ficients describe more  than one  process.  For  example, 
k , ,  describes  the graduation from  the calf to  the  adult 
class of moose  plus  infant  mortality. This is why k , ,  is, 
in general, different from k,,, which represents  the  ratio 
of calves  who  reach  adulthood.  The biological interpre- 
tations of most of the  constants in Eqs.  (9a)  are  shown 
in Table 1. We note  that we have used the Watt modifi- 
cation [ 7 ]  to the kill terms in the first and third equation. 
In addition, Eqs. (9) express  the idea that  the probabili- 

50 ty of a kill of a member  from the class N i  is proportional 
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Table 1 Biological interpretation of the  constants used in Eqs. 
P a ) .  

k , ,  = Graduation  rate from the calf to  the adult class of moose 
plus  infant  mortality. 

k, ,  = Fertility rate of adult moose 

k,:]  = Fertility rate of old or sick  moose 

k, ,  = Graduation  rate from the calf to  the  adult  class of moose 

k,, = Graduation  rate  from  the  adult  to  the old or sick class of 
moose, plus  adult  mortality 

k,, = Graduation  rate  from  the adult to  the old or sick class of 
moose 

k,, = Natural mortality rate of old or sick moose 

k,, = Rate of depletion of the wolf population in the  absence of 
moose 

D ,  = Contribution  (proportional  to  the  weight) of a single calf 
to the  satiation effect (abundance of prey) on the wolf 
population 

D, = Contribution  (proportional  to  the  weight) of an old or sick 
moose to the  satiation effect on the wolf population 

c, cI4, cs, = Constants  to  be determined so that all populations 
remain stable  at  their equilibrium  values. 

to  the relative abundance of the “biomass” D i N i ,  com- 
pared to  the  total prey  biomass, ( D I N ,  + D3N, ) .  

Equations (9)  are now reduced to a canonical form, 
with the minimum number of parameters.  Let qi repre- 
sent  the equilibrium values for N , ,  corresponding  to  the 
solution of Eqs. (9) when we set dN,/dt  = 0 for all i, 
and 

f, = N , / q , ,  (i = 1; . ., 4) . 

Then,  Eqs.  (9) may be  reduced to  the form 

where 

and the Verhulst saturation  factor  was  chosen so that 
the  saturation levels of the  three  classes  are proportional 
to  the equilibrium levels. The  latter choice was  made 
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lated to  the  ones of Eqs. (9) according to  the relation- 
ships 

K,=", ( i =  1 , 2 , 3 ) ,  
k . .  
k44 

di = qiDi,  ( i  = 1 , 3 )  , 

r = tk,, . 
The biological interpretation of the  constants K i  can  be 
seen by referring to  Table 1. They  are  the ratios of the 
three  rates, 

I k , ,  = Graduation plus mortality rate of calves, 
k,, = Graduation plus  mortality rate of adult  moose,  and 
k,, = Natural  death  rate of old or sick moose, 

I 

I to  the depletion rate of the wolf population in the ab- 
sence of prey, k44. The  constants A ,  are best  interpreted 
by referring to  the equilibrium state of the  system, in 

uation. 
I which N i  = qi. Thus we find that, in this steady-state sit- 

Number of calves born to adult  moose 
Number of calves graduating to adult class '1, = 

Number of calves  born to old or sick moose 
Number of calves graduating to adult  class 

Number of adults  graduating to old or sick class 
Number of old or sick moose dying naturally 

*I3 = 

= . 

It  is  seen  that  the A, are  constrained by  physical  consid- 
erations.  For  example, we cannot  have more  calves 
graduating to the  adult class  than those  that  are  born, 
therefore, A,, + A,, 3 1 .  Also, we must have  at  least  as 
many adult  moose graduating to  the old or sick class as 
the  number of moose from  the  latter class that  die; there- 
fore, A,, 2 1 .  

Equations ( 1  1 ) have  the equilibrium  solution 

" d c o  J 
dr 

The population  variation near equilibrium may be in- 
vestigated by a study of the stability about equilibrium. 

4. Stability investigation 
Let US assume a small perturbation  about equilibrium, 
namely 

f i= 1 + E i '  Ei<< 1,  ( i =  1,. . .> 4 ) .  (15) 

tain  a  linearized set of equations 

where 

M , ,  = K, {-(1 -$) + (1 - A,, - AI,) 

x [;+(I -?I F (K++] j  I - E  d , + d ,  ' 

d 
-1 + (1 - 

d , + d ,  1 - E  

Ed,  M,, = - I - E '  

Ed,  M,,  = - 
1 - E '  

M = M  = M  = M  = O ,  
23 24 4'L 44 

E = exp [-dl - d,] . 
The stability of the equilibrium  solution, Eqs. (141, 
against  small perturbations is determined by the  nature 
of the eigenvalues of the  matrix M,.  The equilibrium 
solution is stable if, and  only if, all eigenvalues have a 
negative  real part. A complete  investigation of stability 
would require a search of regions of stability in the do- 
main of the nine independent  parameters, F ,  K,, K,, K, ,  

We have determined  numerically that stability is par- 
ticularly sensitive to a variation of the  parameters A,,, 
A,, and Therefore,  we  have determined the  bound of 
stability in the plane A,, versus A,, for  some  representa- 
tive  values of the  other five parameters.  The  results  are 
shown in Fig. 4, where  the  stable region lies above  the 51 

A,,, A,:,, A,,, d l ,  and d,. 
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Figure 4 Boundary between  stable and unstable  regions in the 
plane A,, versus A,,, for small perturbations  about equilibrium. 
The  curves A, B, and C correspond  to  the values of the  param- 
eter AI3 = 1, 2, and 3, respectively. The  other  parameter  values 
are K ,  = 0.0125, K ,  = 0.00075, K ,  = 0.006, dl = 2.0, d, = 2.4 
and F = 8.0. 

Figure. 5 Variation of the  four normalized  populations versus 
normalized  time  derived from  the model of Eqs. ( 1  1).  One  year 
corresponds approximately to T = 40. 

I Time, f (wars) 

Actual populations 
(approx.) 

400  2000 200 50 

300 1500 150 38 

200 1000 100 2.5 

100 500 50 12 

0 0 0 0  

I Normalized time, T 

appropriate  one of the  curves labeled A, B, and C. 
These  curves were determined numerically as  the loci of 
the  zero of the largest real  part of an eigenvalue. It may 
be seen  that  the bound of stability corresponding  to  the 
curves A, B, and C changes relatively  little as A,, 
changes between  the values of 1 and 3. In all three  cases 
shown,  the physically acceptable domain, A,, 1, lies 

52 within the  stable region. 
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5. Numerical computations and discussion 
The  existence  or lack of stability  against small perturba- 
tions gives, in general,  only  partial  information concern- 
ing large fluctuations about equilibrium. For example,  a 
system of equations  that  is  stable against  small perturba- 
tions may be unstable against  large ones.  On  the  other 
hand, a system  that is unstable against small perturba- 
tions about equilibrium may have a limit cycle,  as  for 
example,  does  the  Watt modification [7] of the  Lotka- 
Volterra equations. 

We have carried out numerical computations of sever- 
al test cases, using Eqs. ( 11 ). The  computations  appear 
to indicate that  the bounds of stability shown in  Fig. 4 
are  bounds of transition from amplified to  attenuated 
behavior of the  perturbations  about equilibrium, even 
when the initial perturbations  are large. However,  for 
sufficiently large perturbations, a choice of parameters in 
the  stable region may yield physically unacceptable neg- 
ative values for  some of the population functions  and 
certain periods of time. The differential equations must 
then be  solved under some  additional  non-negativity 
constraints. 

In modeling Isle  Royale,  the  parameters of the com- 
putations  were  chosen  on  the  basis of information avail- 
able  about life - and  death - on  Isle Royale. Specifically, 
we used the following realistic  values for  the  thirteen 
parameters of Eqs. (9) which are  needed in order to 
determine  the  constants entering in Eqs. (1 1). 

k , ,  = k , ,  = k,, = k,,  = 0.5/yr 

k,, = k,, = 0.251yr 

k,, = 0.03  llyr 

k,, = 40Iyr 

q, = 160 moose 

q, = 320  moose 

q, = 160 moose 

Dl = 0.0125/moose 

D, = O.O15/moose 

The class of “adult”  moose is assumed  to  consist rough- 
ly of the  wear  classes I  through IV, in the  standard clas- 
sification given, for example,  by Mech  [3]. 

The  constants of Eqs. (1 1)  are  then  the following: 

K ,  = 0.0125 A,, = 2.0 

K ,  = 0.00075 A,, = 1.0 

K ,  = 0.006 X,, = 16.0 

d, = 2.0 F = 8.0 

d, = 2.4 
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The  saturation  constant F was selected so that  the 
moose  population cannot exceed a combined total of 
about 1700. 

The numerical computations  were  made using a 
fourth-order  Runge-Kutta integration procedure.  Typical 
results  are given in Figs. 5 and 6. Figure 5 shows  the 
variation of the  four functions f i  versus  the normalized 
time r, (and the natural time in years), and  Fig. 6 shows 
the corresponding plot in the state  space f * = 6 ( f ,  + 
f ,  + f , )  versus f,. (The value of f * gives a weighted 
average of the population  sizes of the  three moose  class- 
es,  and  tends to 1 at equilibrium.) The initial conditions 
were  chosen  to  approximate  the conditions when wolves 
came  to  Isle Royale [3]  in 1946; namely,  a  fairly  large 
population of moose and small population of wolves. 
The numerical results  show some initial damped oscilla- 
tions, and  then  an almost  monotonic trend  toward equi- 
librium, which is reached within about 20 years.  The 
almost  monotonic trend  toward equilibrium appears  to 
be a fairly good representation of the  events of the last 
two  decades.  Whether  or not the initial fluctuations are 
realistic is rather difficult to  ascertain  from available 
data.  There  are  some indications that  they  are  not, be- 
cause of one  feature of the wolf population that is not 
contained in the model. The wolves appear  to  exercise 
some  control  over  their number,  through  social rather 
than logistical pressures.  Formation of packs,  pack life, 
territorial  dominance, and  other social determinants 
appear  to impose  a ceiling on  the wolf population. There 
is evidence  that a surplus of wolves may emigrate from 
the island  during the winter, over  the  frozen lake. The 
growth of the  moose population, on  the  other  hand, is 
limited by the availability of food,  and this  limitation is 
not  properly  accounted  for by the  Verhulst-type  satura- 
tion factor. A three-species  model,  taking into  account 
plants,  moose, and wolves, would more adequately de- 
scribe  the periods when  the number of moose becomes 
large and/or the number of wolves  becomes small, when 
the  moose population is in danger of starvation.  It may 
be  pointed out  that  over  the  last  two  decades  or so there 
has been no evidence of moose  starvation.  However, 
some signs of vegetation  shortage have been seen in the 
last  few  years [8]. 

In  summary,  the  present model gives a better descrip- 
tion of the trend  toward  equilibrium, observed  since  the 
arrival of the wolves on  Isle Royale,  than that given by 
simpler,  two-population models. With proper calibration, 
it could  be  used to  describe  quite well the effect of in- 
creasing the wolf population on  the ecological  balance of 
the island. It probably needs some improvements,  and 
possibly an explicit  consideration of plant life, before it 
can be  used to  describe  the effect of limiting the wolf 
population,  and consequently increasing the  moose pop- 
ulation. 

I I 

0.6 O.X 1.0 1.2 ‘1.4 1.6 1.8 2.0 

Normalized wcighted averagc o f  total mooae population, f* 

Figure 6 Variation of the  average of the  three normalized 
moose  populations, f *  = +( f ,  +f, +x,) versus  normalized wolf 
population, f,. 
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