
J. A. van der Pool

Optimum Storage Allocation for Initial Loading of a File

Abstract: When a file is loaded into a direct access storage device using key-to-address transformations, the number and size of storage
blocks can be selected. In this study, a selection that minimizes the combined cost of storage space and accesses to the storage device
is determined for the case where no record additions or deletions occur after loading.

The analysis is based on the assumption that for a given set of keys, a transformation exists that gives a uniform probability distribution
over the available addresses. Under this assumption, formulas are derived for the average number of overflow records and for the av-
erage number of accesses required to retrieve a record.

Given these formulas, the costs are expressed as a function of storage used, number of accesses, cost per unit of storage, and cost per
access. Minima are computed for a range of block sizes and operational conditions. The results seem to indicate that current file design
practices are abundant with storage space.

Finally, the results are condensed in an easy to use approximate formula.

Introduction
Computerized data are organized as files. A file is a
collection of data records; in our case, each record is
uniquely identified by a key.

In automatic data processing, the data items are fre-
quently stored on a direct access storage device (DASD).
A general situation in computer programs using a DASD
is the following: a key is shown to the program and the
record identified by that key is to be retrieved from the
storage device.

A fast retrieval from a DASD is possible if the re-
lationship between the key and the address of the record
in the device is known. If such a relationship is not es-
tablished, a search through the file must be made.

Two methods for establishing the relationship between
key and address are in common usage (for a more ex-
tensive treatment see [1,2]) :
I . An index is maintained in the same or another storage

device. For every key, the corresponding address is
listed in the index. With a suitable organization, a
search through the index is much faster than a search
through the file itself.

2. An algorithm defines a functionf:K + A with the set
K of possible keys as domain and the set A of avail-
able addresses as codomain. Such a function is often
called a key-to-address transformation (KAT). Other
names are hashing, hash coding, or scatter storage
technique [31.

In this paper, the second method of file organization
is considered. Many different KAT algorithms have been

described in the literature. A systematic comparative
evaluation of several algorithms has been made by Lum,
et al. [4] using simulation methods. It appears that the
results of different transformations vary widely and are
highly dependent upon the characteristics of the set of
keys.

In the ideal situation, a KAT should assign an equal
number of records to each of the available addresses.
Often this goal is pursued, but clearly not reached, by
giving the KAT the property of “randomizing.” For an
analysis of the rationale of this approach see Lum, et al.
[41.

It is assumed here that for a given set of keys we are
able to find a perfect random transformation. By this we
mean that the outcome of the assignment of an address
by this KAT is a random variable with equal probability
for each of the values it can assume (Le., having a uni-
form probability distribution). Under this assumption,
formulas are derived for the number of overflow records
and the average number of accesses per record. Some of
the results of [41 are then compared with the numbers
computed from the formulas.

A location in the direct access storage device is desig-
nated by an address of the set A , and it may provide room
for one or more records. In the latter case, several
records are combined in one storage block. We use the
name “bucket” for such a block. The bucket size s is
the maximum number of records that can be contained
in a bucket. The collection of b buckets provided in the 579

NOVEMBER 1972 ALLOCATING INITIAL FILE STORAGE

DASD for storing the file is called the primary storage
area.

Because of the random nature of the KAT, more than
s record keys may be mapped into the same address.
There are different methods for storing the records that
exceed the capacity of the bucket. Here, we consider
the method of using for all buckets a common separate
overflow area in the same or another DASD. The over-
flow records belonging to a certain bucket are organized
in a chain stored in the overflow area.

If a record is stored in the primary storage area, a
single access to the DASD is sufficient. If the record is
in the overflow area, one or more additional accesses
are required. In the latter case, the record is found by
following pointers from the bucket to the first record,
and then from record to record through the overflow
area. When this method is implemented for a specific
application, the implementer can choose both b and s.
If he takes the total capacity bs large relative to the
number of records, few additional accesses are required,
but the storage cost is high. On the other hand, a low
capacity results in high cost for accesses to the overflow
storage device.

In this paper we formulate a cost function for retriev-
ing records. Minima are computed for different values of
the bucket size and different operational considerations.
The file is assumed to be static; that is, no deletions or
additions of records occur.

Use of the Poisson Distribution
We consider n records with distinct keys mapped by
means of key-to-address transformations into a primary
storage area divided into b buckets with a capacity of
s records each. If more than s records are assigned to a
bucket, the excess records are stored in a separate over-
flow area common to all buckets. For each bucket with
overflow records, there is in the overflow area a chain
of overflow records with address pointers.

Assuming that we have an equal probability of assign-
ing a record to any of the available buckets, the number
of records r assigned to a bucket will have a binominal
probability distribution with parameters l lb and n :

b(r ;n , i) = (y) (i)r (1 - i)n-r
We are interested in cases where both n and b are

large, and where the average number of records assigned
to a bucket nlb = m is nearly equal to the bucket size s.
The binominal distribution is then very close to the Pois-
son distribution with parameter m (see, e.g., [5] , pp.
142 ff.) :

Here, P (r) is the probability that r records are assigned
to a bucket. We further introduce Q (r) = P (i) . The
formulas for overflow and accesses will be expressed in
these quantities. Since tables are available [6], the formu-
las can be used for hand as well as for machine compu-
tation.

Overflow
The frequency function 0 (i) of the number i of records
assigned to a bucket in excess of its capacity s is:

O (i) = P (s + i) for i 2 1 .

The mean of this distribution is:
m m m

T (m , s) = C l O (i) = C i P (s + i) = x (r - s) P (r) , (I)
i = l i = l r=s+1

which can be expressed as:

i(m,s) = m Q (s) - sQ(s + 1)

or

i(m,s) = s P (s) - (s - m) Q (s) . -

We can easily see that for s = 1

This result was reported earlier by Morris [31.
If there is no ambiguity, we will write T instead of

i (m,s) . A table of values for overflow is given by Buch-
holtz [2], who computed the values by a recursive pro-
cedure, but did not give an explicit formula.

If we apply the formula for s = 0, we get i(m,O) = m .
This is a correct result since, in this case, all records are
in the overflow area.

Additional accesses
Records that require i additional accesses occur when a
bucket has at least (s + i) records assigned to it by the
key-to-address transformation. To each such bucket
there belongs just one such record. This, the average
number of records that requires exactly i additional ac-
cesses, is:

m

ni = b{P(s + i) + P (s + i + 1) +. ..} = b P (r) .

The average over the collection of records is:

r=s+i

i = l

e m' P (r) = ~

-m

580 r! '

J . A. VAN DER POOL IBM J. RES. DEVELOP.

Table 1 Overflow for s = 1 and various load factors.

Percentage Utili-
ovcrfloIt’ zation

Load Poisson Mean ~ primary
factor parameter overflow, L , Over- Divi- area

1 m = Is i m all* sion* %

0.50 0.50 0.1065 21.3 23 17 39.3
0.55 0.55 0.1269 23.1 25 21
0.60 0.60 0.1488 24.8 27 20 45.1
0.65 0.65 0.1720 26.4 28 27
0.70 0.70 0.1966 28.1 30 25 50.3
0.75 0.75 0.2224 29.6 31 25
0.80 0.80 0.2493 31.2 33 28 55.1
0.85 0.85 0.2774 32.6 34 30
0.90 0.90 0.3066 34.1 37 29 59.3
0.95 0.95 0.3367 35.4 36 33
1.00 1.00 0.3679 36.8 63.2

-

*Results from simulation as described in [41.

Table 2 Overflow for s = 10 and various load factors.

Percentage
overflow

Utili-
zution

Loud Poisson Mean - yrimury
factor parameter overflow i , Over- Divi- area

I m = Is i m all* sion* %
-

0.50 5.0 0.0222 0.4 I 0 49.8
0.55 5.5 0.0433 0.9 1 1
0.60 6.0 0.0773 1.3 3 1 59.2
0.65 6.5 0.1286 2.1 2 1
0.70 1.0 0.2013 2.9 3 2 68.0
0.75 7.5 0.2993 4.1 4 3
0.80 8.0 0.4259 5.3 6 4 75.7
0.85 8.5 0.5833 7.0 8 7
0.90 9.0 0.7732 8.6 10 7 82.3
0.95 9.5 0.9959 10.6 1 1 8
1.00 10.0 1.2511 12.5 87.9

*Results from simulations as described in [4].

If during the accessing phase records are equally de-
manded, the average number of additional accesses is
also 5.

In terms of P (s) and Q (s) , we find:

ii(m,s) == [{ (m - s + 1)2 + (s - 1)) Q (s) 1

+ s (m - s + I) P (s)] .

If there is no possibility of ambiguity, we will also write
5 instead of 5(m,s) .

Another way of expressing the result is:
-

ii(m,s) = - i(m,s - 1) - (s - 1)
2 1- m

NOVEMBER 1972

We note a special case of this general expression:

- m a = - f o r s = 1 .

This result was reported earlier by Morris [3].

Comparison with actual mappings
Reference 4 presents results for eight different key-to-
address transformations applied to eight files. The load
factor and bucket size were varied over a wide range. The
load factor 1 is the ratio of the number of records n and
the capacity b . s of primary storage.

Since 1 = n/bs = mls or m = Is, the parameter of the
Poisson distribution is determined by load factor and
bucket size.

For the cases s = 1 and s = 10 and for load factors 0.5
to 0.95 at intervals of 0.05, the values computed by the
formulas can be compared with the results found in [4].
Tables 1 and 2 give the comparison for the overflow area.
Listed are the “overall” average of all eight key-to-
address transformations and the result of mapping by the
“division” method. The results are plotted in Figs.
1 and 2.

The tables give some additional information. Since the
n records are distributed over the primary and overflow
areas, the utilization is clearly lower than the load fac-
tor. The utilization is [(Is - ;)/SI 100% of the primary
area.

A comparison between the average number of addi-
tional accesses from formula and experiment is made in
Figs. 3 and 4 for bucket sizes s = 1 and s = 10, re-
spectively.

In Figs. 1-4, we see that the curves for the “overall”
average that is analyzed in [4] lie above those computed
by the formulas. This means that the performance result-
ing from the use of those transformations is, for the files
studied, not as good as would be expected under the as-
sumption of a uniform distribution over the address
space.

On the other hand, we see that a particular transforma-
tion may give better performance than expected from
random distribution. For the files studied in [4], the
division method leads to a small overflow area and fewer
additional accesses. This seems to suggest the following
approach in systems design. The formulas derived in this
report can be used in a first investigation of storage space
and timing studies. When an actual key-to-address
transformation is selected and used, the performance can
be compared with the previous analytical results. If the
selected key-to-address transformation gives more over-
flow or more additional accesses, it has an undesirable
interaction with the specific set of keys, and other trans-
formations or transform parameters should be tried. 581

ALLOCATING INITIAL FILE STORAGE

Division

Overall

Random

""_

I Load factor

Figure 1 Percentage overflow for s = 1 .

Figure 2 Percentage overflow for s = 10.

12

11

10- - Random

-
" Division ""_ Overall

-

9 -

8-

7 -

6 -

5 -

4 -

I
0.5 0.6 0.7 0.8 0.9 1.0

I Load factor

Minimum cost allocation
With the formulas developed in the previous paragraphs,
and if the designer of the file can attribute fixed constant
costs to access and to units of storage space, we can now
proceed to investigate a minimum cost storage allocation.

We will use the following symbols:

f = b (s + 7) total average storage used for the files;
c, cost for storing one record during a unit of

ff file activity, i.e., the fraction of records re-
time;

582 quired during a unit of time;

" Division

Overall ""_
- Random

v1 P
8

2

rn

- 0.1 -

.-
3
9 0 1 I I I I I

0.5 0.6 0.7 0.8 0.9 1 .0

I Load factor

Figure 3 Additional accesses for s = 1.

Figure 4 Additional accesses for s = 10.

0.35

0.3

0.25

0.2

0.12

0.1
0,
a,
u

z 0.05

3
d

C
.- *
U

"_" Overall

Random

Load factor

cost of an access to the primary area;
cost of an additional access.

If we neglect other costs, such as the transmission from
auxiliary to main storage and the cost of main storage for
holding a physical record, the total cost per time period is:

C(b,s;a) = f . e, + a m p + ana . e,.

J . A. VAN DER POOL IBM J. RES. DEVELOP.

The term anc, expresses the cost for accesses to the
primary storage area. It is assumed that cr, is independent
of b and s. Further we make a simplification by disre-
garding the maximum track length in physical devices.
We normalize the variable cost by dividing by the nominal
cost for storing n records. The variable relative cost func-
tion is:

in which y = a >. c

c,
It can be shown that for each fixed s there is just one

value of rn that makes D(b,s ;a) minimal. The location
and the value of the minimum can be determined with
straightforward analytic and numerical methods.

Using APL [9] , programs were developed to compute
the value of rn that gives minimum cost. The computa-
tions were made over a wide range of values of the param-
eter y and for different values of the bucket size s. The
results are shown in Table 3. For each minimum, a num-
ber of related quantities have been computed. The load
factor is the ratio between the number of records loaded
and the number of record positions in the primary storage
area, thus nlbs or rnls. The overflow factor is the ratio
between the number of records in the overflow area and
the total number of records loaded, thus 6 / n or $rn. Addi-
tional accesses are the average number of additional ac-
cesses that have to be made to find the addressed
record, thus 6. Finally, the minimum relative costs are
listed in the last column.

The application factor y
In the computation of the minimum, the parameter y
plays an important role. It is determined from the file ap-
plication and by the environment in which the applica-
tion runs. A high y means that either or both: 1) number
of accesses and 2) cost of additional accesses are given a
high value. An estimate for the activity a in y = a c,/c,
can be made in a straightforward manner from the given
application.

To get an idea of the magnitude of the estimate for
ca/c,, let us assume that we store 250,000 records in a
disk storage device. Further, let us assume that the time
for an additional access is 100 ms. If we suppose an eight-
hour work day as the unit oftime and, at one extreme, that
an additional access ties up only the disk device, we can
take:

e, [0.1/(8 X 3600)] rent device per day
c, (1/250,000) rent device per day
” - = 0.9.

Cost of additional accesses is evaluated too highly in
this case, because cost of the storage device has already
been accounted for in the cost of storing records. A more

accurate estimate is the cost of interference in the rest of
the computer system.

With a low activity, say a = 0.01, then y = 0.01. This
is the lowest value we used in our calculations. Values of
over 1 will be very rare under the specified conditions.

The above estimate is approximately valid in a multi-
programming environment. In this case, the rest of the
computer system is used while the additional accesses go
on. If the file application under consideration is the only
application in the system, then we must reckon with the
fact that the whole system is tied up during the additional
access. Then, we have to put “rent system per day”
instead of “rent device per day” in the numerator. The
value of y may then be up to one order of magnitude
larger.

Another consideration may be response time. If re-
sponse time is a prime consideration, a higher value can
be assigned to y. The average number of additional ac-
cesses specified in Table 3, together with the file activity,
may be helpful in estimating average response times.

Analysis of results
From Table 1, we see that for each value of y, rn increases
monotonically with s. The relation is almost linear (see
Fig. 5).

The minimum cost decreases when we increase the
bucket size s. As a matter of fact, practical considerations
not included in this model prevent us from making s very
large. Interfering factors are mainly:

1. Direct access devices have tracks of finite length. We
cannot usefujly make buckets larger than tracks.
Similarly, storage waste occurs if one or more buckets
do not fill a track completely. The effects of these
factors have been studied [7]. Since technology is
providing devices with longer tracks, the influence of
these factors is decreasing.

2. In reading and writing, the contents of the bucket must
be contained in the working storage of the computer.
Very large buckets put heavy demand on main stor-
age. Here again technology is providing larger mem-
ories allowing for larger buckets.

Quite as expected, rn and thus the load factor for a
given s increase when y decreases. The author is under
the impression that the values of the load factor that are
found to give minimum cost are much higher than those
used in practical applications. In a life insurance com-
pany, for instance, y will not be higher than 0.1. Using a
bucket size of 10, the optimal load factor would be over
1.2. It seems unlikely that many companies, at present,
design their files to have more than 20 percent of the
records in the overflow area. Another example is in the
section on indirectly addressed files in [1 1, page 42, “an
initial packing (loading) factor of 80-85 percent is 583

NOVEMBER 1972 ALLOCATING INITIAL FILE STORAGE

Table 3 Minimum cost computations.

Bucket
size

4

5

10

20

40

Y
~

2
1
0.5
0.1
0.05
0.01

2
1
0.5
0.1
0.05
0.01

2
1
0.5
0.1
0.05
0.01

2
1
0.5
0.1
0.05
0.0 1

2
I
0.5
0.1
0.05
0.01

2
1
0.5
0.1
0.05
0.01

2
1
0.5
0.1
0.05
0.01

2
1
0.5
0.1
0.05
0.01

m

0.883
1.163
1.496
2.445
2.914
4.104

1.586
1.977
2.428
3.664
4.255
5.705

2.3 17
2.795
3.339
4.797
5.48 1
7.134

3.068
3.621
4.244
5.892
6.656
8.48 1

3.834
4.454
5.147
6.963
7.799
9.778

7.813
8.697
9.669

12.158
13.278
15.876

16.156
17.417
18.787
22.245
23.781
27.285

33.518
35.308
37.239
42.086
44.224
49.054

~-~

Loud
fuctor

0.883
1.163
1.496
2.445
2.914
4.104

0.793
0.988
1.214
1.832
2. I27
2.853

0.772
0.932
1.113
1.599
1.827
2.378

0.767
0.905
1.061
I .473
1.664
2.120

0.767
0.891
1.029
1.393
1.560
1.956

0.781
0.870
0.967
1.216
1.328
1.588

0.808
0.871
0.939
1.112
1.189
1.364

0.838
0.883
0.93 1
1.052
1.106
1.226

~~~~ 

Overflow 
factor 

0.336 
0.409 
0.48 1 
0.626 
0.675 
0.760 

0.202 
0.267 
0.337 
0.494 
0.55 1 
0.654 

0.144 
0.200 
0.264 
0.416 
0.475 
0.584 

0.1 12 
0.161 
0.218 
0.363 
0.422 
0.533 

0.092 
0.134 
0.187 
0.325 
0.382 
0.494 

0.048 
0.075 
0.112 
0.221 
0.271 
0.376 

0.025 
0.041 
0.064 
0.143 
0.183 
0.273 

0.01 2 
0.022 
0.035 
0.089 
0.119 
0.190 

~~ ~ 

Additional 
accesses 

0.441 
0.581 
0.748 
1.222 
1.457 
2,052 

0.294 
0.424 
0.589 
1.098 
1.359 
2.027 

0.227 
0.344 
0.501 
1.011 
1.282 
1.987 

0.188 
0.294 
0.442 
0.945 
1.220 
1.946 

0.162 
0.260 
0.400 
0.893 
1.170 
1.910 

0.102 
0.175 
0.287 
0.734 
1.005 
1.768 

0.064 
0.1 17 
0.203 
0.588 
0.841 
1.598 

0.041 
0.078 
0.142 
0.460 
0.688 
1.416 

-~ 

. ”_ 

Minimum 
cost 

~~~~ ~ ~ . . 

2.351
1.850
1.524
1.158
1.09 1
1.025

2.052
1.703
1.456
1.149
1.089
1.025

1.893
1.617
1.412
1.143
1.086
1.025

1.791
1.560
1.382
1.137
1.084
1.024

1.719
1.517
1.358
1.132
I .082
1.024

1.531
1.400
1.289
1.1 17
1.074
1.023

1.391
1.306
1.230
1.101
1.066
1.022

1.288
1.233
1.181
1.085
1.057
1.020

suggested.” It is not clear on what this figure is based, nor higher load factors may be appropriate. Underlying the
are the influence of activity and the cost of accesses formula used for additional access is the assumption that
pointed out. all records are in equal demand. In many practical situa-

One can wonder whether inadequacies in our model tions, this assumption does not hold. More often, 20
cause the discrepancy between theory and practice. The percent of the records will have 80 percent of the demand.

584 following considerations, however, indicate that even While this will seldom be known in advance (e.g., sales

J . A. VAN DER POOL IBM J. RES. DEVELOP.

statistics) or will be found during the application, one
can later load the file in the order of decreasing frequency
of demand. The records with the highest demand rate will
then go into the primary storage area, thus reducing the
average number of additional accesses considerably.
Heising [8] estimates that for s = 1 and a load factor of 1 ,
the reduction in additional accesses is from 0.5 for equal
demand to 0.12 when a “20 - 80 percent rule” holds.

It appears from [4] that in actual situations key-to-
address transformations may be found that give a better
performance than the perfect random transformation;
thus, again, fewer additional accesses will be required.
The designer should however be aware of the irregulari-
ties that may occur in practical situations as illustrated
by the anomolous behavior for particular load factors in
Fig. 4.

Both considerations indicate that the load factors found
in this report are lower than may be appropriate in prac-
tical situations. A factor that counteracts higher load
factors is the way in which the cost for storage is ac-
counted for. In the cost function, it was assumed that the
cost of primary and overflow storage is the same. In
practical situations the cost per record in overflow stor-
age will be somewhat larger because more space per rec-
ord is needed. Factors contributing to this extra space
requirement include the fact that overflow records are
not blocked, space beyond that required for the average
number of overflow records must be provided and space
for pointers is included. I t seems that in current practice
many system designers are using load factors that are
lower than the optimum.

If we want to make a very general rule of thumb, then
it is more appropriate to suggest a load factor of 1 in-
stead of 0.8 to 0.85. Only for high values of y are the
latter more appropriate.

The values of the minimum cost are graphed in Fig. 6.
We can see that for low values of y the minimum is very
insensitive to the bucket size. In practice, the depen-
dence is greater. The number of characters on a track is
dependent on the number of blocks (buckets) that are
stored on the track. This nonlinearity is not represented
in the model used.

Practical approximation
As was pointed out, the functional relationship rn = f (s ; y)
between the optimum value of rn and s is nearly linear.
This gives us the opportunity to condense the results
found into a simple design rule.

First, straight lines riz = p (y) + g (y) . s are fitted to
the curves pictured in Fig. 5 by means of least squares.
In Fig. 7, the values of p (7) and q (y) are plotted. This
graph suggests an approximately linear function for q
and a logarithmic relationship between p and y. Again,
by least squares, curves were fitted to p (y) and q (y) .

NOVEMBER 1972

5c

4c

3c

2c

10

5

m C

Figure 5 Minimum cost rn as a function of s.

Figure 6 Minimum cost as a function of s for various y .

2.5 I I

2.0 c \

This now gives the following design rule:

1. Make an estimate of y = 2,
c,

2. The optimum value of the load factor I = for every

s is:

I = - f q P
S 585

ALLOCATING INITIAL FILE STORAGE

Coefficients in
linear approximations
to m=f (s; y)

2 3L Coefficients in
linear approximations
to m=f (s; y)

- 1 I I I I I I I I I I
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 7 Values of q (y) and p (y) .

in which

p = 0.13 - 0.76 . lny

q = 1.05 - 0 .13 . y .

The discrepancies using this approximation are given
in Table 4. As we see, this approximation is not usable
for small s and large y but it is otherwise acceptable for
all practical purposes.

This formula allows the system designer to select
bucket size with due consideration to properties of the
physical device, and then to make in an easy way an
estimate of the optimal load factor belonging to this s.

Acknowledgments
The author wishes to express his gratitude to M. E. Senko
and S. P. Ghosh for their suggestions, discussions, and
encouragement.

Table 4 Excess in percent of minimum cost if the approxima-
tion tn = p(y) + q (y) . s to m = f (s ; y) is used.

Y
S 2 1 0.5 0.1 0.05 0.01

1 32.2 0.4 0.3 0.6 0.4 0.1
2
3

6.2 0.0 0.3 0.2 0.1 0.0
2.5 0.1 0.5 0.1 0.0 0.0

4 1.3 0.3 0.6 0.0 0.0 0.1
5 0.8 0.5 0.7 0.0 0.0 0.2

10 0.4 1 .0 1.2 0.0 0.1 0.4
20 0.8 1.3 1.8 0.0 0.1 0.6
40 2.3 1.1 2.5 0.2 0.0 0.5

~ - .~ ” _ ~

References
1. Introduction to IBM System1360 Direct Access Storage De-

vices and organization Methods, IBM Student Text, Form

2. W. Buchholz, “File Organization and Addressing, “IBM Sys-
tems Journal 2, 86 (1963).

3. R. Morris, “Scatter Storage Techniques,” Communications of
the ACM 11, No. I , pp. 38-44 (January 1968).

4. V. Y . Lum, P. S. T. Yuen, and M. Dodd, “Key-to-Address
Transform Techniques: A Fundamental Performance Study
on Large Existing Formatted Files,” Communications of
the ACM 14, No. 4 (April 1971).

5. W. Feller, A n Introduction to Probability Theory and Its
Applications. John Wiley and Sons, Inc., New York.

6. E. C . Molina, Poisson’s Exponential Binomial Limit, D. van
Nostrand Co. (1942).

7 . “File Design Handbook”, Final Report, Air Force Con-
tract AF30602.69-C-0100, (November 1969).

8. W. P. Heising, “Note on Random Addressing Techniques,”
IBM Systems Journal 2, 112 (1963).

9. S. Pakin, APLl360 Reference Manual, Science Research
Associates, Chicago.

NO. GC 20-1649.

Received January 10, I972

The author is located at the head ofice of IBM Neder-
land N.V., Amsterdam, The Netherlands.

586

J. A. VAN DER POOL IBM J. RES. DEVELOP.

