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Solution of the Complete  Symmetric  Eigenproblem in a 
Virtual  Memory  Environment 

Abstract: Algorithms for the  complete symmetric eigenproblem  are  studied  from  the  viewpoint of performance in a virtual  memory 
environment.  The  preferred  algorithm is based on tridiagonalization and the  implicit QR algorithms.  Implementation  factors that affect 
execution  time  are  discussed. 

Introduction 
Virtual  memory  and paging devices  have considerably 
simplified the  development of programs  operating on 
large data  arrays.  Storage management  problems that 
were left to  the programmer’s  ingenuity are now auto- 
matically dealt with by the system. 

However,  some  precautions must  be taken in order  to 
implement  algorithms that  are efficient in the  context of 
virtual  memory with paging. This  question is of particu- 
lar  importance in the solution of matrix  problems [ 11. 
When designing a  program involving matrix operations, 
the  choice of the algorithms is guided not  only by nu- 
merical considerations,  such  as stability, accuracy,  and 
count of arithmetic operations, but also by other  factors 
more intimately  related to  the virtual  memory. A “good” 
algorithm should  result in a  program that minimizes the 
number and  the  extent of the virtual  memory sweeps 
required in referring to  the  elements of the  matrices in- 
volved. 

In  this  paper, a few  methods  for  the solution of the 
complete  symmetric eigenproblem are examined in a vir- 
tual  memory context,  and  the implementation of the pre- 
ferred algorithm is studied.  Additional considerations 
are also taken  into  account: 

that performance of the algorithm is also optimal in a 

that  extra programming effort required by virtual mem- 
real memory  environment. 

61 2 ory considerations is minimal, and 

that  the overall legibility of the resulting  program is 
good in the  sense  that  the  code closely  reflects the 
numerical  algorithm. 

Matrices  are assumed to  be  stored row-wise as is the 
case in PL/I and BASIC. However, techniques similar to 
those described here apply as well to FORTRAN [ 1 ] (ma- 
trices  stored  column-wise).  Experiments  were run on  an 
IBM System/3, Model 6 using the BASIC software paging 
facilities. 

Choice of method 
Two methods  are considered for  their numerical  proper- 
ties of stability, accuracy, and reliability [ 2 ] :  Jacobi’s 
method with threshold, and a combination of House- 
holder’s  tridiagonalization  with the implicit QR algo- 
rithm. These  methods  are briefly described below 
(detailed  information is provided in the references). 

Jucobi’s method with threshold 
The matrix is diagonalized by means of similarity trans- 
formations [ 3,4].  

Given a  positive  threshold, each off-diagonal element 
of the matrix that is larger  than the threshold in absolute 
value is annihilated in turn by a similarity transformation 
based  on a  plane  rotation. For  an off-diagonal subscript- 
ed element ( i ,  j ) ,  this implies the transformation of rows 
and columns i and j of the matrix. Once all off-diagonal 

A. A. DUBRULLE IBM J .  RES. DEVELOP. 



elements  are smaller than  the  threshold, this  threshold is 
decreased and the  above  procedure is repeated. The 
whole process is iterated until the threshold is negligible 
in terms of machine  precision. 

The eigenvectors are obtained by forming the  product 
of the plane rotations involved in the diagonalization. 
The ultimate convergence of the  process is quadratic. 

For a matrix of order n, the minimum storage require- 
ments are: 

One one-dimensional array of n ( n  + 1)/2 locations 
for  the  symmetric matrix,  and 
One ( n  X n )  array,  where  the matrix of eigenvectors 
is constructed. 

This widely known  method is quite  attractive  for  its 
elegance and its compactness.  Yet,  one can see  the 
problems it raises in a virtual  memory  environment: 
there  are  extensive  sweeps of the memory for  each plane 
rotation, that  is,  the transformation of two  rows  and  two 
columns of the matrix.  When  forming the matrix of the 
eigenvectors,  extra  sweeps  are required from  the  array 
of the matrix to  the  array of the eigenvectors and back, 
and also within the  array of the  eigenvectors 
(transformation of two  rows  for  each plane  rotation). 
These  sweeps  are  at  the kernel of the  iterative  process. 

Householder’s  tridiagonalization  and implicit QR 
The original matrix is first reduced to a symmetric tridi- 
agonal matrix  by  orthogonal similarity transformations 
based  on Householder’s  matrices [ 5 ,  21. The resulting 
tridiagonal  matrix is then  diagonalized  by using the  QR 
(or QL) algorithm with implicit shift [6, 71. The ultimate 
convergence of the  QR algorithm is cubic. 

The matrix of eigenvectors is built by  forming the 
product of the  Householder matrices of the tridiagonali- 
zation stage and the plane rotations of the  QR algorithm. 

In a real memory environment, this  method is the 
most efficient for  the  treatment of the  complete eigen- 
problem. 

For a  matrix of order n,  the  storage  requirements  are: 

One two-dimensional array of n2 locations for  the ma- 
trix of eigenvectors,  which initially contains  the sym- 
metric matrix (see Ref. 5 ,  procedure  tred2),  and 
Two one-dimensional arrays of n locations for  the di- 
agonal and subdiagonal elements of the  symmetric 
tridiagonal matrix. 

In addition to being more economical of storage, this 
method presents  the substantial advantage  that only one 
large array is involved in the  iterative  process  (QR)  for 
the computation of the eigenvectors. This  means  that  the 
number and  the  extent of the virtual  memory sweeps is 
more limited than in the  Jacobi algorithm. One  more fac- 
tor in favor of the  QR algorithm is better  convergence 
properties. 

9 Remarks on inverse  iteration for the eigenvectors 
A  third possibility was considered because  no  operation 
on large arrays  was imbedded  in an iterative  process: a 
combination of tridiagonalization and  QR  for  the eigen- 
values,  and Varah’s inverse  iteration for  the eigenvec- 
tors [8]. 

Although  this approach leads to a program sometimes 
as efficient as  one  based  on  the  QR algorithm, it  presents 
serious  drawbacks:  The resulting  program is about twice 
as voluminous as  the program  based on tridiagonaliza- 
tion and  QR,  and  the  storage  requirements  are higher 
than  for  the  Jacobi method. Furthermore,  the orthogon- 
ality of the eigenvectors is  not  guaranteed,  the eigenvec- 
tors  corresponding  to  clustered eigenvalues may be 
poorly  determined. 

The preferred algorithm is thus based on tridiagonali- 
zation and  the  QR algorithm for  the  computation of the 
eigenvalues and eigenvectors. 

Implementation of the tridiagonalization - QR 
method 

Tridiagonalization 
Let A be a symmetric matrix. Its reduction to tridiagonal 
form  can be expressed by the following: 

A‘’’ = A, 

A‘k+l’ - (kl ik’ (*I ”P A P , k = Q ; . . , n - 3 ,  ( 1  1 

where A‘”’ is a symmetric matrix that is tridiagonal in its 
last k rows and where P”’ is the  Householder matrix 
that  reduces  the ( n  - k)th row of A(k) to tridiagonal 
form. is the resulting  tridiagonal  matrix  similar 
to A. 

P‘”’ is orthogonal  and of the  form 
p‘k’ = I + a(kJv(kJv(k)T 

where a‘”’ is a scalar and v(”’ a vector  chosen  to annihilate 
the  pertinent  elements of row ( n  - k )  of A‘”’ 

Equation ( 1 )  is equivalent to 

- A‘“’ + w hT + h wT, ~ ‘ k + 1 1  - 

where 

w = (y(k’y(k’ and 

h = A‘“’v‘“’ + [ ( V ~ “ ’ ~ A ( ~ ’ V ( ~ ’ ) / ~ ] W .  (3 1 

(Superscripts applicable to w and h have  been  omitted 
for  clarity.) 

Since  the  successive A‘”’’s are symmetric,  only their 
lower triangular part  is  formed, including the diagonal. 

Equation  (2), rewritten as 

sly" = ai: + wihj + wjhi ,  61 3 
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shows that,  once vectors w and h are computed, the ele- 
ments of the array containing A‘“’ can  be modified to 
produce A‘”’” in the  order  that best  suits  the structure 
of the virtual  memory, that is, row-wise. The main com- 
putational  part of Eq. (3) is the calculation of A‘”’v“’. 

v ‘ ~ ’  is defined by 

ui(”’ = uZ”,~, 1 I i < n - k - 1 , 
(IC) - (k) (”1 vi - u,-”,~-P , i =  n - k - 1 ,  

ui(”) = 0 otherwise, 

with 
n-k-I 

= - sign (an-k,,-k-l)[  (”1 2 
i = l  ‘k’ )211‘2 . 

Since the last (k + 1)  components of v(“) are  zero,  the 
multiplication A‘”V”’ involves the leading principal sub- 
matrix of A‘”’ of order (n - k - 1)  only. To efficiently 
perform the multiplication, one would like to  address 
each  pertinent  element of the lower  triangular part of 
A‘k’ once and  only once, the matrix being swept row-wise. 

This  can be achieved as shown in the  sequence of 
BASIC statements below,  where N is the order of the 
matrix, A, the  array of A‘”’, V, the  array of v‘“), X,  the 
array of A‘“’v‘”’, and M represents (n - k - 1 ). 

1 F O R I = I T O M  
2 s = o  
3 T = V ( I )  
4 F O R J = l T O I - l  
5 U = A ( I ,  J) 
6 X(J) = X(J) + U*T 
7 S = S + U*V(J) 
8 N E X T J  
9 X(1) = S + A(1, I )*T 

10 NEXT I 

In the implementation of the tridiagonalization pro- 
cess, it is essential for good performance that a separate 
one-dimensional array be allocated  for vector v‘”’, al- 
though its elements can  be retrieved  from the (n - k)th 
row of the  array containing A‘“’. The  nonzero  parts of 
w and h are  stored in one-dimensional arrays, where the 
diagonal and subdiagonal elements of the resulting tri- 
diagonal matrix  are stored  as they are obtained. Once 
the matrix  has  been  reduced to tridiagonal form, the 
product of the  Householder transformations is formed 
as a first step in the  construction of the matrix of eigen- 
vectors. This  product is computed in the array used for 
the A‘”’s. In  order  to allow this  product to  be expressed 
in terms of row  operations, the product PC’’ P‘” . . . P‘n-3) 
(premultiplying matrices) is formed, which eventually 
leads to  the matrix of left eigenvectors (transpose of the 

61 4 matrix of eigenvectors). 
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When the off-tridiagonal part of the ( n  - k - 1 )  row 
of A‘“) is negligible in terms of machine precision, it 
is  advantageous to skip  a  transformation and to write 

this  purpose. The transformation is skipped when 

A(“+’) = - . The following simple test  can  be used for 

fl is ry  i = l  (u:2k,i).‘] + fl {(a:!“,,-k-l)7] = 

(”1 
fl {(an-k,n-”-1)2} 9 

where fl { } denotes values  obtained by machine float- 
ing-point computation. 

9 QR algorithm for a symmetric tridiagonal matrix 
The following is the  QR form of the implicit QL algo- 
rithm of [6,7].  The shift at  the kth iteration is u ‘ ~ ’ ,  

tridiagonal matrix, and {di‘k’; i = 1 ,  . . ., n} are  the diag- 
onal  elements. At  the kth iteration, the shift is chosen 
to  be  the eigenvalue of the  bottom 2 X 2 principal sub- 
matrix that is  closer to d,‘“’. When e,‘”) can  be consid- 
ered as negligible, d,(” is taken  as an eigenvalue and the 
order n of the  matrix is reduced by one (by neglecting 
the  last row and column). This  process is repeated on 
the successive  reduced  matrices until the whole  matrix 
is diagonalized. The formulas reflecting one iteration are 

{ei‘”; i = 2 ,  . . . , n}  are the subdiagonal elements of the 

c1 = SI = 1, q,  = dl‘”’ - u‘“), u1 = 0 . 
hi = ci- ,ei‘“),  

pi = si-lei , (“1 

e,=1 - (Pi2 + qj-1 1 9 

‘“+I1 - 2 1/2 

si =pi le!”+’)  1 - 1  

ci = qi/ei-l  , ‘“il) 

gi = dit; - ui-l , 

ti  = (di  gi )s i  + 2c,hi, 

ui = S i t i ,  

(k) - 

d(”+l) = 
z ” 1  gi + ui 7 

qi = Cifi - h i ,  
dn(”+l) = dn(”) - (k+l) = 

‘n’ en 4 ,  ; 

where i =  2, . . ., n. 
This  QR transformation  consists of performing on the 

tridiagonal matrix (n - 1) similarity transformations 
based on plane  rotations. The plane rotations apply to 
pairs of consecutive rows and columns of the matrix, 
taken in their  natural  order: (1,  2),  (2, 3 ) ,  . . a. The ith 
plane  rotation is defined by the parameters ci+, and si+,. 

The matrix of left eigenvectors is obtained by pre- 
mukiplying the matrix of accumulated  transformations 

IBM J .  RES.  DEVELOP. 



generated in the tridiagonalization step by plane rotations 
such  as 

This is a favorable situation  from a virtual  memory 
viewpoint: The  array of eigenvectors is modified row 
wise and  the virtual  memory sweeps  are  quite limited in 
number  since  the  rows transformed  by each plane  rota- 
tion are adjacent. 

The formulas  describing the  QR iteration show  that 
practically no  performance improvement is to  be  expect- 
ed  from a  special  formulation of the algorithm for virtual 
memory. 

Remurks  on  implementation 
It should be noted that no algorithmic modification of 
the method  was necessary  for  an  adaptation  to a virtual 
memory  environment. The critical points  are: 

The  use of the  same  array  for  the original matrix and 

All operations involved in the tridiagonalization being 

The  construction of the matrix of left eigenvectors, and 
A special  implementation of the matrix-vector  product. 

These implementation  details do  not affect the perfor- 

the matrix of eigenvectors, 

performed  row-wise, 

mance of the method in a real memory  environment. 

Computation of the eigenvalues only 
For  the eigenvalues  only, the  advantage of the tridiagon- 
alization-QR is substantially increased,  since  no  opera- 
tion on a large  array is imbedded  in the  iterative  process. 
Furthermore,  there is no need to form the  product of the 
transformations involved in the tridiagonalization  stage. 

Since no ( n  X n )  array is needed for  the  eigenvectors, 
program efficiency is increased if the  symmetric matrix 
is represented by the element of its  lower  triangular part 
packed  row-wise in a  one-dimensional array of n(n + 1) 
12 locations. 

The matrix-vector  multiplication then  becomes 
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1 K = O  
2 F O R I = l T O M  
3 s=O 
4 T = V ( I )  
5 F O R J = l T O I - 1  
6 K = K + l  
7 U = A ( K )  
8 X(J)  = X(J )  + U*T 
9 S = S + U*V(J) 

10  NEXT J 
11 K = K + l  
12 X(1) = S + A(K)*T 
13 NEXT I 

Note on FORTRAN implementation 
In this case, matrices are  stored column-wise. The  ap- 
proach  described  for  the tridiagonalization is still valid 
if all the  operations formulated in terms of the  rows of the 
lower  part of the A‘”’’s are now  thought of in terms of 
corresponding columns of the  upper  part of these ma- 
trices. 

The matrix of right eigenvectors is constructed by 
forming the  product P(n-3) P(n-2) . . * P‘O’ and then  by 
postmultiplying  this product by the  transposes of the 
above  QR plane  rotations. All these  operations  are per- 
formed  column-wise. 

Experimental results 
In general, the time  savings  obtained  by using the  com- 
bination of tridiagonalization-QR rather  than Jacobi’s 
method are  very substantial. These savings are highly 
dependent on the size of the  arrays,  the size of the vir- 
tual memory  page and  other  characteristics of the  sys- 
tem  used. 

Test runs were performed on an  IBM System13 Mod- 
el 6 with  a main memory of 16,000  bytes. Each page of 
the virtual  memory has a capacity of 51 floating-point 
short precision words. 

With arrays allowing for a maximum matrix order of 
25, the combination  tridiagonalization-QR  was about 
five times as  fast  as Jacobi’s  method for  random ma- 
trices of order 20. 
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