W. Chang

Computer Interference Analysis

Abstract: This paper describes a single-server queuing model with Erlang input, which can be used for computer congestion analysis.
The model is intended primarily for small computer systems in which the CPU is needed for input/output operations, which aggravates

the interference problem.

The model provides such information as the queuing time distribution for channel requests and the CPU delay due to channel interfer-
ence. The model is illustrated by numerical examples, and procedures for the analysis are shown.

Introduction

In an earlier paper [1], basic concepts in queuing theory
and single-server queuing processes with random input
were reviewed in terms of their applicability to computer
system analysis. The server in a computing system can be
any of a number of devices, such as a channel, CPU, or
communication line. Ideally, each of these devices could
be represented mathematically and the appropriate an-
alyses applied to determine their expected behavior in
a system. Practically, no such complete analysis is pos-
sible because of present limitations of the queuing theory
itself. The analysis of a complete computing system
would require the solution of a network of queues, which
is possible only for a few idealized cases. Fruitful appli-
cation of queuing analysis to computing systems is there-
fore limited to subsystems analysis.

Sometimes it is possible using queuing theory to study
the interaction of a combination of facilities, such as is
done in channel interference analysis [2], if the facilities
are performing a joint task. Channel interference is de-
fined as the proportion of computer processing time re-
quired for the control of channel operations. In the con-
text of System/360 or 370 architecture [3], the resources
of main storage, the CPU and its read-only storage, and
the channel are required for the control portion of a chan-
nel operation. In this case, a single-server facility can
represent a combination of these hardware elements. Ser-
vice time is the time required to perform the joint task.
This paper examines the congestion effect of this type
of operation.

JANUARY 1973

The assumption of random or Poisson input [1], which
is desirable for its Markovian properties, may or may not
be warranted in computer subsystem analysis. If the
input to a server originates from a large number of sourc-
es (e.g., many terminals in a large system) the assump-
tion of Poisson input is justified. But in this paper, a more
general type of input, the Erlang input process, is as-
sumed. The Erlang process inciudes the Poisson and reg-
ular (constant) inputs as its special cases, The assump-
tion of such a general input process is useful for the analy-
sis of small computing systems where a Poisson input
may not be justified. Such small computing systems (in-
cluding minicomputers) may be used as stand-alone com-
puters or as controllers, concentrators, or front-end pro-
cessors for the large machines.

The assumption of an Erlang process may have an
additional benefit. In some computing system analyses,
the approximate waiting times determined analytically
may be higher than those obtained by simulation, par-
ticularly in the high utilization range [5]. The analytic
results may be somewhat improved if a more general
input distribution, such as an Erlang process, is assumed.

A single-server queuing process with Erlang input and
general service time distribution has been investigated
by F. Pollaczek [6,7], A. J. Fabens [8], L. Takacs [9]
and others. Both steady-state and transient (time-depen-
dent) solutions have been determined.

The queuing model investigated in this paper accom-
modates two types of service requests. The first arrives

13

COMPUTER INTERFERENCE ANALYSIS

14

W. CHANG

LOR /, \\ — = 00

05 AN
/ AN Q\ N
/ \
—~ / N, .
£ 9 Ny ST —

=]
[
15
[’}
5

X

Figure 1 Erlang m functions.

at a single-server system in an Erlang process. The sec-
ond is always present in the system and is served on an
as-available basis by the server. The stationary queuing
time and the queue size distributions are determined.

Erlang processes

Let calls arrive at a single-server system at the instants
Ti» Tys * ° % Ty * ° °, Where the interarrival times 7,,, —
7, (n=0,1, - - -, r,=0) are identically distributed in-
dependent random variables with distribution function

Plr,, —1,<x}=F,(x)=1— mjl e ()l

=0

(x=0).

Then the arrival pattern of calls is an Erlang process.
Let the average interarrival time be «. Then a = m/A.
The arrival rate is 1/a = A/m.
The parameter m determines the shape of the Erlang
distribution, as illustrated in Fig. 1. In the case of Erlang
input with m = 1, F,(x) is an exponential distribution:

F (x)=1 —e,

This is identical with the Poisson process of density A.
In the case of Erlang m = «, the arrival process is
regular:

0 fO=x<a«a
1 ifx > a.

F_(x) ={

Intermediate Erlang-m values yield a family of inter-
arrival time distribution curves. If an arrival pattern
ranges between random and regular arrivals, the input
process can be treated as one of the Erlang family.

The probability density function

fn(x) =dF, (x)/dx

is plotted in Fig. 1 for four values of the parameter m.
The rth moment of the Erlang m distribution is given by

a,=[(r+m~1)(m~1)!)(alm)",

where «, = a is the average interarrival time.

Since the Erlang process includes the Poisson process
as its special case, it is useful in modeling a wide class of
input environments. Consider the following input pro-
cesses in a computing system.

Small number of input sources: An 1/O device, such
as a card reader, transmits its data to the computer in
two phases. The first phase includes control of the mech-
anism, checking it for device-ready condition, etc.; and
the second phase is the actual transmission of data.
During the first phase, control information is passed
through the control unit and the channel between the
device and the processor. The first phase of the operation
involves irregularly occurring service requests (control
calls) to the system (i.e., a combination of main storage,
the CPU and its read-only storage, the channel, and the
control unit). The second phase is highly repetitive or
periodic, with the arrival of calls for service (data trans-
mission) being more regular.

Cox and Smith [10] show that if a system serves more
than ten input sources, with each source generating calls
regularly, the pooled input (the sum of all inputs) to the
system can be treated as a Poisson process. However,
for a small computer system where two or three sources
are active, such an input cannot be treated as Poisson
without introducing some error in the modeling. Thus
a more general type of input is preferred.

Queues in series: A computer system can be struc-
tured as a network of queues. For example, terminals
are attached to communications lines, communications
lines to line control adaptors, the adaptors to a multi-
plexor channel, and the multiplexor channel to the com-
puter. Queues can be formed at each of the servers or at
buffering devices. The output of one server often forms
the input to the next server so that calls arrive in one
queue immediately after they have been serviced in the
preceding queue. If the first server (with independent
service times) is heavily utilized, the arrival pattern for
the second queue is then nearly equal to the distribution
function of the service time in the first queue. When we
treat the second queue as a single-server process, the ar-
rival pattern is approximately Poisson only if the ser-
vice time of the preceding server is distributed exponen-
tially.

Buffer effect: When bits are assembled into bytes or
bytes into words, buffering is required. Although char-
acters may arrive randomly, the service requests of as-
sembled words are distributed as an Erlang process. This
is so mathematically because the convolution of m ex-
ponential functions (assembled from m randomly arriv-

IBM J. RES. DEVELOP.

ing characters) generates an Erlang-m process (time be-
tween service requests of assembled words).

Computer interference

In computer systems, the activities of moving information
back and forth between the computer main storage and
an input/output device constitutes an I/O operation. The
least costly design to accomplish an I/O operation in a
small computer is that of the so-called “programmed-
1/O.” The IJO device is attached to an interface, which
is connected to the processor unit, as shown in Fig. 2.
The I/O operation, including device selection, mechan-
ical control if required, and data transfer, is accom-
plished by an I/O program stored in main storage. During
the whole 1/O operation, the CPU is dedicated com-
pletely to that single I/O activity. The CPU data path
is used to accomplish the data transfer between the
device and main storage. Thus interference with the CPU
by the I/O activity is great and its duration may be rather
long with slow devices. This I/O scheme may not be
practical for a high-speed device, such as a fast disk, but
it is rather popular with low-activity devices, such as
teletypes (TTY’s).

Some channel hardware is added to modern small
computers to permit more than one device to be active
at one time and to increase the time that the CPU can
be used to perform other tasks. But the CPU is required
to supervise channel activity and to control the input/out-
put operation. However, after the input/output operation
has been started, the CPU is released for other tasks
during the mechanical operation of the device or, in the
case of some channel facilities, during the actual data
transfer. The data transfer may be completed by using
another data path and by “cycle-stealing.” Cycle-stealing
is the use of a main storage cycle to accommodate a data
transfer request, with the fetch/store request to main
storage by the CPU delayed for one cycle. Cycle-stealing
prolongs the service time of a CPU instruction. During
the cycle-steal operation, the channel must update the
storage addresses and keep an account of the actual num-
ber of bytes transferred.

Most small computing systems, such as IBM System/3,
1130, 1800, and small models of System/360 and 370
use cycle-stealing to accomplish high-speed I/O data
transfer. In large systems, the cycle-stealing method is
also used but the channel is made more self-contained
to further reduce CPU interference.

The interference problem in a small computer like the
one shown in Fig. 3 can be simplified and formulated as
follows. Let the CPU with main storage be represented
by a single server facility, This server handles two kinds
of input requests: all channel service requests (pro-
grammed-1/O, channel control, etc.) except for cycle-
stealing requests and all CPU service requests. Assume

JANUARY 1973

Devices

TTY

Printer /

Figure 2 Simple computer with programmed 1/O.

Interface CPU

Main storage

Figure 3 Model of computer interference.

——————— e, — ey

i
|
| Cycle-steal (Eftect included
Channel service } services in service times)
I
I 1
|
|

Erlang request queue

ival

CPU

Tequest

!

|

1

|

|

|

. |
Main storage ,
t

|

|

|

|

|

that the arrival of channel service requests follows an
Erlang-m process. The service discipline is assumed to
be first-come, first-served. Although in reality the channel
is served on a priority basis, the mathematical solution
for priority queues first requires the solution of a model
with no priority, with the results then modified to account
for the effects of priority [1]. CPU requests are assumed
to always be present and to be served on an as-available
basis whenever the server is not busy servicing the first
type of requests. The cycle-stealing requests are included
in the service times of both types of services and prolong
the required service times. As an example, assume that
main storage is busy because of cycle-stealing for 20
percent of the time. A gross estimate of the prolonged
service time is obtained by dividing the original service
time by a factor of 1 — 0.2 [11]. For a more accurate
estimate, one can use statistical methods based on re-
newal theory [12,13].

In some computing systems, if special registers are not
provided, the updating of control and status information
for the channels requires the use of common registers.
Thus the contents of the registers must be stored prior
to servicing a channel request and restored after comple-
tion of channel service [2]. A single server with two ser-
vice time distributions has been investigated by
Welch [14].

We assume in this paper that a channel request arriv-
ing when the channel request queue is empty must wait

15

COMPUTER INTERFERENCE ANALYSIS

16

W. CHANG

H(x), B(x) H(x): Channel service

time distribution

Erlang Channel queue
input 5
- Single server B{(x): Overhead service

time distribution

D(x): CPU service time
D(x) distribution

CPU (All service times include

request cycle-steal elongations.)

Figure 4 Queuing model with Erlang input.

an additional time increment for the system to store reg-
isters and to handle other housekeeping functions before
the service of the channel can commence; a request ar-
riving when there is a queue waits for its turn but it is not
required to wait for this system set-up time.

In System/370 the system is interrupted from an in-
progress CPU operation to service a channel request
almost immediately, the delay being at most a memory
reference cycle. However, some systems can be prepared
to service a channel request only after execution of the
current CPU instruction has been completed. Since the
mathematical model assumes a general service time dis-
tribution for a CPU service, both of these cases can be
analyzed.

Analytic model
The model assumes that all service time distributions
(including the extension due to the cycle-stealing inter-
ruptions) are known. Let H(x) be the channel service
time distribution, D(x) the CPU service time distribu-
tion, and B (x) the extra set-up (overhead) time distri-
bution, which includes the time needed to prepare the
system to serve the channel requests.

The Laplace-Stieltjes transforms of these service time
distributions are:

U(s) = F e ™ dH (x) ,

]

8(s) =f ¢ dD(x), and

0

B(s) =f e dB(x) .
0

We further define the rth moments as

hr=f x" dH (x) ,

0

a'r=f x"dD(x), and

0

b,=f°°x’d3(x).

0

The first moments, = h,, d=d,, and b= b,, are the
mean service times.

The arrival of channel requests to the system is as-
sumed to follow an Erlang-m process with an input rate
of A/m. The queuing system is shown in Fig. 4. CPU re-
quests are serviced on an as-available basis and are as-
sumed to be present continuously throughout the opera-
tion. This fact is shown in Fig. 4 by a feed-back loop
from the output of the system. A CPU request is gener-
ated as soon as a previous CPU service is completed.

* Queue length distribution
Let ¢, be the channel queue length immediately after
the nth departure of a channel request. The stochastic
behavior of the queue size with Erlang-m input can be
deduced immediately if we know the stochastic behavior
of the process defined in the following paragraphs [9].
Suppose that calls arrive at a counter at the instants
.7, 71, - -, where the interarrival times 7,,, ' —
7, (n=1,2, -+ 7/ =0) are identically distributed,
independent random variables with distribution function

1—e™ ifx=0

F(")z{o ifx<o0,

i.e., {r,’} is a Poisson process. The calls will be serviced
by a single server in batches of m in the order of their ar-
rival. The server is allowed to service CPU requests if
and only if fewer than m calls are present in the queue.
The service times of the batches are assumed to be in-
dependent, positive random variables. The service time
distribution is H (x). The first batch that is to be serviced
after the completion of a CPU request must wait an extra
time period, which is distributed according to B(x).

If we identify every mth arrival in the Poisson process
with an arrival in the Erlang process, i.e., 7,=7,,,’, and
if we identify the service time of the nth batch in the Pois-
son process with the service time of the nth channel re-
quest in the Erlang process, then the Poisson process is
reduced to an Erlang process. This is so because F, (x)
is the mth iterated convolution of F (x) with itself.

Comparing these two processes, we find that the wait-
ing time follows the same probability law in both pro-
cesses. The departures also agree. However, the queue
lengths are different but are related by

&= 1€ Im].

where £, is the queue size at the ath departure in the
Poisson process and |£,'/m] means the greatest integer
less than or equal to £,'/m.

These two processes have the same waiting time dis-
tribution and the queue sizes are also related. If we find
the solution for the Poisson process, the Erlang process
can immediately be determined. It is an advantage that
the Poisson process has more Markovian properties.

IBM J. RES. DEVELOP.

The Poisson process can be solved as follows:

Let v, be the number of calls (m calls = 1 channel re-
quest) that arrive during the service of the nth batch,
where », is a conditional random variable that depends
on the service time. Assume that the nth batch is serviced
following the service of the n — 1th batch. Let x, be the
service time of the nth batch. The probability distribu-
tion of v, can be found as

p{v,,:i}:f Plv, = ilx, = x} dH (x) . (1)

0

Since the calls arrive in a Poisson stream, we have

Piv, =i} =f°° [Ow)it]e™ dH (x) . 2)
0

The generating function for v, can be written as

3 PO, =it 2= [X dH () = bh(1 = 2) .)

i=0 0

Equation (3) implies that if we replace s by A(1 — z) in
¥(s), the transform of service time distribution, we ob-
tain the generating function of »,. Similarly, if we let v,/
be the number of calls that arrive during the set-up time
and the service time of the nth batch, the generating func-
tion »,’ can be found as

S Pl =it =[N dH (0B)
i=0 0

=y(A (1 —2))B(A(1 —2)). (4)

(The notation = indicates convolution.)

The queue lengths ¢, and ¢’ and the number of
calls received during the service of the (n + 1)th batch
are related by

i pa— {[gn, - m] + Vn-H

e ['Yn + fn' —m]+ Vn+1’
where v, is the total number of new calls that arrived dur-
ing the servicing of CPU requests after the service of
the nth batch, and y, must be such that

Y, t €& =m.

if¢g zZm
if¢, <m, (5)

Equation (5) can be explained as follows. When
£,' = m, the next batch (i.e., the (n + 1)th service) can
be serviced immediately, the queue length is reduced by
m (i.e., the nth batch departs) and the number of new
calls increasing the queue size is v,,,. When £’ < m, the
(n + 1)th batch cannot be serviced immediately, since
fewer than m calls are in the queue. The system is then
allowed to service the CPU requests. During these ser-
vices, if more than m — ¢’ new calls arrive, the system
can switch to the service of the (n + [)th batch. Since
in this case the system requires a set-up period, v, '
represents the number of new arrivals during the set-up
time and the service time of the (n + 1)th batch.

JANUARY 1973

Let P{¢, =j} = P; be the probability of the queue
Iength in the system at the nth departure. Define the gen-
erating function
Ut =3, P2

If the stationary solution for queue length exists, £,
and ¢,' must have the same marginal distribution. Their
generating functions must also be the same.

Let ¢,(A(1 —2)) be the conditional generating func-
tion of y,, given that the nth departure leaves m — j calls
in the queue so that exactly j new calls must arrive be-
fore the (n + 1)th channel service can begin. Its deriva-
tion is given in Appendix A.

From the theorem that the generating function of the
sum of two independent variables is the product of two
generating functions, it follows that

U =@ -S| e -2l
j=0

+ 3 P (1= 2) 2 BOI = 2))
j=0

$N(1 — 2))/Z". (6)

The first term of Eq. (6) represents the condition that
£, = m and the second term, &, < m.
From Eq. (6),

U@ =S P2 [en,0(1 —2) B —2) — 1]

Py —2)/[" =y —2))]. (7
From Rouche’s theorem [15], the equation
=M1 -2)) =0

has exactly m roots, w,, ®,, * * *, @,,, on and inside the
unit circle |z| = 1. In particular, w,, = 1. Since U(z) is
a regular function of z if |z| =< 1, the numerator of Eq. (7)
must also vanish at these roots. Thus

"_i Po!le, (A1 —w)) BOA(1 ~w)) — 1]

M1 —w)) =0 (i=1,2,---,m). (8)
Equation (8) is a set of m equations with m unknowns,
P, P, - -, P, which can be determined uniquely by
solving these m equations. In the case of w,, = 1, L’'Hop-
ital’s rule can be used to obtain an equation. Since
U(1) =1, we have

m—1
> P, Q) +bIN=m—\n. 9)
j=0
Equation (9) determines the generating function for

£, The queue length in the Erlang process can be de-
termined by the relationship &, = {¢£,'/m].

17

COMPUTER INTERFERENCE ANALYSIS

18

W. CHANG

~ Queuing time distribution

Queuing time is defined as the sum of the waiting time in
the channel queue and the service time of the channel
request. Let T (x) be the queuing time distribution, and
let the Laplace-Stieltjes transform be

0(s) = fw e dT (x) .

Then 8(s) can be determined as follows. Since the queue
length at a departure point is equal to the new calls that
arrived during the preceeding queuing time period [1,9],
we have

N1 —2)=U(z). (10)

If we put s = A(1 — z) in (10), we have
8(s) = > PA" (=5 + M) [, (s) B(s) — 1] ¥(s)
j=0

= [+ 0" =) (11)

Since the queuing time distribution is the same in both
processes, the transform given by Eq. (11) holds for
Erlang input.

~ Waiting time distribution
Let W (x) be the waiting time distribution in the channel
queue, Let the Laplace-Stieltjes transform be

Q(s) —*—J’OC e T dW (x) .

Since the queuing time is the sum of the waiting time
and the service time,) (s) can be obtained from 6(s) as

Q(s) = 0(s)/P(s) . (12)

Two special cases are of practical interest: deriving
the Laplace-Stieltjes transform of the waiting time dis-
tribution for a Poisson input and for the Erlang-2 input.
Finally, an expression for {)(s) is given for Erlang-m
input.

Case 1: Poisson input
Since the Poisson input is a special case of Erlang input
with m = 1, we have from Egs. (11) and (12)

_ Ple (s) Bs) — 1]
) ==~ k)

This can be written as

As 1 —¢,(s) BGs)

Q(s)=P°s—7\+)\d/(s) s ’

Since Q(0) = 1, we have by applying L’'Hopital’s rule
P,= (1 —M)[[A(—¢,'(0)) +\b],

where —¢,’ (0) can be obtained from ¢, (s). To simplify
the expression, let

a, = (=1)7,"(0) .
(A few expressions for 4;, are given in Appendix A.)

Thus Q(s) can be written as

(1—M)s 1—¢(s) B(s)

() :s—)\+)\t[1(s) (a,, + b)s

(13)

Q(s) is the product of two Laplace-Stieltjes transforms,
the first of which is identical to the Laplace-Stieltjes
transform of the waiting time distribution in a single-
server system with a Poisson input and general service
times H(x), and the second has the form

[1—¢,(s) B(s)]/[(a, +b)s].

Let W, and W, be the first and the second moment of
the waiting time distribution. They can be obtained as
follows:

— r _ }\h2 a12 + b2 + zallb
W= O =00 20a, v)
Y] A*h?
— 3 + 2 _
30— M) 2(1— k)

2

N a,, + b, +3a,b+ 3a,b,
3(a,, + b)
Ah, o G2 + b, +2a,,b
(1 —Ah) 2(a,, +b)

+22

Case 2: Erlang-2 input
For the case of Erlang input with m = 2, Q(s) can be de-
termined from

Q(s)

_ PA[g,(s) B(s) = 1]+ P, (—=s + M) [e,(s) B(s) — 1]
(=s + A)* = N (s) '

Let R, =P,/P,. R, can be obtained from Eq. (9) as

_ A1 — ¢, (s,) B(s,)]
(s, N e () BGsy) — 117
where s, = A(1 —w,) .
Since P, can be determined from Q(0) = 1 and L’Hop-
ital’s rule, we have

(2 —Ak) M=) (1 — s/s))
(=s +A)* = N4 (s)

% [502(3) ,B(S) - 1] + (Rll)\) (=s+A) [‘Pl(s) B(S) - 1]
[a,, + b+ R,(a, +b)](=s)(1—sls)) (14')

Q(s) =

Again Q(s) is the product of two Laplace-Stieltjes
transforms. The first one is identical to the Laplace-
Stieltjes transform of the waiting time distribution of a
single-server queue with Eriang-2 input and a general
service time distribution. Thus one can conclude that the

IBM J. RES. DEVELOP.

waiting time in the channel queue consists of two parts:
the first part is the same as that of a single-server queue
with an Erlang input and a general service time distribu-
tion, and the second part is a delay that depends on the
CPU service time and the switching time.

Case 3: Erlang-m input
An expression for Q (s) for Erlang-m input is:

- m—1 _—i
(m—Ah) N7 (—s) E (1 s) »)
(s + 0)™ — A"p(s) $).

Q@s) =

V(s) can be determined as follows:

Vis)=
—s + A

enls) B&) =1+ 3 R(ZEM 1,)) — 1)
j=

[aml +b+ 'il R, (a;, + b)](—S) ﬁ (1 —f)

J= i

where R].=Pj/PO for j=1,2,- - -, m—1 can be ob-
tained from the m — 1 equations of Eq. (15) and s, =
Ml —).

Thus Q(s) is the product of two Laplace-Stieltjes
transforms. The waiting time moments can be obtained
by differentiating Eq. (15). (See the section on numer-
ical examples for details.)

® An estimate of CPU delay

In this paper, we assume that a CPU request is ser-
viced only when there are no channel requests. Channel
service has a higher priority than CPU service, and non-
preemptive service discipline is assumed [1]. If a CPU
service is delayed, the delay time is equivalent to the
length of time that the system is busy servicing the chan-
nels. The delay ends when the system is free again to
service CPU requests and there are no channel requests
pending.

The exact mathematical solution for the CPU delay
is rather complicated, since such a solution requires the
transient analysis of the system. In the following para-
graphs, we derive an expression for the mean CPU delay
assuming that a stationary condition exists.

Let G, (x) be the probability that the delay period
consists of at least n channel services, the total service
time of the first » batches is at most x, and at the end of
the nth service k calls are present in the queue (m calls =
1 channel request). Then

m—1
G, (x)= 2 G, (x).
k=0
If G,(x) can be determined, then the conditional

probability G (x), the CPU delay distribution given that
a CPU request is delayed, can be found by

JANUARY 1973

Gx)=73 G, (x).
n=1
Let the Laplace-Stieltjes transform be

To(s) = f " eIG, (x) .

0

Then

[Gs)= mj [Cuc ().

For n =1, i.e., the delay period consists of at least one
channel service, we have

G lx)= f e ML) Tk 1dH (y)*B (y) , (16)

where the notation * denotes convolution.
G . (x) can be obtained from Takacs {9] as follows:

m+k rx

Gux)=3 | G, (x—y)e ™[y
r=m v0
~k—r+m!']dH(y). (17)

Taking the Laplace-Stieltjes transforms of Eqs. (16)
and (17), we have

[uts) = [& L0 Ik11dH ()#B) (18)
and
m+k % N
I—\"k(s) — E Fn_“«(s)f e—(+s)y[()\y)k—r+m
+(k—r+m)]dH (y). (19)

If we introduce the generating function

Coi5:2) =S [wl9)d

k=0
then we have from Eqs. (18) and (19)
Cs,2)=d¢(s+A(1—2)) Bls +A(1—2))
Z"C, (s, z) = ¥(s + M1 = 2))

[Cnﬂ(S, z) — 'g Fn_,,(s)er(n =2,3,-"").

Hence, the generating function is:

i C (s, pw" =wi(s + A1 —2))

]

1 Fm(S)ZTW"]

0

[z'"ﬁ(sﬂ(l ~)-3

r

"= wyls +A(1—2))]. (20)

The left hand side of Eq. (20) is a regular function of
zif |z] =1, #(s) >0, and |w] < 1. In this domain the
denominator of the right hand side has exactly m roots,

COMPUTER INTERFERENCE ANALYSIS

20

W. CHANG

z=u,(s, w), (r=1, 2, - - -, m). These must also be
roots of the numerator. Thus the numerator, which is a
polynomial of degree m, is determined uniquely,

w m-1

Bs+A1—2))=F ¥ ()2 w

n=1 r=0

s

[z — (s, w)]. 21)

r=1

Since we are interested in a stationary solution for the
delay distribution, we can put z =1 in Eq. (21),

S T,0) W' = B(s) = [[1— e, (s,)] (22)

for |w| < i, and this is also true for |w| = 1, which can
be shown by analytical continuation. If we make w =1
in Eq. (22), we have

m

I(s) = 3 T, = B6) = [T 11 = 1,1, (23)

r=1

where p,(s) is the root with an absolute value less than
or equal to 1 for Z(s) = 0 of the equation

[, ()" =W(s + X1~ p.(s))) r=1,2,- - -, m.

(24)
Since the CPU services are not delayed when the sys-
tem is free from channel service, we have

00 =3 25)

as the probability that a CPU request is not delayed. If
a CPU service is delayed, then the delay distribution
G (x) is determined by inverting I'(s) from Eq. (23):

G(x)=5717—jfmr(s) & ds . (26)

Let G, be the mean CPU delay time for those CPU ser-
vices delayed by the channel operation. By definition,

Glzfxdcm. 27)

Let C, be the mean busy time of the system as the CPU
services instructions. Since CPU instructions can be
processed when the system is free from the channel ser-
vice, we can determine C, from the relation,

o,=CJIl(C,+G,). (28)
The average number of CPU instructions serviced dur-

ing C,is C /d.

The mean CPU delay time can be found by taking the
derivative of Eq. (23) and then letting s = 0:

G,=b+3 (1) 1, (0) [] [1 — 1 (0)]. (29)

r#k

Note that when s = 0, Eq. (24) yields

My (0) =W, ”’2(0) =Wy, 0, l"m(o) = w,= t 4

which were used before to determine P, forj= 0,1,- - -,
m— 1,
Since w, = 1, Bq. (29) can be simplified into

G,=b+ (1) p,/0)] 1—-w,), (30)

r#Em

where u,’(0) can be found by taking the derivative of
Eq. (24) as

mip, ()1 1, (s)

=y (s + N1 —p(s)))[1—Ap/ (s)]. (31)
With r = m and s = 0, we have
=, (0) = hf(m — \h) . (32)

Finally, we have the mean CPU delay due to channel
interference:
G,=b+] (1—w)hl(m—X\h). (33)

r<m B

If the variance of the CPU delay is needed, we must
have an expression for the second moment of the CPU
delay time distribution, i.e., G,. This can be obtained
from the second derivative of Eq. (28) as

m—1

G,=b,+m,"©) T[] 1 —wp)

k=1

e O[S O [T] -w0). G4)

kxr

From Eq. (31),
r, (0) = ¢ (N1 — w)[me," " + A\ (A (1 ~ w,))]
forr=1,2,- - m. (35)

Taking the derivative of Eq. (31), and setting r = m,
we obtain

B (0) = [m*h, — m(m — 1)B*]/ (m — Ah)®. (36)

Substituting Eqs. (35) and (36) into Eq. (34), we
obtain G,.

Numerical examples

Two numerical examples are used to illustrate how the
model can be applied to the analysis of some computer
system problems. In the first exampie, the channel inter-
ference problem for a small computer system is exam-
ined. The second example shows how the model can be
used to analyze an interference problem for large systems
—the interference of real-time jobs with batch jobs.

« Computer channel interference
A small computer executes its instructions sequentially,
as shown in Fig. 5. Because execution of an instruction

IBM J. RES. DEVELOP.

takes a variable amount of time, i.e., some instructions
require two memory cycles, some require four, etc., the
service time for an instruction can be treated as a random
variable. Let X be this variable. By the definition of the
model,

D(x)=P{X=x}.

At 7, the first channel request arrives. The computer
in this example completes execution of the current in-
struction, prepares the system to service the channel,
and switches to the channel service mode. The channel
request is serviced by one of several channel programs
consisting of a sequence of CPU and channel instruc-
tions. Since different I/O requests require different sys-
tem actions, execution time of a channel program is an-
other random variable, Z. Therefore,

H(x)=P{Z = x}.

After the channel request has been serviced, the com-
puter determines whether there are other channel re-
quests pending. If there are, the system continues to ser-
vice channel requests. If there are not, the system switch-
es back to the CPU mode. Let Y| be the time required to
prepare the system to return from the channel mode to
the CPU mode. This time is needed to restore the CPU
registers, which may have been used by the channel pro-
gram. Let Y, be the time to prepare the system to ser-
vice a channel request. This time is needed to store the
current CPU information so that when the interrupt has
been cleared, the system can resume normal processing.
Assuming that Y and Y, are small compared to Z, we
can simplify the problem somewhat by combining them
into one overall “overhead” time Y, which is the sum of
Y, and Y,. Then,

B(x)=P{Y,+Y,=x}=P{Y =< x}.

If Y, and Y, are not small, we can extend the mathe-
matical model to cover two switching time distributions,
as discussed in Appendix B.

Assume that the arrival of channel requests follows
an Erlang-2 distribution with A = 0.1, m =2,

Let the execution time distribution for the CPU in-
structions be FErlang-3 with a mean service time of 1
time unit.
d=1,m=13,

m—1

Dx)=1—3 ™ [(mx/d)’];!]

=0

.

2 :
=1-Y ™ Gx) !,

d,=[2+3-1DY3—-1)1(1/3)"=4/3,
8(s) =[3/(s +3)]%,
& (s) =3[3/(s+3)1° [-3/(s+3)"],

JANUARY 1973

CPU operation

o b

71
Channel
request #1—a»

-

Preparing
channel T Y,
operation
-y
X: CPU instruction service time
Y ,: Switching time, CPU to channel
Y, : Switching time, channel to CPU
Z: Channel program execution time
Execution
of channel zZ
program
Restoring ___ v
CPU status 1
X
X
CPU operatioh
Ty J
Channel —_—
request #2—» X

Figure 5 Computer execution sequences.

5(\) =27/(3.1)° = 0.903 ,
5'(\) =— 0.873.

Let the switching time (Y =Y, + Y,) be a constant of
six time units. The Laplace-Stieltjes transform is

B(s)=e™.
The moments are
b=6 and b,=36.

Let the channel program service times be Erlang-2
distributed with a mean of ten time units. Then

h=10,m=2,

Hx)=1—¢e""—02x e ",

h,= 150,

P(s) = [0.2/(s +0.2)]°. 21

COMPUTER INTERFERENCE ANALYSIS

The problem is to determine the waiting time distribu-
tion and the mean waiting time of the channel request.
The Laplace-Stieltjes transform of the waiting time dis-
tribution is given by Eq. (14), which is the product of
two transforms. The first one is identical to the Laplace-
Stieltjes transform of the waiting time distribution of a
single-server queue with Erlang-2 input and a general
service time distribution of H (x). Denote it by Q.(s).
Then,

Qg(s) = [(2 = M)A (=) (1 = s/s,)}]
+ [(=s+ 1) = N(s)]
= [0.1(=s) (1 — s/s,) (s + 0.2)"]
+ [(—=s 4 0.1)°(s + 0.2)* — 0.01(0.2)*],

where s, is a root to be determined from the denominator
equation, which is

(=s +0.1)*(s + 0.2)* — 0.0004 = 0.
This equation yields
s(s>+0.2 5 —0.03 s — 0.004)

2 s(s —0.155)(s" + 0.355 s + 0.025) = 0.

Thus, s, = 0.155.
Substituting the value of s, and simplifying, we have

Q,(s) = [0.645(s* + 0.4 5 + 0.04)]
+ (5°+0.355 5 +0.025) .

The first moment can be found by
—Q,' (0) =—0.645[(0.025) (0.4) — (0.04) (0.355)]
+ (0.025)"
= 4.34 time units.

The second Laplace-Stieltjes transform from Eq.
(14) is

Vis) = {le,(s) B(s) — 1]
+ (RN (=s + M) [e,(s) B(s) — 1]}
+ {[ay, + b+ R, (ay, +b6)1(=s) (1= sls,)}.
Let V(s) be written in the form
V(s) =N(s)/D(s) .
Since V(0) = 1, from L’Hopital’s rule we have
—V'(0) = [V(0)D"(0) — N"(0)]/[2D'(0)]
={a,, +2a,b+b,
+ (R /N [May+2a,b+b,)
+2(a,, +b)]
—[a,, + b+ R (a,, +b)](2s)}
22 +{2[a, + b+ R, (a,, +b)]},

W. CHANG

where
R, =\[1—¢,(s,)) B(s5))]
+ {(=s, + M e, (s) B(s,) —1]}.

Substituting the numerical values given by this example
and using the formulas given in Appendix A, we have

B(s,) =e """ =0395,
¢, (s,) =—0.050/0.097 =—0.515,
¢, (s,) = (—0.515) (0.055) (—0.873)/0.097 + 0.853
— (0.055) (—0.873) — 0.903
=0.252.

Thus, R, = 1.35.
In addition,

a,, = 10.3,
a,, = 13.35,
a,,=19.6, and
a,, = 187.35.
From these values, we find
=V’ (0) = 520.35/95.2=5.5.

Finally, the mean waiting time at the channel for the
Erlang-2 input is

W, =—-Q,(0)—V'(0) =434+ 5.5=9.84.

The mean delay to CPU instruction processing due to
channel interference can be computed as follows. First,
we determine P, from Eq. (8) or from Eq. (14) as

P,=(2—xn)/{\[a, + b+ R (a,+b)]}
=1/4.76 =0.21.
P, can be determined as
P, =R, P,=135(0.21) =0.284.
The probability that the channel queue is empty is
Q,=P,+ P =0.494.
The root w, can be determined from s, as
o, = (A—s5)/A=-055.

The mean delay to CPU instruction processing is de-
termined from Eq. (33) as

G,=6+1.55(10)/(2—1)=21.5

It is of interest to compare these results with the case
of an equivalent Poisson input. Assuming that we have
the same channel input rate in the Poisson case, we have
A=0.05and m=1.

IBM J. RES. DEVELOP.

Assuming that the service time distributions are the
same, we have

8(A) = (3/3.05)"=0.95,
a, =20, and
a,,=26.66.
The mean waiting time for the channel is
W, =0.05(150)/[2(1 — 0.05 X 10)]
+ (26.66 +36 +2 x 20 X 6)
+[220+6)]=75+58=134.

For the Poisson input case, the probability that the chan-
nel is empty is

P,= (1 —Ah)/[\(a,, +b)] =0.385.

The mean delay to CPU instruction processing due to
channel interference is

G, =6+ (10/0.5) = 26.

Thus the mean waiting time at the channel and the mean
delay to the CPU are all higher than for Erlang-2 input.

s Computer task interference
Consider a computer system processing two types of
jobs. The first type consists of real-time tasks, which must
be processed on a higher priority basis, and the second
consists of batch jobs, which can be processed by the
CPU on an as-available basis. Since some processing
time may be lost in switching between job types, it is de-
sirable to maintain a balance in some systems between
real-time processing and batch processing that will mini-
mize the time spent in switching.

Consider that real-time messages arrive randomly at
3 messages/second. Suppose that it takes a computer
system an average of 200 ms to process a message with
a service time distribution of Erlang-3 type. Thus, we
have

A=3, m=1

hy=[(3+1)/3]) k" = (4/3)(0.04) .

(Poisson input) ,
h=0.2,

Suppose that an average real-time response is satis-
factory to the customer if the mean response time 7 for
the messages is 500 ms. Thus, the mean waiting time
satisfactory to the customer is

W, =T—h=300ms.

Suppose further that the switching time is a constant
of 30 ms. Assume that we can break up a batch job into
small tasks and that each task takes d seconds to com-
plete. The problem here is to determine the time to allow
the batch task to proceed (batch task service time) for

JANUARY 1973

such a message rate. In this case, we can use the Poisson
interference model to obtain a solution:

bh=0.03, b, = 0.0009

8(s)=e™, d,=d, 8(\) = e,

From the mean waiting time formula based on Poisson
input, we have

W, =N/[2(1 — M) + [d® + 2db + b*(1 —8(N))]
=[2d+2b6(0—-8())].

Substituting the numerical values, we have

0.3=02+ [d® +2(0.03) d +0.0009(1 —&(r))]
+[2d+0.06(1 —8(\)].

We can determine the value of d numerically from the
above equation. Since the switching time here is rather
small compared to d, the first approximation for d is

0.1 =dJ2. Thus, d=0.2.
Using this value, we obtain

sS(A) =e ¥ =0.55.

Substituting this value into the equation for a second
iteration, we have

0.1 = [d* + 0.06 d + 0.0009(0.45)]
= [2d+0.06(045)],
which leads to
d*—0.14 d—0.0023=0.
The root for this equation is
d=0.156.
If we substitute this value for another iteration, we find

d=10.152.

We conclude that if we allow the batch job to be pro-
cessed for a constant 152 ms, during which no interrup-
tion is allowed for real-time processing, we can main-
tain a message response time satisfactory to the cus-
tomer’s real-time processing requirement.

Acknowledgment
I would like to thank P. H. Seaman of the IBM Data
Processing Division for many helpful comments.

References and Footnotes

1. W. Chang, “Single-server queuing processes in computer
systems,” IBM Systems Journal 9, No. 1, 36-71 (1970).

2. W. Chang and D. J. Wong, “‘Computer channel interference
analysis,” IBM Systems Journal 4,No. 2,164 -170 (1965).

3. “The Structure of System/360,” IBM Systems Journal 3,
2 (1964).

23

COMPUTER INTERFERENCE ANALYSIS

24

W. CHANG

4, L. Takacs, “Priority Queues,” Operations Research 12,
No. 1, 63-74 (1964).

5. P. H. Seaman, R. A. Lind and T. L. Wilson, “On Tele-
processing System Design— Diskfile System Analysis,”
IBM Systems Journal 7, No. 3 (1968).

6. F. Pollaczek, “Ueber eine Aufgabe der Wahrscheinlich-
keitstheorie 1,” Mathematische Zeitschrift 32, 64-100
(1930); ibid I1, 32, 729-750 (1930).

7. F. Pollaczek, “Ueber das Warteproblem,” Mathematische
Zeitschrift 38, 429-537 (1934).

8. A. J. Fabens, “The Solution of Queuing and Inventory
Models,” Technical Report No. 20, Dec. 7, 1959, Dept.
of Statistics, Stanford University.

9. L. Takacs, “Transient Behavior of Single-server Queuing
Processes with Erlang Input,” Trans. American Math. Soc.
100, 1-28 (1961).

10. D. R. Cox and W. L. Smith, “The Superposition of Several
Strictly Periodic Sequences of Events,” Biometrika 40,
1-11 (June 1953).

11. Let p be the utilization factor of the main memory for the
service of the cycle-steal requests. Let x be a given ser-
vice time when the main storage is entirely available. Let
x be the extended service time, which includes the cycle-
steal operation, then x can be computed as

x=xx+Ax c+ArAxzc)c+- - -
=x*(1+p+p2+- <)
=x*¥(1—p),

where A is the rate of the cycle-steal requests, c is the cycle
time, and p= \c.

12. J. Riordan, Stochastic Service Systems, John Wiley and
Sons, New York, New York (1962).

13. W. L. Smith, “Renewal Theory and Its Ramifications,”
J. Roy. Statist. Soc. Ser. B, Vol. 20, 243-302 (1958).

14. P. D. Welch, “On a General M/G/1 Queuing Process in
which the first customer of each busy period receives ex-
ceptional service,” Operations Research 12,No. 5, (1964).

15. L. Takacs, Introduction to the Theory of Queues, Oxford
University Press, New York, New York, 1962.

16. L. Takacs, ‘“The limiting distribution of the virtual waiting
time and the queue size for a single-server queue with re-
current input and general service times,” Sankhya, the In-
dian Journal of Statistics, Series A, Vol. 25, Part 1 (1963).

Received July 26, 1972

The author is located at the IBM Data Processing Divi-
sion, Poughkeepsie, New York 12602,

Appendix A: Derivation of the generating function
The expression for <pj()\(1 — z)) can be determined step
by step. First, if after the nth departure, there are exactly
m — 1 calls left in the queue, we need one more arrival
to start the (n + 1)th service. Thus, the condition

Y, =1

must be met for the (n + 1)th channel service to be
started. Such an event can occur in the following way.
After the nth service, the system returns to CPU pro-
cessing. Assume that i services of CPU requests have
been completed and that there are no arrivals in the
queue, but that during the (i + 1)th CPU service, one
or more calls arrive.

The probability of no arrivals during a CPU service is

P{y"=0}=fw e dD(x) =5(\) . (A1)

[

The generating function for one or more calls arriving
during a CPU service is expressed by

S Ply,=k #=3 2 f [(x)“/k 1] €7 d D (x)
k=1 k=1 0
=8(A(1—2)) —8(n). (A2)

Thus, considering all possible values of i initial services,
the generating function for one arrival after the nth de-
parture is

<p1()\(1 _Z))

s e‘”dD(x)]é [1w

kN e™dDk)

S 50T (B0 —2) —8(V)]
=[50 =) — s V[T~ 8(M)].
(A3)

Next, suppose that after the nth departure m — 2
calls are left in the queue. The n + 1th service cannot
begin until at least two more calls arrive in the queue.
Then,

Q01 =2) =3 il |2 [T) e D]

i=1

x 32 [1wk e d D)
k=1 [}

+3 OIS # [100"
i=0 k=2 [
k! e™ dD(x)
=[8(A(1—2)) =8N J(=A) & (N) z

+[1—=8(M]°
+[6(A(1—2)) —8(A) — (=A2)8 (V)]
= [1—=8(n)]. (A4)

Equation (A4) is obtained by considering two mu-
tually exclusive situations. The first is that there is one
arrival during the initial { CPU services, which may occur
during any one of the services, leaving no arrivals occur-
ing during the remaining ;i — 1 service times. This is fol-
lowed by one or more arrivals during the (i + 1)th CPU
service. The queue length is now increased to more than
m calls and the next service will be a channel operation.
The second situation is that there are no arrivals during
the first i CPU services, but at least two more calls ar-
rive during the (i + 1)th CPU service.

IBM J. RES. DEVELOP.

Note that
f (x) e d D(x) = (=\) fw (=x) ™ d D(x)
0 V]

=(=0)8@Q)

and in general
F) e™dD(x) = (N F (—x)* ™ d D(x)
0 [

= (0" 80 (AS)

Equation (A4) can also be written by comparison with
Eq. (A3) as

e, (M1 —2)) =, (M1 —2)} (—A2) 8" W)/[1 —8(N)]
+ {8(A(1 —z2)) —8(A) — (—Az) 8'(M)]
=[1-=8()]. (A6)
In general, ¢;(A\(1 —2)), for j=2, 3, - - -, m, can be
obtained from the following recursive formula:
j=1 ,
o A(1=2) =73 ¢, (M1 —2))[(A)™"
k=1
= (=8I -]
+BOI—2) =3 [(—h0)*
k=0

+k1 8PN —80)]. (A7)

Equation (A7) can be explained as follows: To have at
least j new arrivals during the CPU services, either of
two conditions may exist. Exactly & new calls (k <)
may have arrived during the initial CPU services and at
least j — k calls during the last CPU service. Or, there
may have been no new calls during any CPU service ex-
cept the last, during which j or more calls arrived.

Putting s = A (1 — z) into Eq. (A7), we have

@;(s) =§ @ () [(s —NT1G =187 (n)
+[1=8(M)]
ECEMCEINTIERN]

+[1-=8()]. (A8)

Taking the derivatives of (A8) and putting s =0, we
have the moments

a, =—p,' (0) =dI[1 —8(\)], (A9)
a,=0,"(0) = d/[1 - 3(\)], (A10)
a,=—p,""(0) = d,/[1—8(N)], (A11)
a4y =—p,' (0) = [d = A(—p,' (0)) & (M)Y/[1 =),
(A12)

JANUARY 1973

Ay = ‘qu(o) = [‘Pl//(o) (_}‘) - 2(_‘P1’(0))] 8,(}‘)
+[1—-8(\)]
+d,/[1—8(0M)], (A13)

==, (0) = [, (0) (1) = 3¢,"(0)] & (A)
+[1-8(0)]
+d,/[1—8(0)]. (A14)

Appendix B: An extended model with two switching
time distributions

In the main body of this paper, we assumed that the
switching times are small compared with the channel
service times and they can be combined into one switch-
ing time function and studied in the model. However, the
mathematical model can be modified so that two switch-
ing time distributions can be included in the analysis.
Here we discuss briefly how this can be achieved.

Let B,(x) and B,(x) be the two switching time distri-
butions from the channel mode to the CPU mode and
from the CPU mode to the channel mode, respectively.
Let B,(s) and B,(s) be their Laplace-Stieltjes trans-
forms. B,(x) can be easily included in the analysis by
replacing B(A(1 — z)) in Eq. (6) by 8,(A(1 —z)). How-
ever, the generating function ¢, . (A(1—z)) will be
more complicated, since the effect of B,(x) must be in-
cluded in the analysis.

The problem can be treated as follows. Assume that
when the system switches from the channel mode to the
CPU mode, at least one CPU service is provided. Since
a CPU service is in general very short in duration, this
will not cause any significant error in the analysis. In
this case, we can consider that the first CPU service
after the system has switched from the channel mode has
a special service time distribution that includes the
switching time needed to prepare the system to serve
the subsequent CPU requests. Thus, the first CPU ser-
vice time distribution is a convolution of two distribu-
tions, B, (x) * D(x). The next and subsequent CPU re-
quests have a normal CPU service time distribution,
D(x).

The problem is now reduced to determining a set of
new generating functions, <p;':l_j(>\(1 —z)), which al-
lows the first CPU request to have a special service time
distribution.

Consider the case that after the nth channel service,
there are exactly m — 1 calls left in the queue. The
(n + 1)th channel service can be processed if there is at
least one more arrival. After the nth channel service, the
system returns to CPU service mode. There are two
possibilities. During the first CPU service period, which
includes the switching time from the channel mode to
the CPU mode, there are no arrivals but there is at least

25

COMPUTER INTERFERENCE ANALYSIS

one arrival during the subsequent CPU services, or there
is at least one arrival during the first CPU service period
and the system is to switch back to the channel mode.

The probability that there are no arrivals during the
first CPU service period is

Ply, =0t = [¢ diB,()+ D] =50 s,
0 Bl)

The generating function that there is at least one arrival
during the first CPU service period is

o0

S Ply, =kt = i jm L) k1] e dIB, (x)
k=10

k=1

D(x)]
=B, A1 —2)) 8(W (1 —2))
—B,(\) 8(N) . (B2)

Thus ¢, * (A(1 —z)) is obtained as

e, (A1 —2z2))=8,(0) 8(\) o, (M1 —2))

+ B, (A1 —2)) 8(A(1—2))

—B,(\) (N, (B3)
where ¢, (M (1 — 2)) is given by Eq. (A3).

In general, we obtain ¢* (A(1 —z)) by the follow-
ing equation:

26

W. CHANG

e (M1 —2)) =8,(N) 8(\) ¢;(M1 —2))
+§ [0 B, (0) 87 (M) .

¢ (M1 —2))
+B,(A(1—2)) B0 (1 = 2))

=3 (=087 870 . (B4)

The generating function ¢f (A (1 —z)) in Eq. (B4)
is obtained by considering all possibilities. First, there are
no arrivals during the first CPU service period but there
are at least j arrivals during subsequent CPU services.
Second, there are exactly i arrivals during the first CPU
service period, but there are at least j — i arrivals during
subsequent CPU services for all possible i values. Final-
ly, there are more than j arrivals during the first CPU
service period.

The queue-size generating function that includes two
switching time distributions is given as follows:

U@ =S P,les, (1 =2) B (1 —2))

— 1146\ (1—2))
+ [Z" =y (1 ~2))]. (B5)

The waiting time and queuing time formulas can be
similarly obtained.

IBM J. RES. DEVELOQOP.

