
A. A. Dubrulle

Solution of the Complete Symmetric Eigenproblem in a
Virtual Memory Environment

Abstract: Algorithms for the complete symmetric eigenproblem are studied from the viewpoint of performance in a virtual memory
environment. The preferred algorithm is based on tridiagonalization and the implicit QR algorithms. Implementation factors that affect
execution time are discussed.

Introduction
Virtual memory and paging devices have considerably
simplified the development of programs operating on
large data arrays. Storage management problems that
were left to the programmer’s ingenuity are now auto-
matically dealt with by the system.

However, some precautions must be taken in order to
implement algorithms that are efficient in the context of
virtual memory with paging. This question is of particu-
lar importance in the solution of matrix problems [11.
When designing a program involving matrix operations,
the choice of the algorithms is guided not only by nu-
merical considerations, such as stability, accuracy, and
count of arithmetic operations, but also by other factors
more intimately related to the virtual memory. A “good”
algorithm should result in a program that minimizes the
number and the extent of the virtual memory sweeps
required in referring to the elements of the matrices in-
volved.

In this paper, a few methods for the solution of the
complete symmetric eigenproblem are examined in a vir-
tual memory context, and the implementation of the pre-
ferred algorithm is studied. Additional considerations
are also taken into account:

that performance of the algorithm is also optimal in a

that extra programming effort required by virtual mem-
real memory environment.

61 2 ory considerations is minimal, and

that the overall legibility of the resulting program is
good in the sense that the code closely reflects the
numerical algorithm.

Matrices are assumed to be stored row-wise as is the
case in PL/I and BASIC. However, techniques similar to
those described here apply as well to FORTRAN [1] (ma-
trices stored column-wise). Experiments were run on an
IBM System/3, Model 6 using the BASIC software paging
facilities.

Choice of method
Two methods are considered for their numerical proper-
ties of stability, accuracy, and reliability [2] : Jacobi’s
method with threshold, and a combination of House-
holder’s tridiagonalization with the implicit QR algo-
rithm. These methods are briefly described below
(detailed information is provided in the references).

Jucobi’s method with threshold
The matrix is diagonalized by means of similarity trans-
formations [3,4].

Given a positive threshold, each off-diagonal element
of the matrix that is larger than the threshold in absolute
value is annihilated in turn by a similarity transformation
based on a plane rotation. For an off-diagonal subscript-
ed element (i , j) , this implies the transformation of rows
and columns i and j of the matrix. Once all off-diagonal

A. A. DUBRULLE IBM J . RES. DEVELOP.

elements are smaller than the threshold, this threshold is
decreased and the above procedure is repeated. The
whole process is iterated until the threshold is negligible
in terms of machine precision.

The eigenvectors are obtained by forming the product
of the plane rotations involved in the diagonalization.
The ultimate convergence of the process is quadratic.

For a matrix of order n, the minimum storage require-
ments are:

One one-dimensional array of n (n + 1)/2 locations
for the symmetric matrix, and
One (n X n) array, where the matrix of eigenvectors
is constructed.

This widely known method is quite attractive for its
elegance and its compactness. Yet, one can see the
problems it raises in a virtual memory environment:
there are extensive sweeps of the memory for each plane
rotation, that is, the transformation of two rows and two
columns of the matrix. When forming the matrix of the
eigenvectors, extra sweeps are required from the array
of the matrix to the array of the eigenvectors and back,
and also within the array of the eigenvectors
(transformation of two rows for each plane rotation).
These sweeps are at the kernel of the iterative process.

Householder’s tridiagonalization and implicit QR
The original matrix is first reduced to a symmetric tridi-
agonal matrix by orthogonal similarity transformations
based on Householder’s matrices [5 , 21. The resulting
tridiagonal matrix is then diagonalized by using the QR
(or QL) algorithm with implicit shift [6, 71. The ultimate
convergence of the QR algorithm is cubic.

The matrix of eigenvectors is built by forming the
product of the Householder matrices of the tridiagonali-
zation stage and the plane rotations of the QR algorithm.

In a real memory environment, this method is the
most efficient for the treatment of the complete eigen-
problem.

For a matrix of order n, the storage requirements are:

One two-dimensional array of n2 locations for the ma-
trix of eigenvectors, which initially contains the sym-
metric matrix (see Ref. 5 , procedure tred2), and
Two one-dimensional arrays of n locations for the di-
agonal and subdiagonal elements of the symmetric
tridiagonal matrix.

In addition to being more economical of storage, this
method presents the substantial advantage that only one
large array is involved in the iterative process (QR) for
the computation of the eigenvectors. This means that the
number and the extent of the virtual memory sweeps is
more limited than in the Jacobi algorithm. One more fac-
tor in favor of the QR algorithm is better convergence
properties.

9 Remarks on inverse iteration for the eigenvectors
A third possibility was considered because no operation
on large arrays was imbedded in an iterative process: a
combination of tridiagonalization and QR for the eigen-
values, and Varah’s inverse iteration for the eigenvec-
tors [8].

Although this approach leads to a program sometimes
as efficient as one based on the QR algorithm, it presents
serious drawbacks: The resulting program is about twice
as voluminous as the program based on tridiagonaliza-
tion and QR, and the storage requirements are higher
than for the Jacobi method. Furthermore, the orthogon-
ality of the eigenvectors is not guaranteed, the eigenvec-
tors corresponding to clustered eigenvalues may be
poorly determined.

The preferred algorithm is thus based on tridiagonali-
zation and the QR algorithm for the computation of the
eigenvalues and eigenvectors.

Implementation of the tridiagonalization - QR
method

Tridiagonalization
Let A be a symmetric matrix. Its reduction to tridiagonal
form can be expressed by the following:

A‘’’ = A,

A‘k+l’ - (kl ik’ (*I ”P A P , k = Q ; . . , n - 3 , (1 1

where A‘”’ is a symmetric matrix that is tridiagonal in its
last k rows and where P”’ is the Householder matrix
that reduces the (n - k)th row of A(k) to tridiagonal
form. is the resulting tridiagonal matrix similar
to A.

P‘”’ is orthogonal and of the form
p‘k’ = I + a(kJv(kJv(k)T

where a‘”’ is a scalar and v(”’ a vector chosen to annihilate
the pertinent elements of row (n - k) of A‘”’

Equation (1) is equivalent to

- A‘“’ + w hT + h wT, ~ ‘ k + 1 1 -

where

w = (y(k’y(k’ and

h = A‘“’v‘“’ + [(V ~ “ ’ ~ A (~ ’ V (~ ’) / ~] W . (3 1

(Superscripts applicable to w and h have been omitted
for clarity.)

Since the successive A‘”’’s are symmetric, only their
lower triangular part is formed, including the diagonal.

Equation (2), rewritten as

sly" = ai: + wihj + wjhi , 61 3

NOVEMBER 1972 EIGENPROBLEM IN A VIRTUAL MEMORY

shows that, once vectors w and h are computed, the ele-
ments of the array containing A‘“’ can be modified to
produce A‘”’” in the order that best suits the structure
of the virtual memory, that is, row-wise. The main com-
putational part of Eq. (3) is the calculation of A‘”’v“’.

v ‘ ~ ’ is defined by

ui(”’ = uZ”,~, 1 I i < n - k - 1 ,
(IC) - (k) (”1 vi - u,-”,~-P , i = n - k - 1 ,

ui(”) = 0 otherwise,

with
n-k-I

= - sign (an-k,,-k-l)[(”1 2
i = l ‘k’)211‘2 .

Since the last (k + 1) components of v(“) are zero, the
multiplication A‘”V”’ involves the leading principal sub-
matrix of A‘”’ of order (n - k - 1) only. To efficiently
perform the multiplication, one would like to address
each pertinent element of the lower triangular part of
A‘k’ once and only once, the matrix being swept row-wise.

This can be achieved as shown in the sequence of
BASIC statements below, where N is the order of the
matrix, A, the array of A‘”’, V, the array of v‘“), X, the
array of A‘“’v‘”’, and M represents (n - k - 1).

1 F O R I = I T O M
2 s = o
3 T = V (I)
4 F O R J = l T O I - l
5 U = A (I , J)
6 X(J) = X(J) + U*T
7 S = S + U*V(J)
8 N E X T J
9 X(1) = S + A(1, I)*T

10 NEXT I

In the implementation of the tridiagonalization pro-
cess, it is essential for good performance that a separate
one-dimensional array be allocated for vector v‘”’, al-
though its elements can be retrieved from the (n - k)th
row of the array containing A‘“’. The nonzero parts of
w and h are stored in one-dimensional arrays, where the
diagonal and subdiagonal elements of the resulting tri-
diagonal matrix are stored as they are obtained. Once
the matrix has been reduced to tridiagonal form, the
product of the Householder transformations is formed
as a first step in the construction of the matrix of eigen-
vectors. This product is computed in the array used for
the A‘”’s. In order to allow this product to be expressed
in terms of row operations, the product PC’’ P‘” . . . P‘n-3)
(premultiplying matrices) is formed, which eventually
leads to the matrix of left eigenvectors (transpose of the

61 4 matrix of eigenvectors).

A. A. DUBRULLE

When the off-tridiagonal part of the (n - k - 1) row
of A‘“) is negligible in terms of machine precision, it
is advantageous to skip a transformation and to write

this purpose. The transformation is skipped when

A(“+’) = - . The following simple test can be used for

fl is ry i = l (u:2k,i).‘] + fl {(a:!“,,-k-l)7] =

(”1
fl {(an-k,n-”-1)2} 9

where fl { } denotes values obtained by machine float-
ing-point computation.

9 QR algorithm for a symmetric tridiagonal matrix
The following is the QR form of the implicit QL algo-
rithm of [6,7]. The shift at the kth iteration is u ‘ ~ ’ ,

tridiagonal matrix, and {di‘k’; i = 1 , . . ., n} are the diag-
onal elements. At the kth iteration, the shift is chosen
to be the eigenvalue of the bottom 2 X 2 principal sub-
matrix that is closer to d,‘“’. When e,‘”) can be consid-
ered as negligible, d,(” is taken as an eigenvalue and the
order n of the matrix is reduced by one (by neglecting
the last row and column). This process is repeated on
the successive reduced matrices until the whole matrix
is diagonalized. The formulas reflecting one iteration are

{ei‘”; i = 2 , . . . , n} are the subdiagonal elements of the

c1 = SI = 1, q, = dl‘”’ - u‘“), u1 = 0 .
hi = ci- ,ei‘“),

pi = si-lei , (“1

e,=1 - (Pi2 + qj-1 1 9

‘“+I1 - 2 1/2

si =pi le!”+’) 1 - 1

ci = qi/ei-l , ‘“il)

gi = dit; - ui-l ,

ti = (di gi)s i + 2c,hi,

ui = S i t i ,

(k) -

d(”+l) =
z ” 1 gi + ui 7

qi = Cifi - h i ,
dn(”+l) = dn(”) - (k+l) =

‘n’ en 4 , ;

where i = 2, . . ., n.
This QR transformation consists of performing on the

tridiagonal matrix (n - 1) similarity transformations
based on plane rotations. The plane rotations apply to
pairs of consecutive rows and columns of the matrix,
taken in their natural order: (1, 2), (2, 3) , . . a. The ith
plane rotation is defined by the parameters ci+, and si+,.

The matrix of left eigenvectors is obtained by pre-
mukiplying the matrix of accumulated transformations

IBM J . RES. DEVELOP.

generated in the tridiagonalization step by plane rotations
such as

This is a favorable situation from a virtual memory
viewpoint: The array of eigenvectors is modified row
wise and the virtual memory sweeps are quite limited in
number since the rows transformed by each plane rota-
tion are adjacent.

The formulas describing the QR iteration show that
practically no performance improvement is to be expect-
ed from a special formulation of the algorithm for virtual
memory.

Remurks on implementation
It should be noted that no algorithmic modification of
the method was necessary for an adaptation to a virtual
memory environment. The critical points are:

The use of the same array for the original matrix and

All operations involved in the tridiagonalization being

The construction of the matrix of left eigenvectors, and
A special implementation of the matrix-vector product.

These implementation details do not affect the perfor-

the matrix of eigenvectors,

performed row-wise,

mance of the method in a real memory environment.

Computation of the eigenvalues only
For the eigenvalues only, the advantage of the tridiagon-
alization-QR is substantially increased, since no opera-
tion on a large array is imbedded in the iterative process.
Furthermore, there is no need to form the product of the
transformations involved in the tridiagonalization stage.

Since no (n X n) array is needed for the eigenvectors,
program efficiency is increased if the symmetric matrix
is represented by the element of its lower triangular part
packed row-wise in a one-dimensional array of n(n + 1)
12 locations.

The matrix-vector multiplication then becomes

NOVEMBER 1972

1 K = O
2 F O R I = l T O M
3 s=O
4 T = V (I)
5 F O R J = l T O I - 1
6 K = K + l
7 U = A (K)
8 X(J) = X(J) + U*T
9 S = S + U*V(J)

10 NEXT J
11 K = K + l
12 X(1) = S + A(K)*T
13 NEXT I

Note on FORTRAN implementation
In this case, matrices are stored column-wise. The ap-
proach described for the tridiagonalization is still valid
if all the operations formulated in terms of the rows of the
lower part of the A‘”’’s are now thought of in terms of
corresponding columns of the upper part of these ma-
trices.

The matrix of right eigenvectors is constructed by
forming the product P(n-3) P(n-2) . . * P‘O’ and then by
postmultiplying this product by the transposes of the
above QR plane rotations. All these operations are per-
formed column-wise.

Experimental results
In general, the time savings obtained by using the com-
bination of tridiagonalization-QR rather than Jacobi’s
method are very substantial. These savings are highly
dependent on the size of the arrays, the size of the vir-
tual memory page and other characteristics of the sys-
tem used.

Test runs were performed on an IBM System13 Mod-
el 6 with a main memory of 16,000 bytes. Each page of
the virtual memory has a capacity of 51 floating-point
short precision words.

With arrays allowing for a maximum matrix order of
25, the combination tridiagonalization-QR was about
five times as fast as Jacobi’s method for random ma-
trices of order 20.

References
1. C. B. Moler, “Matrix Computations with Fortran and Pag-

ing,” Communications ACM 15, No. 4 (April, 1972).
2. J. H. Wilkinson, The Algebraic Eigenvulue Problem, Claren-

don Press, Oxford, 1965.
3. J. Greenstadt, “The Determination of the Characteristic

Roots of a Matrix by the Jacobi Method,” Mathemuticul
Methods for Digital Computers, Vol. I, Editors Ralston and
Wilf, John Wiley & Sons, New York, 1960.

4. H. Rutishauser, “The Jacobi Method for Real Symmetric
Matrices,” Handbook for Automatic Computation, Vol. 11,
Linear Algebru, Editors Wilkinson and Reinsch, Springer,
Berlin, 197 1. 61 5

EIGENPROBLEM IN A VIRTUAL MEMORY

5. R. S. Martin, C. Reinsch, and J. H. Wilkinson, “Household- 8. G. Peters, and J. H. Wilkinson, “The Calculation of Speci-
er Tridiagonalization of a Symmetric Matrix,” Handbook for fied Eigenvectors by Inverse Iteration,” Handbook for Anto-
Automatic Computation, Vol. 11, Linear Algebra, Editors matic Computation, Vol. 11, Linear Algebra, Editors Wilkin-
Wilkinson and Reinsch, Springer, Berlin, 1971. son and Reinsch, Springer, Berlin, 1971.

6. A. Dubrulle, “A Short Note on the Implicit OL Algorithm
for Symmetric Tridiagonal Matrices,” kumevische Mathe-
mcrtik, 15, p. 450 (1970). Received June 2, 1972

7. A. Dubrulle, R. S. Martin, and J. H. Wilkinson, “The Im-
plicit QL Algorithm,” Handbook for Automatic Computa-
tion, vel. 11, Linear ~ d i ~ ~ ~ ~ Wilkinson and The author is locuted at the IBM Data Processing Divi-
Reinsch, Springer, Berlin, 197 1 . sion Development Center, Palo Alto, California. 94301

61 6

A. A. DUBRULLE IBM J . RES. DEVELOP.

