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Optimum Storage Allocation for a File in Steady State 

Abstract: A file of fixed-length records in  auxiliary storage using a key-to-address transformation to assign records to addresses is con- 
sidered. The file is assumed to be in steady state, that is that  the rates of additions to and of deletions from the file  are equal. 

The loading factors that minimize file maintenance costs in  terms of storage space and  additional accesses are computed for different 
bucket sizes and different  operational conditions. 

Introduction 
This  paper  describes a study of auxiliary storage alloca- 
tion for a key-to-address  transformation file organization 
[ 1 - 31. In this  organization, there  is a primary storage 
area divided into  buckets.  Each  bucket  can contain s 
records of the file. The transformation is applied to  the 
key of a record to be loaded  and it  produces  the  address 
of the  bucket  into which that  record will be  stored. If 
more records  are assigned to a bucket  than it can  hold, 
the  excess  records are stored in a separate overflow  area. 
The overflow records belonging to a particular bucket 
are organized in a chain  with address pointers. 

To retrieve a record with a given key, a single access 
to auxiliary storage is sufficient if that record is stored 
in the primary storage  area. If it is in the overflow area, 
one or more additional accesses - following the pointers 
from  bucket  to  record  and  from  record  to  record-are 
required. The  number of accesses  depends  on  the posi- 
tion of the record  in the chain. 

The  average length of the  chains  and,  therefore,  the 
average number of additional accesses  depends  on  the 
bucket size and  the  storage capacity that is provided in 
the primary area relative to  the  number of records to be 
stored. 

Studies [3 -51 have  been  made of the optimal storage 
allocation for a file that  does  not  change  after initial load- 
ing. Lum,  et al. [3], made performance  studies using 
actual files and  different key-to-address transformations. 
As performance  indicators, the  authors  use  the average 
number of accesses  per record and  the number of over- 
flow records.  Under certain assumptions, formulae  can 

be derived  for  these quantities [4]. Using these formulae 
it is possible to  compute,  for  each  bucket  size,  the load 
factors  (that  is,  the  ratio  between  the  number of records 
to  be loaded and  the capacity of primary storage)  that 
makes file-handling costs minimal [ 5 ] .  These  costs con- 
sist of storage  cost  for primary  and overflow area, plus 
the  cost  for additional accesses. 

In  the  study  reported in this paper, a different  situation 
is analyzed.  A file is considered  to which records  are 
added and from which records  are deleted. 

Olsen [6] points out  the difference between this  situa- 
tion and  the initial loading  problem. He  considers a 
steady-state situation in which the  number of additions 
and deletions per time  period are  equal,  and  he  derives 
a formula  for  the  average overflow. In this paper, a 
method is developed  to  compute  also  the  average num- 
ber of additional accesses. With these  results,  the optimal 
loading for  the  steady-state situation can  be  computed in 
a similar fashion to  that  for  the initial loading model [5]. 

Analytical approach 
The file contains II records. The primary storage  area 
consists of b buckets,  each of size s. The  average loading 
-number of records assigned to a bucket-is  thus: 
rn = nlb. The  load  factor is 

It  is  assumed  that  the overflow area  has unlimited 
capacity. AI1 records  have  equal probability to be de- 27 

STEADY  STATE  FILE  STORAGE 



I 
I O.. . .  

0 . 0 .  

S 

(a )  (b)  

Figure 1 Buckets entering  and leaving state (x, y )  
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leted from  the file. When a record is added,  we  assume 
that all buckets  have equal  probability of being selected 
by the key-to-address  transformation. 

At  agiven moment, a bucket will contain x 5 s records, 
while y records (0 5 y < m) assigned to  that  bucket 
reside in overflow  storage. The  bucket is said to  be in 
the  state (x, y ) .  It  is possible that x < s, while y > 0 
because  records  deleted  from a bucket  are not  replen- 
ished from  the ove'rflow chain.  When a record is added,  it 
goes  into  the assigned bucket when x < s. It is attached 
to  the overflow  chain when x = s. 

The first objective is to find the  frequency function 
u ( x ,  y ;  m )  or  for simplicity u(x, y )  for  the variables x 
and y for  each  bucket in the  steady-state situation for a 
given average loading m. This  steady-state condition will 
not  be  reached until the  rates of additions and deletions 
are equal. A further condition is that  the  average  number 
of buckets in the file with state (x, y )  remains  the  same. 

In  the  next  section,  these conditions are  expressed 
mathematically giving a set of 'equations  from which 
u(x ,  y ;  m )  can be  computed  for  every e. 

If u ( x ,  y )  is available,  then it is possible to  compute: 

1 .  The  average overflow per  bucket, 
m -  

i= y 2 u ( ~ ,  y ) ,  and 
y=o x=o 

2. The  average  number of additional accesses, 
1 m  

sI=L i 2 u(x ,  y )  . 
i - 1  x=o y = i  

The first formula  requires  no  further explanation. The 
second  one can be  understood if we observe  that  just 
one record  requiring  exactly i additional accesses is found 
in each chain of length i or  greater.  Thus,  the average 
number of records  that  require i additional accesses is 

m 

Therefore,  the  average  number of additional accesses 
per  record  taken  over  the whole file i.s 

With m = n/b this gives the  formula  for d. This is also 
the  average number of accesses required to  retrieve a 
record  under  the condition that all records  are equally 
in  demand. 

In  the  same way as in [5] a minimum can now be 
sought for  the  cost function for file operation: 

~ ( b ,  s; a )  = tc, + anc, + andc, 

where 

7 = b (s + i) = total  average storage used for  the file, 
e, = cost of storing one record  during the unit 

a = file activity (the  fraction of records ac- 
cessed during the unit of time), 

c, = cost of an  access  to  the primary area, and 
c,  = cost of an additional  access. 

of time, 

We  assume  that c, is constant.  The value of the vari- 
able  part of C will be compared with ne,, the nominal 
cost  for storing n records. 

The ratio between variable and nominal cost is the 
relative cost function 

where 

y = - .  ' a  

cs 

The  factor y is dependent  on  the application and  the 
environment in which the application runs [ 5 ] .  

Minima are  computed  for a range of values of y and 
bucket size s. The  results  are tabulated at  the end of the 
paper. 

Difference equations for u(x, y) 
Difference equations  for u ( x ,  y )  can  be found by con- 
sidering the  steady-state condition. The  rate of buckets 
leaving the  state (x, y )  must be equal to  the  rate of buck- 
ets entering the  state (x, y )  . Consider u (x, y )  on  the do- 
main 0 5 x 5 s, 0 f y < 00. The transitions that  cause 
a bucket  to  leave  or  to  enter  the  state (x, y )  are shown 
in Fig. 1 (a) and 1 (b),  respectively. As a matter of fact, 
different  situations exist  for  interior  and  boundary points 
of the  domain. For  instance,  the  state (x. y )  of a bucket 
with 0 < x < s, y > 0 will change  to  state 

(X - 1 ,  y )  when  a record is deleted from  that  bucket, 
(X + 1 ,  y )  when a record is added to that  bucket,  and 
(x, y - 1 )  when a record  from  the overflow  chain is 

deleted. 
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Transitions  to (x, y + 1 )  cannot  occur  because addi- 
tions to  the overflow chain are not  made while there is 
room in the bucket. 

The  same  state can be entered  from 

(x - 1 ,  y )  when  a record is added  to a bucket, 
(x + 1, y )  when  a record is deleted from a bucket, and 
(x, y + 1 )  when an overflow record is deleted. 

The  rate of deletion of records  out of buckets in a cer- 
tain state  is proportional to  the  fraction of records in 
those  buckets.  The  rate of addition of records  to  buckets 
in a certain state is proportional to  the fraction of buckets 
in that  state. 

Assuming  a  negative  exponential  distribution for in- 
terarrival and  interdeparture times,  this  gives the fol- 
lowing equilibrium condition: 

bxu(x, Y )  + byu(x, y )  
n + u ( x ,  Y )  

- - b ( x  + l ) u ( x  + 1 ,  y )  + b ( y  + l )u(x ,  y + 1 )  
n 

+ u(x- 1 ,  y )  . 

The equation can  be explained as follows: bxu(x, y )  is 
the number of records in buckets with state (x, y) and 
byu (x, y )  is  the  number in the overflow chains belonging 
to  those buckets. Therefore,  the first term  on  the left- 
hand  side is the  rate of leaving the  state  (x, y )  due  to de- 
letions. The second one is the  rate of leaving the  state 
(x, y )  due  to additions. The right-hand  side  gives, in a 
similar  fashion, the  rate of entering the  state  (x, y )  . 

After rearranging  and using m = n/b, 

(x + y + m)u(x, y )  = (x + l ) u ( x  + 1, y )  

+ ( y +  l ) u ( x , y +  1 )  

+ mu(x - 1 ,  y )  . ( 1 )  

It is easy  to  see  that this  equation is also valid for 0 < x < 
s and y = 0. In  the  same way 

(Y + m)u(O, Y )  = ~ ( 1 ,  Y )  

+ ( y  + l ) u ( O ,  y + 1 )  for y 1 0 ,  ( 2 )  

(s + y  + m ) u ( s ,  Y )  = (Y + l ) u ( s ,  y + 1 )  

+ mu(s  - 1 ,  y )  + mu(s, y - 1 )  
fo ry  > 0 ,  (3 1 

(s + m)u(s,  0)  = u ( s ,  1 )  + mu(s - 1 , O ) .  ( 4 )  

u(x, y) as  stationary  probability distribution of a 
Markov  chain 
The following discrete time Markov chain { X , }  is con- 
sidered. 

X ,  is the  state of a  particular bucket  after  the kth file 
event. A file event is an addition or deletion of a  record. 
The transitions that may occur in the  state  space (0 5 
x 5 s, 0 5 y < m) were shown in Figs. 1 (a) and 1 (b).  
The  process is Markovian  because  it is assumed  that  the 
outcome X ,  is  dependent only on  the  state Xk- , .  

In  an actual steady  state condition of the file, the total 
number of records may fluctuate;  however, changes are 
relatively small for a large n. In considering one  bucket, 
the total is assumed  to be a constant  and,  as a conse- 
quence,  the transition  probabilities are considered to be 
constant. 

To  set up the transition  probability  matrix M ,  the pos- 
sible states  are  ordered with the first coordinate moving 
most rapidly: 

(0, 0) ;  ( 1 , O ) ;  (2 ,O) ;  . . .; (s, 0) ;  (0, 1 ) ;  (1 ,   1)  

. . .; (s, 1); (0, 2 )  . . . . 
Now,  the infinite matrix can  be considered to be com- 

posed of partitions E,,(O 5 p < a, 0 5 q < a) of order 
(s + 1, s + 1 ) .  For  each y only the partitions E,,-,, E,, 
and E,,,, contain nonzero elements. Rows and  columns 
of elements and  submatrices  are numbered  starting with 
zero. The xth (x = 0, 1 , 2 ,  . . ., s)  row of contains 
the probabilities of transition from  (x, y )  to (i, y - 1 ). 
Only  when i = x is this  probability nonzero and E,,-, 
(x, x)  = y / n ,  that is, the probability of deleting  a record 
from  the overflow chain. 

The xth (x= 0, 1 ,  . . ., s )  row of E,, contains  the prob- 
abilities of transition from  (x, y )  to (i, y ) .  These are non- 
z e r o w h e n i = x - l ; i = x o r i = x f l f o r i = 1 , 2 ; . . ,  
s - 1. In row 0 and row s, only the  last  two  or  the first 
two of these  three elements occur.  The probabilities are 

E,, (x, x - 1 ) = - for deleting  a primary record, X 
n 

E,, (X, X )  = 1 x + y I for staying in state n b  

(x, y 1, and 

1 
6 

E,, (x, x + 1 )  = - for adding a record to  the  bucket. 

Finally, E,,,, will contain the probabilities for going 
from (x, y )  to  (x, y + 1 ) .  Only if x = s is the matrix ele- 
ment nonzero and E,,,, (s, s )  = 1/b, the probability for 
adding a record  to  the overflow  chain of a full bucket. 

The  structure of the matrix is indicated in Fig. 2 for 
s = 4. The  crosses indicate  places where a nonzero ele- 
ment  occurs. 

If the  stationary probability distribution of the  Markov 
c h a i n ~ = u ( O , O ) ; u ( l , O ) ; u ( 2 , 0 ) ; .  . . ; u ( s , O ) ; u ( l , l ) ;  
. . . exists, then: 

u M = u .  + +  
29 
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Figure 2 Matrix with s = 4. 

1 
b 

u ( x -  1 ,  y )  -+  u ( x ,  y )  

+ u ( x  + 1 ,  y )  - + u ( x ,  y + 1 )  - u ( x ,  y )  . x +  1 
n 

~- + 

n 

After multiplying by n and  rearranging, Eq. (1) is 

In similar fashion the  Eqs. (2),  (3 ) ,  and (4) can  be 
found again. 

derived  from the matrix  formulation. 

Some  properties of u(x, y) 
From  the difference equation  for u ( x ,  y ) ,  it is possible 
to  derive  several properties. The following notation for 
marginal distributions is used: 

m S 

f ( x )  = 2 u ( x ,  Y )  and g ( y )  = u ( x ,  Y )  . 

Lemma 1 : The marginal distributionf(x)  has a truncated 
Poisson distribution; i.e., 

y=v x=v 

Proof: Summing Eq. (1)  over all values of y for a fixed 
x gives: 

= (x + 1 )  f ( x  + 1 )  + 3 ( y  + 1 )  u ( x ,  y + 1 )  
y=o 

30 + m f ( x -  1 ) .  
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Since 
x r 

C y . ( . , y ) = C  ( y + 1 ) u ( x , y f 1 ) 3  
y=v y=0 

the following identity  holds for 0 < x < s: 

x f ( x )  + m f ( x )  = (x + 1)  f ( x  + 1 )  + m f ( x -  1 )  

In  the  same way from Eq. (2)  for x = 0: 

m f ( 0 )  =f( 1)  , 

and  from Eqs. ( 3 )  and (4) for x = s: 

m f ( s  - 1 )  = s f ( s )  . 

Substituting Eq.  (6)  into  Eq. ( 5 )  for x = 1 gives 

m f (  1 )  = 2 . f ( 2 )  . 
By induction, it can  then  be  proved that  for  every 
0 5 x < s :  

m f ( x )  = (x + l ) f ( x  + 1 ) .  ( 8 )  

Clearly, f (x) = ( m x / x ! ) k  is a  solution of Eq. ( 8 )  for 
every k .  With the condition 'f:=o f ( x )  = 1 ,  this  gives 

X 
-m m e -  

X! - - 
S c x' 

x=o 

These  are  the  frequencies  for a truncated Poisson  distri- 
bution with parameter m and range 0 5 x 5 s, Q.E.D. 

This result  was  obtained by Olsen [6] by directly for- 
mulating the difference equation  for f ( x ) .  

Introducing  the notation P ( r )  = (e-"m')/r! for  the 
Poisson  distribution  and Q ( s )  = 'f:=s P ( r ) ,  then 

The functions P ( r )  and Q ( s )  are available in tabulated 
form (for example in [7]). 

Lemma 2:  The total  number of records assigned to a 
bucket  has a Poisson  distribution. 

Proof: Let cz+y=r u ( x ,  y )  = A ( r ) .  It will be  proved  that: 

A (v) = P ( r )  for r = 0, 1 ,  2, . * . . 

For 0 < x + y = r < s the summation of Eq. ( 1 ) gives 

( y  + m )  u(x ,  Y )  = (x + 1 )  u ( x  + 1 ,  y )  
x+y=r  x+y=r 

+ 2 ( y + 1 )  u ( x , y +  1 )  f m  u ( x -  1 , y )  or 
x+,=r x+y=r 

x>o 



( r  + m )  A ( r )  = ( r  + 1 )  u ( 0 ,  r + 1) 
r 

+ ( r + l )  u ( x , r + l - x X ) + ( r + 1 ) u ( r + 1 , 0 )  

+ m A ( r -  1 1 ,  

X=]  

( r + r n ) A ( r ) = ( r + t ) A ( r + 1 ) + m A ( r - l )  

For r = 0 we have mA ( 0 )  = A  ( 1). By using this in the 
equality for r = 1, it follows that: 

mA(1) = 2 A ( 2 )  

and by induction, we get 

m A ( r ) = ( r + l ) A ( r + l ) .  

For  each r considered, this  identity is also satisfied by 
P ( r )  = e-mmr/r!. 

For x + y 1 s the summation over x + y = r with 0 5 
x 5 s gives: 

( r + m )  2 u ( x , y )  = X (x+ 1) u ( x +  1, Y )  
x + y = r   x + y = r  

+ ( y + l )  u ( x , y + l ) + m  u ( x -  1 , ~ )  

+ rnu(s, r -  s - 1 ) .  

x+y=r x+y=r 

If y is eliminated from the  right-hand  side  and the sub- 
stitution of (x + 1) by x is made in the first sum and of 
(x - 1) by x in the third sum, it follows that: 

( r  + m )  x u ( x ,  y )  = ( r  + 1) u ( x ,  r -  x + 1) 
S 

x + y = r   x = o  

8 + m x u ( x ,  r - x - 1) or again: 
x=o 

( r + m ) A ( r ) = ( r + 1 ) A ( r + l ) f m A ( r - l ) ,  

which, as before, is also satisfied by P ( r )  = mr/r! 
This  concludes  the proof. 

This result is easily understood if we make the follow- 
ing observation. At any  time, the n records in the file are 
related to  the b buckets by the key-to-address  transforma- 
tion. It is therefore  assumed  that  each  bucket  has  an equal 
probability to be  selected for addition of a  record. 

Thus, r = x  + y has  the binominal probability  distri- 
bution with p = 1/b and n is very  large. The limit for 
n -+ m with m = n/b remains constant  and is the  Poisson 
distribution. 

Lemma 3: mu(s,  y - 1) = y g ( y )  for y > 0. 

Proox Summing Eqs. (I), ( 2 ) ,  and (3) over 0 5 x 5  s 
gives 

2 ( x + y + m ) u ( x , y ) = C  (x+l)u(x+1,y) 
S s-I 

x=o  x=o 

+ mu(s ,  y -  1) or 

y g ( y )  + mu(s ,  y )  = (y + 1) g(y + 1) + mu(s ,  y - 1 )  . 
For y = 0: mu(s,  0) = g(  1). 

Using  this with the previous  result for y = 1 gives: 

rnu(s, 1 )  = 2 g ( 2 )  

and then by induction for  every y > 0, 

mu(s ,  y - 1 )  = yg(y) . Q.E.D. 

Computation of i and a 
With the  results obtained in the previous section,  the 
computation of T and a can  be simplified. 

T =  x y u ( x ,  y )  = y g ( y )  = m u ( s ,  Y - 1) 
0 0 s  m z 

,=o y=1 y = l  y=l  

= m f ( s )  = 
m P ( s )  

1 - Q ( s  + 1) (9  

Hence,  the computation of the  average overflow can be 
done without explicitly knowing u ( x ,  y):  

- 1 "  S m  1 "  a 

m i=,  2-0 y=i m i = l  y=i 
i x u ( x , y )  =-E i x g ( y ) .  

Interchanging the  order of summation  gives: 

a = -  

Here, again, using Lemma 3 results in 

- 1 "  a = ?  ( y +  1 )  u ( s , y -  1 ) .  
y=1 

Therefore, only the distribution on  the right boundary of 
the  state  space is required to  compute a. 

Computation of u(x, y) 
The  stationary distribution is a  solution of the infinite set 
of equations 

u M = u  

with the condition that  the sum of the  elements of% one. 
It is clear that lim,,+= u (x, y) = 0 uniform in x, because 

for each E we can find a y' such  that 

- + - +  

u ( x ' ,  y') 5 x u ( s ,  y) = P(x '  + Y ' )  5 P ( Y ' )  < E .  
x+,=x'+y'  

Therefore,  to find a  numerical  solution, the infinite 
state  space is replaced by a finite state space. A transi- 
tion from a state (x, y)  to (x, y + 1 ) only occurs  for x = s. 
In  the finite state  space, this  transition  from the largest 
y = y' is replaced by a  transition  recurring to  the  same 
state.  In  the matrix M ,  this  means that in the partition 
E,,,, the element Ey,, ,  (s, s) is increased by l/b and  that 31 
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the finite square matrix M,, of order  (1 + y ' )  (s + 1) is 
considered. 

For numerical computation, it is more  appropriate  to 
reorder  rows and  columns in such a  way that  the matrix 
corresponds with the  order 
+ u = {u (O,  0);  u ( 0 ,  1) ;  u(0 ,  2 )  . ' . u(0 ,  y ' ) ;  u(1,O); 

u(1, 1)  . . .; u ( s ,  y ' ) } .  

Now, partitions G,,(O I p i  s, 0 5 q I s) of order 
(y' + 1 ) are considered. For a certain x with 0 < x < s, 
only the partitions G,.-l, Gx, and G,,+l contain nonzero 
elements. GXx-, contains  the probability that a primary 
record is deleted. Thus GXx- ,  = ( x / n )  I ,  where I stands 
for  the unit  matrix. G,, contains in the main diagonal the 
probability of no change  1 - ( l / b )  - (x + y ) / n  and in 
the  lower diagonal the probability that y is reduced by 1. 

Thus, G,, = [ 1 - ( l / h )  - ( x / n ) ] Z  + ( l / n )  ( "s  + S L )  
where S stands  for a diagonal  matrix  with  diagonal: 
(0, 1, 2 ,  . . ., y ' }  and L is a lower diagonal  matrix. 

Finally, Gz,+l = ( l / b )  I because it contains the prob- 
abilities that a  record is added  to  the  bucket. 

As a matter of fact, Gxx- l  does  not  exist  for x = 0. 
Further,  for x = s the probabilities of going from (s, y )  
to (s, y + 1 )  are  added  as  an  upper diagonal with ele- 
ments l/b.  And, finally, G s s ( y ' ,  y ' )  is l /b larger  than 
Gz,(y', y ' )  for x < s corresponding with the transition 
of state (s, y )  into itself. Or  

where U is an  upper diagonal  matrix  and  R has all zero 
elements  except  for R ( y ' ,  y' ) = 1. 

Now, finally, we will solve: 

-+ -+ u M,, = u or 
-+ 
u ( M , ,  - I )  = 0 .  

After multiplication by b ,  we partition the matrix of the 
system  into partitions H,,(O I p 5 s, 0 5 q 5 s). It  fol- 
lows that: 

X 
H,,-l = ; I , 

Hzx=-(1  +;)Z+;P 1 w i t h P = S L - S ,  

Hz,,, = I ' 

For x=s: H,,=- [ l  + ( s / r n ) ] Z +  ( l / r n ) Q + R  with 
Q = P + m u .  The  determinant of the homogeneous 
systemT{HPQ} = 0 is zero  because  the  sums of the  rows 
of M and M,.  are 1  (being Markov  matrices).  The re- 
quired  solution fo r2has  the  property  that  the sum of the 

32 elements is 1. 
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The specific configuration 
- - 
Hoe Hol 0 . . . 0 

HlO Hll HlZ . ' . o  - 
U '  . . .  = O  

. ' . Hs-ZS"2 Hs-1,-1 Hs-1s 

- . . . Hsa-1 Hss - 

can  be used to find a  solution. By successive postmulti- 
plications, the partitions in the  upper diagonal are re- 
duced  to  zero.  The ith transformation  gives 

H:~!) = H~~ - H ~ ~ - ~  ( ~ ~ ~ ; ' k , ) - '  . H ~ - ~ ~  for 

i =  1 , 2 , .  . .,s. 
The  lower diagonal  partitions are  transformed as: 

{ u ( s ,  01, u(s,  11, . . ., u(s,  Y ' ) } .  
After  the  sth  transformation,  the partitioned  matrix con- 

tains  unity  matrices at  the main diagonal except  for Hi:) 
and all zero partitions above  the main diagonal. Thus  the 
determinant is equal  to  det Hi:'. Since  the original de- 
terminant was zero,  det H%' = 0. 

So the  system U'~'H~:' = 0 can be solved and  the value 
of the  elements in u") are fixed by the condition 

x u ( s ,  i) = f ( s )  = 
y' P ( S )  

i=O 1 - Q ( s  + 1) 

If besides i only d is  required,  then  the computation 

If the special forms of Hii-l and Hi-li are  taken into 
ends  here  (see previous section). 

consideration, it follows that 

If the  complete  stationary distribution is required, it is 
observed that: 

So starting  with i = s all partitions o f z c a n  be computed. 
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Table 1 Influence of y‘, 

s = 1  s = I  s = 3  s = 3  s = 5 s = 10 
rn = 1.589 rn = 6.934 rn = 2.069 rn = 6.71 1 rn = 4.058 rn = 12.377 rn = 32.508 

s = 2 0  

y = 0.500 y = 0.010 y = 2.000 y = 0.050 y = 1.000 y =0.100 y = 0.010 
Increase y’ = 2 + u y ‘ = 1 0 + u   y ’ = 3 + u  y’ = 2 + 11 y ’ = 5 + u   y ’ = 1 3 + u   y ’ = 3 3 + u  

__.. 

u Cost Q(y’ + s) Cost Q(y’ + s) Cost Q (y’ + s) Cost Q(y’ + s) Cost Q(y‘ + s) Cost Q(y’ + s) Cost Q(y’ + s) 
0 1.683 0.2138 1.052 0.0939 2.292 0.0192 1.166 0.1414 1.786 0.0089 1.233 0.0044 1.072 0.0006 
1 1.710 0.0773 1.053 0.0504 2.300 0.0054 1.169 0.0793 1.789 0.0031 1.234 0.0022 1.073 0.0003 
2 1.721 0.0231 1.053 0.0253 2.303 0.0013 1.171 0.0414 1.790 0.0010 1.234 0.0010 1.073 0.0002 
3 1.725 0.0058 1.054 0.0119 2.303 0.0003 1.173 0.0201 1.790 0.0003 1.234 0.0005 1.073 0.0001 
4 1.726 0.0013 1.054 0.0053 2.304 0.0001 1.173 0.0092 1.790 0.0001 1.234 0.0002 1.073 0.0001 
5 1.726 0.0002 1.054 0.0021 2.304 0.0000 1.174 0.0039 1.790 0.0000 1.234 0.0001 1.073 0,0000 
6 1.726 0.0000 1.054 0.0009 2.304 0.0000 1.174 0.0016 1.790 0.0000 1.234 0.0000 1.073 0.0000 
7 1.726 0.0000 1.054 0.0003 2.304 0.0000 1.174 0.0006 1.790 0.0000 1.234 0.0000 1.073 0.0000 
8 1.726 0.0000 1.054 0.0001 2.304 0.0000 1.174 0.0002 1.790 0.0000 1.234 0.0000 1.073 0.0000 
9 1.726 0.0000 1.054 0.0000 2.304 0.0000 1.174 0.0001 1.790 0.0000 1.234 0.0000 1.073 0.0000 

Numerical results 
The formulae  developed in this paper allow, for different 
values of s, the numerical  computation of 

1 .  The  frequency distribution u(x ,  y ;  m )  of x records in 
a bucket and y records in its overflow  chain,  and 

2. The values of m that make the relative cost function 
R minimal for different  application factors y. 

Programs were written in APL and FORTRAN. The final 
computations  were made  on  the  System  360 Model 91 
and later  on a  Model 195. The influence of y’ was  inves- 
tigated as follows. A first computation of some of the 
minima was made. Then, with the values of m found,  the 
cost function  was computed a number of times for in- 
creasing  values of y‘. The  results  are listed in Table 1. 
Also, listed are  the values of Q (y’ + s). 

The table  indicates that  the  cost in three decimals re- 
mains the  same  for increasing y’ when Q(y’  + s) 5 
0.000 1 .  In  further  computations, y’ was fixed accordingly 
to  the formula: y’ = 6 + 3k + (4 - k )  [ m ] / 2  - s (where 
[ m ]  is the  entier of m) .  This selection of y’ fulfills the 
condition: Q (y’ + s )  5 0.0001. Also u(x ,  y )  was  com- 
puted for s = 1 ,  2, 3, 5 ,  10, 20,40. For  each s, the values 
of m used  were m = /s with the following values for  the 
loading factor: / = 0.25, 0.50, 0.75,  1.00, 1.25,  1.50, 
1.75, 2.00. In Fig. 3 (a) ,   3 (b) ,   3 (c) ,  some results  for 
s = 1 are given and in Fig. 4(a),   4(b) some for s = 5. 

The  computations were  made  without explicitly using 
the  properties of u (x, y )  derived  previously and,  further, 
the following properties were  used as a check  on  the 
numerical  results: 

1 .  u (x ,  Y )  = P ( r )  9 

r+y=f-  

9 

2. U ( X ,  y )  = P ( x ) / l  - Q ( s  + 1 ) .  
y=o 

Figure 3 u(x ,  y )  for s = 1. :;f( 
0.2 I x = l  

0 

Y 

0 2 4  
-- 

0 2 4  

The agreement is always to five, but in most cases  to six 
decimal  places. 

When m is small relative to s, then the  chance  for  over- 
flow records  becomes negligible. Therefore,  the values of 
u(x ,  0) will approach P ( x )  when m becomes small. The 
numerical results  are  also in agreement with this  conclu- 
sion. With a  loading factor of 0.25 the maximum discrep- 
ancy  for s = 10 is 0.000050. For s = 20 and = 0.25, 
u (x ,  0) and P ( x )  are  equal  to six decimal places. 

The  frequency distributions u ( x ,  y ;  m )  were then  used 
to  compute  average overflow and average number of ad- 
ditional accesses  together with their  standard deviations. 
These  are listed in Tables 2 and 3. For  comparison,  the 
corresponding  quantities for  the initial loading [ 5 ]  are 
also listed. In addition to  the overflow  percentage (T/m) 
100, also the utilization of primary storage is given 
[ (m  - ; ) /SI  100. Furthermore,  the ratio between  the  space 
a  record needs  on  the  average and  its  length is given 
(s + ?)/m. 33 
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Table 2 Average overflow. 

Average 
Number 

Load Per 
Factor Bucket 
." 

Bucket size s = 1 
0.25  0.25 
0.50 0.50 
0.75 0.75 
1 .oo 1 .oo 
1.25 1.25 
1.50 1 S O  
1.75 1.75 
2.00 2.00 

Bucket size s = 5 
0.25 1.25 
0.50 2.50 
0.75 3.75 
1 .oo 5.00 
1.25 6.25 
1.50 7.50 
1.75 8.75 
2.00 10.00 

Bucket size s = 20 
0.25 5.00 
0.50 10.00 
0.75 15.00 
1.00 20.00 
1.25 25.00 
1.50 30.00 
1.75 35.00 
2.00 40.00 

Average 
Per 

Bucket 

0.03 
0.1 1 
0.22 
0.37 
0.54 
0.72 
0.92 
1.14 

0.00 
0.06 
0.32 
0.88 
1.70 
2.72 
3.85 
5.04 

0.00 
0.00 
0.21 
1.78 
5.37 

10.05 
15.00 
20.00 

Overflow  initial  loading 

Stund. 
Dev. 

~ 

0.18 
0.36 
0.54 
0.70 
0.86 
1 .oo 
1.13 
1.26 

0.06 
0.34 
0.84 
1.42 
1.98 
2.43 
2.79 
3.08 

0.01 
0.08 
0.87 
2.37 
4.44 
5.37 
5.90 
6.32 

OverJlow 
Percentage 

11.52 
21.31 
29.65 
36.79 
42.92 
48.21 
52.79 
56.77 

0.18 
2.48 
8.63 

17.55 
27.21 
36.22 
43.98 
50.43 

0.00 
0.03 
1.42 
8.88 

21.48 
33.50 
42.87 
50.00 

Utiliz- 
d o n  

Space 
Per 

Record 

22.12 
39.35 
52.76 
63.21 
71.35 
17.69 
82.62 
86.47 

24.96 
48.76 
68.53 
82.45 
90.98 
95.67 
98.03 
99.14 

25.00 
49.99 
73.94 
91.12 
98.15 
99.75 
99.98 

100.00 

4.12 
2.2 1 
1.63 
I .37 
1.23 
1.15 
1.10 
1.07 

4.00 
2.02 
1.42 
1.18 
1.07 
1.03 
1.01 
1 .oo 

4.00 
2.00 
1.35 
1.09 
1.01 
1 .oo 
1 .oo 
1 .oo 

Average 
Per 

Bucket 

Overflow  steady  state 

Stund 
Dev.  

Overflow 
Percentage 

Utiliz- 
ation 

0.05 
0.17 
0.32 
0.50 
0.69 
0.90 
1.1 1 
1.33 

0.01 
0.17 
0.66 
1.42 
2.36 
3.40 
4.50 
5.64 

0.00 
0.02 
0.68 
3.18 
7.00 

11.40 
16.60 
20.85 

0.23 
0.43 
0.61 
0.76 
0.90 
1.03 
1.14 
1.25 

0.11 
0.5 1 
1.04 
1.53 
1.94 
2.30 
2.60 
2.87 

0.00 
0.19 
1.32 
2.88 
4.05 
4.87 
5.51 
6.03 

20.00 
33.33 
42.86 
50.00 
55.56 
60.00 
63.64 
66.67 

0.73 
6.97 

17.66 
28.49 
37.75 
45.30 
51.41 
56.40 

0.00 
0.19 
4.56 

15.89 
27.99 
38.01 
45.90 
52.13 

20.00 
33.33 
42.86 
50.00 
55.56 
60.00 
63.64 
66.67 

24.82 
46.51 
61.75 
71.51 
77.81 
82.05 
85.03 
87.21 

25.00 
49.91 
71.58 
84.1 1 
90.0 1 
92.99 
94.68 
95.74 

Spuce 
Per 

Record 
" 

4.20 
2.33 
1.76 
1.50 
1.36 
1.27 
1.21 
1.17 

4.0 1 
2.07 
1.51 
1.28 
1.18 
1.12 
1.09 
1.06 

4.00 
2.00 
1.38 
1.16 
1.08 
1.05 
1.03 
1.02 

Figure 4 M ( X ,  y )  for s = 5.  

t 

2 4 6 8 10 12 14 16 
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Table 3 Average additional accesses. Table 4 Minima of the relative cost function. 

Average 
Load nrrmber 

factor  per bucket 

Bucket 
size s = 1 
0.25 0.25 
0.50 0.50 
0.75 0.75 
1.00 1.00 
1.25 1.25 
1.50 1.50 
1.75 1.75 
2.00 2.00 

Bucket 
size s = 5 
0.2s 1.25 
0.50 2.50 
0.75 3.75 
1.00 5.00 
1.25 6.25 
1.50 7.50 
1.75 8.75 
2.00 10.00 

Bucket 
size s = 20 
0.25 5.00 
0.50 10.00 
0.75 15.00 
1.00 20.00 
1.25 25.00 
1.50 30.00 
1.75 35.00 
2.00 40.00 

L 

~- 

0.13 
0.25 
0.38 
0.50 
0.63 
0.75 
0.88 
1 .oo 

0.00 
0.04 
0.15 
0.37 
0.68 
1.07 
1.51 
2.00 

0.00 
0.00 
0.03 
0.3 1 
1.08 
2.33 
3.93 
5.75 

Additionc. 
Initial Loading 

4 verage  Stand. dev. 
- 

0.36 
0.52 
0.65 
0.76 
0.87 
0.97 
1.06 
1.15 

0.05 
0.25 
0.58 
0.97 
1.40 
1.84 
2.28 
2.71 

0.00 
0.03 
0.3 5 
1.24 
2.64 
4.27 
5.99 
7.7 1 

0.21 
0.38 
0.53 
0.67 
0.80 
0.92 
1.04 
1.17 

0.01 
0.09 
0.29 
0.58 
0.94 
1.35 
1.80 
2.28 

0.00 
0.00 
0.10 
0.54 
1.45 
2.75 
4.35 
6. IS 

Tccesses 
Steady  State 

4verage  Stand.  dev. 
- 

0.44 
0.59 
0.70 
0.80 
0.89 
0.98 
1.07 
1.16 

0.10 
0.38 
0.75 
1.15 
1.56 
1.98 
2.40 
2.8 1 

0.00 
0.07 
0.55 
1.58 
2.99 
4.59 
6.26 
7.94 

Finally,  the minima of the relative cost function  were 
computed in the following way. A parabola was fitted 
through three points of the  cost function. The abscissa: 
m,, m,, m3 were  first selected to be m, = 0.9 m,; m3 = 

1 . 1  m2 and: 

m2=0.13-0 .761ny+(1 .05-0 .13y)s .  

The choice for m2 coincides with the approximate  value 
for m that gives minimum cost in the initial loading 
case [ 5 ] .  

The minimum of the  parabola  was  taken  as a new  value 
of m2. The  other  two points  were  the  previous  central 
point and the equally distant point at  the  other side of the 
new mz. So for  each approximation, 7. d and the value of 
[ ( s  + i ) / m ]  + yd were computed for  two new values of 
m, while for  one value, the previous result  was used. The 
process was stopped when Im, - m,l < 0.0005. 

The resulting values of m are given in Table 4 together 
with overflow,  additional accesses  and  the minimum cost. 
Table 5 shows  the optimal m in relation to y and Table 6, 
the  corresponding  values of the minimum costs.  Figure 5 

Load 
Y m factor 

2.000 0.850 0.850 
Bucket size = 1 

1.000 1.175 1.175 
0.500 1.589 1.589 
0.100 3.009 3.009 
0.050 3.899 3.899 
0.010 6.936 6.936 

Bucket size = 2 
2.000 1.446 0.723 
1.000 1.893 0.946 
0.500 2.447 1.224 
0.100 4.301 2.151 
0.050 5.441 2.721 
0.010 9.303 4.651 

Bucket size = 3 
2.000 2.067 0.689 
1.000 2.604 0.868 
0.500 3.262 1.087 
0.100 5.426 1.809 
0.050 6.739 2.246 
0.010 11.195 3.732 

Bucket size = 5 
2.000 3.378 0.676 
1.000 4.058 0.812 
0.500 4.880 0.976 
0.100 7.500 1.500 
0.050 9.054 1.81 1 
0.010 14.326 2.865 

Bucket size = 10 
2.000 6.918 0.692 
1.000 7.863 0.786 
0.500 8.971 0.897 
0.100 12.379 1.238 
0.050 14.361 1.436 
0.010 20.915 2.091 

Bucket size = 20 
2.000 14.575 0.729 
1.000 15.898 0.795 
0.500 17.406 0.870 
0.100 21.854 1.093 
0.050 24.380 1.219 
0.010 32.505 1.625 

2.000 30.904 0.773 
Bucket size = 40 

1.000 32.748 0.819 
0.500 34.821 0.871 
0.100 40.738 1.018 
0.050 43.956 1.099 
0.010 54.051 1.351 

Overflow Additioncrl 

- 
factor 

0.460 
0.540 
0.614 
0.75 1 
0.796 
0.874 

0.299 
0.382 
0.465 
0.636 
0.697 
0.808 

0.22 1 
0.296 
0.376 
0.557 
0.626 
0.757 

0.143 
0.204 
0.275 
0.453 
0.527 
0.680 

0.075 
0.115 
0.167 
0.3 17 
0.390 
0.556 

0.039 
0.062 
0.095 
0.205 
0.266 
0.422 

0.019 
0.033 
0.052 
0.126 
0.170 
0.298 

accesses 

0.586 
0.758 
0.966 
1.654 
2.084 
3.565 

0.408 
0.580 
0.801 
1 S90 
2.101 
3.910 

0.3 16 
0.474 
0.689 
1 .SO3 
2.05 1 
4.056 

0.221 
0.354 
0.547 
1.348 
1.916 
4.1 11  

0.132 
0.228 
0.379 
1.088 
1.642 
3.949 

0.079 
0.143 
0.253 
0.822 
1.31 1 
3.522 

0.047 
0.090 
0.166 
0.602 
0.996 
2.937 

Minimum 
costs 

2.808 
2.149 
1.726 
1.248 
1.157 
1.054 

2.499 
2.019 
1.683 
1.260 
1.169 
1.062 

2.304 
1.922 
1.640 
1.261 
1.174 
1.066 

2.065 
1.790 
1.573 
1.254 
1.175 
1.070 

1.785 
1.615 
1.47 1 
1.234 
1.168 
1.074 

1.568 
1.464 
1.371 
1.203 
1.152 
1.073 

1.409 
1.344 
1.284 
1.168 
1.130 
1.067 

shows  curves  for m as a function of s for different values 
of y. 

Finally, Table 7 shows  the relative  values of the  cost 
function in the  neighborhood of the minimum. The ex- 
cess  over  the minimum is expressed as a percentage of 
the minimum. 35 
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Table 5 Optimum value of m 

S 

1 
2 
3 
5 

IO 
20 
40 

y = 2.000 

0.850 
1.446 
2.067 
3.378 
6.9  18 

14.575 
30.904 

y = 1.000 y = 0.500 

1.175 
1.893 
2.604 
4.058 
7.863 

15.898 
32.748 

1.589 
2.447 
3.262 
4.880 
8.971 

17.406 
34.821 

y = O . l O O  

3.009 
4.301 
5.426 
7.500 

12.379 
21.854 
40.738 

y = 0.050 y = 0.010 

3.899 
5.441 
6.739 
9.054 

14.361 
24.380 
43.956 

6.936 
9.303 

11.195 
14.326 
20.9 15 
32.505 
54.05 1 

Table 6 Minimum cost 

S y = 2.000 y = 1.000 y = 0.500 y = 0.100 y = 0.050 y = 0.010 

1 2.808 2.149 1.726 1.248 1.157 1.054 
2 2.499 2.019 1.683 1.260 1.169 1.062 
3 2.304 1.922 I .640 1.261 1.174 I .066 
5 2.065 1.790 1.573 1.254 1.171 1.070 

10 1.785 1.615 1.47 1 1.234 1.168 1.074 
20 1.568 1.464 1.371 1.203 1.152 1.073 
40 1.409 1.344 1.284 1.168 1.130 1.067 

Table 8 ( m  for initial loadinglm for steady state) - 1. 

S y = 2.000 y = 1.000 y = 0.500 y = 0.100 y = 0.050 y = 0.010 

1 0.039 -0.010 - 0.059 -0.187 -0.253 -0.408 
2 0.097 0.044 -0.008 -0.218 -0.387 
3 

-0.148 
0.120 0.073 0.024 -0.116 -0.187 -0.363 

5 0.135 0.098 0.055 -0.072  -0.139 
0. I29 0.107 0.078 -0.018 -0.075 

-0.3  17 

20 
-0.241 

0.108 0.096 0.079 0.018 -0.025 -0.161 
40 0.085 0.078 0.069 0.033 0.006 -0.092 

10 

Table 9 Space  per record for minimum. 

S 

I 
2 
3 
5 

10 
20 
40 

y = 2.000 
U b 

1.469 1.636 
1.463 1.682 
1.439 1.672 
1.396 1.622 
1.328 1.520 
1.263 1.410 
1.205 1.313 

y = 1.000 
U b 

1.269 1.391 
1.279 1.439 
1.273 I .448 
1.256 1.436 
1.224 1.387 
i.189 1.320 
1.155 1.254 

y = 0.500 
U b 

1.149 1.243 
1.161 1.282 
1.162 1.296 
1.159 1.300 
1.146 1.282 
1.129 1.244 
1.109 1.200 

y = 0.100 
U b 

1.035 1.083 
1.040 1.101 
1.041 1.110 
1.443 1.120 
1.043 1.125 
1.042 1.120 
1.040 1.108 

Y =  
U 

1.018 
1.021 
1.022 
1.023 
1.024 
1.024 
I .023 

0.050 
b 

___- 

1.052 
1.065 
I .07 1 
1.079 
1.086 
1.086 
1.080 

y = 0.010 
U b 

1.004 1.018 
1.005 1.023 
1.005 1.025 
1.005 1.029 
1.006 1.034 
1.006 1.037 
1.006 1.038 

h Steady State 
a Initial Loading 
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Table 7 Percentages  over minimum costs  at  points 
(s + j ,  km). 

2 
1 
0 

2 
1 
0 

2 
1 
0 

-1 
-2 

2 
1 
0 

-1 
-2 

2 
1 
0 

"I 
-2 

2 
1 
0 

- 1  
-2 

2 
1 
0 

-1 
-2 

k 
0.8 0.9 1 .o 1.1 1.2 

s =  1 y =  2.000 m=0.850 
60.1 43.6 30.8 20.6 12.4 
18.8 9.9 3.4 -1.4 

1.7 0.4 0.0 0.3 
-4.9 

1.1 

6.4 
s = 1 y =  0.010 m =  6.936 

4.5 3.3 2.5 1.9 
2.8 1.9 1.4 1 .o 0.8 
0.2  0.1 0.0 0.0 0.1 

s = 5  y =  1.000 m=4.058 
24.4 13.3 5.5 0.2 -3.0 
12.2 4.7 0.2 -2.1 
4.5 1 .o 0.0 

-2.6 
0.8 

3.3 
3.1 

4.0 6.5 10.4 
10.7 

15.3 
15.3 21.1 27.7 35.1 

17.5 7.9 2.0 
10.9 

-1.1 
3.7 0.0 -1.0 0.2 

-1.8 

5.9  1.3 0.0 1 . 1  4.2 
2.9 1.1 2.2 5.4 10.4 
2.3 3.3 6.8 12.1 18.9 

10.4 
s = 2 0  y=O.lOO m=21.854 

3.6 0.4 -0.4 0.7 
7.6 2.2 0.0 0.1 1.8 
5.3 I .2 0.0 0.9 3.3 
3.5  0.6 0.4 2.1 5.1 
2.2 0.4 1.2 3.6 7.2 

20.9 
s = 20 y = 2.000 rn = 14.575 

8.9 1.3 -1.6 0.6 
16.0 5.5 0.0 -0.2 5.2 
11.5 2.9 0.0 3.1 12.3 
7.6 1.6 1.9 8.7 
4.8 

22.2 
I .9 6.0 17.3 35.5 

s = 10 y = 0.500 m = 8.971 

17.8 
s = 4 0  y = O S  m=34.821 

6.4 0.4  0.3  6.6 
15.3  4.7 0.0 1.6 9.7 
12.8  3.3 0.0 3.4 13.4 
10.5 2.1 0.4 5.7 17.7 
8.3 1.3 1.4 8.6 22.7 

Analysis of results 
The  results in Tables 2 and 3 confirm the  obvious sup- 
position that  the overflow and the number of additional 
accesses in the  steady-state  case  are larger  than in the 
case of initial loading. We observe  that  for s = 1 ,  the 
overflow and utilization are  the  same.  This  means T/m = 

rn - T or Jrn = m/ (1 + rn). This follows from  Eq. (9) 
f o r s =  1 :  i / m =  [P(l)/(P(O) + P ( l ) ) ] .  

Table 2 shows  that  for a file in steady  state, optimal 
load factors  are in general  higher  than  actually  used in 
practice. The  same  observation was made in [5]. A com- 
parison between  the optimal  values of m for both cases 
is made in Table 8.  

50 

40 

30 

20 

10 

s o  

/ 

Figure 5 m as a function of s. 

The values around  the minimum (Table 7)  show simi- 
lar behavior  to  that  for initial loading. When rn is kept at 
the value for which the minimum is reached, then in- 
creasing as well as decreasing s gives  higher  cost. Lower 
values  than in the minimum under consideration are only 
obtained  by  increasing  both m and s at  the  same time. 

For large  values of y the minimum cost  decreases 
monotonically with increasing s (Table 6) .  However, 
for small values of y, there is a slight initial cost  increase 
before the  cost  starts  to  decrease with increasing bucket 
size. This  behavior differs from the initial loading case 
[5]. There,  the minimum always decreases with increas- 
ing bucket size. 

Table 9 gives  a  comparison of the  average  space  per 
record for optimal loading. For small values of y this 
quantity  increases with s. When  additional accesses  are 
expensive  and/or  frequent ( y  is large), then the  average 
per record decreases with  increasing bucket size in the 
case of initial loading. In  the  steady-state  case,  there is 
still an  increase  for small values of s. In all cases  the 
values for  steady  state  are larger  than for initial loading. 

Finally, Table 8 shows  that  the load factors  that give 
minimum cost  are higher for initial loading than  for  steady 
state when y is large. The situation is reversed when 
y is small. 37 
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