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Optimum Storage Allocation for a File in Steady State

Abstract: A file of fixed-length records in auxiliary storage using a key-to-address transformation to assign records to addresses is con-
sidered. The file is assumed to be in steady state, that is that the rates of additions to and of deletions from the file are equal.

The loading factors that minimize file maintenance costs in terms of storage space and additional accesses are computed for different

bucket sizes and different operational conditions.

Introduction

This paper describes a study of auxiliary storage alloca-
tion for a key-to-address transformation file organization
[1-3]. In this organization, there is a primary storage
area divided into buckets. Each bucket can contain s
records of the file. The transformation is applied to the
key of a record to be loaded and it produces the address
of the bucket into which that record will be stored. If
more records are assigned to a bucket than it can hold,
the excess records are stored in a separate overflow area.
The overflow records belonging to a particular bucket
are organized in a chain with address pointers.

To retrieve a record with a given key, a single access
to auxiliary storage is sufficient if that record is stored
in the primary storage area. If it is in the overflow area,
one or more additional accesses —following the pointers
from bucket to record and from record to record —are
required. The number of accesses depends on the posi-
tion of the record in the chain.

The average length of the chains and, therefore, the
average number of additional accesses depends on the
bucket size and the storage capacity that is provided in
the primary area relative to the number of records to be
stored.

Studies [3 -5] have been made of the optimal storage
allocation for a file that does not change after initial load-
ing. Lum, et al. [3], made performance studies using
actual files and different key-to-address transformations.
As performance indicators, the authors use the average
number of accesses per record and the number of over-
flow records. Under certain assumptions, formulae can
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be derived for these quantities [4]. Using these formulae
it is possible to compute, for each bucket size, the load
factors (that is, the ratio between the number of records
to be loaded and the capacity of primary storage) that
makes file-handling costs minimal [5]. These costs con-
sist of storage cost for primary and overflow area, plus
the cost for additional accesses.

In the study reported in this paper, a different situation
is analyzed. A file is considered to which records are
added and from which records are deleted.

Olsen [6] points out the difference between this situa-
tion and the initial loading problem. He considers a
steady-state situation in which the number of additions
and deletions per time period are equal, and he derives
a formula for the average overflow. In this paper, a
method is developed to compute also the average num-
ber of additional accesses. With these results, the optimal
loading for the steady-state situation can be computed in
a similar fashion to that for the initial loading model [5].

Analytical approach

The file contains n records. The primary storage area
consists of b buckets, each of size 5. The average loading
—number of records assigned to a bucket—is thus:
m = n/b. The load factor is

m

_n
/_bs s

It is assumed that the overflow area has unlimited
capacity. All records have equal probability to be de-
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Figure 1 Buckets entering and leaving state (x, y).

leted from the file. When a record is added, we assume
that all buckets have equal probability of being selected
by the key-to-address transformation.

At a given moment, a bucket will contain x < s records,
while y records (0 =< y < =) assigned to that bucket
reside in overflow storage. The bucket is said to be in
the state (x, y). It is possible that x < s, while y > 0
because records deleted from a bucket are not replen-
ished from the overﬂow chain. When a record is added, it
goes into the assngned bucket when x < s. It is attached
to the overflow chain when x = s.

The first objective is to find the frequency function
u(x, y; m) or for simplicity u(x, y) for the variables x
and y for each bucket in the steady-state situation for a
given average loading m. This steady-state condition will
not be reached until the rates of additions and deletions
are equal. A further condition is that the average number
of buckets in the file with state (x, y) remains the same.

In the next section, these conditions are expressed
mathematically giving a set of equations from which
u(x, y; m) can be computed for every 2.

If u(x, v) is available, then it is possible to compute:

1. The average overflow per bucket,

nMs

Es: u(x,y), E}nd

2. The average number of additional accesses,

i i i‘u(x, y).

1 =0y

§|”
Ms

i

The first formula requires no further explanation. The
second one can be understood if we observe that just
one record requiring exactly / additional accesses is found
in each chain of length i or greater. Thus, the average
number of records that require / additional accesses is

b3 S ulx ).

=0 y=i
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Therefore, the average number of additional accesses
per record taken over the whole file is

W1th m= n/b this gives the formula for a. This is also
the average number of accesses required to retrieve a
record under the condition that all records are equally
in demand.

In the same way as in [5] a minimum can now be
sought for the cost function for file operation:

>

3

C(b, s; a) = tc, + anc, + anac,
where

t=b(s + i) = total average storage used for the file,
¢, = cost of storing one record during the unit
of time,
a = file activity (the fraction of records ac-
cessed during the unit of time),
c, = cost of an access to the primary area, and
¢, = cost of an additional access.

We assume that c, is constant. The value of the vari-
able part of C will be compared with nc,, the nominal
cost for storing n records.

The ratio between variable and nominal cost is the
relative cost function

fe,+ anac, s+i

R=——0c =" %
where

aca
Y= c

The factor vy is dependent on the application and the
environment in which the application runs [5].

Minima are computed for a range of values of y and
bucket size s. The results are tabulated at the end of the
paper.

Difference equations for u(x, y)

Difference equations for u(x, y) can be found by con-
sidering the steady-state condition. The rate of buckets
leaving the state (x, y) must be equal to the rate of buck-
ets entering the state (x, y). Consider u(x, y) on the do-
main 0= x= s, 0= y < , The transitions that cause
a bucket to leave or to enter the state (x, y) are shown
in Fig. 1(a) and 1(b), respectively. As a matter of fact,
different situations exist for interior and boundary points
of the domain. For instance, the state (x,y) of a bucket
with 0 < x < s, y > 0 will change to state ‘

(x—1,y) when a record is deleted from that bucket,

(x+ 1,y) when a record is added to that bucket, and

(x, y— 1) when a record from the overflow chain is
deleted.
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Transitions to (x, y + 1) cannot occur because addi-
tions to the overflow chain are not made while there is
room in the bucket.

The same state can be entered from

(x—1,y) when arecord is added to a bucket,
(x+1,y) when arecord is deleted from a bucket, and
(x, y+ 1) when an overflow record is deleted.

The rate of deletion of records out of buckets in a cer-
tain state is proportional to the fraction of records in
those buckets. The rate of addition of records to buckets
in a certain state is proportional to the fraction of buckets
in that state.

Assuming a negative exponential distribution for in-
terarrival and interdeparture times, this gives the fol-
lowing equilibrium condition:

bxu(x, y) + byu(x, y)
n

+ulx,y)

=b(x+ Dulx+1,y) +b(y+ Dulx, y+ 1)
n

+ulx—1,y).

The equation can be explained as follows: bxu(x, y) is
the number of records in buckets with state (x, y) and
byu(x, y) is the number in the overflow chains belonging
to those buckets. Therefore, the first term on the left-
hand side is the rate of leaving the state (x, y) due to de-
letions. The second one is the rate of leaving the state
(x, y) due to additions. The right-hand side gives, in a
similar fashion, the rate of entering the state (x, y).

After rearranging and using m = n/b,

(x+y+mulx,y)=(x+Dulx+1,y)
+ (y+ Dulx, y+ 1)
+mu(x—1,y). (1)

It is easy to see that this equation is also valid for 0 < x <
s and y = 0. In the same way

(y+ m)u(0, y) =u(l, y)
+ (y+1DHu0,y+1) fory=0, (2)
(s+y+mu(s,y)=(y+ Duls,y+ 1)

+mu(s—1,y) +mu(s,y—1)
fory >0, (3)

(s+muls, 0)=u(s, 1)+ mu(s—1,0). (4)

u(x, y) as stationary probability distribution of a
Markov chain

The following discrete time Markov chain {X,} is con-
sidered.
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X, is the state of a particular bucket afier the kth file
event. A file event is an addition or deletion of a record.
The transitions that may occur in the state space (0=
x=s, 0=y < ») were shown in Figs. 1(a) and 1(b).
The process is Markovian because it is assumed that the
outcome X, is dependent only on the state X,_,.

In an actual steady state condition of the file, the total
number of records may fluctuate; however, changes are
relatively small for a large n. In considering one bucket,
the total is assumed to be a constant and, as a conse-
quence, the transition probabilities are considered to be
constant. ‘

To set up the transition probability matrix M, the pos-
sible states are ordered with the first coordinate moving
most rapidly:

(0,0); (1,0); (2,0); - - -5 (5,0); (0, 1); (1, 1)
(s 1)5(0,2) -

Now, the infinite matrix can be considered to be com-
posed of partitions qu(O =p<w 0= g < ) of order
(s+ 1, s+ 1). For each y only the partitions E,,_,, E_,
and E,,_, contain nonzero elements. Rows and columns
of elements and submatrices are numbered starting with
zero. The xth (x=0,1,2, - + -,5) row of E,,_, contains
the probabilities of transition from (x, y) to (i, y—1).
Only when i= x is this ‘probability nonzero and E, .,
(x, x) = y/n, that is, the probability of deleting a record
from the overflow chain.

The xth (x=0,1,- - -, s) row of Eyy contains the prob-
abilities of transition from (x, y) to (i, y). These are non-
zero wheni=x—1;i=xori=x+1fori=1,2,--",
s— 1. In row 0 and row s, only the last two or the first
two of these three elements occur. The probabilities are

E, (x,x—1)= % for deleting a primary record,

xty 1

E, (x, x) =1- b

for staying in state
(x, y), and

E, (x, x + 1) = % for adding a record to the bucket.
Finally, E will contain the probabilities for going
from (x, y) to (x, y + 1). Only if x = s is the matrix ele-
ment nonzero and E,, , (s, s) = 1/b, the probability for
adding a record to the overflow chain of a full bucket.
The structure of the matrix is indicated in Fig. 2 for
s = 4. The crosses indicate places where a nonzero ele-
ment occurs.
If the stationary probability distribution of the Markov
chain®w=u(0,0); u(1,0);u(2,0);- - ~:u(s,0):u(1,1);
- - exists, then:

— -
UuM=u.
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Figure 2 Matrix with s = 4.

The condition for the column corresponding with the
state (x, y) for 0 < x < s is:

ux—=1,y) E, (x—1,x) +ulx, y) E (x, x)
Ftulx+1Ly)E, (x+1,x) +ule,y+1)E,, (x x)

=ulx,y), or

1 x +
u(x—l,y)ngu(x,y)(l - ny—g>

+1 1
+u(x+l,y)xT—i—u(x,y-Fl)%:M(x,y).

After multiplying by » and rearranging, Eq. (1) is
found again.

In similar fashion the Eqgs. (2}, (3), and (4) can be
derived from the matrix formulation.

Some properties of u(x, y)

From the difference equation for u(x, y), it is possible
to derive several properties. The following notation for
marginal distributions is used:

© s

f) =3 ulx,y)and g(y) = Y ulx, y).

y=0 x=0

Lemma 1: The marginal distribution f (x) has a truncated
Poisson distribution; i.e.,

_ o / o
floy =e x! Zﬂe x!’
Proof: Summing Eq. (1) over all values of y for a fixed
x gives:

() + mf () + S yulx, y)

— D fGFED+S G+ D alny+ 1)

y=0

+mf(x—1).
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Since
Soyulx,y) =3 b+ D ulx,y+1),
y=0 y=0

the following identity holds for 0 < x < s:
) +mf)=Gx+1) fx+1)+mf(x—1). (5)

In the same way from Eq. (2) for x = 0O:

mf(0) =£(1), (6)
and from Eqs. (3) and (4) for x=s:
mf(s—1) =sf(s). (7)

Substituting Eq. (6) into Eq. (5) for x = 1 gives
mf(1) =2-£(2).

By induction, it can then be proved that for every
0=x<s:

mf(x)=(x+1)f(x+1). (8)

Clearly, f(x) = (m"/x!)k is a solution of Eq. (8) for
every k. With the condition 3 _ | f(x) =1, this gives

m.l' s m.l‘

) =3
x! ;:0 x!

x
-m M

ex!

P

§
-m M

These are the frequencies for a truncated Poisson distri-
bution with parameter m and range 0 < x < 5, Q.E.D.
This result was obtained by Olsen [6] by directly for-
mulating the difference equation for f(x).
Introducing the notation P(r) = (e "m’)/r! for the
Poisson distribution and Q(s) = $'»_ P(r), then

P(x)
1—0(+1)

0=x=y.

fl)—

The functions P(r) and Q(s) are available in tabulated
form (for example in [7]).

Lemma 2: The total number of records assigned to a
bucket has a Poisson distribution.
Proof: Let Emy:r u(x,y) = A(r). It will be proved that:
A(ry=P(r)forr=0,1,2,- - -.
For 0 < x +y=r <s the summation of Eq. (1) gives

> rtmuxy)=3 x+1)ulx+1,y)

T+y=r T+y=r
+ > 0+Dulxy+D+m ¥ ulx—1,y)or

r+y=r x+Yy=r
x>0
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(r+m)A(r)=(¢+1)u0,r+1)

+(r+1) i ulx, r+1—x)y+ (r+ Hu(r+1,0)

x=1

+mA(r—1),
(r+m)Alr) =

For r =0 we have md4 (0) = A(1). By using this in the
equality for r = 1, it follows that:

mA(1) =24(2)

r+1)AGr+1)+mdA(r—1).

and by induction, we get
mA(r)=(r+1)A(r+1).

For each r considered, this identity is also satisfied by
P(r)y=¢"m'|r\.

For x + y = s the summation over x + y =
x = 5 gives:

(r+m) E u(x, y) =

r with 0 =

2 x+1) ux+1,y)

r+y=r T+y=r
+ Y O0+Dux,y+D+m ¥ ulx—1y)
Tr+y=r r+y=r

+mu(s,r—s—1).

If y is eliminated from the right-hand side and the sub-
stitution of (x + 1) by x is made in the first sum and of
(x — 1) by x in the third sum, it follows that:

(r+m) 2 ulx,y)=(0r+1) i u(x,r—x+1)

T+y=r =0
8
+m 2 u(x, r— x— 1) or again:
r=0

r+m) AR =+ 1) Ar+1)+mA{r—1),

™ omn

which, as before, is also satisfied by P(r) =e
This concludes the proof.

This result is easily understood if we make the follow-
ing observation. At any time, the » records in the file are
related to the b buckets by the key-to-address transforma-
tion. It is therefore assumed that each bucket has an equal
probability to be selected for addition of a record.

Thus, r =x + y has the binominal probability distri-
bution with p=1/b and n is very large. The limit for
n — o with m = n/b remains constant and is the Poisson
distribution.

Lemma 3: mu(s, y— 1) = yg(y) fory > 0.

Proof: Summing Eqs. (1), (2), and (3) over 0= x =<
gives

§ s—1

S xty+tmulny) =3 (x+ Dulx+1,y)

=0 x=0

+(y+1)2u(xy+1)+m2u(x—l y)

=0

+mu(s,y—1) or

JANUARY 1973

ye() +mus,y) = (+1) gy +1) +mu(s,y—1).

For y =0: mu(s, 0) = g(1).

Using this with the previous result for y =1 gives:
mu(s, 1) =2g(2)
and then by induction for every y > 0,

mu(s,y— 1) =yg(y) . Q.E.D.

Computation of i and a
With the results obtained in the previous section, the
computation of i and 4 can be simplified.

E u(x, y) = i yg(y) =m i u(s,y—1)

m P(s)

1—Q0(s+1) )

=mf(s) =

Hence, the computation of the average overflow can be
done without explicitly knowing u(x, y):

tig(y).

i u(x,y) = # 2

Q|
Ms
IIMg

-
Ms

L
m

1 i1

y

Interchanging the order of summation gives:

©

Ey(y+1)g(y

y=

Here, again, using Lemma 3 results in

Ql

i +Du@s,y—1).

N|»—n

Therefore, only the distribution on the right boundary of
the state space is required to compute a.

Computation of u(x, y)
The stationary distribution is a solution of the infinite set
of equations

— —>
UuM=u

with the condition that the sum of the elements of i/ is one.
It is clear that lim,_,, u(x,y) = 0 uniform in x, because
for each € we can find a y’ such that

u(x',y')= 2

T+y=x'+¥y’

u(s,y) =P’ +y) = P() <e.
Therefore, to find a numerical solution, the infinite
state space is replaced by a finite state space. A transi-
tion from a state (x, y) to (x,y + 1) only occurs for x = s.
In the finite state space, this transition from the largest
vy =1y is replaced by a transition recurring to the same
state. In the matrix M, this means that in the partition
E,, the element E (s, s) is increased by.1/b and that 31
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the finite square matrix M, of order (1+y)(s+1)is
considered.

For numerical computation, it is more appropriate to
reorder rows and columns in such a way that the matrix
corresponds with the order

W= {u(0,0): u(0, 1); u(0,2) - -
u(l, 1) - - 5 uls,y')}.

~u(0,y"); u(l, 0);

Now, partitions G, (0=p=s, 0=g=ys) of order
(¥’ 4+ 1) are considered. For a certain x with 0 < x < s,
only the partitions G_,_,, G and G, contain nonzero
elements. G, contains the probability that a primary
record is deleted. Thus G, = (x/n) I, where I stands
for the unit matrix. G, contains in the main diagonal the
probability of no change 1 — (1/b) — (x + y)/n and in
the lower diagonal the probability that y is reduced by 1.

Thus, G = [1—(1/b) — (x/m) ]I + (1/n) (—S + SL)
where § stands for a diagonal matrix with diagonal:
{0, 1,2, - -, '} and L is a lower diagonal matrix.

Finally, G__ . = (1/b) I because it contains the prob-
abilities that a record is added to the bucket.

As a matter of fact, G_,_, does not exist for x=20.
Further, for x = s the probabilities of going from (s, y)
to (s, y+ 1) are added as an upper diagonal with ele-
ments 1/b. And, finally, G_(y', y') is 1/b larger than
G, (v, ¥') for x < s corresponding with the transition
of state (s, y) into itself. Or

—(1-1_s 1 _ 1
Gss—<l b n>1+n(SL S+U)+bR,
where U is an upper diagonal matrix and R has all zero
elements except for R(y', y') = 1.
Now, finally, we will solve:

Tt)My, =u or
WM, —1)=0.

After multiplication by b, we partition the matrix of the
system into partitions Hm(O =p=<s,0=g=ys). Itfol-
lows that:

H,_ _ =1,
rxr m
X 1 . o
Hm=-—<1+—)1+—P with P=SL - S,
m m
H, . =1I.

For x=s: H,=—[1+ (s/m)]I + (1/m)Q + R with
Q=P+ mU. The determinant of the homogeneous
system w{H ot = 0 is zero because the sums of the rows
of M and M are 1 (being Markov matrices). The re-
quired solution for i has the property that the sum of the
elements is 1.
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The specific configuration
[H, H, 0 -0 ]
H,H H,- - -0

&)

"H _, ,H_,,  H_,

T HSS—I HSS

can be used to find a solution. By successive postmulti-
plications, the partitions in the upper diagonal are re-
duced to zero. The i™ transformation gives

@M _ G-1) -1
Hy=H;—H; (H_, )" -H_, for

i=1,2,- 5.

The lower diagonal partitions are transformed as:

e T ot
H::)—l_—)' Hii—l (Hi(illi—l) e H , ©

If @ is partitioned in {u®, u®, - - -, 4} then u¥ =
{M(S, 0)3“(5’ 1)’ ’ "u(s’ yl)}

After the sth transformation, the partitioned matrix con-
tains unity matrices at the main diagonal except for H,
and all zero partitions above the main diagonal. Thus the
determinant is equal to det H ;z) Since the original de-
terminant was zero, det HY = 0.

So the system «”’H>’ = 0 can be solved and the value
of the elements in u* are fixed by the condition
y :

. P(s)
u(s, i) =f(s) =———"—"—.
> FS)=1"06+1)

If besides i only a is required, then the computation
ends here (see previous section).

If the special forms of H, , and H,_, are taken into
consideration, it follows that

@ _ i (i-1) -1 .

H;=H,— ’—n—(H.’ ) with

i-1i-1

H,=1p— (1 +i)1.
m m
If the complete stationary distribution is required, it is
observed that:
(HEN )™ ="HH,— H]}  and

i-1i~1

- L
u™ +u®HP =0  or
G- _ _ g
u =—u H;_
), . (i-1)y -1
=—wu -Hy, - (H_;, )

@i om g®
=—u —l.{Hii H;'}
O] W

=—u1(Hﬁ—Hi;).

So starting with { = s all partitions of 7 can be computed.

IBM J. RES. DEVELOP.




Table 1 Influence of y'.
s =1 s =1 s =3 s =3 s =5 s =10 s =20
m= 1,589 m=6.934 m=2.069 m=26."711 m=4.058 m=12.377 m= 32,508
y =0.500 y =0.010 y =2000 y =0.050 v =1.000 y =0.100 y =0.010
Increase y=2+u y=104+u y =3+ y=24+u y=54+u y=134+u y =33+u
u Cost Q(y' +5) Cost Q' +5) Cost Q' +5) Cost Q{y' +s) Cost Q(y'+s) Cost Q(y +s) Cost Q(y +3s)
0 1.683 0.2138 1.052 0.0939 2.292 0.0192 1.166 0.1414 1.786 0.0089 1.233 0.0044 1.072 0.0006
1 1.710 0.0773 1.053 0.0504 2300 0.0054 1.169 0.0793 1.789 0.0031 1.234 0.0022 1.073 0.0003
2 1.721 0.0231 1.053 0.0253 2.303 0.0013 1.171 0.0414 1.790 0.0010 1.234 0.0010 1.073 0.0002
3 1.725 0.0058 1.054 0.0119 2.303 0.0003 1.173 0.0201 1.790 0.0003 1.234 0.0005 1.073 0.0001
4 1.726 0.0013 1.054 0.0053 2.304 0.0001 1.173 0.0092 1.790 0.0001 1.234 0.0002 1.073 0.0001
5 1726 0.0002 1.054 0.0021 2304 0.0000 1.174 0.0039 1.790 0.0000 1.234 0.0001 1.073 0.0000
6 1.726 0.0000 1.054 0.0009 2.304 0.0000 1.174 0.0016 1.790 0.0000 1.234 0.0000 1.073 0.0000
7 1.726 0.0000 1.054 0.0003 2.304 0.0000 1.174 0.0006 1.790 0.0000 1.234 0.0000 1.073 0.0000
8 1.726 0.0000 1.054 0.0001 2.304 0.0000 1.174 0.0002 1.790 0.0000 1.234 0.0000 1.073 0.0000
9 1.726  0.0000 1.054 0.0000 2.304 0.0000 1.174 0.0001 1.790 0.0000 1.234 0.0000 1.073 0.0000
Numerical results Figure 3 u(x, y) for s =1.
The formulae developed in this paper allow, for different 08
values of s, the numerical computation of: . (a) L (b) L (c)
o . 06l m=025 m=1.00 m=2.00
1. The frequency distribution u#(x, y; m) of x records in I
a bucket and y records in its overflow chain, and i B B
2. The values of m that make the relative cost function 04 L'\‘ =0 L B
R minimal for different application factors 7. I~ l‘/_ B x=1
02t x=1 —
Programs were written in APL and FORTRAN. The final NG P *=0
computations were made on the System 360 Model 91 of ¥ | [ T
and later on a Model 195. The influence of y' was inves- 0 2 4 0 4 6
tigated as follows. A first computation of some of the y

minima was made. Then, with the values of m found, the
cost function was computed a number of times for in-
creasing values of y’. The results are listed in Table 1.
Also, listed are the values of Q(y' + s).

The table indicates that the cost in three decimals re-
mains the same for increasing y’ when Q(y' +s) =
0.0001. In further computations, y’ was fixed accordingly
to the formula: y' =6 + 3k + (4 — k)[m]/2 — s (where
[m] is the entier of m). This selection of y’ fulfills the
condition: Q(y' +s) = 0.0001. Also u(x, y) was com-
puted fors =1, 2, 3, 5, 10, 20, 40. For each s, the values
of m used were m = ¢s with the following values for the
loading factor: ¢ = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50,
1.75, 2.00. In Fig. 3(a), 3(b), 3(c), some results for
s =1 are given and in Fig.' 4(a), 4(b) some for s = 5.

The computations were made without explicitly using
the properties of u(x, y) derived previously and, further,
the following properties were used as a check on the
numerical results:

1. 2 ulx,y) =

THY=T

P(r),

2. S uley) =P/~ Qs +1).
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The agreement is always to five, but in most cases to six
decimal places.

When m is small relative to s, then the chance for over-
flow records becomes negligible. Therefore, the values of
u(x, 0) will approach P(x) when m becomes small. The
numerical results are also in agreement with this conclu-
sion. With a loading factor of 0.25 the maximum discrep-
ancy for s = 10 is 0.000050. For s =20 and ¢ =0.25,
u(x, 0) and P(x) are equal to six decimal places.

The frequency distributions u(x, y; m) were then used
to compute average overflow and average number of ad-
ditional accesses together with their standard deviations.
These are listed in Tables 2 and 3. For comparison, the
corresponding quantities for the initial loading [5] are
also listed. In addition to the overflow percentage (i/m)
100, also the utilization of primary storage is given
[ (m—T)/s] 100. Furthermore, the ratio between the space
a record needs on the average and its length is given
(s +i)/m.
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Table 2 Average overflow.

Average Overflow initial loading Overflow steady state

Number | Average Space Average Space
Load Per Per Stand. Overflow Utiliz- Per Per Stand. Overflow Utiliz- Per
Factor Bucket Bucket Dev. Percentage ation Record Bucket Dev. Percentage ation Record

Bucket size s = 1

0.25 0.25 0.03 0.18 11.52 22.12 4.12 0.05 0.23 20.00 20.00 4.20
0.50 0.50 0.11 0.36 21.31 39.35 2.21 0.17 0.43 33.33 33.33 2.33
0.75 0.75 0.22 0.54 29.65 52.76 1.63 0.32 0.61 42.86 42.86 1.76
1.00 1.00 0.37 0.70 36.79 63.21 1.37 0.50 0.76 50.00 50.00 1.50
1.25 1.25 0.54 0.86 42.92 71.35 1.23 0.69 0.90 55.56 55.56 1.36
1.50 1.50 0.72 1.00 48.21 77.69 1.15 0.90 1.03 60.00 60.00 1.27
1.75 1.75 0.92 1.13 52.79 82.62 1.10 1.11 1.14 63.64 63.64 1.21
2.00 2.00 1.14 1.26 56.77 86.47 1.07 1.33 1.25 66.67 66.67 1.17

Bucket size s =5

0.25 1.25 0.00 0.06 0.18 24.96 4.00 0.01 0.11 0.73 24.82 4.01
0.50 2.50 0.06 0.34 2.48 48.76 2.02 0.17 0.51 6.97 46.51 2.07
0.75 3.75 0.32 0.84 8.63 68.53 1.42 0.66 1.04 17.66 61.75 1.51
1.00 5.00 0.88 1.42 17.55 82.45 1.18 1.42 1.53 28.49 71.51 1.28
1.25 6.25 1.70 1.98 27.21 90.98 1.07 2.36 1.94 37.75 77.81 1.18
1.50 7.50 2.72 2.43 36.22 95.67 1.03 3.40 2.30 45.30 82.05 1.12
1.75 8.75 3.85 2.79 43.98 98.03 1.01 4.50 2.60 51.41 85.03 1.09
2.00 10.00 5.04 3.08 50.43 99.14 1.00 5.64 2.87 56.40 87.21 1.06

Bucket size s = 20

0.25 5.00 0.00 0.01 0.00 25.00 4.00 0.00 0.00 0.00 25.00 4.00
0.50 10.00 0.00 0.08 0.03 49.99 2.00 0.02 0.19 0.19 49.91 2.00
0.75 15.00 0.21 0.87 1.42 73.94 1.35 0.68 1.32 4.56 71.58 1.38
1.00 20.00 1.78 2.37 8.88 91.12 1.09 3.18 2.88 15.89 84.11 1.16
1.25 25.00 5.37 4.44 21.48 98.15 1.01 7.00 4.05 27.99 90.01 1.08
1.50 30.00 10.05 5.37 33.50 99.75 1.00 11.40 4.87 38.01 92.99 1.05
1.75 35.00 15.00 5.90 42.87 99.98 1.00 16.60 5.51 45.90 94.68 1.03
2.00 40.00 20.00 6.32 50.00 100.00 1.00 20.85 6.03 52.13 95.74 1.02

Figure 4 u(x, y) fors=35.

0.10

(a) - (b)

\ m=35 m=10
0.08

0.04

0.02

=
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Table 3 Average additional accesses.

Table 4 Minima of the relative cost function.

Average Additional accesses

Load number Initial Loading Steady State

Sfactor per bucket | Average Stand. dev.| Average Stand. dev.

| -
Bucket

size s =1
0.25 0.25 0.13 0.36 0.21 0.44
0.50 0.50 0.25 0.52 0.38 0.59
0.75 0.75 0.38 0.65 0.53 0.70
1.00 1.00 0.50 0.76 0.67 0.80
1.25 1.25 0.63 0.87 0.80 0.89
1.50 1.50 0.75 0.97 0.92 0.98
1.75 1.75 0.88 1.06 1.04 1.07
2.00 2.00 1.00 1.15 1.17 1.16
Bucket

size s =5

0.25 1.25 0.00 0.05 0.01 0.10
0.50 2.50 0.04 0.25 0.09 0.38
0.75 3.75 0.15 0.58 0.29 0.75
1.00 5.00 0.37 0.97 0.58 1.15
1.25 6.25 0.68 1.40 0.94 1.56
1.50 7.50 1.07 1.84 1.35 1.98
1.75 8.75 1.51 2.28 1.80 2.40
2.00 10.00 2.00 2.71 2.28 2.81
Bucket

size s = 20

0.25 5.00 0.00 0.00 0.00 0.00
0.50 10.00 0.00 0.03 0.00 0.07
0.75 15.00 0.03 0.35 0.10 0.55
1.00 20.00 0.31 1.24 0.54 1.58
1.25 25.00 1.08 2.64 1.45 2.99
1.50 30.00 2.33 4.27 2.75 4.59
1.75 35.00 3.93 5.99 4.35 6.26
2.00 40.00 5.75 7.71 6.15 7.94

Finally, the minima of the relative cost function were
computed in the following way. A parabola was fitted
through three points of the cost function. The abscissa:
m,, m,, m, were first selected to be m, =0.9 m,; m,=
1.1 m, and:

m,=0.13 —0.76 Iny + (1.05 — 0.137y) s.

The choice for m, coincides with the approximate value
for m that gives minimum cost in the initial loading
case [5].

The minimum of the parabola was taken as a new value
of m,. The other two points were the previous central
point and the equally distant point at the other side of the
new m,. So for each approximation, i, a and the value of
[(s +i)/m] + ya were computed for two new values of
m, while for one value, the previous result was used. The
process was stopped when |m, — m,| < 0.0005.

The resulting values of m are given in Table 4 together
with overflow, additional accesses and the minimum cost.
Table 5 shows the optimal m in relation to y and Table 6,
the corresponding values of the minimum costs. Figure S
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Load  Overflow Additional Minimum
1% m factor factor accesses costs

Bucket size = 1

2.000 0.850 0.850 0.460 0.586 2.808
1.000 1.175  1.175 0.540 0.758 2.149
0.500 1.589 1.589 0.614 0.966 1.726
0.100 3.009  3.009 0.751 1.654 1.248
0.050 3.899 3.899 0.796 2.084 1.157
0.010 6.936 6.936 0.874 3.565 1.054
Bucket size =2

2.000 1.446 0.723 0.299 0.408 2.499
1.000 1.893  0.946 0.382 0.580 2.019
0.500 2.447 1.224 0.465 0.801 1.683
0.100 4301 2.151 0.636 1.590 1.260
0.050 5.441 2721 0.697 2.101 1.169
0.010 9.303 4.651 0.808 3.910 1.062
Bucket size =3

2.000 2.067 0.689 0.221 0.316 2.304
1.000 2.604 0.868 0.296 0.474 1.922
0.500 3.262  1.087 0.376 0.689 1.640
0.100 5426 1.809 0.557 1.503 1.261
0.050 6.739  2.246 0.626 2.051 1.174
0.010 11.195 3.732 0.757 4.056 1.066
Bucket size =5

2.000 3.378 0.676 0.143 0.221 2.065
1.000 4.058 0.812 0.204 0.354 1.790
0.500 4.880 0.976 0.275 0.547 1.573
0.100 7.500 1.500 0.453 1.348 1.254
0.050 9.054 1.811 0.527 1.916 1.175
0.010 14326 2.865 0.680 4.111 1.070
Bucket size = 10

2.000 6.918 0.692 0.075 0.132 1.785
1.000 7.863 0.786 0.115 0.228 1.615
0.500 8.971 0.897 0.167 0.379 1.471
0.100 12.379 1.238 0.317 1.088 1.234
0.050 14361 1.436 0.390 1.642 1.168
0.010 20.915 2.091 0.556 3.949 1.074
Bucket size = 20

2.000 14.575 0.729 0.039 0.079 1.568
1.000 15.898 0.795 0.062 0.143 1.464
0.500 17.406 0.870 0.095 0.253 1.371
0.100 21.854 1.093 0.205 0.822 1.203
0.050 24.380 1.219 0.266 1.311 1.152
0.010 32.505 1.625 0.422 3.522 1.073
Bucket size = 40

2.000 30904 0.773 0.019 0.047 1.409
1.000 32.748 0.819 0.033 0.090 1.344
0.500 34.821 0.871 0.052 0.166 1.284
0.100 40.738 1.018 0.126 0.602 1.168
0.050 43,956 1.099 0.170 0.996 1.130
0.010 54.051 1.351 0.298 2.937 1.067

shows curves for m as a function of s for different values
of y.

Finally, Table 7 shows the relative values of the cost
function in the neighborhood of the minimum. The ex-
cess over the minimum is expressed as a percentage of
the minimum.
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Table 5 Optimum value of m

s y = 2.000 y = 1.000 y = 0.500 v =0.100 y = 0.050 y=0.010
1 0.850 1.175 1.589 3.009 3.899 6.936
2 1.446 1.893 2.447 4.301 5.441 9.303
3 2.067 2.604 3.262 5.426 6.739 11.195
5 3.378 4.058 4.880 7.500 9.054 14.326

10 6.918 7.863 8.971 12.379 14.361 20.915

20 14.575 15.898 17.406 21.854 24.380 32.505

40 30.904 32.748 34.82] 40.738 43.956 54.051

Table 6 Minimum cost

5 y = 2.000 y = 1.000 y = 0.500 y = 0.100 y = 0.050 y=0.010

1 2.808 2.149 1.726 1.248 1.157 1.054

2 2.499 2.019 1.683 1.260 1.169 1.062

3 2.304 1.922 1.640 1.261 1.174 1.066

5 2.065 1.790 1.573 1.254 1.171 1.070
10 1.785 1.615 1.471 1.234 1.168 1.074
20 1.568 1.464 1.371 1.203 1.152 1.073
40 1.409 1.344 1.284 1.168 1.130 1.067

Table 8 (m for initial loading/m for steady state) — 1.

s y = 2.000 v = 1.000 v =0.500 y=10.100 v =0.050 vy=0.010
1 0.039 —0.010 —0.059 —0.187 —0.253 —0.408
2 0.097 0.044 —0.008 —0.148 —0.218 —0.387
3 0.120 0.073 0.024 —0.116 —0.187 —0.363
5 0.135 0.098 0.055 —0.072 —0.139 —0.317

10 0.129 0.107 0.078 —0.018 —0.075 —0.241

20 0.108 0.096 0.079 0.018 —0.025 —0.161

40 0.085 0.078 0.069 0.033 0.006 —0.092

Table 9 Space per record for minimum.

v = 2.000 v = 1.000 v =0.500 y= 0.100 y=0.050 vy=10.010
s a b a b a b a b a b a b

1 1.469 1.636 1.269 1.391 1.149 1.243 1.035 1.083 1.018 1.052 1.004 1.018
2 1.463 1.682 1.279 1.439 1.161 1.282 1.040 1.101 1.021 1.065 1.005 1.023
3 1.439 1.672 1.273 1.448 1.162 1.296 1.041 1.110 1.022 1.071 1.005 1.025
5 1.396 1.622 1.256 1.436 1.159 1.300 1.043 1.120 1.023 1.079 1.005 1.029
10 1.328 1.520 1.224 1.387 1.146 1.282 1.043 1.125 1.024 1.086 1.006 1.034
20 1.263 1.410 1.189 1.320 1.129 1.244 1.042 1.120 1.024 1.086 1.006 1.037
40 1.205 1.313 1.155 1.254 1.109 1.200 1.040 1.108 1.023 1.080 1.006 1.038

a Initial Loading
36 b Steady State
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Table 7 Percentages over minimum costs at points
(s +j, km).

k
J 0.8 0.9 1.0 1.1 1.2
s=1 y=2.000 m=0.850
2 60.1 43.6 30.8 20.6 12.4
1 18.8 9.9 34 —1.4 —4.9
0 1.7 04 0.0 0.3 1.1
s=1 vy=0.010 m=6.936
6.4 4.5 3.3 2.5 1.9
1 28 1.9 1.4 1.0 0.8
0 0.2 0.1 0.0 0.0 0.1
s=5 y=1.000 m=4.058
2 24.4 13.3 5.5 0.2 -3.0
1 12.2 4.7 0.2 —2.1 —2.6
0 4.5 1.0 0.0 0.8 3.1
-1 33 4.0 6.5 10.4 153
-2 10.7 15.3 21.1 2717 35.1
s=10 y=0.500 m= 8971
2 17.5 7.9 2.0 ~1.1 —1.8
1 10.9 3.7 0.0 -1.0 0.2
0 5.9 1.3 0.0 1.1 4.2
-1 29 1.1 22 5.4 10.4
-2 23 33 6.8 12.1 18.9
s=20 y=0.100 m=21854
2 10.4 3.6 0.4 —-04 0.7
1 7.6 2.2 0.0 0.1 1.8
0 5.3 1.2 0.0 0.9 33
-1 35 0.6 0.4 2.1 5.1
-2 22 0.4 1.2 3.6 7.2
§=20 y=2.000 m=14.575
2 20.9 8.9 1.3 —1.6 0.6
1 16.0 5.5 0.0 -0.2 52
0 11.5 29 0.0 3.1 12.3
—1 7.6 1.6 1.9 8.7 222
-2 4.8 1.9 6.0 17.3 355
s=40 y=05 m= 34821
2 17.8 6.4 0.4 0.3 6.6
1 15.3 4.7 0.0 1.6 9.7
0 12.8 33 0.0 3.4 13.4
—1 10.5 2.1 04 5.7 17.7
-2 83 1.3 1.4 8.6 22.7

Analysis of results

The results in Tables 2 and 3 confirm the obvious sup-
position that the overflow and the number of additional
accesses in the steady-state case are larger than in the
case of initial loading. We observe that for s =1, the
overflow and utilization are the same. This means i/m =
m—1 or i/m=m/(1 + m). This follows from Eq. (9)
fors=1:ilm=[P(1)}/(P(0) +P(1)})].

Table 2 shows that for a file in steady state, optimal
load factors are in general higher than actually used in
practice. The same observation was made in [5]. A com-
parison between the optimal values of m for both cases
is made in Table 8.
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m

Figure 5 m as a function of s.

The values around the minimum (Table 7) show simi-
lar behavior to that for initial loading. When m is kept at
the value for which the minimum is reached, then in-
creasing as well as decreasing s gives higher cost. Lower
values than in the minimum under consideration are only
obtained by increasing both m and s at the same time.

For large values of y the minimum cost decreases
monotonically with increasing s (Table 6). However,
for small values of 5/, there is a slight initial cost increase
before the cost starts to decrease with increasing bucket
size. This behavior differs from the initial loading case
[5]). There, the minimum always decreases with increas-
ing bucket size.

Table 9 gives a comparison of the average space per
record for optimal loading. For small values of vy this
quantity increases with s. When additional accesses are
expensive and/or frequent (v is large), then the average
per record decreases with increasing bucket size in the
case of initial loading. In the steady-state case, there is
still an increase for small values of s. In all cases the
values for steady state are larger than for initial loading.

Finally, Table 8 shows that the load factors that give
minimum cost are higher for initial loading than for steady
state when vy is large. The situation is reversed when
v is small. '
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