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Transport Properties of the Semiconductor Superlattice

Abstract: Precise calculations have been made, by Monte Carlo methods, of electron transport properties of the Esaki superlattice. The
calculations were on a single-particle space-homogeneous basis, with a model of the superlattice which could be reasonably close to
reality. Steady-state longitudinal drift-velocity/field characteristics were obtained, for four sets of parameter values; they exhibited the
expected maximum followed by negative differential mobility. The accompanying variations of the longitudinal and transverse energy
averages were also obtained, and the distribution functions for longitudinal wavevector and transverse energy were investigated. The
frequency dependences of the differential mobilities (in-phase and out-of-phase components) were obtained in some representative

cases; they exhibited a “‘Bloch resonance.”

1. Introduction

Esaki, et al. [1] have proposed a semiconductor material
in which the electrons would move in a potential varying
periodically, in one dimension, on a scale of many lattice
constants; and have recently fabricated samples {2] of
gallium aluminum arsenide alloy in which the aluminum
fraction (the “x” of Ga,_,Al _As) was made to vary
periodically by controlling the growth chemistry. The
idea [1] is that the superlattice potential —in this case
the band-edge energy, considered as a function of position
—would cause a kind of Bloch band structure superposed
on that due to the lattice-periodic forces. The former
would have a smaller Brillouin zone size, and in practice
a narrower energy scale of bands and gaps. Because the
superlattice potential is to be one dimensional, these
“superbands” should, in the lower part of the conduction
band, be separated by forbidden energy ranges.

An intuitively perceived consequence of this situation
is that the electron drift velocity would reach a maxi-
mum, with increasing electric field, followed by a field
range with negative differential mobility. A second in-
tuition is that the response to an added periodically time-
varying field should exhibit a resonance when the period
is equal to the time for an electron subject to the static
electric field to cross the Brillouin superzone. It is dem-
onstrated in the present paper that both of these ex-
pectations are correct.

The viewpoint of the present work is to take the sim-
plest model that should contain the essential features of
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superlattice material, disregarding further detail which
is, in any case, not likely to be explicitly known or cal-
culable at this stage, and make precise calculations of its
transport properties over a significant range of parameter
values.

2. Formulation

It is implicit in the conceptions used [1] that an electron
may be assigned a wavevector, in the superzone, which
will vary with position and time. Itis, accordingly, neces-
sary that the electron mean free path be at least several
superlattice constants [3]. This condition has evidently
been at least fairly well satisfied [2]. Then the state of
the electrons may be represented by a Boltzmann equa-
tion, for a superzone distribution function f (k):

+fd3k' [fKOWEK, k) —f(k)W(k k)], (1)

where the electric field is &, and for convenience the
carrier charge is taken as positive (+e).

Equation (1) embodies the assumption that the elec-
trons are confined to a single superband —in particular,
the lowest one —which is to be examined subsequently.
The scattering term on the right does not include carrier-
cafrier interactions. The drift velocity is the average
value
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u=(v) Efcfkf(k)v(k) (2)
of the electron velocity

1 oF

v(k) :EE (3)

In (3), E is the superband energy, for which (neglecting
effects of dependence of the band effective mass on the
concentration x) we take

E(k) =E (k) + E,(k,), (4)

where kH and k, are the components parallel and per-
pendicular to the superlattice axis, E, has the reciprocal-
lattice periodicity, and

E,(k )= (B[2m*)k *. (5)

It is assumed here that & is parallel to the superlattice
axis (the k direction).

The foregoing scheme can be seen, from simple con-
siderations, to require the anticipated negative differential
mobility. For small enough constant &, we must have the
ohmic relation # = u,&. For large enough ¢, on the other
hand, we expect f and « to be given by a series in inverse
powers of ¢ . Then it follows from (1) that the first term
for fis independent of & ;:

fk)=gk,), (6)

where the function g is determined by the vanishing of
the scattering term (with kernel W integrated over k),
and kH’). Then, in the same limit, it follows from (6) that
u=0. To get the next term in u, proportional to 1/¢,
explicitly one may substitute from (6) in the right-hand
side of the “‘energy conservation equation”

eu£=(w>Efwfd3k, (7)
where
wik) = f Wk k') [E(K) — E(K)] d°K . 8)

It is now obvious that «( &) must pass through a max-
imum, between the limiting forms u, ¢ and const/¢. One
should note that the foregoing argument depends on the
fact that E| is bounded above, and, thus, on the related
restriction of the electrons to a single band. Conse-
quently, the critical issue, in practice, may be whether
the function g in (6) corresponds to there being, or not
being, an appreciable fraction of the electrons with E,
values high enough for them to be scattered into higher
superbands. The numerical resuits presented below bear
on this question.

We further assume

a) E,=E,[1—cos (ak)], C)

where « is the superlattice constant,

b) scattering is either elastic or is inelastic with an en-
ergy change of one optical-mode quantum:

E' =E + skw,; s =0, =1, (10)

¢) scattering matrix element is constant in either elastic
or inelastic channel:

W(k, k') d’k’ = (a/2m) dk ' dE,' [AS(E—E')
+BNS(E + fw, — E')
+B(N,+ 1)8(E — fw, — E')],
where

N, = [exp(ha /kT) — 1] (12)

and A, B are constants. The system of Eq. (1) with¢
time-independent and Egs. (4), (5), (9), (11) and (12)
is physically consistent, embodying the detailed balance
principle for a specific temperature T [4]. Its solution
depends on the parameters fw,/E,. kT/E, (hla)Alet,
(h/a)B/e¢. 1t has been solved numerically for quantities
of interest, as reported below, by Monte Carlo compu-
tation.

3. Steady-state calculation

The Monte Carlo programming was on lines that have
been made familiar by Rees and his colleagues [5]. The
total scattering rate including “‘self scattering” [5,6]
was a constant, equal to

=4+ (2N,+1)B. (13)

In a scattering event, a new kH value,
ky' = (2w/a) R,

was selected, where (here, and throughout) R is a pseu-
dorandom number with constant probability density in
(0, 1); and one of the three scattering modes in (10),
with probabilities A/, N,B/T",and (N, + 1)B/T fors =0,
+1, and —1, respectively, was then chosen in the usual
way with a new R. If the resulting new E, value

E,)=E, + shw,+ E,— E/ (14)

was positive, the selected physical scattering process oc-
curred; otherwise, there was a “self scattering.” The ac-
celeration path, generated by a new R, was an increase
in kH’ equal to (e¢/AIN)In(1/R), with E, unchanged. Af-
ter each trial the stored value of (akH) was replaced by
its value mod (27).

An unusual feature of the programming was the use of
the population of initial states in scatterings (final states
in accelerations) as the ensemble that was averaged over,
to obtain the expectations given by integrals over f [7].
That is,

@) = [ X9 70) dk =13 X059, (15)
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Table 1 Parameter values and computation results.

Input parameters in the computations
kT fi 0 “ 7 - o max : P
Case E, v, - & A B (Ep,  (Ep. ”T Mo &max Foin
(107%eV) (107 cm/s) 0 0 Fo Emax (107 cm/s)

1 0.2 0.25 1 1.0 0.107 5.8 0.3 0.357

11 55 5.01 0.455 0.636 1. 1.0 0.272 2.5 0.38 2.8 0.376
111 27.5 2.51 0.91 1.27 1. 1.0 0.520 1.9 0.36 1.25 0.376
v 27.5 2.51 0.91 1.27 3 1.0 0.520 2.8 0.35 1.0 0.215

where X is any function of electron state, the subscript b
refers to the state immediately preceding a scattering
(either *‘self” or physical), the index j signifies the jth
trial, and L is the number of trials in the Monte Carlo

“history.”

Natural reduced variables in the calculations are
k= ak, (16)
E ,=E,E, E=EIE, (17)

with the parameters kT/E,, fiw,/E, A set of such vari-
ables, which has been used both in the computer program
and in presenting the results here, is obtained by intro-
ducing an arbitrary constant, p, with the dimensions of a
frequency. Then

& = ¢ (ealtp), (18)
A=Alp, B=Blp. (19)
The velocity in the field direction, by (3) and (9), is

v =1, sin (akH) R (20)
where
v, = aE k. 21)

Our reduced drift velocity is then
i = ufv,. (22)

The differential mobility (calculated as described in Sec-
tion 4) depends on the frequency, v, which we specify
by a reduced frequency

vip. (23)

14
It is not useful to specify drift velocity versus field, for
example, in absolute units, because the results scale
homogeneously in field and frequency (reciprocally in
time). When the quantities in (21) are given, the fields
could be normalized by a value for the actual ohmic mo-
bility p, relative to v,

Results are presented here for the cases specified in
Table 1. Case II1 corresponds to temperature T = 290 K;;
optical mode quantum #%w, = 0.035 eV; and the specu-
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lative estimate [2], for the lowest superband width,
2E,=0.055 eV. The v, value comes from (21) with [2]
an assumed superlattice constant ¢ = 6 X 107" cm. Case
1V is the same as IIT except for a value of A three times
as large (that is, three times as much elastic scattering).
Case 11 is the same as III except for having twice the
superband width. Case I represents the situation of even
larger bandwidth, and somewhat smaller Aw,, by the
“round number” values that are assumed for AT/E,
hoo/E,.

Figures 1 -5 show results for the steady state. Reduced
drift velocity versus reduced field (Figs. 1-4) is of the
expected form. From the initial ohmic mobility, u,, the
maximum drift velocity, iy, and the field at the maxi-
mum, &,., we form the dimensionless quantity ../
Mo €max given in Table 1 (actually calculated from the
three reduced values). These values, between 0.3 and
0.4, compare with the value 0.5 given by the formula

U= El[1+ (6/8ma)"] (24)

obtained by Esaki and Tsu [1]. Absolute fields could be
established by equating p,&max t0 U i, & nax, the values
being given in Table 1.

The general dependence of the energy averages, (E,)
and (E,), on field, illustrated in Figs. 1 -3, is as expected.
The zero-field limit of (E,) in general exceeds $4T, as it
should: The energy function (9) gives, for a Boltzmann
thermal distribution,

(E)y=1—I(E,JKkT)I,(EkT) , (25)

where the I, (x) are Modified Bessel Functions [8]. This
expression goes from kT/2E in the limit 7 — 0 to one in
the limit T — o, It is displayed in Fig. 6, and the appli-
cable values are given in Table 1. The high-field limit of
(E ,) is one, in accordance with (6). Figure 5 shows, for
Case 111, the distribution function of k at two interme-
diate fields; the progressive flattening of the distribution,
towards the ultimate uniformity in & at large fields, is
apparent.

The averages (E,) start at the thermal value kT for
zero field and increase to limiting high-field values, which
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Figure 1 Static characteristics for Case I: Drift velocity « and
energy averages(E ), (E,) versus field ¢; all in reduced units.

Figure 3 Static characteristics for Case III: Drift velocity «
(left scale) and energy averages (E,), (E,) (right scale) versus
field ¢; all in reduced units.

Figure 2 Static characteristics for Case 11: Drift velocity # and
energy averages (E,), (E,) versus field &; all in reduced units.

Figure 4 Drift velocity versus field for Case IV (full curve),
compared with Case III (dashed curve); all in reduced units.
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are given in Table 1 as <E2>w. The evident trend is a de-
creasing <E2>W, and hence a more strongly decreasing
(E,),with decreasing E , at fixed temperature and optical
mode frequency. (On the other hand, increasing the pro-
portion of elastic to inelastic scattering resulted in a larger
high-field (E,).) This indicates that increasing strength
of the superlattice potential (greater height or width of
the barrier [1]) goes with more effective exclusion of
the hot carriers from the superlattice bands above the
lowest. The distribution function for E, was found to be
Maxwellian (but with a temperature greater than 7'} in
all of the many cases examined. This characteristic was
not investigated analytically. For Case IlI, the bottom
of the second superband has been calculated [2] to be
2.9 E, above the bottom of the lowest superband. The

proportion of carriers with energies greater than this, ac-
cording to the calculations presented here, would be
exp(—2.9/1.2) = 0.089 at &p.,; and exp(—2.9/1.9) =
0.22 at the high-field limit.

It would be of interest, in the light of the foregoing, to
repeat the calculations of this section and the following
one with addition of the next higher superband to the
model. One would expect the results to be sensitive to
the energy parameters and relative scattering rates, how-
ever; and there evidently is not, at present, an adequate
basis for assigning values to these. Tunneling between
superbands, possibly a source of appreciable additional
current, is of course outside the scope of the quasi-classi-
cal formulation on which the present calculations are
based.
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4. Differential mobilities

The quantities of interest next after the static drift ve-
locity u, versus field ¢, are the differential mobilities that
give the response to a small superposed harmonically
varying field; that is, the coefficients u,(v) and u,(»),
which give the additional drift velocity

8u = (u, sin 27wt + pu, cos 2mwt) &,

= u, sin 2mvt + u, cos 2mvt (26)
due to the additional field
8 &= ¢ sin 2wt . (27)

The basic idea, for obtaining these coefficients by a re-
finement of the usual Monte Carlo procedure, is to use a
time-varying field ¢ (r), by addition of (27) to the static
term, in calculating the “path” steps in the Monte Carlo
history; and to extract from the latter the corresponding
Fourier components of the electron velocity over time.
With a constant total scattering rate (including “self
scattering”) the scattering events are not correlated with
the phase in (27). The intervals between scatterings are
still given by

"0 — 9 = (1/T) In(1R) , (28)
and the path increments of wavevector by integration of
dk/dt = (elh) € (1) . (29)
In the present case, the integral of (29) includes a term
(elh) (&,12av) (cos 2mvt? — cos 2mwtY™") .

The coefficients in (26) are equal to the time averages
of 2 o sin (27vt) and 2 v cos (2avt) over the Monte
Carlo history. Given the functional dependence v(k),
the time integrals over paths, which are summed to give
an average, may be expressed in terms of the k values at
the path ends (the initial and final states of the scatter-
ings). Alternatively, however, one may, in the present
case also, replace the explicit time averages by averages
over final path states as in (15). Lebwohl [9] has demon-
strated the equivalence of the two procedures and has
verified it numerically for the case of several valleys with
“parabolic”’ energy functions. Even for the latter case,
and much more so for the present one with the energy
function (9), the procedure corresponding to (15) is
simpler. We take

u | _2 L @, | sin @
u;}—z Z by (™) cos 2™

L
2 sin k o {sm 69 30)

PIN

0s

where 0 = 27vt = 2avf.

An important feature of the results that were obtained,
and are displayed in the corresponding Figures, is the
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Figure 5 Distribution function of ak, for Case I11, at the re-
duced field values labelling the curves.

Figure 6 Thermal average value of E, (right scale) and of
(E, — 3T) (left scale), both in units of E,, versus T in units
of E k.
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“Bloch resonance.” In a static field & , an unscattered
electron crosses the Brillouin super-zone in a time
(27/a) (hle &). One therefore expects an enhanced re-
sponse to the superposed field (27) when the frequency
is near the reciprocal of this transit time; that is, when the
reduced frequency is near
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Figure 7 Differential mobilities versus frequency, in reduced
units, for Case I at a reduced field of 5.0.

Figure 8 Differential mobilities versus frequency, in reduced
units, for Case 1I at a reduced field of 5.0.
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be=¢82m. (31)

This “Bloch frequency” is indicated by an arrow on each
of Figs. 7-10.

The frequency range of this enhanced response might
be expected to approximate the physical scattering rate.
The latter is not a unique quantity in the present case;
but it does have a maximum value, in the band, equal to
the total scattering rate I" given by (13). The reciprocal
of I' in reduced units,

fmin = P/F ’ (32)

is given for each Case in Table 1. The corresponding
“wr” is equal to #mn £ for the particular field.

Figures 7-10 show differential mobilities versus fre-
quency, in reduced‘units. In each case, the curve that
starts at the origin (0, 0) is for w,. Figure 7 is for Case I,
with £ = 5.0; the minimum “w7”" value that applies is 1.8.
Figures 8 and 9 are for Case II. The reduced field and
minimum “wr” values are, réspectively, 5.0 and 1.9 for
Fig. 8; 0.5 and 0.19 for Fig. 9. Figure 10 is for Case III,
with £ = 2.5 and minimum “wr” equal to 0.94. A con-
vincing resonance structure appears, at about the right
place, in each case. From Figs. 8 and 9 it is evident that
the position of this structure shifts with field as it should
according to (31).

Although the zero-frequency value of W, is positive or
negative according to the sign of du/d ¢ at the static field
value, the resonance maximum of w, is positive in all
these cases. Thus the negative-differential-mobility prop-
erty shown by the static «(¢) is actually obliterated, not
enhanced, by resonance conditions. It is noteworthy that
du,/dv is positive, for either sign of u,, at zero frequency;
this is contrary to what was found for GaAs, as a trans-
ferred-electron systéin, by Rees [10].

The ¢, value used ip obtaining these data was in each
case 0.2 times the stati¢c-field value. A test of the linearity
of the response was mide for the case of Fig. 10, at ¥ =
0.4 (iri the resonance région), by plotting «, and u, versus
€. Fdr u, the deviations from proportionality occurred
well above the value &, = 0.5 that had been used; and for
u, significantly above it; and the u, and u, that had been
derived were both good values on the proportionality
lines. It was found that the static averages (‘‘zero-fre-
quency components”) of v, E, and E,, especially the
first of these, were similarly sensitive to the added sinus-
oidal field amplitude &, so that deviations from their val-
ues with the static field alone were good indicators of
nonlinearity in u. A check of the values for the computer
runs from which Figs. 7—10 were obtained showed some
deviations of a percent or two, but not more serious ones.
Evidently there were u. and u, data points from some-
what beyond the perceptible range of linearity; but I do
not believe that the results presented are significantly
inaccurate from this source.
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A consequence of (1) is that the high-frequency limit
of u, is inversely proportional to the frequency:

2 li_I)l}O (—p,p) =C (33)
with
C=e{l/my) = e((1R)dEldk,") . (34)

Then, from (9) and (34), we have (in reduced units, for
convenience)

C=1—-(E). (35)

A necessary analytical property, in relation to (33),
is [11]

4[ p, o dv=C. (36)
0

A rather careful check of the numerical agreement of
these formulas was made for the case of Fig. 9, with the
following results:

2m lim (—i,p) = 0.53,
Jm

1—(E) =0.52,

4j i, dv =0.49.
0

The integral was actually evaluated for an upper limit
v = 2.0, where u, has evidently dropped to zero. The sub-
stantial “exhaustion of the sum rule” within this fre-
quency range supports the conclusion that there are no
resonances at harmonics of the fundamental Bloch fre-
quency. The relation

wO) =—2 [t (37)
0
is companion to (33), (36). This is also available for a
check of results for differential mobility versus frequency.
To obtain this quantity of differential-mobility results
required quite a lot of computer time —though without
any special effort at efficient estimators. The requirement
seems to be essentially a matter of “‘signal-to-noise” for
(30); this is discussed in the Appendix.

5. Discussion

What has been done in this paper is to adopt a reasonable
and consistent model of the semiconductor superlattice,
using a single-particle space-homogeneous quasi-classi-
cal treatment; show for this model that the static and
linear differential transport properties can be calculated
with precision; and obtain enough numerical results to
give what seems to be a quite good idea of those proper-
ties. More of such data could, of course, be obtained as
desired. What might be more useful, and obviously is
possible, is to investigate in detail the beyond-linear dif-
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Figure 9 Differential mobilities versus frequency, in reduced
units, for Case 1I at a reduced field of 0.5. The frequency scale
changes at 0.2.

Figure 10 Differential mobilities versus frequency, in reduced
units, for Case I1I at a reduced field of 2.5. The frequency scale
changes at 1.0.
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ferential response for large amplitudes. The practical
interest, for these highly non-parabolic electron band sys-
tems, is obvious. There should also be a more fundamen-
tal interest in verifying theorems such as the generaliza-
tion of Eqgs. (34) and (36); and perhaps the generaliza-
tion of the Kramers-Kronig relations [12].

It seems plausible that, just as with Gunn domains, an
understanding of observed properties will require a many-
particle treatment with space and time dependence, in-
corporating space-charge and dynamical instability
phenomena. This development could, however, be based
on the same physical model as for the present paper. The
physics of superlattice materials is, of course, a broader
subject than this model comprises.

Appendix. Fluctuations of the differential mobiliiy
estimator

The characteristic fluctuations of the estimator (30)
may be analyzed, after replacing it by the equivalent time
average, by the identity that is the basis of the Weiner-
Khinchine theorem: If

X(T,v) = LTT X (1) exp(i2mvt) di (A1)
and similarly for Y, then
X(T, v)Y(T,—v) = fx ds exp (i2wvs)

L'T X(1+5)Y (1) dr. (A2)

If, now, X (¢) and Y (¢) are fluctuating quantities with (for
either or both) average value equal to zero, and if T is
large compared to their correlation time, the second in-
tegral in (A2) may be replaced by T times the correla-
tion at time displacement s. That is, in the usual notation,
for large T

X(T, »¥(T, )

=wa exp(2mvs) X(t +s)Y(t) ds . (A3)

Thus,—fzr large T

1 T sin ?

T ( fo dt v(t) {COS Zwvt)

- f ds cos(2mvs) To(1) — LToG Ts) (A4)
0

(where either or both factors in the correlation average
on the right could be v — « rather than v). The right-hand
side of (A4) is the diffusivity at frequency ». The left-
hand side may be written as T(Av)®, where Avis the fluc-
tuation at frequency » which occurs in the sample “his-
tory” of duration T'; and the right-hand side may be writ-
ten as {v")7., where 7, is the effective correlation time at
frequency v. Replacing T by L/T', where L is the number
of trials in the Monte Carlo run, we have

Av = ((HT7/L)E. (A5)

In the present case, it follows from (8) and (20) that
(") is less than vo2 (El> (2 — (El)) and hence is less than
v,”. On the other hand 8u, the amplitude to be measured,
is (in the work presented here) of order #/10; and u is
characteristically of order v,/10. So we may write

Av 100
—_—— .
%u " VL
Where fiw, is not much smaller than E, especially, we
don’t expect I'7, to be large. Without investigating further,
we conclude that probably Av/8u does not much exceed

100/ VL. In practice, in the work reported here, this con-
clusion turns out to be somewhat on the pessimistic side.

VT7.. (A6)
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