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Transport  Properties of the Semiconductor  Superlattice 

Abstract: Precise calculations have  been made, by Monte  Carlo methods, of electron transport properties of the  Esaki superlattice. The 
calculations  were on a  single-particle  space-homogeneous  basis, with a  model of the  superlattice which could be reasonably  close to 
reality. Steady-state longitudinal drift-velocity/field characteristics  were  obtained,  for  four  sets of parameter  values;  they exhibited the 
expected maximum followed by negative differential mobility. The accompanying  variations of the longitudinal and transverse energy 
averages were  also  obtained,  and  the  distribution  functions for longitudinal wavevector  and  transverse energy were investigated. The 
frequency  dependences of the differential mobilities (in-phase and out-of-phase  components) were obtained in some  representative 
cases; they  exhibited  a  “Bloch  resonance.” 

1. Introduction 
Esaki,  et al. [ 1 1  have proposed a semiconductor material 
in which the  electrons would move in a potential  varying 
periodically, in one dimension, on a scale of many lattice 
constants; and have recently fabricated samples [ 2 ]  of 
gallium aluminum arsenide alloy in which the aluminum 
fraction  (the ‘‘x” of Ga,_,Al,As) was made  to vary 
periodically by controlling the growth  chemistry. The 
idea [ 1 ] is that  the  superlattice potential- in this case 
the band-edge  energy,  considered as a function of position 
-would cause a kind of Bloch band structure  superposed 
on  that  due  to  the lattice-periodic forces.  The  former 
would have a smaller Brillouin zone  size, and in practice 
a narrower energy scale of bands  and gaps. Because  the 
superlattice potential is to  be  one dimensional, these 
“superbands”  should, in the  lower  part of the conduction 
band,  be  separated by forbidden  energy  ranges. 

An intuitively perceived  consequence of this  situation 
is that  the  electron drift  velocity would reach a maxi- 
mum,  with  increasing  electric field, followed by a field 
range  with  negative differential mobility. A second in- 
tuition is  that  the  response  to  an  added periodically time- 
varying field should  exhibit a resonance when the period 
is equal to the  time for  an  electron subject to  the  static 
electric field to  cross  the Brillouin superzone.  It is dem- 
onstrated in the  present  paper  that both of these ex- 
pectations  are  correct. 

The viewpoint of the  present work is to  take  the sim- 
plest  model that should  contain the essential features of 

superlattice material,  disregarding further detail  which 
is, in any case,  not likely to be explicitly known or cal- 
culable at this stage,  and  make precise  calculations of its 
transport  properties  over a significant range of parameter 
values. 

2. Formulation 
It  is implicit in the  conceptions used [ 1 ] that  an  electron 
may be assigned a wavevector, in the  superzone, which 
will vary  with  position and time. It is,  accordingly,  neces- 
sary  that  the  electron mean free path be  at  least  several 
superlattice  constants [3].  This condition has evidently 
been  at least fairly well satisfied [2]. Then  the  state of 
the electrons may be represented by a Boltzmann  equa- 
tion, for a superzone distribution  function f (k) : 

- f = - - & . - f  a e a  
at h ak 

+ d k ’   [ f ( k ‘ ) W ( k ’ ,   k )   - f ( k ) W ( k ,   k ’ ) l ,  ( 1 )  

where  the  electric field is E ,  and  for convenience the 
carrier charge is taken as  positive (+e). 

Equation ( 1 )  embodies  the assumption that  the elec- 
trons  are confined to a single superband-in particular, 
the lowest one-which is to  be examined  subsequently. 
The scattering term  on  the right does  not include  carrier- 
carrier interactions. The drift velocity is  the  average 
value 

I 
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u = ( v )  = d3k f (k )v (k)  

of the  electron velocity 
I ( 2 )  

v(k)  - - 
1 dE 
h ak 

In (3) ,  E is the  superband  energy,  for which  (neglecting 
effects of dependence of the  band effective  mass on  the 
concentration x )  we take 

= E,(kll)  + E, (k , )  , (4) 

where k l ,  and k L  are  the  components parallel and per- 
pendicular to  the  superlattice  axis, E ,  has  the reciprocal- 
lattice periodicity, and 

E, (k , )  = ( h 2 / 2 m * ) k L 2 .  ( 5 )  

It  is assumed  here  that E is parallel to  the superlattice 
axis (the k direction). 

The foregoing scheme can be  seen,  from simple  con- 
siderations,  to require the anticipated  negative differential 
mobility. For small enough constant c”, we must have  the 
ohmic  relation u = po f .  For large  enough E ,  on  the  other 
hand,  we  expect f and u to  be given by  a  series in inverse 
powers of L . Then it follows from ( 1 )  that  the first term 
for f is  independent of k ,: 

f ( k )  = g(kJ 9 (6) 

where  the  function g is determined  by the vanishing of 
the scattering term  (with kernel W integrated over k l l  
and kll ‘ ) .  Then, in the  same limit, it follows from (6) that 
u = 0. To get the next term in u, proportional to 1 / ( ,  
explicitly one may substitute  from (6) in the right-hand 
side of the “energy conservation  equation” 

e u f  = (w) = I wf d k ,  ( 7 )  

where 

w(k)   W(k ,   k ’ )  [ E ( k )  - E ( k ’ ) ]   d 3 k ’ .  I (8) 
It  is now obvious  that u (  i ‘ )  must pass through  a max- 

imum,  between the limiting forms p,, i: and constli:.  One 
should note  that  the foregoing  argument depends  on  the 
fact  that E ,  is bounded  above,  and,  thus,  on  the  related 
restriction of the  electrons to a single band. Conse- 
quently,  the critical issue, in practice, may be  whether 
the function g in (6) corresponds  to  there being, or not 
being, an appreciable  fraction of the  electrons with E,  
values high enough for  them  to  be  scattered  into higher 
superbands.  The numerical results  presented below bear 
on this  question. 

We  further  assume 

a) E ,  = E, [1  -cos ( u k I l ) ]  , ( 9 )  

40 where a is the  superlattice  constant, 

P. J. PRICE 

b) scattering is  either elastic or is inelastic  with an en- 
ergy  change of one optical-mode quantum: 

E‘ = E + shoo; s = 0,*1 , (10) 

c )  scattering  matrix  element is constant in either elastic 
or inelastic  channel: 

W(k,  k ’ )  d’k’ = ( ~ / 2 7 r )  dkll’ dE,’ [ A 6 ( E  - E ‘ )  

+ BNoS(E + ho, - E ’ )  

+ B ( N , + l ) S ( E - h o , - E ’ ) ] ,  

where 

N o  = [exp(hw,/kT) - 1 1 - l  ( 1 2 )  

and A ,  B are  constants.  The  system of Eq. ( 1  ) with C 

time-independent and  Eqs. (4), ( 5 ) ,  ( 9 ) ,  ( 1   1 )  and ( 1 2 )  
is physically consistent, embodying the detailed  balance 
principle for a specific temperature T [4]. Its solution 
depends  on  the  parameters hw,/E,,,   kT/E,, ( h / a ) A / e h ,  
( h / a ) B / e & .  It  has  been solved  numerically for quantities 
of interest,  as  reported below, by Monte  Carlo compu- 
tation. 

3. Steady-state calculation 
The  Monte  Carlo programming was on lines that  have 
been  made  familiar by  Rees  and his colleagues [ 5 ] .  The 
total scattering rate including “self scattering” [5,6] 
was  a constant,  equal  to 

r=A+ ( 2 ~ , +  1 )  B .  ( 1 3 )  

In a scattering event, a  new k l l  value, 

k i I ’  = ( 2 n - l ~ )  R ,  

was selected,  where  (here, and throughout) R is a  pseu- 
dorandom number  with constant probability density in 
(0, 1 ) ; and  one of the  three scattering  modes in ( l o ) ,  
with probabilities A / T ,  N,B/T,  and ( N o  + 1)Blrfors = 0, 
+ 1 ,  and - 1 ,  respectively,  was then  chosen in the usual 
way with  a  new R .  If the resulting new E,  value 

E,’ = E,  + shoo + E ,  - E,’ (14) 

was  positive, the  selected physical  scattering process oc- 
curred;  otherwise,  there was  a “self scattering.” The  ac- 
celeration path,  generated by a new R ,  was an  increase 
in k , , ,  equal  to  (eK/hT)ln( l / R ) ,  with E ,  unchanged.  Af- 
ter  each trial the  stored value of ( a l l )  was  replaced  by 
its value mod (27r). 

An unusual feature of the programming was  the  use of 
the population of initial states in  scatterings (final states 
in accelerations)  as  the  ensemble  that was  averaged over, 
to  obtain  the  expectations given by  integrals overf [ 7 ] .  
That  is, 

( X )  = X ( k )   f ( k )   d k  = - X(k,”) , (15)  
l L  
L j = ,  
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Table 1 Parameter values and computation results. 

I Input pururneters in the computations 

i 

~- 

I 

0.520 2.8 0.35 1 .o 0.215 0.9 1 1.27 3.0 1.0 27.5 2.5 1 IV 
0.520 1.9 0.36 1.25 0.376 0.9 1 1.27 1.0 1.0 27.5 2.5 1 111 
0.272 2.5 0.38 2.8 0.376 0.455 0.636 1.0 1.0 55 5.0 1 11 
0.107 5.8 0.3 0.357 0.2 0.25 1.0 1.0 

where X is any function of electron  state,  the  subscript b 
refers  to  the  state immediately  preceding  a  scattering 
(either  “self“  or physical), the index j signifies the  jth 
trial,  and L is the  number of trials in the  Monte  Carlo 
“history.” 

Natural reduced  variables in the calculations are 

k = a k l l ,  (16) 

E l , 2  = E1,2/E0,  E = E / E ,  (17) 

with the  parameters kTIE,,  hw,/E,. A set of such vari- 
ables,  which  has been used both in the  computer program 
and in  presenting the results here, is obtained  by  intro- 
ducing an arbitrary  constant, p ,  with the dimensions of a 
frequency.  Then 

2 = G ( e a / @ )  , (18) 

A = Alp,  B = B / p  . ( 1 9 )  

The velocity  in the field direction,  by (3 )  and ( 9 ) ,  is 

u I 1  = u, sin (akll) , ( 2 0 )  

where 

u, = aE,/h . (21 1 
Our  reduced drift  velocity is then 

Li = ulv,. ( 2 2 )  

I tion 4 )  depends  on  the  frequency, u, which we specify 

1; = vlp . (23 1 

I The differential mobility (calculated as described in Sec- 

by  a reduced  frequency 
~ 

It is not useful to specify  drift  velocity versus field, for 
example, in absolute units, because  the  results  scale 
homogeneously in field and frequency (reciprocally in 
time). When the quantities in (21 ) are given, the fields 
could be  normalized  by a value for  the  actual  ohmic mo- 
bility p, relative to uo. 

Results  are  presented  here  for  the  cases specified in 
Table 1. Case I11 corresponds  to  temperature T = 290 K; 
optical  mode quantum ha, = 0.035 eV; and the  specu- 

lative  estimate [ 2 ] ,  for  the  lowest  superband width, 
2E, = 0.055 eV.  The u, value comes  from ( 2 1 )  with [ 2 ]  
an  assumed  superlattice  constant N = 6 X cm. Case 
IV  is  the  same  as I11 except  for a  value of a three times 
as  large (that  is,  three times  as  much elastic  scattering). 
Case I1 is the  same as I11 except  for having twice the 
superband width. Case I represents  the situation of even 
larger bandwidth,  and  somewhat smaller hw,, by  the 
“round  number”  values that  are  assumed  for kTIE,, 
ho,lE,. 

Figures 1 - 5  show results for  the  steady  state.  Reduced 
drift velocity versus  reduced field (Figs. 1 - 4 )  is of the 
expected form. From  the initial ohmic  mobility, pa, the 
maximum  drift  velocity, urnax, and  the field at  the maxi- 
mum, C,,,, we form  the dimensionless  quantity urnax/ 
p, zmax given in Table 1 (actually  calculated from  the 
three reduced values).  These values, between 0.3 and 
0.4,  compare with the value 0.5 given by the formula 

u =  poCI[1 + (61&max)’1 ( 2 4 )  

obtained by Esaki  and  Tsu [ 1 3 .  Absolute fields could be 
established by equating pa Emax to ~ ~ f i ~ t * ~ ~ ~ ,  the values 
being given in Table 1. 

The general dependence of the energy averages, ( E , )  
and ( E 2 ) ,  on field, illustrated in Figs. 1 - 3 ,  is as  expected. 
The zero-field limit of ( E , )  in  general exceeds bkT, as it 
should: The energy  function ( 9 )  gives, for a Boltzmann 
thermal distribution, 

(E , ) ,=  1 - f l ( E , l k T ) I I , ( E , l k T ) 9   ( 2 5  1 
where  the f,(x) are Modified Bessel Functions [8]. This 
expression  goes  from kT/2E,  in the limit T + 0 to  one in 
the limit T + m. I t  is displayed in Fig. 6, and  the appli- 
cable  values are given  in Table 1. The high-field limit of 
( E , )  is one, in accordance with (6) .  Figure 5 shows,  for 
Case 111, the distribution  function of k , ,  at  two interme- 
diate fields; the progressive  flattening of the distribution, 
towards  the ultimate  uniformity in k l l  at large fields, is 
apparent. 

The  averages ( E , )  start  at  the  thermal value kT for 
zero field and increase to limiting high-field values, which 41 
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Figure 1 Static  characteristics  for  Case I: Drift  velocity I I  and 
energy  averages ( E ] ) ,  (E, )  versus field i:: all in reduced  units. 

Figure 3 Static  characteristics  for  Case 111: Drift  velocity u 
(left  scale)  and  energy  averages ( E l ) ,  ( E , )  (right  scale)  versus 
field 6 ;  all in reduced  units. 

are given in Table 1 as ( E 2 ) , .  The  evident  trend is a de- 
creasing ( E , ) m ,  and  hence a more strongly  decreasing 
( E 2 ) m ,  with decreasing E ,  at fixed temperature and  optical 
mode frequency.  (On  the  other hand,  increasing the pro- 
portion of elastic  to inelastic  scattering  resulted in a  larger 
high-field ( E 2 ) . )  This indicates that increasing strength 
of the  superlattice potential (greater height or width of 
the  barrier [ l ] )  goes with more effective exclusion of 
the hot carriers  from  the  superlattice  bands  above  the 
lowest. The distribution  function for E, was  found  to be 
Maxwellian (but with  a temperature  greater  than T )  in 
all of the many cases examined. This  characteristic was 
not  investigated  analytically. For  Case 111, the  bottom 
of the  second  superband  has been  calculated [2]  to be 

42 2.9 E ,  above  the bottom of the lowest superband.  The 
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Figure 2 Static  characteristics  for  Case I I :  Drift  velocity u and 
energy  averages ( E , ) ,  (E,)  versus field C; all in reduced  units. 

Figure 4 Drift  velocity  versus field for  Case IV (full curve), 
compared with Case 111 (dashed  curve) ; all in reduced  units. 
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proportion of carriers with energies greater than  this,  ac- 
cording to  the calculations presented here, would be 
exp(-2.9/1.2) = 0.089 at Amax; and  exp(-2.9/1.9) = 

0.22 at  the high-field limit. 
It would be of interest, in the light of the foregoing, to 

repeat  the calculations of this  section  and the following 
one with addition of the next  higher superband  to  the 
model. One would expect  the  results  to  be  sensitive to 
the energy parameters  and relative scattering  rates, how- 
ever; and there evidently is not,  at  present,  an  adequate 
basis for assigning values to  these. Tunneling between 
superbands, possibly a source of appreciable  additional 
current, is of course  outside  the  scope of the quasi-classi- 
cal  formulation on which the  present calculations are 
based. 
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4. Differential mobilities 
The quantities of interest next after  the  static drift ve- 
locity u, versus field &, are  the differential mobilities that 
give the  response  to a small superposed harmonically 
varying field; that  is,  the coefficients p l  ( u )  and p 2 ( u ) ,  
which give the additional drift velocity 

Su = (p,  sin 2rrut + p2 cos 2rrvt) cV 
= u, sin 27rut + u2 cos 2rrut ( 2 6 )  

due  to  the additional field 

6 6 =  sin 2rrut. ( 2 7 )  

The  basic idea, for obtaining these coefficients by a re- 
finement of the usual Monte  Carlo  procedure, is to  use a 
time-varying field t: ( t ) ,  by addition of ( 2 7 )  to  the  static 
term, in calculating the  “path”  steps in the  Monte  Carlo 
history;  and  to  extract from the  latter  the  corresponding 
Fourier  components of the  electron velocity over time. 
With a constant  total scattering rate (including “self 
scattering”)  the scattering events  are not correlated with 
the  phase in ( 2 7 ) .  The  intervals  between  scatterings  are 
still given by 
t t i + l l  - = (l/r) I n ( l / R ) ,  ( 2 8 )  

and  the  path  increments of wavevector  by integration of 

dk l /d t  = (e l f i )  G ( t )  . ( 2 9 )  

In  the  present  case,  the integral of ( 2 9 )  includes a term 

( e / h )  ( ~ , / 2 r r u )  (cos 27rut” - cos 27”t0’+’’) . 
The coefficients in ( 2 6 )  are equal to  the time averages 

of 2 u l I  sin (2rrut) and 2 ul l  cos (27rut) over  the  Monte 
Carlo history. Given  the functional dependence v(k) ,  
the time  integrals over  paths, which are summed to give 
an  average, may be  expressed in terms of the k values at 
the path ends  (the initial and final states of the  scatter- 
ings). Alternatively, however,  one may, in the  present 
case  also, replace the explicit  time averages by averages 
over final path states  as in ( 15).  Lebwohl [ 9 ]  has demon- 
strated  the equivalence of the  two  procedures  and  has 
verified it numerically for  the  case of several valleys  with 
“parabolic”  energy  functions. Even  for  the  latter  case, 
and  much  more so for  the  present  one with the energy 
function ( 9 ) ,  the  procedure corresponding to (15) is 
simpler. We  take 

, 
i 

I 

where 8 = 2rrut = 2 d f .  

An  important  feature of the  results  that  were  obtained, 
and  are displayed in the corresponding Figures, is the 

0 I 
-P 0 IT 

I ak II 

Figure 5 Distribution function of d l ,  for Case 111, at  the re- 
duced field values labelling the  curves. 

Figure 6 Thermal  average value of E ,  (right scale)  and of 
( E ,  - 4kT) (left  scale),  both in units of E,, versus T in units 
of E,/k. 

0.1 

0.01 

0.001 I I I I I I I l l l l  I I I I I I I I 1110 .01  
0.1 1 .o 10 

k T / E ,  

“Bloch resonance.” In a static field , an  unscattered 
electron  crosses  the Brillouin super-zone in a time 
(2rr/a) (fi le a). One  therefore  expects an enhanced re- 
sponse to the  superposed field ( 2 7 )  when  the  frequency 
is near  the reciprocal of this transit  time;  that  is,  when  the 
reduced frequency is near 43 
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Figure 7 Differential mobilities versus frequency, in reduced 
units, for Case I at a reduced field of 5.0. 

Figure 8 Differential mobilities versus frequency, in reduced 
units, for Case I1 at a reduced field of 5.0. 
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This “Bloch frequency” is indicated by an  arrow  on  each 
of Figs. 7 - 10. 

The  frequency range of this enhanced  response might 
be  expected  to  approximate  the physical scattering  rate. 
The  latter is not a unique  quantity in the  present  case; 
but it does  have a maximum value,  in the  band,  equal  to 
the  total scattering rate r given  by ( 1 3  1. The reciprocal 
of r in reduced units, 

i m i n  = p l r  , (32) 

is given for  each  Case in Table 1. The corresponding 
“WT” is equal  to emin d for  the  particular field. 

Figures 7- 10 show differential mobilities versus fre- 
quency, in reduced  units. In  each  case,  the  curve  that 
starts  at  the origin (0, 0 )  is for p2. Figure 7 is for  Case I ,  
with = 5.0; the minimum “WT” value that applies is 1.8. 
Figures 8 and 9 are  for .Case 11. The reduced field and 
minimum “WT” values  are, respectively, 5.0 and 1.9 for 
Fig. 8; 0.5 and 0.19 for Fig. 9. Figure 10 is for  Case 111, 
with = 2.5 and minimum “WT” equal  to 0.94. A  con- 
vincing resonance  structure  appears,  at  about  the right 
place, in each  case.  From Figs. 8 and 9 it is evident  that 
the position of this structure shifts with field as it should 
according to ( 3 1 ) .  

Although the  zero-frequency value of pL1 is positive or 
negative  according to  the sign of duldc at  the  static field 
value, the  resonance maximum of p, is positive in all 
these cases. Thus  the negative-differential-mobility prop- 
erty  shown by the  static u (  6) is actually obliterated, not 
enhanced, by resonance conditions. I t  is noteworthy  that 
dp,ldv is positive, for  either sign of p,, at  zero  frequency; 
this is contrary  to  what  was  found  for  GaAs,  as a trans- 
ferred-electron  systeh,  by  Rees [ lo]. 

The cy value  used ip obtaining these  data  was in each 
case 0.2 times the static-field value.  A test of the linearity 
of the  response was made  for  the  case of Fig. 10, at û  = 
0.4 (in the  resonance  region), by plotting u1 and u2 versus 
Cv. For I(, the  deviations from  proportionality occurred 
well above  the value 1:” = 0.5 that had  been used;  and  for 
u, significantly above  it;  and  the p, and p, that  had been 
derived  were  both good values on the proportionality 
lines. It  was found that  the  static  averages (“zero-fre- 
quency  components”) of ull, E ,  and E,, especially the 
first of these, were similarly sensitive to  the  added sinus- 
oidal field amplitude E ” ,  so that  deviations  from  their val- 
ues with the  static field alone were good indicators of 
nonlinearity in 6u. A check of the values for  the  computer 
runs from which Figs. 7 - 10 were obtained showed  some 
deviations of a percent  or two, but not  more serious  ones. 
Evidently there  were p; and p, data points from some- 
what beyond  the perceptible range of linearity; but I do 
not believe that  the  results  presented  are significantly 
inaccurate  from this source. 
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A consequence of (1 ) is that  the high-frequency limit 
of p2 is inversely  proportional to  the  frequency: 

27r lim (-p,v) = C (33)  
V’rn 

with 

C = e (  l /ml,) = e (  ( I / T Z ~ ) ~ ’ E / ~ ~ ~ ~ ~ )  . (34 )  

Then,  from  (9)  and (34 ) ,  we have (in  reduced units,  for 
convenience) 

e =  1 - ( E , ) .  (35 )  

A necessary analytical property, in relation to ( 3 3 ) ,  
is [ I11 

A rather careful  check of the numerical  agreement of 
these formulas  was  made  for the  case of Fig. 9, with the 
following results: 

27r lim (-&f) = 0.53 , 
L-*“ 

1 - (El) = 0.52 ,  
rr 

4 J 8, df = 0.49. 
0 

The integral was actually evaluated  for  an  upper limit 
f = 2.0,  where p, has evidently dropped  to zero. The sub- 
stantial  “exhaustion of the  sum rule” within this  fre- 
quency range supports  the conclusion that  there  are  no 
resonances  at harmonics of the fundamental  Bloch  fre- 
quency. The relation 

is companion to ( 3 3 ) ,   ( 3 6 ) .  This is also  available for a 
check of results  for differential mobility versus  frequency. 

To obtain  this quantity of differential-mobility results 
required  quite  a  lot of computer time-  though  without 
any  special effort at efficient estimators.  The  requirement 
seems  to be  essentially a matter of “signal-to-noise” for 
( 3 0 ) ;  this is discussed  in the  Appendix. 

5. Discussion 
What  has been done in this paper is to  adopt a reasonable 
and  consistent model of the  semiconductor superlattice, 
using a  single-particle  space-homogeneous  quasi-classi- 
cal treatment;  show  for this model that  the  static  and 
linear differential transport  properties  can be  calculated 
with precision; and  obtain enough  numerical results  to 
give  what seems  to be  a  quite good idea of those proper- 
ties. More of such  data  could, of course,  be obtained as 
desired.  What might be more  useful,  and  obviously is 
possible, is to investigate in detail the beyond-linear dif- 
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Figure 9 Differential mobilities versus frequency, in reduced 
units, for Case I1 at a reduced field of 0.5.  The frequency scale 
changes at 0.2. 

Figure 10 Differential mobilities versus frequency, in reduced 
units, for Case I11 at a reduced field of  2.5.  The frequency scale 
changes at 1.0. 
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ferential response  for large amplitudes. The practical 
interest,  for  these .highly non-parabolic electron band sys- 
tems, is obvious. There should also be a more fundamen- 
tal interest in verifying theorems  such  as  the generaliza- 
tion of Eqs.  (34)  and (36) ;  and perhaps  the generaliza- 
tion of the Kramers-Kronig  relations [ 121. 

It  seems plausible that,  just  as with Gunn  domains,  an 
understanding of observed  properties will require a many- 
particle treatment with space and  time dependence, in- 
corporating space-charge and  dynamical  instability 
phenomena. This  development could,  however,  be based 
on  the  same physical model as  for  the  present  paper.  The 
physics of superlattice  materials is, of course, a broader 
subject than  this model comprises. 

Appendix. Fluctuations of the  differential mobility 
estimator 
The  characteristic fluctuations of the  estimator  (30) 
may be analyzed,  after replacing it by the equivalent  time 
average, by the identity that is the basis of the Weiner- 
Khinchine  theorem: If 

z(T, v )  = 1” X ( t )  exp(i27rvt) dt ( A I )  

and similarly for Y ,  then 

+T 

T ( T ,  v ) E ( T ,  -v) = 

If, now, X ( t )  and Y ( t )  are fluctuating  quantities with (for 
either or  both)  average value  equal to  zero, and if T is 
large compared  to their  correlation  time, the  second in- 
tegral in (A2) may be  replaced by T times the correla- 
tion at time  displacement s. That  is, in the usual notation, 
for large T 

X ( T ,   v ) Y ( T ,  -v) 

= I:, exp(i2rvs)X(t + s ) Y ( t )  d s .  (A3 1 
Thus,  for large T 

= J-  ds cos(27rv.s) [ u ( t )  - L I ] U ( I  + S )  (A4 1 

(where  either or both factors in the correlation average 
on the right could  be u - u rather  than u ) .  The right-hand 
side of (A4) is the diffusivity at  frequency v. The left- 
hand  side may be written  as T ( A u ) ’ ,  where AU is the fluc- 
tuation at  frequency v which occurs in the sample  “his- 
tory” of duration T ;  and the right-hand  side may be writ- 
ten as ( u’)T,, where T ,  is the effective correlation  time at 
frequency v. Replacing T by L/r, where L is the number 
of trials in the  Monte  Carlo  run, we have 

0 

In the  present  case, it follows from (8) and (20) that 
( u ’ )  is less than u t  (8,)  (2 - ( E , ) )  and hence is less  than 
uo2. On  the  other hand Su, the amplitude to be measured, 
is (in the work presented  here) of order u/10; and 11 is 
characteristically of order uJ10. So we may write 

Where fio, is not much  smaller than E,, especially, we 
don’t expect r T c  to be large. Without  investigating further, 
we conclude  that probably Au/Su does not much exceed 
loo/*. In practice, in the work reported  here, this con- 
clusion turns  out  to be somewhat  on  the pessimistic side. 
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