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Abstract: This  paper  describes a single-server  queuing  model with Erlang input, which  can  be  used for  computer  congestion  analysis. 
The model  is  intended  primarily for small  computer  systems in which  the CPU is  needed  for inputloutput  operations, which  aggravates 
the  interference problem. 

The model  provides  such  information as the  queuing  time  distribution for channel requests and  the CPU delay  due  to  channel  interfer- 
ence.  The model is illustrated by numerical  examples, and procedures  for the analysis  are  shown. 

Introduction 
In  an earlier paper [ 13, basic concepts in queuing theory 
and single-server  queuing processes with random  input 
were reviewed in terms of their applicability to  computer 
system analysis. The  server in a  computing system can  be 
any of a number of devices,  such  as a channel, CPU,  or 
communication line. Ideally,  each of these devices could 
be represented mathematically and  the  appropriate an- 
alyses applied to  determine their expected  behavior in 
a  system. Practically,  no such complete analysis is pos- 
sible because of present limitations of the queuing theory 
itself. The analysis of a complete computing  system 
would require  the solution of a network of queues, which 
is possible  only for a  few  idealized  cases.  Fruitful appli- 
cation of queuing analysis to computing systems  is there- 
fore limited to  subsystems analysis. 

Sometimes it is possible using queuing theory  to study 
the  interaction of a  combination of facilities, such  as is 
done in channel  interference  analysis [2], if the facilities 
are performing  a joint task.  Channel interference is de- 
fined as  the proportion of computer processing  time re- 
quired for  the control of channel  operations. In  the con- 
text of System/360  or  370  architecture  [3],  the  resources 
of main storage,  the CPU and  its  read-only storage, and 
the channel are required for  the control  portion of a  chan- 
nel operation. In this case, a  single-server facility can 
represent a  combination of these  hardware elements.  Ser- 
vice  time is the time  required to perform the  joint task. 
This  paper  examines  the congestion effect of this  type 
of operation. 

The assumption of random  or Poisson input [ 1 1, which 
is desirable for  its Markovian properties, may or may not 
be  warranted in computer  subsystem analysis.  If the 
input  to a server originates from a large number of sourc- 
es (e.g., many terminals  in  a large  system)  the assump- 
tion of Poisson  input  is justified.  But in this paper, a more 
general type of input, the Erlang input  process, is as- 
sumed.  The Erlang process includes the  Poisson  and reg- 
ular (constant)  inputs  as  its special cases.  The assump- 
tion of such a  general  input process is useful for the  analy- 
sis of small computing systems  where a  Poisson  input 
may not  be justified.  Such small computing systems (in- 
cluding minicomputers) may be  used as stand-alone  com- 
puters  or  as  controllers,  concentrators,  or  front-end pro- 
cessors  for  the large  machines. 

The assumption of an Erlang process may have  an 
additional benefit. In  some computing system  analyses, 
the  approximate waiting times  determined  analytically 
may be  higher  than those obtained by simulation, par- 
ticularly in the high utilization  range [5].  The analytic 
results may be somewhat improved if a  more  general 
input  distribution, such  as  an Erlang process, is assumed. 

A single-server  queuing process with  Erlang  input  and 
general service time distribution has been  investigated 
by F. Pollaczek [6,7], A. J. Fabens  [8], L. Takacs [9] 
and  others. Both steady-state and transient (time-depen- 
dent) solutions have been determined. 

The queuing model investigated in this paper accom- 
modates two  types of service  requests.  The first arrives 13 
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Figure 1 Erlang rn functions. 

at a single-server system in an Erlang process.  The sec- 
ond is always present in the  system and is served  on an 
as-available  basis by the  server.  The  stationary queuing 
time  and the  queue size  distributions are determined. 

Erlang  processes 
Let calls arrive  at a  single-server system  at  the  instants 
T,, T ~ ,  . . ., T,, . . ., where  the interarrival  times T,+, - 

T, ( n  = 0, 1, . . ., 7” = 0) are identically distributed in- 
dependent  random variables with distribution  function 

P{T,+,  - T, 5 x} = F m ( x )  = 1 - e-””(x)’ / j!  
m-1 

j = U  

( x  1 0 )  . 

Then  the arrival pattern of calls is an Erlang  process. 
Let  the  average interarrival  time  be a. Then a = m/A. 

The arrival rate  is 1/a = h/m. 
The  parameter m determines  the  shape of the Erlang 

distribution, as illustrated in Fig. 1. In  the  case of Erlang 
input with m = 1, F ,  ( x )  is an exponential  distribution: 

F ,  ( x )  = 1 - e - h x .  

This is identical with the Poisson process of density A. 
In the  case of Erlang m = 00, the arrival process is 

regular: 

Intermediate Erlang-m  values yield a family of inter- 
arrival  time  distribution curves. If an arrival pattern 
ranges between random  and  regular arrivals,  the  input 
process  can be treated  as  one of the Erlang family. 

The probability  density  function 

f, ( x )  = d‘, (x ) /dx  

is plotted in Fig. 1 for  four values of the  parameter m. 
The  rth moment of the Erlang m distribution is given by 

a,= [ ( r f r n -  I ) ! / ( m -   l ) ! ] ( ~ x / r n ) ~ ,  

where a, = a is the  average interarrival  time. 
Since  the Erlang process includes the  Poisson  process 

as  its  special case, it is useful in modeling a  wide class of 
input  environments. Consider  the following input pro- 
cesses in a computing  system. 

Small number of input  sources: An 1/0 device,  such 
as a card  reader,  transmits its data  to  the  computer in 
two  phases.  The first phase includes  control of the mech- 
anism,  checking it  for device-ready  condition, etc.;  and 
the  second  phase is the  actual transmission of data. 
During  the first phase, control  information is passed 
through the control unit and the channel  between the 
device  and  the  processor.  The first phase of the  operation 
involves  irregularly  occurring service  requests  (control 
calls) to  the  system (i.e., a combination of main storage, 
the  CPU  and  its read-only storage,  the  channel,  and  the 
control unit).  The  second  phase is highly repetitive  or 
periodic,  with the arrival of calls for  service  (data  trans- 
mission) being more regular. 

Cox and  Smith [IO] show  that if a system  serves  more 
than  ten input  sources, with each  source generating calls 
regularly, the pooled input  (the sum of all inputs)  to  the 
system can be  treated  as a Poisson  process.  However, 
for a small computer system where  two  or  three  sources 
are  active,  such  an input cannot  be  treated  as  Poisson 
without  introducing some  error in the modeling. Thus 
a more general type of input is preferred. 

Queues in series: A computer  system can  be struc- 
tured  as a network of queues. For  example, terminals 
are  attached  to communications  lines,  communications 
lines to line control adaptors,  the  adaptors  to a multi- 
plexor channel,  and  the multiplexor channel  to  the com- 
puter.  Queues can be formed at  each of the  servers  or  at 
buffering devices.  The  output of one  server often forms 
the  input  to  the  next  server so that calls arrive in one 
queue immediately after  they  have  been serviced in the 
preceding  queue.  If the first server (with independent 
service  times) is heavily utilized, the arrival pattern  for 
the  second  queue is then nearly  equal to the distribution 
function of the  service time in the first queue.  When we 
treat  the  second  queue  as a  single-server process,  the ar- 
rival pattern is approximately  Poisson  only if the  ser- 
vice time of the preceding server  is  distributed exponen- 
tially. 

Buffer e fec t :  When bits are assembled  into bytes  or 
bytes into words, buffering is required.  Although char- 
acters may arrive randomly, the  service  requests of as- 
sembled words are distributed  as  an Erlang process.  This 
is so mathematically because  the convolution of m ex- 
ponential functions  (assembled  from m randomly  arriv- 
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ing characters)  generates an Erlang-m process (time  be- 
tween  service  requests of assembled words). 

Computer interference 
In  computer  systems,  the activities of moving information 
back  and  forth between the computer main storage and 
an  input/output  device  constitutes  an I/O operation. The 
least costly design to accomplish an I/O operation in a 
small computer is that of the so-called  "programmed- 
I/O." The 1/0 device  is  attached  to an interface, which 
is  connected  to  the  processor  unit,  as  shown in Fig. 2. 
The 1/0 operation, including device selection,  mechan- 
ical control if required, and data  transfer,  is accom- 
plished by an 1/0 program stored in main storage.  During 
the whole I/O operation,  the  CPU  is  dedicated com- 
pletely to  that single 1/0 activity. The  CPU  data  path 
is  used to accomplish the  data  transfer  between  the 
device  and main storage. Thus  interference with the  CPU 
by the 1/0 activity is great  and  its  duration may be  rather 
long with slow  devices. This 1/0 scheme may not be 
practical for a high-speed device,  such  as a fast  disk,  but 
it is rather popular with low-activity devices,  such  as 
teletypes  (TTY's). 

Some channel hardware is added  to  modern small 
computers  to permit more  than  one  device  to  be  active 
at  one time and  to  increase  the time that  the CPU can 
be used to perform other tasks. But the  CPU is required 
to  supervise channel  activity  and to control the  input/out- 
put  operation. However,  after  the  inputloutput  operation 
has been started, the CPU is released for  other  tasks 
during the mechanical operation of the  device  or, in the 
case of some channel  facilities,  during the  actual  data 
transfer.  The  data  transfer may be  completed by using 
another  data  path and by "cycle-stealing.'' Cycle-stealing 
is the  use of a main storage  cycle  to  accommodate a data 
transfer  request, with the  fetch/store  request  to main 
storage by the  CPU delayed for  one cycle. Cycle-stealing 
prolongs the  service time of a CPU instruction.  During 
the cycle-steal operation,  the channel  must update  the 
storage  addresses  and  keep an account of the actual num- 
ber of bytes  transferred. 

Most small computing systems,  such as IBM System/3, 
1 130, 1800, and small models of System/360  and 370 
use cycle-stealing to accomplish high-speed I/O data 
transfer. In large systems,  the cycle-stealing  method is 
also  used  but the channel is made  more  self-contained 
to  further  reduce  CPU interference. 

The interference  problem in a small computer like the 
one  shown in Fig.  3 can be simplified and  formulated as 
follows. Let  the  CPU with main storage be represented 
by a single server facility. This  server handles two kinds 
of input  requests: all channel service  requests  (pro- 
grammed-I/O, channel control,  etc.)  except  for cycle- 
stealing requests  and all CPU service  requests.  Assume 
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Figure 2 Simple computer with programmed I/O. 

Figure 3 Model of computer interference. 
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that  the arrival of channel service  requests follows an 
Erlang-m process.  The  service discipline is assumed to 
be  first-come,  first-served.  Although in reality the channel 
is served on a priority  basis, the mathematical  solution 
for priority queues first requires  the solution of a model 
with no priority, with the  results then modified to  account 
for  the effects of priority [ 11. CPU  requests  are assumed 
to always  be present  and  to  be  served  on  an as-available 
basis whenever  the  server is not busy  servicing the first 
type of requests.  The cycle-stealing requests  are included 
in the  service times of both  types of services and prolong 
the required service times. As an example, assume  that 
main storage is busy because of cycle-stealing for 20 
percent of the time. A gross  estimate of the prolonged 
service time is obtained by dividing the original service 
time by a factor of 1 - 0.2 [ 111. For a more accurate 
estimate,  one can  use  statistical methods based on re- 
newal theory  [12,13]. 

In  some computing systems, if special  registers are not 
provided, the updating of control  and status information 
for  the channels  requires the  use of common  registers. 
Thus  the  contents of the registers  must  be stored prior 
to servicing  a  channel request  and  restored  after comple- 
tion of channel service [2]. A single server with two  ser- 
vice  time  distributions has been  investigated by 
Welch [ 141. 

We  assume in this paper  that a  channel request arriv- 
ing when the channel request  queue is empty must wait 15 
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H ( x ) ,  B ( x )  H ( x )  : Channel service 
Erlang Channel queue time distribution 
input 

Single server B ( x )  : Overhead service 
time distribution 

D ( x ) :  CPU service time 
distribution 

(All service times include 
cycle-steal elongations.) request 

Figure 4 Queuing model with Erlang  input. 

an additional  time  increment for  the  system  to  store reg- 
isters and to handle  other housekeeping functions before 
the  service of the channel  can commence; a request ar- 
riving when there  is a queue waits for  its  turn  but it is not 
required to wait for this system  set-up time. 

In  Systeml370  the  system  is  interrupted  from  an in- 
progress CPU operation  to  service a channel request 
almost  immediately, the delay being at most  a  memory 
reference cycle. However,  some  systems  can  be  prepared 
to  service a  channel request only after execution of the 
current  CPU  instruction  has  been completed. Since  the 
mathematical model assumes a general service time dis- 
tribution for a CPU service,  both of these  cases  can be 
analyzed. 

Analytic model 
The model assumes  that all service time  distributions 
(including the extension due to the cycle-stealing  inter- 
ruptions)  are known. Let H (x)  be  the channel service 
time  distribution, D(x)  the  CPU  service time  distribu- 
tion,  and B ( x )  the  extra  set-up  (overhead) time  distri- 
bution, which includes the time  needed to  prepare  the 
system  to  serve  the channel requests. 

The Laplace-Stieltjes transforms of these  service time 
distributions  are: 

r m  

+(s) = " e-sz d H ( x )  , 
0 

e-sx dD (x) , and 

We  further define the rth moments  as 

h,  = lom x' d H ( x )  , 

d,  = Iom x' dD (x) , and 

b,  = Iom x' dB ( x )  . 

The first moments, h = h, ,  d = d, ,  and b = b, ,  are  the 
mean service times. 

The arrival of channel .requests  to  the  system is as- 
sumed  to follow an Erlang-m process with an  input  rate 
of h/m. The queuing system is shown in Fig. 4. CPU re- 
quests  are serviced on  an as-available  basis and  are  as- 
sumed  to  be  present continuously  throughout the  opera- 
tion. This  fact is shown in Fig. 4 by a feed-back  loop 
from the  output of the system. A CPU request is gener- 
ated as  soon  as a previous CPU service is completed. 

Queue length  distribution 
Let c,, be  the  channel  queue length  immediately after 
the nth departure of a  channel request.  The  stochastic 
behavior of the  queue  size with  Erlang-m  input  can be 
deduced immediately if we know the  stochastic  behavior 
of the  process defined in the following paragraphs [9]. 

Suppose  that calls arrive  at a counter  at  the  instants 
7,'' r2', . . . T,', . . ., where  the interarrival  times T,+~' - 
7,' ( n  = 1, 2, . . .; T~' = 0) are identically distributed, 
independent random  variables  with  distribution  function 

i.e., (7,') is a Poisson  process.  The calls will be  serviced 
by a single server in batches of m in the  order of their ar- 
rival. The  server  is allowed to  service  CPU  requests if 
and  only if fewer than  m calls are  present in the queue. 
The  service times of the  batches  are  assumed to be in- 
dependent, positive  random  variables. The  service time 
distribution is H (x).  The first batch  that  is  to  be serviced 
after  the completion of a CPU request must wait an  extra 
time period, which is  distributed according to B (x). 

If we identify every mth arrival in the Poisson process 
with an arrival  in the Erlang process, i.e., 7, = T,,', and 
if we identify the  service time of the  nth  batch in the Pois- 
son  process with the  service time of the nth  channel re- 
quest in the Erlang process,  then  the  Poisson  process is 
reduced  to  an Erlang  process. This is so because  F,(x) 
is the mth iterated convolution of F (x) with itself. 

Comparing  these  two  processes,  we find that  the wait- 
ing time  follows the  same probability  law in both pro- 
cesses.  The  departures  also agree. However,  the  queue 
lengths are different but  are related by 

where 6,' is  the  queue  size at the  nth  departure in the 
Poisson  process and L.$,'/mJ means  the  greatest integer 
less  than  or equal to e,,'/m. 

These  two  processes  have  the  same waiting time  dis- 
tribution and  the  queue sizes are  also related. If we find 
the solution for  the  Poisson  process,  the Erlang process 
can  immediately be determined. It is an  advantage  that 
the  Poisson  process  has  more  Markovian  properties. 
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The  Poisson  process  can be  solved as follows: 
Let v, be  the  number of calls ( m  calls = 1 channel re- 

quest)  that  arrive during the  service of the  nth  batch, 
where v, is a conditional random variable that  depends 
on  the  service time. Assume  that  the  nth  batch is serviced 
following the  service of the n - l th batch. Let X, be  the 
service time of the nth  batch. The probability  distribu- 
tion of v, can be found as 

( 1 )  

Since  the calls arrive in a Poisson stream,  we  have 

P { v ,  = i} = lom [ ( A ~ ) ~ / i ! ] e - ~ ~  d H ( x )  . ( 2 )  

The generating  function for v, can  be written as 

Equation (3) implies that if we replace s by A (  1 - z )  in 
$(s) ,  the  transform of service time  distribution, we ob- 
tain the generating  function of v,. Similarly, if we  let v,’ 
be  the number of calls that  arrive during the  set-up time 
and  the  service time of the nth batch,  the generating  func- 
tion v,‘ can be found  as 

= + ( A ( l  - z))P(A(l - 2)) . (4 1 
(The notation  indicates  convolution.) 

The  queue lengths t,,,‘ and 6,’ and  the  number of 
calls  received  during the  service of the  (n + 1 )th  batch 
are  related by 

where y, is the total  number of new  calls that arrived  dur- 
ing the servicing of CPU requests  after  the  service of 
the nth batch,  and y ,  must be  such  that 

7, + E , ’  2 m .  

Equation (5) can be explained as follows. When 
6,’ 1 m, the  next  batch (i.e., the  (n + 1)th  service) can 
be  serviced immediately, the  queue length is reduced by 
m (i.e., the  nth  batch  departs) and the  number of new 
calls  increasing the  queue size is v,+,. When 6,’ < m, the 
(n + 1 )  th  batch  cannot be  serviced  immediately, since 
fewer  than m calls are in the  queue.  The  system is then 
allowed to service  the CPU requests. During these ser- 
vices, if more than m - 8,’ new calls arrive,  the  system 
can  switch to  the  service of the (n + 1 )th batch. Since 
in this case  the  system  requires a set-up period, v , + ~ ‘  
represents  the  number of new arrivals  during the set-up 
time and  the  service time of the ( n  + 1)th batch. 
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Let p{[,’ = j }  = Pj be the probability of the  queue 
length in the  system  at  the nth departure.  Define  the gen- 
erating  function 

x 

U ( z )  = x PjZ” 
j = O  

If the  stationary solution for  queue length exists, [,+,’ 
and 5,’ must have  the  same marginal distribution. Their 
generating functions must also  be  the  same. 

Let pj(A ( 1  - z )  ) be  the conditional  generating func- 
tion of y,, given that  the  nth  departure  leaves m - j  calls 
in the  queue so that  exactly j new calls must arrive be- 
fore  the ( n  + l ) th channel service can begin. Its deriva- 
tion is given in Appendix A. 

From  the  theorem  that  the generating  function of the 
sum of two  independent variables is the  product of two 
generating functions, it follows that 

m-1 

+ 2 Pjcp,-j(A(I - 2 ) )  t’P(A(1 - z ) )  
j = O  

$ ( A ( l  - z ) ) / z ” .  (6) 

The first term of Eq. (6) represents  the condition that 
5,’ 5 m and  the  second  term, 6,’ m. 

From  Eq. (6) ,  

U ( z )  = 2 Pjzj [ ~ p , _ ~ ( A ( l  - 2 ) )  P(A(1 - z))  - 11 
m-1 

j = O  

$ ( h ( l   - z ) ) / [ z ~ - $ ( A ( ~ - z ) ) I .  (7 1 
From Rouche’s theorem [ 151, the equation 

zm - $(A(l - z ) )  = 0 

has  exactly m roots, ol, 02, . . ., om, on  and inside the 
unit circle JzJ = 1. In particular, om = 1 .  Since U ( z )  is 
a  regular  function of z if 121 5 1 ,  the  numerator of Eq. (7)  
must also  vanish at  these  roots.  Thus 

2 Pjo/[pm,(A(l  - m i ) )  P(h(1  - o i l )  - 11 
m-I 

j = O  

$ ( A ( l  - w i ) )  = 0 ( i =  1, 2 ,  . . ., m )  . (8 )  

Equation (8) is a set of m equations with m unknowns, 
Po,   PI ,  . . ., Pm-,, which can  be  determined uniquely by 
solving these m equations. In  the  case of om = 1, L’Hop- 
ital’s rule can be  used to  obtain  an  equation.  Since 
U(1)  = 1 ,  we  have 
m-1 2 ~ ~ [ - p ; - ~  (0,) + blA = m - Ah.  
j = O  

Equation (9)  determines  the generating  function for 
6,’. The  queue length in the Erlang process can  be  de- 
termined by the relationship [, = L[, ’ /m].  17 
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Queuing time distribution 
Queuing  time is defined as  the sum of the waiting time in 
the channel queue  and  the  service time of the channel 
request.  Let T ( x )  be the queuing  time  distribution,  and 
let the Laplace-Stieltjes  transform be 

P X  

e(s) = J ” e-sx d ~ ( x )  . 

Then O(s) can be determined  as follows. Since  the  queue 
length at a departure point is equal to  the new calls that 
arrived  during the preceeding  queuing  time  period [ 1,9], 
we have 

O(A(1 - z ) )  = U ( z ) .  

If we p u t s  = A ( l  - z )  in ( lo ) ,  we have 

O(s) = x PjAm”(-s  + A ) ’ [ P ~ - ~ ( S )  P ( s )  - 11 +(s) 

n 

m-1 

j = O  

+ [ (-s + A ) m  - Arn+(s)] . (11) 

Since the queuing  time  distribution is the  same in both 
processes,  the transform  given by Eq. (1 1 ) holds for 
Erlang  input. 

Waiting time  distribution 
Let W (x) be  the waiting time  distribution in the channel 
queue. Let  the Laplace-Stieltjes  transform  be 

~ ( s )  e - s x  d ~ ( x ) .  

Since  the queuing  time is the sum of the waiting time 
and the  service time, O ( s )  can be  obtained  from O(s) as 

O(S) = O(s) /+ (s ) .  (12) 

Two special cases  are of practical interest: deriving 
the Laplace-Stieltjes transform of the waiting time dis- 
tribution for a Poisson  input  and for  the Erlang-2  input. 
Finally, an expression  for O ( s )  is given for Erlang-m 
input. 

Case 1: Poisson input 
Since  the  Poisson input is a special case of Erlang  input 
with m = I ,  we  have  from  Eqs. (1 1)  and  (12) 

This can  be  written  as 

Since O(0) = 1, we have by applying L’Hopital’s  rule 

P O =  ( 1  - hh)/[X(“cp,’(O)) + Ab], 

where -pl’ (0) can  be  obtained  from cp, (s). TO simplify 
18 the  expression, let 
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ujr = (-l)rpj(r)(o) . 
(A few expressions  for ujr are given in Appendix  A.) 
Thus n ( s )  can be written as 

O ( s )  = 
(1 - hh)s  1 --cp,(s) P ( s )  

s - A + h$(s) (all + b)s  
’ 

( s )  is the  product of two Laplace-Stieltjes transforms, 
the first of which is identical to  the Laplace-Stieltjes 
transform of the waiting  time  distribution  in a single- 
server  system with a Poisson  input  and general service 
times H ( x )  , and the  second  has  the  form 

r1  - (O1(s) P(s) l / [ (a , ,  + b ) s l .  

Let W ,  and W ,  be the first and  the  second moment of 
the waiting time  distribution. They  can be  obtained as 
follows: 

w, = -O’(O) = 
Ah, + al, + b, + 2a,,b 

2(1 -Ah)  2(a, ,  + b )  
’ 

3 ( 1  - A h )  ’ 2(1 -Ah)’ 

aI3 + b3 + 3a,,b + 3allb2 
3 (all f b)  

+ 
Ah, x aI2 + b, + 2a,,b 

+ 

2 ( 1  - Ah) 2(a,, + b )  
* 

Case 2: Erlang-2 input 
For  the  case of Erlang input with rn = 2 , 0 ( s )  can  be  de- 
termined from 

- P,h[cp,(s) P ( s )  - 11 +P,(-s+A)[cp,(s)  P ( s )  - 11 - 
(-s + A)’ - A’+(s) 

Let R ,  = PJP, .  R ,  can be  obtained from  Eq. (9) as 

R ,  = 

where s1 = A ( 1  - w , )  . 

ital’s rule, we have 

O(s) = 

Arl -(Pp(sl) P(s,)l 
(-3, + A )  [cp,(s,) P(s, )  - 11 

’ 

Since PO can  be  determined  from n(0) = 1 and  L’Hop- 

(2 - Ah) A(-s) (1 - s/s,) 

(-s + A ) 2  - A’+(s) 

[p,(s) P ( s )  - 11 + (R, /A)  (-s + A )  [ c p , ( ~ )  P ( s )  - 11 
[a,, + b + R , ( a , ,  + b)l(-s)(l  - s l s , )  (14) 

Again O(s) is the  product of two Laplace-Stieltjes 
transforms. The first one  is identical to the Laplace- 
Stieltjes  transform of the waiting time  distribution of a 
single-server queue with Erlang-2 input  and a general 
service time  distribution. Thus  one  can  conclude  that  the 

X 
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waiting time in the channel queue  consists of two parts: 
the first part is the  same  as  that of a  single-server queue 
with an Erlang  input and a  general service time  distribu- 
tion, and  the  second  part is a delay that  depends  on  the 
CPU service time  and the switching time. 

Case 3: Erlang-m input t 
~ An  expression  for n(s) for Erlang-m input is: 
i m-l , 

m- 1 

j=l 

where Rj = Pj /Po  for j = 1, 2, ' . ., m - 1 can be ob- 
tained  from  the m - 1 equations of Eq. ( 1  5 )  and si = 

Thus n(s) is  the  product of two Laplace-Stieltjes 
transforms. The waiting time  moments  can be obtained 

ical examples  for  details.) 

h ( 1  - oi). 

P by differentiating Eq. ( 1  5 ) .  (See  the section on numer- 

A n  estimate of CPU delay 
In this paper,  we  assume  that a CPU request is ser- 
viced  only  when there  are no channel  requests.  Channel 
service  has a higher  priority than CPU service,  and non- 
preemptive  service discipline is assumed [ 11 .  If a CPU 
service is delayed,  the delay  time is equivalent to  the 
length of time that  the  system is busy  servicing the chan- 
nels. The delay ends when the  system is free again to 
service CPU requests  and  there  are  no channel requests 
pending. 

The  exact mathematical  solution for  the  CPU delay 
is rather complicated,  since such a  solution requires  the 
transient analysis of the system. In  the following para- 
graphs,  we  derive  an expression for  the mean CPU delay 
assuming that a stationary condition  exists. 

Let G n k ( x )  be the probability that  the delay  period 
consists of at  least n channel services,  the total service 
time of the first n batches is at most x ,  and at  the  end of 
the  nth  service k calls are  present in the  queue  (m calls = 

1 channel request).  Then 
m-1 

If G,(x) can  be  determined,  then  the conditional 
probability G (x), the  CPU delay  distribution given that 
a CPU request is delayed, can be found  by 
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G(x)  = 2 G , ( x ) .  
n=1 

Let  the Laplace-Stieltjes transform be 
r m  

For n = 1, i.e., the delay  period consists of at least  one 
channel service,  we  have 

GI, ( x )  = 1 e-"[ ( A ~ ) ~ / k ! l d H  ( y ) * B  ( y )  , (16)  

where  the notation * denotes convolution. 
G, ( x )  can be obtained from  Takacs [9] as follows: 

G n k ( x )  = Gn-lr(x - y)e-hy[(hy)k-r+rn 
m+k x 

r=m 0 

+ (k  - r + m)!]dH(y) . (17) 

Taking  the Laplace-Stieltjes transforms of Eqs. (1  6 )  
and ( 1 7 1 ,  we have 

rlkw = [ e - ' A + s ' y [ ( h y ) " / k ! ~ d ~ ( y ) * B ( y )  (18)  

and 

rnkw = 2 rn-lr(S) e-'A+s)y[(hy)k-r+rn 
m t k  

r=m 0 

The left  hand  side of Eq. (20) is a  regular  function of 
z if IzI 5 1 ,  9 ( s )  > 0, and I w I  < 1. In this  domain the 
denominator of the right hand  side has exactly  m roots, 19 
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z =  p r ( s ,  w),  ( r =  1 ,  2, . . ., m ) .  These must also be 
roots of the numerator. Thus  the  numerator, which is a 
polynomial of degree m, is determined uniquely, 

m-1 

Z m  P ( ~  + h(i  - d) - x r,&) z r  Wn 
n=1 r = O  

m 

= [ z  - PJS, w ) l  . (21) 
r= 1 

Since we are  interested in a stationary solution for  the 
delay distribution, we  can  put z = 1 in Eq.  (21), 

m m 

2 T,(S) wn = P ( s )  - n 11 - CLr(s, w ) l  (22) 
n= 1 r= 1 

for IwI < 1,  and this is also true  for IwI = 1, which can 
be  shown  by analytical  continuation. If we make w = 1 
in Eq. (22), we  have 

m 

rb) = x r,(S) = P b )  - r-I [1  - cL,(s)I 3 

m 

(23 1 

where p,(s) is the  root with an  absolute value  less than 
or  equal to 1 for 9 ( s )  1 0 of the  equation 

[ p r ( s ) l r n  = $(s + A ( 1  - p r ( s ) ) )  r = 1 ,  2, . . ., m .  

n=1 r= 1 

(24) 

Since  the CPU services  are  not delayed when  the sys- 
tem is free  from channel service,  we  have 

m-1 

Q ( 0 )  = Pj (25) 

as  the probability that a CPU request is not  delayed. If 
a CPU service is delayed,  then  the delay  distribution 
C (x) is determined by inverting T(s) from  Eq. (23) : 

G(x) =- r(s) esxds .  

j = O  

2rj r --m (26) 

Let G , be  the mean CPU delay  time for  those CPU ser- 
vices  delayed by the channel  operation. By definition, 

G I  =I x dG(x) . (27 1 

Let C,  be the mean  busy  time of the  system  as  the CPU 
services instructions. Since CPU instructions  can  be 
processed when the  system is free  from  the channel ser- 
vice, we  can  determine C ,  from  the relation, 

Q, = C,/  (C, + G I  1 . (28) 

The  average  number of CPU instructions  serviced dur- 
ing C, is C,/d. 

The mean CPU delay  time  can  be  found  by taking the 
derivative of Eq. (23)  and  then letting s = 0: 

G I  = b + 2 (-1) p,'(O) n [ 1  - p*. , (O)] .  
m 

(29) 
r= 1 r r k  

Note  that when s = 0, Eq. (24) yields 

PI ( 0 )  = 0 1 '  P 2 ( 0 )  = o,, . . * 7  P,@) = om = 1 7 

which were used  before to  determine Pj fo r j  = 0,1,  . . -, 
m -  1.  

Since om = 1,  Eq. (29) can  be simplified into 

where p,' (0) can  be  found by  taking the  derivative of 
Eq. (24) as 

m[Pr(s)1"-' P , ' b )  

= $ ' ( s + A ( 1   - p r b ) ) ) [ l  - A p r ' ( s ) l .  (31 )  

With r = m and s = 0, we  have 

-pm'(0) = h / ( m  - Ah) . (32) 

Finally,  we  have  the  mean CPU delay due to channel 
interference: 

G I  = b + n ( 1  - o r ) h / ( m  - A h ) .  (33)  
r< m 

If the  variance of the CPU delay is needed,  we  must 
have  an  expression  for  the  second moment of the CPU 
delay  time  distribution, i.e., G,. This  can be  obtained 
from  the  second  derivative of Eq. (28) as 

m-1 

G ,  = b, + Pm"(o)  n (1 - O k )  
k= 1 

m-1 

+ (-P,'(O))[ x (-p;(O) ) ]  n ( l  - * (34) 
m-1 

r= 1 k f r  

From Eq. (3 1 ) , 

~ ~ ' ( 0 )  = + ' ( A ( l  - wr)) / [morrn-'  + X$'(h(l - w, ) ) l  

f o r r = 1 , 2 ;  . . , m .  (35) 

Taking  the derivative of Eq. (3 1 ) , and setting  r = m, 
we obtain 

p,"(O) = [m2h, - m ( m  - l ) h 2 ] / ( m  - Ah)3 .  (36) 

Substituting Eqs. (35) and (36) into  Eq. (34),  we 
obtain G,. 

Numerical  examples 
Two numerical examples  are used to illustrate  how the 
model can  be applied to  the analysis of some  computer 
system problems. In  the first  example, the channel  inter- 
ference problem for a small computer  system is exam- 
ined. The  second  example  shows how the model can  be 
used to  analyze  an  interference problem for large systems 
-the  interference of real-time jobs with batch  jobs. 

Computer  channel interference 
A small computer  executes  its  instructions sequentially, 
as  shown in  Fig. 5. Because  execution of an  instruction 
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takes a variable amount of time, i.e., some  instructions 
require  two memory cycles,  some  require four, etc., the 
service time for an  instruction can be  treated  as a random 
variable. Let X be  this variable. By the definition of the 
model, 

D ( x )  = P { X  s x}. 

At T ~ ,  the first channel request arrives. The computer 
in this  example  completes  execution of the  current in- 
struction, prepares the  system to service the  channel, 
and  switches to  the channel  service mode. The channel 
request is  serviced by one of several channel  programs 
consisting of a sequence of CPU and channel  instruc- 
tions. Since different 1/0 requests require different sys- 
tem  actions,  execution  time of a channel  program  is an- 
other random  variable, Z .  Therefore, 

H ( x )  = P { Z  5 x} . 
After  the channel  request  has  been  serviced, the com- 

puter determines whether  there  are  other channel re- 
quests pending. If  there  are,  the system  continues to ser- 
vice channel  requests. If there  are  not,  the  system switch- 
es hac$ to  the  CPU mode. Let Y ,  be the time  required to 
prepare  the  system  to  return from the channel mode to 
the CPU mode. This time  is  needed to  restore  the  CPU 
registers, which may have been  used by  the channel pro- 
gram. Let Y, be  the time to prepare the  system  to  ser- 
vice a channel  request. This time is needed to  store the 
current CPU information so that when the interrupt  has 
been  cleared, the  system can resume normal processing. 
Assuming that Y 1  and Y ,  are small compared to 2, we 
can simplify the problem somewhat by combining them 
into  one overall  “overhead”  time Y ,  which is the  sum of 
Y ,  and Y,. Then, 

B(x)  = P { Y l  + Y, 5 x} = P{Y 5 x}. 

If Y ,  and Y,  are  not small, we  can  extend  the mathe- 
matical model to  cover two switching time  distributions, 
as discussed in Appendix B. 

Assume  that  the arrival of channel requests follows 
an Erlang-2  distribution with A = 0.1, m = 2. 

Let  the execution  time  distribution for  the CPU in- 
structions be Erlang-3 with a mean service  time of 1 
time unit. 

d = l , m = 3 ,  
m-1 

~ ( x )  = 1 - 2 e-(m’d)z [ (mx/d)j/j !I 
j = O  

2 

= 1 - 2 e (3x)j/j!,  -31 

j=O 

d,= [(2 + 3  - 1)!/(3 - 1)!](1/3)’=4/3,  

S(s) = [3/(s + 3)13, 

S ’ ( S )  = 3[3/(s + 311’ [-3/(s + 3),], 
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Figure 5 Computer execution sequences. 

S(A) ~ 2 7 / ( 3 . 1 ) ~  = 0.903, 

S’(A) =- 0.873, 

Let  the switching time (Y = Yl + Y, )  be a constant of 
six time  units. The Laplace-Stieltjes  transform is 

p ( s )  = 2 ’ .  

The moments are 

b = 6  and b , = 3 6 .  

Let  the channel program service times be Erlang-2 
distributed with a mean of ten  time units. Then 

h =  1 0 , m = 2 ,  

H(x) = 1 __ - 0.2x 

h, = 150, 

$(s) = [0.2/(s + 0.2)12. 21 
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The problem is to  determine  the waiting time  distribu- 
tion and the mean waiting time of the  channel  request. 
The Laplace-Stieltjes  transform of the waiting time  dis- 
tribution is given by Eq. (14). which is the  product of 
two transforms. The first one is identical to  the Laplace- 
Stieltjes  transform of the waiting time  distribution of a 
single-server queue with Erlang-2 input  and a general 
service time  distribution of H ( x ) .  Denote it by f12,(s). 
Then, 

s2&) = [(2 - A~)A(-s) (1 - s/s,)] 

+ [ (-s + A)' - A'+(s)] 

= [0.1 (-s) (1 - s l s , )  (s + 0.2)'] 

+- [(-s + 0.1)"s + 0.2y - 0.01(0.2)'], 

where s, is a root  to be  determined  from the  denominator 
equation, which is 

(-s + O,l)'(s + 0.2)' - 0.0004 = 0 .  

This equation yields 

s(s3 + 0.2 s2 - 0.03 s - 0.004) 

M S ( S  - 0.155) ( s2  + 0.355 s + 0.025) = 0 .  
Thus, s1 = 0.155. 

Substituting the value of s, and simplifying, we have 

R,(s) = [0.645 ( s2  + 0.4 s + 0.04)] 

+ (s2 + 0.355 s + 0.025) . 
The first moment  can  be  found by 

-flE'(0) = -0.645[ (0.025) (0.4) - (0.04)  (0.355)] 

+ (0.025)' 

= 4.34 time  units. 

The  second Laplace-Stieltjes  transform  from Eq. 
(14) is 

V ( s )  = {[cp,(s) P ( s )  - 11 

+ (R, /A)( -s  + A)[cp,(s) P ( S )  - 111 

f { [a', + b + R ,  (a,, + 611 (-s) ( 1  - s l s , ) }  . 
Let V ( s )  be  written in the  form 

V ( s )  = N ( s ) / D ( s )  . 

Since V ( 0 )  = 1, from L'Hopital's rule we have 

-V'(O) = [V(O)D"(O) - N"(0)]/[2D'(0)] 

= {a" + 2 a,,b + b, 

+ (R, /A)  [A(a,, + 2 a ,$  + b 2 )  

+ 2(a,, + h )  3 
- [a,, + b + R , ( a , ,  + b)1(2/sI)} 

22 + {2[a,, + b + R , ( a , ,  + 6111 3 
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where 

R ,  = A[l - ( P p b l )  P(s,)l 
+ {(-SI + A)[cp,(s,) P b , )  - 111. 

Substituting the numerical  values  given by this  example 
and using the  formulas given in Appendix A, we have 

-fi(O.l55) - 
P ( s , )  = e - 0.395, 

cp, (s,) = - 0.050/0.097 = -0.5 15 , 

p2(s1) = (-0.515) (0.055) (-0.873)/0.097 + 0.853 

- (0.055) ( 4 . 8 7 3 )  - 0.903 

= 0.252. 

Thus, R ,  = 1.35. 
In addition, 

a,, = 10.3, 

a,' = 13.35, 

a', = 19.6, and 

= 187.35. 

From  these  values, we find 

-V'(O) = 520.35/95.2 = 5.5.  

Finally, the mean waiting time at  the channel for  the 
Erlang-2 input  is 

W ,  =-fl,'(O) - V ' ( 0 )  = 4.34 + 5.5 = 9.84. 

The mean  delay to  CPU instruction  processing due  to 
channel interference  can  be  computed  as follows. First, 
we determine Po from  Eq. (8) or  from  Eq. (14) as 

Po = (2 - Ah) /{A[az ,  + b + R , ( a , ,  + bI l1  
= 1/4.76 = 0.21 . 
PI can  be  determined  as 

P ,  = R ,  Po = 1.35(0.21) = 0.284. 

The probability that  the channel queue is empty is 

Q, = Po + PI = 0.494. 

The  root o, can  be  determined from s, as 

O, = ( A  - s,)/A = -0 .55 .  

The mean  delay to  CPU instruction  processing is de- 
termined  from Eq. (33) as 

G , = 6 +  1.55(10)/(2- 1 ) = 2 1 . 5  

It  is of interest to compare  these  results with the  case 
of an equivalent Poisson input.  Assuming that  we  have 
the  same channel input  rate in the  Poisson  case,  we  have 
A = 0.05 and rn = 1.  
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Assuming that  the service  time  distributions are the 
same, we have 

S ( h )  = (3/3.05)3= 0.95, 

a,, = 20 , and 

a, ,  = 26.66. 

The mean waiting time for the  channel is 

W ,  = 0.05(150)/[2(1 - 0.05 X l o ) ]  

+ (26.66 + 36 + 2 x 20 x 6)  

+ [2(20 + 6 ) ]  = 7.5 + 5.8 = 13.4. 

For the  Poisson  input case,  the probability that  the chan- 
nel is empty is 

P o =  ( 1  - h h ) / [ h ( ~ , ,  + b ) ]  = 0.385. 

The mean delay to  CPU instruction  processing  due to 
channel  interference is 

G I  = 6 + (lOl0.5) = 26. 

Thus  the mean waiting time at  the channel  and the mean 
delay to  the  CPU are all higher than for Erlang-2 input. 

Computer task interference 
Consider a  computer  system  processing two  types of 
jobs.  The first type consists of real-time tasks, which must 
be processed  on  a higher priority basis, and the second 
consists of batch jobs, which can be processed by the 
CPU on  an  as-available basis. Since  some  processing 
time may be lost in switching between job  types, it is de- 
sirable to maintain a balance in some systems between 
real-time processing  and  batch  processing that will  mini- 
mize the time spent in switching. 

Consider  that real-time messages arrive  randomly at 
3  messages/second. Suppose  that it  takes a computer 
system an  average of 200 ms to process  a  message with 
a  service time distribution of Erlang-3 type. Thus, we 
have 

A =  3, m = 1 (Poisson  input) , 

h = 0.2, h, = [ (3 + 1)/3] h’ = (4/3)  (0.04) . 

Suppose  that an  average real-time response is satis- 
factory  to the customer if the mean response time T for 
the messages is 500 ms. Thus, the mean waiting time 
satisfactory to  the  customer is 

W l = T - h = 3 0 0 m s .  

Suppose  further  that the switching time is a constant 
of 30 ms. Assume that we  can  break up a  batch job into 
small tasks and that  each task  takes d seconds  to com- 
plete. The problem here is to determine  the  time to allow 
the batch  task to proceed (batch task  service time) for 

such a message rate. In this case, we can  use the Poisson 
interference model to obtain a solution: 

h = 0.03, b, = 0.0009, 

S(s) = e-ds, d, = d2, S ( A )  = e - 3 d .  

From  the mean waiting time  formula based on  Poisson 
input, we have 

Wl=Ah,/[2(1 - A h ) ]  + [ d ’ + 2 d b + b 2 ( l  - S ( h ) ) ]  

+ [2 d +  2 b(1 - S ( h ) ) ] .  

Substituting the numerical values,  we have 

0.3=0.2+  [d’+2(0.03)  d+0.0009(1 -S (A) ) ]  

t [2 d +  0.06(1 - S ( X ) ) ] .  

We can  determine  the  value of d numerically from  the 
above equation. Since  the switching time here is rather 
small compared to d, the first approximation for d is 
0.1 = d/2.  Thus, d = 0.2. 

Using this value, we obtain 

S ( h )  = = 0.55 .  

Substituting this value  into the equation for a second 
iteration, we have 

0.1 = [d’ + 0.06 d + 0.0009(0.45)] 

t [2 d +  0.06(0.45)] , 

which leads to 

d2 - 0.14 d - 0.0023 = 0 .  

The root  for this equation is 

d=0 .156 .  

If we substitute this value for  another iteration, we find 

d =  0.152. 

We conclude that if we allow the batch job  to  be pro- 
cessed for a constant 152 ms, during which no  interrup- 
tion is allowed for real-time processing,  we  can main- 
tain a  message  response  time  satisfactory to  the  cus- 
tomer’s  real-time  processing  requirement. 

Acknowledgment 
I would like to thank P. H .  Seaman of the IBM Data 
Processing  Division for many helpful comments. 

References  and Footnotes 
1 .  W.  Chang,  “Single-server  queuing  processes  in  computer 

systems,” IBM Systems Journal 9, No.  1,  36-71  (1970). 
2. W.  Chang  and D. J. Wong,  “Computer  channel  interference 

analysis,” IBM Systems Journal4,No. 2, 164-170  (1965). 
3.  “The  Structure of System/360,” IBM Systems Journal 3,  

2 (1964). 23 

LNALYSIS JANUARY 1973 COMPUTER  INTERFERENCE P 



4. L.  Takacs,  “Priority Queues,” Operations  Research 12, 

5. P. H. Seaman, R. A. Lind and  T. L. Wilson, “On  Tele- 
processing System  Design- Diskfile System Analysis,” 
IBM  Systems  Journal 7, No. 3 (1968). 

6. F. Pollaczek,  “Ueber  eine Aufgabe der Wahrscheinlich- 
keitstheorie I,” Mathematische  Zeitschrift 32, 64 - 100 
(1930); ibid 11, 32, 729-750  (1930). 

7. F. Pollaczek, “Ueber  das Warteproblem,” Mathematische 
Zeitschrift 38,429-537  (1934). 

8. A.  J.  Fabens,  “The Solution of Queuing and  Inventory 
Models,” Technical  Report No. 20, Dec. 7, 1959, Dept. 
of Statistics, Stanford University. 

9. L. Takacs,  “Transient Behavior of Single-server  Queuing 
Processes with  Erlang Input,” Trans.  American  Math.  Soc. 

10. D. R. Cox  and W. L. Smith, “The Superposition of Several 
Strictly Periodic  Sequences of Events,” Biometrika 40, 
1 - 1 1  (June 1953). 

1 1 .  Let p be the utilization factor of the main memory for  the 
service of the cycle-steal requests.  Let x be a given ser- 
vice  time when the main storage is entirely  available. Let 
x be the  extended  service time, which includes  the  cycle- 
steal operation, then x can be  computed  as 

NO. 1,  63-74  (1964). 

100, 1-28  (1961). 

x=x*+h ,x  c + h , ( X , x : : : ~ )   c + .  . . 

= x *  ( 1  + p + p 2 + .  ‘ .) 

= x * / ( ]  - p ) ,  

where X, is the  rate of the cycle-steal requests, c is  the  cycle 

12. J.  Riordan, Stochastic  Service  Systems, John Wiley and 
time, and p = X,c. 

Sons,  New  York,  New  York (1962). 
13. W. L. Smith, “Renewal  Theory and Its Ramifications,” 

J. Roy.  Statist.  Soc.  Ser. B ,  Vol. 20, 243-302 (1958). 
14. P. D.  Welch,  “On a General M/G/l Queuing Process in 

which the first customer of each busy period receives  ex- 
ceptional service,” Operations  Research 12, No. 5 ,  (1964). 

15. L. Takacs, Introduction to the  Theory of Queues, Oxford 
University  Press,  New  York,  New  York, 1962. 

16. L.  Takacs,  “The limiting distribution of the virtual waiting 
time and  the  queue size for a  single-server queue with re- 
current  input  and general service times,” Sankhya, the In-  
dian Journal of Statistics, Series A, Vol. 25, Part I (1963). 

Received July 26, 1972 

The author is located at the IBM Data Processing Divi- 
sion, Poughkeepsie,  New York 12602. 

Appendix A: Derivation of the generating function 
The  expression  for cpj(A( 1 - z )  ) can  be  determined  step 
by  step. First, if after  the  nth  departure,  there  are  exactly 
rn - 1 calls left  in the  queue,  we need one  more arrival 
to start  the  (n + 1)th service.  Thus,  the condition 

Y ,  2 1 

must be met  for  the (n + 1 )th channel service  to  be 
started.  Such  an  event  can  occur in the following way. 
After  the  nth  service,  the  system  returns  to CPU pro- 
cessing. Assume  that i services of CPU requests  have 
been completed  and that  there  are no arrivals in the 
queue,  but  that during the ( i  + 1)th  CPU service,  one 

24 or more calls arrive. 
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The probability of no arrivals  during a CPU service is 

P{y ,  = 0 }  = J-  e-’= d D ( x )  = 6 ( h )  . 
0 

The generating  function for  one  or more calls arriving 
during  a CPU service is expressed by 

m x P { y , = k }  z k =  [ (Ax ) ’ / k ! ]  e - ” d D ( x )  
k=l  k=l  

=6(A(l - z ) )  - S(A).  (A21 

Thus, considering all possible values of i initial services, 
the generating  function for  one arrival after  the nth  de- 
parture is 

Next,  suppose  that  after  the nth departure rn - 2 
calls are left in the queue. The n + 1 th  service  cannot 
begin until at  least  two more calls arrive in the queue. 
Then, 

X zk 1 [ ( h x ) ” / k ! ]  d D ( x )  
k = l  

m m r m  

+ [6(A)li 2 zk 
i = O  k=Z 0 

f k !] e-“ d D ( x )  

= [6(A(l - z ) )  - S(A)] (-A) S ’ ( h )  z 
+ [ l  - 6(A)I2 

+ [S(A(l - z ) )  - S(A) - (-”Xz)G’(A)] 

+ [ l  - S(A)] . (A41 

Equation (A4) is obtained  by  considering two mu- 
tually exclusive  situations. The first is that  there  is  one 
arrival  during the initial i CPU services, which  may occur 
during any  one of the  services, leaving no arrivals occur- 
ing during the remaining i - 1 service times. This is fol- 
lowed by one  or  more arrivals  during the (i + 1 )th  CPU 
service. The  queue length is now increased  to  more than 
rn calls  and the  next  service will be a  channel  operation. 
The  second situation is that  there  are  no arrivals  during 
the first i CPU services, but at  least  two  more calls ar- 
rive during the (i + 1) th CPU service. 
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Note  that 

= (-A) S‘(A)  

and in general 

[ (AX)’ 
d D (x) = (-A) ( - X ) k  e-Ax d D (x) 

IC IOm 
= (-A) S ( A ) .  k ( k )  (A5 1 

Equation (A4) can also  be written by comparison with 
Eq. (A3) as 

p,(A(l - z ) ) = p l ( A ( l  - z ) ) ( - A z )  s’(A)/[l  - - 6 ( A ) I  

+ [S(A(l - z ) )  - S ( h )  - (-Az) S’(A)I 

+ [ l  - S ( A ) ]  . (A61 

In  general, pj(A(l - z ) ) ,  f o r j =  2, 3 , .  . ., m, can  be 
obtained  from  the following recursive formula: 

pj(A(l - z ) )  = E cpk(h(l -z))[(-~z)’-~ 
j-1 

k = l  

+ ( j - k ) ! ]  S’-k’(A)/[l - S ( A ) ]  

+ [S(A(l - z ) )  - E [(--hz)’ 

+ k ! ]  S‘”’(A)]/[l - S ( A ) ]  . (A7 1 

j-1 

k=O 

Equation (A7) can  be explained as follows: To  have  at 
least j new arrivals  during the  CPU  services,  either of 
two conditions may exist.  Exactly k new calls (k < j )  
may have arrived  during the initial CPU services  and  at 
least j - k calls during the  last CPU service. Or, there 
may have been no new calls during any CPU service ex- 
cept  the  last, during whichj  or  more calls arrived. 

Putting s = h (1 - z )  into Eq. (A7),  we have 

cpj(s) = 2 pi(s) [ (s - A ) j - i / ( j  - i ) ! ]  S’-”(A) 
j-1 

i=1  

+ [ l  - 6(A)] 
j-1 

i=O 

+ [ l  - S(A)]  

+ [ l  - S(A)]  

+ dJ[l - S(A)l 

aZ3 = -p,”’ ( 0 )  = [-p,”’(O) (-A 

[ l  - S ( A ) ]  

Appendix B: An extended  model with two switching 
time distributions 
In  the main body of this paper, we assumed  that  the 
switching  times are small compared with the channel 
service times and they  can be combined into  one switch- 
ing time  function and  studied in the model. However,  the 
mathematical model can be modified so that  two switch- 
ing time  distributions can be  included in the analysis. 
Here  we  discuss briefly how this  can be achieved. 

Let B, (x) and B ,  (x) be  the two  switching  time  distri- 
butions from  the channel  mode to  the  CPU mode and 
from  the CPU mode to  the channel mode, respectively. 
Let &(s) and &(s) be their Laplace-Stieltjes trans- 
forms. B , ( x )  can be easily included in the analysis by 
replacing P(h(1  - z ) )  in Eq. (6)  by P,(A(l - z ) ) .  HOW- 
ever,  the generating  function cpm-j ( A  ( 1 - z )  ) will be 
more complicated, since  the effect of B ,  (x) must be in- 
cluded in the analysis. 

The problem can  be  treated  as follows. Assume  that 
when the system switches from  the channel  mode to  the 
CPU mode,  at  least  one CPU service is provided. Since 
a CPU service is in general very short in duration, this 
will not cause  any significant error in the analysis. In 
this case, we can consider  that  the first CPU service 
after  the  system  has switched from  the channel  mode has 
a  special service time  distribution that includes the 
switchi.ng time needed  to  prepare  the  system  to  serve 
the  subsequent  CPU  requests.  Thus,  the first CPU ser- 
vice  time  distribution is a  convolution of two distribu- 
tions, B , ( x )  :,, D ( x ) .  The  next and subsequent CPU re- 
quests  have a normal CPU service time  distribution, 
D ( x ) .  

The problem is now reduced  to determining  a set of 
new  generating functions, cp:-j(h ( 1 - z )  ), which al- 
lows the first CPU request  to  have a  special service time 
distribution. 

Consider  the  case  that  after  the nth  channel service, 
there  are exactly m - 1 calls left in the queue. The 
( n  + 1)th channel service  can be processed if there is at 
least  one  more arrival. After  the nth channel service,  the 
system  returns  to CPU service mode. There  are two 
possibilities. During  the first CPU service period, which 
includes the switching  time from  the channel  mode to 
the  CPU  mode,  there  are  no arrivals but  there is at  least 25 
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one arrival  during the  subsequent  CPU  services, or there 
is at  least  one arrival  during the first CPU service period 
and  the  system is to switch  back to  the channel mode. 

The probability that  there  are no arrivals  during the 
first CPU service period is 

P { y ,  = 0} = e d[Bl(xj :I: D ( x ) ]  =&(A) S(A) . 
1nm (BI  1 

The generating  function that  there is at  least  one arrival 
during the first CPU service period is 

5 P { y ,  = k }  zk = 2 Î  [ (Ax)' /k!]  d [ B ,  ( x )  
k=l k=l 0 

:* D ( x ) ]  

= P , ( A ( l  - z ) )  S(A(1 - z ) )  

- P l ( A )  S(A) . (B2)  

Thus pI* ( A (  1 - 2 ) )  is obtained as 

'PI * ( h ( l  - z ) )  = P , ( h )  S(h)  c p , ( A ( l  - z ) )  

+Pl(A(l -z)j S(A(1 - z ) )  

- & ( A )  S(A) , (B3 

where 'p, ( A ( 1  - z ) )  is given by Eq. (A3). 

In general, we obtain pj* ( A  ( 1  - z )  ) by the follow- 
ing equation: 

26 
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+ [ ( -A)' / i!]  P," '(h) S"'(A) . 
j-1 

i=l  

c P j - i ( w  - 2 ) )  

+Pl(A(l - z ) )  S(A(1  - z ) )  

- P l ( i ) ( A )   S I i ' ( A )  . (B4) 
j-1 

i=n 

The generating  function (pj* ( A  ( 1 - z )  ) in Eq. (B4) 
is obtained  by  considering all possibilities. First,  there  are 
no arrivals  during the first CPU service  period  but  there 
are  at least j arrivals  during subsequent CPU services. 
Second,  there  are  exactly i arrivals  during the first CPU 
service period, but  there  are at least j - i arrivals during 
subsequent CPU services  for all possible i values.  Final- 
ly, there  are more  than j arrivals  during the first CPU 
service period. 

The queue-size  generating  function that includes two 
switching  time  distributions is given as follows: 

m--l 

U ( z )  = pj z j ['P,, * ( A ( 1  - z ) )  P,(A(l - z ) )  
j = O  

- 1 1  $ ( A ( 1  - z ) )  

+ [ z m - $ ( A ( l  - z ) ) ] .  (B5) 

The waiting time  and  queuing  time  formulas  can  be 
similarly obtained. 
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