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Optimum  Storage  Allocation  for  Initial  Loading of a File 

Abstract: When a file  is  loaded  into a direct  access  storage  device  using  key-to-address  transformations,  the  number and  size  of  storage 
blocks  can  be  selected.  In  this study, a selection  that  minimizes  the  combined  cost of storage  space and accesses to  the  storage  device 
is determined  for  the  case  where  no  record  additions  or  deletions  occur  after  loading. 

The  analysis is based  on  the  assumption that for a given set of keys, a transformation  exists  that gives a uniform  probability  distribution 
over  the  available  addresses.  Under  this  assumption,  formulas  are  derived  for  the  average  number of  overflow records and  for the  av- 
erage  number of accesses required to  retrieve a record. 

Given  these  formulas,  the  costs  are  expressed  as a function of storage  used,  number of accesses,  cost  per unit of storage, and cost  per 
access. Minima are  computed  for a range of block  sizes  and  operational  conditions. The  results  seem  to  indicate  that  current file design 
practices  are  abundant with storage  space. 

Finally,  the  results  are  condensed in an easy  to  use  approximate  formula. 

Introduction 
Computerized  data  are organized as files. A file  is a 
collection of data  records; in our  case, each  record is 
uniquely identified by a key. 

In  automatic  data processing, the  data items are  fre- 
quently stored  on a direct  access  storage device (DASD). 
A  general  situation in computer programs using a DASD 
is the following: a key is shown to  the program  and the 
record identified by that key is to be  retrieved  from the 
storage device. 

A fast retrieval  from a DASD is possible if the re- 
lationship  between the key and the  address of the record 
in the  device is known. If such a  relationship is not es- 
tablished, a search through the file must be made. 

Two  methods  for establishing the relationship  between 
key  and address  are in common  usage (for a more ex- 
tensive  treatment see [ 1,2] ) : 
I .  An index is maintained in the  same  or  another  storage 

device. For  every key,  the corresponding  address is 
listed in the index. With a suitable  organization,  a 
search through the index is much faster than a search 
through the file itself. 

2. An algorithm defines  a functionf:K + A with the  set 
K of possible  keys as domain  and the  set A of avail- 
able  addresses  as codomain.  Such  a  function is often 
called a  key-to-address  transformation (KAT).  Other 
names are hashing, hash  coding, or  scatter  storage 
technique [31. 

In this paper,  the second method of file organization 
is considered. Many different KAT algorithms have been 

described in the literature.  A systematic  comparative 
evaluation of several  algorithms  has  been made by Lum, 
et al. [4] using simulation  methods. It  appears  that  the 
results of different transformations  vary widely and are 
highly dependent upon the  characteristics of the  set of 
keys. 

In  the ideal situation,  a KAT should  assign an  equal 
number of records  to  each of the available addresses. 
Often this goal is pursued, but clearly not reached, by 
giving the  KAT  the  property of “randomizing.” For  an 
analysis of the rationale of this approach  see  Lum,  et al. 
[41. 

It  is assumed here  that  for a given set of keys  we  are 
able  to find a  perfect  random  transformation. By this we 
mean that  the  outcome of the assignment of an  address 
by this KAT is a  random  variable with equal  probability 
for each of the values it can assume (Le., having a uni- 
form probability  distribution). Under this assumption, 
formulas are derived for  the number of overflow records 
and the  average  number of accesses  per  record.  Some of 
the results of [41 are then compared with the numbers 
computed  from  the formulas. 

A  location in the direct access  storage  device is desig- 
nated by an  address of the  set A ,  and it may provide room 
for  one  or  more records. In  the  latter  case,  several 
records  are combined in one  storage block. We  use the 
name  “bucket”  for  such a block. The  bucket size s is 
the maximum number of records  that can  be  contained 
in a bucket. The collection of b buckets provided in the 579 
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DASD  for storing the file  is called the primary storage 
area. 

Because of the  random  nature of the  KAT, more than 
s record keys may be mapped  into the  same  address. 
There  are different methods  for storing the  records  that 
exceed  the  capacity of the  bucket.  Here,  we  consider 
the  method of using for all buckets a common separate 
overflow area in the  same  or  another DASD. The  over- 
flow records belonging to a certain  bucket  are organized 
in a chain stored in the overflow area. 

If a record is stored in the primary storage  area, a 
single access  to  the DASD is sufficient. If the  record is 
in the overflow area,  one  or more  additional accesses 
are required. In  the  latter  case,  the  record is found  by 
following pointers from  the  bucket  to  the first record, 
and then  from record to record through the overflow 
area.  When this  method is implemented for a specific 
application, the implementer can  choose  both b and s. 
If he  takes  the  total  capacity bs large  relative to  the 
number of records, few  additional accesses  are  required, 
but  the  storage  cost is high. On  the  other  hand, a low 
capacity  results in high cost  for  accesses  to  the overflow 
storage device. 

In this paper  we  formulate a cost function for  retriev- 
ing records. Minima are  computed  for different  values of 
the  bucket size and different  operational considerations. 
The file is  assumed to be  static;  that is, no deletions or 
additions of records  occur. 

Use of the Poisson Distribution 
We  consider n records with  distinct keys mapped by 
means of key-to-address  transformations into a primary 
storage  area divided into b buckets with a capacity of 
s records each. If more  than s records  are assigned to a 
bucket,  the  excess  records  are  stored in a separate  over- 
flow area common to all buckets.  For  each  bucket with 
overflow records,  there is in the overflow area a chain 
of overflow records with address pointers. 

Assuming that we have  an equal  probability of assign- 
ing a record  to  any of the available buckets,  the  number 
of records r assigned to a bucket will have a binominal 
probability  distribution with parameters l lb and n :  

b(r ;n , i )  = ( y )  (i)r ( 1  - i)n-r 
We  are  interested in cases  where  both n and b are 

large, and  where  the  average  number of records assigned 
to a bucket nlb = m is nearly equal  to  the  bucket size s. 
The binominal distribution is then very  close to  the Pois- 
son distribution  with parameter m (see, e.g., [ 5 ] ,  pp. 
142 ff.) : 

Here, P ( r )  is the probability that r records are assigned 
to a bucket.  We  further  introduce Q ( r )  = P ( i )  . The 
formulas  for overflow and accesses will be  expressed in 
these quantities. Since  tables  are available [6], the formu- 
las can  be used for hand as well as  for machine  compu- 
tation. 

Overflow 
The  frequency function 0 ( i )  of the  number i of records 
assigned to a bucket in excess of its capacity s is: 

O ( i )  = P ( s  + i )  for i 2 1 . 

The  mean of this  distribution is: 
m m m 

T ( m , s ) = C l O ( i ) = C i P ( s + i ) =  x ( r - s ) P ( r ) ,  ( I )  
i = l  i = l  r=s+1 

which can be expressed as: 

i(m,s) = m Q ( s )  - sQ(s + 1)  

or 

i(m,s) = s P ( s )  - (s - m ) Q ( s )  . - 

We  can easily see  that  for s = 1 

This result was  reported earlier by Morris [ 31. 
If there is no ambiguity, we will write T instead of 

i (m,s) .  A table of values  for overflow is given  by Buch- 
holtz [2], who  computed  the values by a recursive pro- 
cedure,  but did not give an explicit formula. 

If we apply the  formula  for s = 0,  we  get i(m,O) = m . 
This is a correct  result  since, in this case, all records  are 
in the overflow area. 

Additional accesses 
Records  that  require i additional accesses  occur  when a 
bucket  has  at  least (s + i )  records assigned to it by the 
key-to-address  transformation. To  each such  bucket 
there belongs just  one  such  record.  This,  the  average 
number of records  that  requires  exactly i additional ac- 
cesses, is: 

m 

ni = b{P(s  + i )  + P ( s  + i + 1 )  +. ..} = b P ( r )  . 

The  average  over  the collection of records is: 

r=s+i 

i = l  

e m' P ( r )  = ~ 

-m 

580 r!  ' 
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Table 1 Overflow for s = 1 and  various  load factors. 

Percentage  Utili- 
ovcrfloIt’ zation 

Load Poisson  Mean ~ primary 
factor  parameter overflow, L ,  Over- Divi- area 

1 m = Is i m  all* sion* % 

0.50 0.50 0.1065 21.3 23  17 39.3 
0.55 0.55 0.1269 23.1 25 21 
0.60 0.60 0.1488 24.8 27 20 45.1 
0.65 0.65 0.1720 26.4 28 27 
0.70 0.70 0.1966 28.1 30  25  50.3 
0.75 0.75 0.2224 29.6 31 25 
0.80 0.80 0.2493 31.2 33  28 55.1 
0.85 0.85 0.2774 32.6 34  30 
0.90 0.90 0.3066 34.1 37  29  59.3 
0.95 0.95 0.3367 35.4 36 33 
1.00 1.00 0.3679 36.8 63.2 

- 

*Results from simulation as described in [41. 

Table 2 Overflow for s = 10 and  various  load factors. 

Percentage 
overflow 

Utili- 
zution 

Loud  Poisson  Mean - yrimury 
factor  parameter  overflow i , Over- Divi- area 

I m = Is i m  all* sion* % 
- 

0.50 5.0 0.0222 0.4 I 0 49.8 
0.55 5.5 0.0433 0.9 1 1  
0.60 6.0 0.0773 1.3 3 1 59.2 
0.65 6.5 0.1286 2.1 2 1  
0.70 1.0 0.2013 2.9 3 2 68.0 
0.75 7.5 0.2993 4.1 4 3  
0.80 8.0 0.4259 5.3 6 4 75.7 
0.85 8.5 0.5833 7.0 8 7  
0.90 9.0 0.7732 8.6 10 7 82.3 
0.95 9.5 0.9959 10.6 1 1  8 
1.00 10.0 1.2511 12.5 87.9 

*Results from simulations as described in [4]. 

If during the accessing  phase records  are equally de- 
manded, the  average number of additional accesses is 
also 5. 

In  terms of P ( s )  and Q ( s ) ,  we find: 

ii(m,s) == [ { ( m - s  + 1)2 + ( s -  1)) Q ( s )  1 

+ s ( m  - s + I ) P ( s ) ] .  

If there is no possibility of ambiguity, we will also write 
5 instead of 5(m,s ) .  

Another way of expressing the result  is: 
- 

ii(m,s) = - i(m,s - 1 )  - (s - 1 )  
2 1- m 
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We  note a  special case of this  general expression: 

- m  a = -  f o r s =  1 .  

This result was  reported earlier by Morris [3]. 

Comparison with actual  mappings 
Reference 4 presents  results  for eight different key-to- 
address transformations  applied to eight files. The load 
factor  and  bucket size were varied over a wide  range. The 
load factor 1 is the ratio of the  number of records n and 
the capacity b . s of primary storage. 

Since 1 = n/bs = mls or m = Is, the  parameter of the 
Poisson distribution is determined by load factor  and 
bucket size. 

For  the  cases s = 1 and s = 10 and  for load factors 0.5 
to 0.95 at  intervals of 0.05, the values computed by the 
formulas  can  be compared with the  results found in [4]. 
Tables 1 and 2 give the  comparison  for  the overflow  area. 
Listed  are  the “overall” average of all eight key-to- 
address transformations  and the result of mapping by the 
“division”  method. The  results  are plotted in Figs. 
1 and 2.  

The  tables give  some  additional  information. Since  the 
n records  are distributed over  the primary and overflow 
areas,  the utilization is clearly lower than the load  fac- 
tor.  The utilization is [ (Is - ;)/SI 100% of the primary 
area. 

A  comparison between  the  average  number of addi- 
tional accesses from formula and experiment is made in 
Figs. 3 and 4 for  bucket sizes s = 1 and s = 10, re- 
spectively. 

In Figs. 1-4, we see  that  the  curves  for  the “overall” 
average  that  is analyzed  in [4] lie above  those  computed 
by the formulas. This  means  that  the  performance result- 
ing from  the  use of those  transformations  is,  for  the files 
studied, not as good as would be expected  under  the  as- 
sumption of a uniform distribution over  the  address 
space. 

On  the  other  hand,  we  see  that a particular  transforma- 
tion may give better  performance than expected from 
random distribution. For  the files studied in [4], the 
division  method  leads to a small overflow area and fewer 
additional accesses.  This  seems  to suggest the following 
approach in systems design. The  formulas  derived in  this 
report can  be  used in a first  investigation of storage  space 
and timing studies.  When an actual  key-to-address 
transformation is selected and used, the  performance  can 
be  compared with the previous  analytical  results. If the 
selected  key-to-address  transformation  gives more  over- 
flow or more  additional accesses, it has  an undesirable 
interaction with the specific set of keys, and other  trans- 
formations  or transform parameters should  be  tried. 581 
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Figure 1 Percentage overflow for s = 1 .  

Figure 2 Percentage overflow for s = 10. 
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Minimum cost allocation 
With the formulas  developed in the previous  paragraphs, 
and if the designer of the file can  attribute fixed constant 
costs  to  access and to units of storage space, we can now 
proceed to investigate  a minimum cost  storage allocation. 

We will use  the following symbols: 

f = b ( s  + 7) total  average storage used for  the files; 
c, cost  for storing one record  during  a unit of 

ff file activity, i.e., the fraction of records re- 
time; 

582 quired during a unit of time; 
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Figure 3 Additional accesses for s = 1. 

Figure 4 Additional accesses for s = 10. 
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cost of an access  to  the primary area; 
cost of an additional access. 

If we neglect other  costs,  such  as  the transmission from 
auxiliary to main storage and the  cost of main storage  for 
holding a  physical  record,  the  total cost per  time period is: 

C(b,s;a) = f . e, + a m p  + ana  . e,. 
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The  term anc, expresses  the  cost  for  accesses  to  the 
primary storage  area.  It is assumed that cr, is independent 
of b and s. Further we make a simplification by disre- 
garding the maximum track  length in physical devices. 
We  normalize the variable cost by dividing by the nominal 
cost  for storing n records.  The variable  relative cost func- 
tion  is: 

in which y = a >. c 

c, 
It  can be  shown that  for  each fixed s there is just  one 

value of rn that makes D(b,s ;a)  minimal. The location 
and the value of the minimum can be  determined with 
straightforward analytic  and numerical methods. 

Using APL [ 9 ] ,  programs were developed to  compute 
the value of rn that gives minimum cost.  The  computa- 
tions  were  made over a wide range of values of the param- 
eter y and for different  values of the  bucket size s. The 
results  are shown in Table 3. For each minimum, a num- 
ber of related quantities have been computed.  The load 
factor is the ratio between  the  number of records loaded 
and  the  number of record positions  in the primary storage 
area,  thus nlbs or rnls. The overflow factor is the ratio 
between the number of records in the overflow area and 
the total number of records loaded, thus 6 / n  or $rn. Addi- 
tional accesses  are  the  average  number of additional ac- 
cesses  that  have  to be made to find the  addressed 
record,  thus 6. Finally, the minimum relative costs  are 
listed in the last  column. 

The application  factor y 
In  the computation of the minimum, the  parameter y 
plays an  important role. It is determined from the file ap- 
plication and by the  environment in which the applica- 
tion runs.  A high y means that  either  or both: 1 ) number 
of accesses and 2 )  cost of additional accesses  are given  a 
high value. An  estimate  for  the activity a in y = a c,/c, 
can  be made in a  straightforward manner from the given 
application. 

To  get  an idea of the magnitude of the  estimate  for 
ca/c,, let us assume  that we store 250,000 records in a 
disk storage device. Further, let us assume  that  the time 
for  an additional access  is 100 ms. If we  suppose  an eight- 
hour work day  as  the unit oftime  and, at one  extreme,  that 
an additional access ties up only the disk device,  we can 
take: 

e, [0.1/(8 X 3600)] rent device per day 
c, (1/250,000) rent  device  per day 
” - = 0.9. 

Cost of additional accesses is evaluated too highly in 
this case,  because  cost of the  storage  device  has already 
been accounted  for in the  cost of storing records. A more 

accurate  estimate is the  cost of interference in the  rest of 
the  computer system. 

With  a low activity, say a = 0.01, then y = 0.01. This 
is the  lowest  value we used in our calculations.  Values of 
over 1 will be very rare  under  the specified conditions. 

The  above  estimate  is approximately valid in a multi- 
programming environment. In this case,  the  rest of the 
computer  system is used  while the additional accesses  go 
on. If the file application under consideration is the only 
application in the  system, then we must reckon with the 
fact  that  the whole system is tied up during the additional 
access.  Then, we have  to  put  “rent  system  per  day” 
instead of “rent  device  per  day” in the  numerator.  The 
value of y may then  be up to  one  order of magnitude 
larger. 

Another consideration may be  response time.  If  re- 
sponse time is a  prime  consideration, a higher value can 
be  assigned to y.  The  average  number of additional  ac- 
cesses specified in Table 3, together with the file activity, 
may be helpful in estimating average  response times. 

Analysis of results 
From  Table 1, we  see  that  for  each value of y, rn increases 
monotonically  with s. The relation is almost  linear (see 
Fig. 5). 

The minimum cost  decreases when we  increase  the 
bucket size s. As a matter of fact, practical considerations 
not included in this model prevent us from making s very 
large.  Interfering factors  are mainly: 

1. Direct  access devices have  tracks of finite length.  We 
cannot usefujly make buckets larger than  tracks. 
Similarly, storage  waste  occurs if one  or  more  buckets 
do not fill a track completely. The effects of these 
factors  have been studied [7]. Since  technology is 
providing devices with  longer tracks,  the influence of 
these  factors is decreasing. 

2.  In reading and writing, the  contents of the  bucket must 
be contained in the working storage of the  computer. 
Very large buckets put heavy  demand  on main stor- 
age.  Here again technology is providing larger mem- 
ories allowing for larger  buckets. 

Quite  as  expected, rn and  thus  the load factor  for a 
given s increase when y decreases.  The  author is under 
the impression that  the values of the load factor  that  are 
found to give minimum cost  are much  higher  than those 
used in practical  applications. In a life insurance com- 
pany,  for instance, y will not  be higher  than 0.1. Using  a 
bucket size of 10, the optimal  load factor would be over 
1.2. It  seems unlikely that many companies, at  present, 
design  their files to  have  more than 20 percent of the 
records in the overflow area.  Another  example is in the 
section on indirectly addressed files in [ 1 1, page 42, “an 
initial packing (loading) factor of 80-85 percent is 583 
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Table 3 Minimum  cost  computations. 

Bucket 
size 

4 

5 

10 

20 

40 

Y 
~ 

2 
1 
0.5 
0.1 
0.05 
0.01 

2 
1 
0.5 
0.1 
0.05 
0.01 

2 
1 
0.5 
0.1 
0.05 
0.01 

2 
1 
0.5 
0.1 
0.05 
0.0 1 

2 
I 
0.5 
0.1 
0.05 
0.01 

2 
1 
0.5 
0.1 
0.05 
0.01 

2 
1 
0.5 
0.1 
0.05 
0.01 

2 
1 
0.5 
0.1 
0.05 
0.01 

m 

0.883 
1.163 
1.496 
2.445 
2.914 
4.104 

1.586 
1.977 
2.428 
3.664 
4.255 
5.705 

2.3  17 
2.795 
3.339 
4.797 
5.48 1 
7.134 

3.068 
3.621 
4.244 
5.892 
6.656 
8.48 1 

3.834 
4.454 
5.147 
6.963 
7.799 
9.778 

7.813 
8.697 
9.669 

12.158 
13.278 
15.876 

16.156 
17.417 
18.787 
22.245 
23.781 
27.285 

33.518 
35.308 
37.239 
42.086 
44.224 
49.054 

~-~ 

Loud 
fuctor 

0.883 
1.163 
1.496 
2.445 
2.914 
4.104 

0.793 
0.988 
1.214 
1.832 
2. I27 
2.853 

0.772 
0.932 
1.113 
1.599 
1.827 
2.378 

0.767 
0.905 
1.061 
I .473 
1.664 
2.120 

0.767 
0.891 
1.029 
1.393 
1.560 
1.956 

0.781 
0.870 
0.967 
1.216 
1.328 
1.588 

0.808 
0.871 
0.939 
1.112 
1.189 
1.364 

0.838 
0.883 
0.93 1 
1.052 
1.106 
1.226 

~~~~ 

Overflow 
factor 

0.336 
0.409 
0.48 1 
0.626 
0.675 
0.760 

0.202 
0.267 
0.337 
0.494 
0.55 1 
0.654 

0.144 
0.200 
0.264 
0.416 
0.475 
0.584 

0.1 12 
0.161 
0.218 
0.363 
0.422 
0.533 

0.092 
0.134 
0.187 
0.325 
0.382 
0.494 

0.048 
0.075 
0.112 
0.221 
0.271 
0.376 

0.025 
0.041 
0.064 
0.143 
0.183 
0.273 

0.01 2 
0.022 
0.035 
0.089 
0.119 
0.190 

~~ ~ 

Additional 
accesses 

0.441 
0.581 
0.748 
1.222 
1.457 
2,052 

0.294 
0.424 
0.589 
1.098 
1.359 
2.027 

0.227 
0.344 
0.501 
1.011 
1.282 
1.987 

0.188 
0.294 
0.442 
0.945 
1.220 
1.946 

0.162 
0.260 
0.400 
0.893 
1.170 
1.910 

0.102 
0.175 
0.287 
0.734 
1.005 
1.768 

0.064 
0.1 17 
0.203 
0.588 
0.841 
1.598 

0.041 
0.078 
0.142 
0.460 
0.688 
1.416 

-~ 

. ”_ 

Minimum 
cost 

~~~~ ~ ~ . . 

2.351 
1.850 
1.524 
1.158 
1.09 1 
1.025 

2.052 
1.703 
1.456 
1.149 
1.089 
1.025 

1.893 
1.617 
1.412 
1.143 
1.086 
1.025 

1.791 
1.560 
1.382 
1.137 
1.084 
1.024 

1.719 
1.517 
1.358 
1.132 
I .082 
1.024 

1.531 
1.400 
1.289 
1.1 17 
1.074 
1.023 

1.391 
1.306 
1.230 
1.101 
1.066 
1.022 

1.288 
1.233 
1.181 
1.085 
1.057 
1.020 

suggested.” It is not  clear  on  what this figure is based,  nor higher  load factors may be appropriate. Underlying the 
are  the influence of activity  and the  cost of accesses formula used for additional access is the  assumption that 
pointed out. all records  are in equal demand.  In many practical  situa- 

One can wonder  whether inadequacies  in our model tions, this  assumption does  not hold. More  often, 20 
cause  the  discrepancy  between  theory  and practice. The percent of the  records will have 80 percent of the demand. 

584 following considerations,  however, indicate that  even While this will seldom be known in advance (e.g., sales 

J .  A. VAN DER POOL IBM J. RES. DEVELOP. 



statistics)  or will be found  during the application, one 
can later load the file in the order of decreasing  frequency 
of demand.  The  records with the highest demand  rate will 
then go  into the  primary storage  area,  thus reducing the 
average  number of additional accesses considerably. 
Heising [8] estimates  that  for s = 1 and a load factor of 1 ,  
the reduction in additional accesses is from 0.5 for  equal 
demand to 0.12 when  a “20 - 80 percent rule”  holds. 

It  appears from [4] that in actual  situations  key-to- 
address transformations may be  found that give a better 
performance than the perfect  random transformation; 
thus, again, fewer additional accesses will be required. 
The designer  should however be aware of the irregulari- 
ties that may occur in practical  situations as illustrated 
by the anomolous behavior  for particular load factors in 
Fig. 4. 

Both considerations  indicate that  the load factors found 
in this report  are lower  than  may  be appropriate in prac- 
tical situations.  A factor  that  counteracts higher load 
factors is the way in which the  cost  for  storage is ac- 
counted  for.  In  the  cost function, it  was  assumed  that  the 
cost of primary and overflow storage is the  same.  In 
practical  situations the  cost  per  record in overflow stor- 
age will be  somewhat larger because more space  per rec- 
ord is needed. Factors contributing to this extra  space 
requirement include the  fact  that overflow records  are 
not  blocked,  space  beyond  that required for  the  average 
number of overflow records must  be  provided and  space 
for pointers is included. I t  seems  that in current  practice 
many system designers are using load factors  that  are 
lower than the optimum. 

If we want  to  make a very  general  rule of thumb,  then 
it is more appropriate  to suggest a load factor of 1 in- 
stead of 0.8 to 0.85. Only for high values of y are  the 
latter  more  appropriate. 

The values of the minimum cost  are graphed in Fig. 6. 
We can  see  that  for low values of y the minimum is very 
insensitive to  the  bucket size. In  practice,  the depen- 
dence is greater.  The number of characters  on a track is 
dependent  on  the  number of blocks (buckets)  that  are 
stored  on  the  track.  This nonlinearity is not  represented 
in the model used. 

Practical approximation 
As was  pointed out,  the functional  relationship rn = f ( s ; y )  
between  the optimum  value of rn and s is nearly  linear. 
This gives us the  opportunity  to  condense  the  results 
found  into a simple  design rule. 

First, straight  lines riz = p ( y )  + g ( y )  . s are fitted to 
the  curves pictured in Fig. 5 by  means of least  squares. 
In Fig. 7, the values of p ( 7 )  and q ( y )  are  plotted.  This 
graph  suggests an approximately  linear  function for q 
and a  logarithmic  relationship between p and y. Again, 
by least  squares,  curves were fitted to p ( y )  and q ( y ) .  
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Figure 5 Minimum cost rn as a function of s. 

Figure 6 Minimum cost as a function of s for various y .  

2.5 I I 

2.0 c \  

This now gives the following design  rule: 

1. Make an estimate of y = 2, 
c, 

2. The optimum value of the load factor I = for  every 

s is: 

I = - f q  P 
S 585 
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Coefficients in 
linear approximations 
to m=f (s; y )  

2 3L Coefficients in 
linear approximations 
to m=f (s; y )  

- 1  I I  I I I I I  I I I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  1.8  2.0 

Figure 7 Values of q ( y )  and p ( y ) .  

in which 

p = 0.13 - 0.76 . lny 

q =  1.05 - 0 .13  . y .  

The  discrepancies using this  approximation are given 
in Table 4. As we see,  this  approximation is not usable 
for small s and large y but it  is otherwise  acceptable  for 
all practical purposes. 

This formula  allows the  system designer to  select 
bucket size with due consideration to  properties of the 
physical device, and then  to make in an  easy way an 
estimate of the optimal load factor belonging to this s. 
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Table 4 Excess in percent of minimum cost if the approxima- 
tion tn = p(y) + q ( y )  . s to m = f ( s ; y )  is used. 

Y 
S 2 1 0.5  0.1  0.05 0.01 

1 32.2 0.4 0.3 0.6  0.4 0.1 
2 
3 

6.2 0.0 0.3 0.2 0.1 0.0 
2.5 0.1 0.5 0.1 0.0 0.0 

4 1.3  0.3  0.6 0.0 0.0 0.1 
5 0.8  0.5  0.7  0.0 0.0 0.2 

10 0.4 1 .0 1.2 0.0 0.1 0.4 
20 0.8  1.3  1.8 0.0 0.1 0.6 
40 2.3 1.1 2.5 0.2 0.0 0.5 

~ - .~ ” _ ~  
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