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Exact  Implicit  Enumeration  Method  for  Solving  the 
Set  Partitioning  Problem 

Abstract: The partitioning problem may be stated as follows: Minimize cjxj subject to X;=, aijxj = 1 ,  i = 1, . . ., rn, where aij  and 
xj are  binary numbers. 

The proposed method consists in solving a new problem equivalent to the original one, the solution of this new problem being obtained 
by implicit enumeration. Computational experience indicates that this approach yields good results; for example, problems involving 
several hundred variables were solved in a few  seconds. 

introduction 
The  set partitioning  problem, a special case of the  set 
covering  problem  with  equality constraints, may be 
stated  as follows:  Minimize Cy=1 cjxj subject  to  the con- 
straints 
n 

a. .x. = b. = 1 ,  i =  1 , .  . . , m ,  ( 1 )  
1I  I 1 

j = 1  

in which 

a i j = O  or 1, i =  1 , .  . ., m  and j =  1 , .  . ., n ;  

xj=  0 or 1, j =  1 , .  . . , n ,  

where  the cj’s are  arbitrary numbers. 
Using  matrix  notation the problem is restated as: 

Minimize cx subject  to 

A x =  b 

x j = O o r  1 j =  1 , .  . . , n ,  

where A is an m X n binary  matrix, c and x n-vectors and 
b an m-vector of ones. 

The  term  “set partitioning” may be  interpreted by con- 
sidering  a set S of m  elements. Any column A j  j = 1 ,  
. . ., n,  of A represents a subset Sj of S where aij = 1 if 
i S; and 0 if i @ Sj . cj is the  cost of Sj. 

The problem is to  select among the Sj’s (xj = 1 if Sj 
is selected, xj 7 0 if Sj is not  selected) a partition of S 
with  a minimal cost. 

The  literature  devoted  to  methods  fqr solving this  prob- 
lem is very  extensive. Some of it is surveyed in [ 1 1  
and [2]. I 

Of  special interest  are  the methods  used for solving 
integer programming problems. Major  approaches in- 
clude implicit enumeration, cutting plane, and  group 
theoretic techniques. 

The implicit enumeration principle, first utilized by 
Land  and Doig [3], became largely  used after  the Balas 
algorithm was published [4]. Basically any implicit enu- 
meration  method enumerates all the potential  solutions 
but actually considers only  a subset of them. The  re- 
maining solutions are said to be implicitly enumerated. 
Various algorithms using this approach  have been  pro- 
posed for  the resolution of partitioning problems;  for 
example, Garfinkel and  Nemhauser [ 5 ]  and  Pierce [ 6 ]  
and  also Rubin [7] for  the  crew scheduling  problem. 

The cutting  plane and  the  group  theoretic  techniques, 
both originally proposed by Gomory [8,9], start with 
the solution of the  continuous problem associated with 
the original one: 

1. In  the first case new constraints  are  added to the con- 
tinuous  problem and  the augmented  problem is solved 
by  linear programming. This  process is repeated until 
the solution of the augmented  problem is a  feasible 
solution of the original integer programming problem. 
Such a method has  been used  by  Martin [ 101 for par- 
titioning problems. 

2. In  the  second  case  an  asymptotic problem is defined. 
This new problem is itself converted into  a group 
optimization  problem. Unfortunately  these  two prob- 
lems are  not equivalent to  the original one.  This weak- 
ness may be avoided by adding constraints in the 573 
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group  optimization  problem. See,  for  instance, 
Shapiro's  algorithm [ 1 11. Numerical  experience con- 
cerning crew scheduling  (covering  and  partitioning) 
problems using the  group  theoretic  approach may be 
found  in the thesis of Thiriez [ 121. 

The  proposed method is a composite of these  two meth- 
ods. First  the  continuous problem is solved. This yields 
an equivalent  problem with disjunctive constraints.  Then 
instead of using the cutting  plane or  the  group  theoretic 
techniques  as  above,  the new  problem is solved by using 
an implicit enumeration method. 

Proposed  method 
The  present  procedure has the following properties: 

1. Although presented  for solving the  set partitioning 
problem,  the  method gives the  exact solution for any 
problem where 

a.. 2 0, bi 2 0, xj = 0 or 1, 
t 3  

j =  1,. . ., nand i =  1 , .  . ., m .  

2. Problem-solving  time may be  considerably shortened 
if a  feasible  solution or  an  upper bound of the optimal 
value of the problem is available at  the beginning of 
the solving process. 

3. In  the  case of a  feasible  problem,  a (good) feasible 
solution is usually found prior  to  the ultimate  com- 
pletion of the problem-solving process. 

We  now describe how the initial problem (1 ) is re- 
placed by an equivalent one and  how  this new problem 
is solved  by implicit enumeration. 

Let us define the  continuous problem  derived from 
problem (1) as follows. Minimize cx subject  to 

A x = b ,  

x 2 0 .  (2) 

Thecons t ra in tsx j=Oor l ,   j= l ; . . ,nofproblem(l )  
are replaced  by xj 5 0, j = 1 ,  . . ., n (the  constraints 
xj 5 1, j = 1, . . ., n are  not introduced since  they  are 
implied by Ax = b ) .  

To the optimal  solution obtained by solving  problem 
(2) by linear  programming corresponds  the following de- 
composition: x = (xD, x,), A = (AD, A,) and c = (cD, c,), 
where D is the  set of indices of the  dependent  (basic) 
variables and I the  set of indices of the  independent 
(nonbasic)  ones.  The elimination of the basic  variables 
in  problem ( 1)  yields the following formulation: Mini- 
mize ?,x, + ( K )  subject  to  the  constraints 

xD = AD-' (b  - A,x,) 

xi = 0 or  1, i E D and 

574 xi=Oor   1 ,  i E I ,  (3  1 

with ?,x, + K = cIxI + cDA, ( b  - A,x,) = cx , 

where K = cDA, b and CI = c, - c,A,-'A,. 

- 1  

-1 

Problem (3),  equivalent to problem (1 ), has n - rn 
variables  and the  cost coefficients Ci, i E I ,  are positive 
since A, is an optimal  linear  programming (LP) basis 
of problem ( 2 ) .  

In this new problem the  components of the rn-dimen- 
sional x, vector  are  no longer  variables but  express  the 
fact  that each of the relations in (3) takes  the value zero 
or one. In  fact problem (3) may be interpreted  as  an 
integer programming problem with disjunctive  con- 
straints of a very special type. 

Computational experience with the cutting  plane  and 
group theoretic algorithms tends  to  demonstrate  that 
the optimal  solution of problem (3)  [and ( l ) ]  is closely 
related to  the optimal  solution of (2) [2,10,12].  In  both 
cases  the optimal  solution of (3) is derived rather easily 
from  the optimal  solution of (2).  This situation is not 
true, however, for general  integer  programming  problems. 

This  fact is one of the motivations of the implicit 
enumeration  method we now describe  for solving prob- 
lem (3) .  

T o  begin let us call P the  set of all the solutions  (feasi- 
ble or infeasible) of problem (3). We  partition  this set 
into (n - r n )  + 1 subsets Pj ,  j = 0, 1, . . ., n - rn where 
the  jth  subset  consists of all the solutions x, of (3  ) with 
exactlyj  components  equal  to  one  (the remaining  compo- 
nents being equal  to  zero).  More precisely the Pj's are 
defined as 

pj= {X//X, E P ,  i E I  x i=+  

where lPjl = ( . ) .  n - r n  
J 

To enumerate  the solution of P we shall proceed  as 
follows.  We enumerate  the  solutions of Po then of P,,P, 
and so on until Pn-,,,. 

If we define the  distance  between  the  vectors in P by 
d(x, ,y , )  = xiE, Ixi - yil the  enumerative  scheme may be 
interpreted  as follows. Start with  xr = 0, the optimal 
solution of (2) ,  then  enumerate all the solutions within 
a distance of 1 (from the 0 vector), then all the solutions 
within a distance of 2, 3 and so on until n - m. The ob- 
tainment of a feasible  solution as  close  as possible to the 
0 vector is one of the essential points of the method. 

We  now  give a few definitions. 

Solution 
A solution will be defined by  successively specifying 
the values of its n - m components  to  zero  or  one.  The 
components will be considered  one  after  the  other in 
any  order. 
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Partial  solution 
At  the  stage k ,  we have specified the value of k compo- 
nents x . ' ' , xPk. We shall define a  partial  solution (of 
order k )  to  be  the  set Sj(xpl, . . ., xPk) of all the solu- 
tions of Pj that  can be deduced by specifying the values 
of the ( n  - m )  - k remaining components. 

Associated  partial  solution 
To a  partial  solution Sj(xPl, . . ., xP ) or  order k in Pj 
corresponds  an  associated partial  s&ution Sl(xp,l, . . ., 
xPrk) of order k in P , ,  1 = 0,  1, . . ., n - m. This  as- 
sociated partial  solution in p , ,  if existing, is obtained by 
specifying the  components found in Pi to  the  same value. 
The  components need  not  be fixed in the  same  order. 

Representation of a  solution  by  a  partial  solution 
When  a  partial  solution of order k has j components  equal 
to  one,  the only  solution of Pi that it is possible to  deduce 
will be  the  one  where  the ( n  - m )  - k remaining  com- 
ponents  are  set  to  zero. In that  case we shall  identify the 
partial  solution with the solution. During  the  process of 
enumeration  the  best feasible  solution enumerated so 
far will be  referred to  as XI while S will represent ?,X,. 

91' 

We  now define the  enumeration  scheme in Pj as follows: 
Take Pi as a  starting  partial  solution, i.e., no compo- 

nents  are assigned a value. 

1. Is  the partial  solution just defined equivalent to a 
solution? 

Yes,  go  to 3. 
No, go to 2.  

Go  to 1. 
2.  Select a new  component and  assign it a value. 

3. Has  the partial  solution,  obtained by giving the last 
component fixed its  complementary  value (0  instead 
of 1 or 1  instead of O ) ,  already  been considered? 

Yes,  go to 5. 
No, go  to 4. 

G o  to 2. 
4. Give this new value to  the  last  component specified. 

5. Rule out  (free) this  last component. Is the partial 
solution just defined equal  to Pj (backtracking)? 

Yes, go to 6 .  
No, go  to 3. 

6. All the solutions have  been  enumerated; END. 

The  enumeration  procedure described above  generates 
once  and only once  the ("i") solutions of Pj. The proof 
for similar enumeration  schemes  (the  enumeration being 
in P instead of Pi)  can be found in Glover [ 131 or 
Geoffrion [ 141. 

As is true in every implicit enumeration method only 
a subset of all the possible  solutions  need  actually  be 
considered.  This will be  achieved  by ruling out partial 
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solutions for nonoptimality or nonfeasibility considera- 
tions  and by fixing the  components in a  special way. 

The elimination of the partial solutions is obtained 
thanks  to  the following rules: 

1. Infeasibility 
If a  partial  solution Sj(xp , . . ., xpk) satisfies 

E A,.x,. $ b,  then A,x, 
j = 1  J J 

k 

$ b V xI E Si(".,, . * ., xpk) . 

(This  results  from  the  fact  that, in the original prob- 
lem (1 1, A,x, + A,x, = b implies A,x, 5 b )  ; therefore 
a  feasible  solution of (3)  must  satisfy A,x, i 6 ) .  Thus 
this  partial  solution of Pj is eliminated. 

Practically we shall test,  at  stage k ,  whether 
IC-1 

This will only  be necessary if xpk is set  to  one. In that 
case  the  test is reduced  to APk i b - xiE, Ai, where 
L is the  set of the indices of variables  already set 
to  one. 

2 .  Nonoptimality 
Similarly, if a  partial  solution Sj(xPl, . . * , x  ) satisfies 

' k  
k 

and  this  partial  solution of Pj is also  eliminated. 
As above,  the corresponding test,  at  stage k ,  is 

k-1 

and again this test will be  necessary only if xqk is fixed 
to  one,  the  test being reduced  to Cpk > S - x i E L C i ,  with 
L as defined above. 

In  both  cases if a  partial  solution of Pi is eliminated, 
so are  the  associated partial  solutions of P ,  for 1 Ij. 
When a  partial  solution is ruled out  one  must go di- 
rectly to  stage 4 in the  enumeration scheme. 

During the  enumeration  process  we wish to  have a 
ratio of exclusion as large as possible. For this reason it 
is desirable to eliminate the partial  solutions at  an early 
stage k.  This will be  achieved by adequately selecting, at 
stage k ,  the new variable. 

Suppose  we  have generated  a  partial  solution of order 
k - 1  and we  are attacking  a stage k .  For elimination 
considerations,  the partial  solution of order k with xPk = 1 
will always  be  considered first (at  least implicitly). 

The choice of the variable x*, will be obtained by or- 
dering the variables xi. This ordering will vary  according 
to  the  subsets Pj and  the  enumeration  status (i.e., whether 
a feasible  solution has already  been  found or  not). 575 
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For  example, in case of P I ,  the ordering of the variables 
will be  the  one obtained at  the  end of the LP process of 
problem (2) .  Since  no solution is a  priori  eliminated for 
infeasibility reasons  the  (partial) solutions  actually  con- 
sidered areS,(1) ,   Sl(O,l) ,  . * ., S , ( O , O ,  . . . , l )  etc, until 
a feasible  solution x, is found. 

In this case,  the generation of the partial  solutions will 
continue by  setting  directly to  zero all the variables for 
which Ci > S. 

Every time a new best solution is found,  the value of S 
is updated.  Moreover if an  upper bound of the optimal 
value of problem ( 2 )  is known at  the beginning of the 
process  (take this value  instead of S )  still fewer solutions 
need be  enumerated. 

We now consider the case of the  subset Pj, j > 1. If 
no feasible  solution has already been found and if no 
upper bound of the optimal  value of problem (3 )  is 
known, a simple way of ordering the indices of the 
variables is as follows: 

Define m blocks (subsets) S,,  S,, . . ., S,, where  the 
block S ,  is  composed of all the indices of the  vectors Ai 
for which ali = 1 ; the  set S, is composed of all the in- 
dices of the  vectors A i  not in SI for which aZi = 1;  and in 
general the  jth  subset Sj is composed of all the indices of 
the  vectors Ai  not in SI, S,, . . ., Sj-,  for which aji = 1. 
Within a block the indices are  ordered arbitrarily. 

One  method of refinement is to  order  the indices within 
a  block  according to  the increasing  values of the F i  or  the 
C,lmi, where mi denotes  the  number of ones of the  vector 
Ai. Although it may seem  attractive, this  ordering  within 
the  sets Sj may well be time  consuming,  especially in the 
case of a block including a large number of indices. 

At a stage k we shall choose  the first variable not al- 
ready fixed. Suppose ‘pk is in  block j. If the value xqk = l 
is not  rejected  by the infeasibility test,  then all the indices 
not yet  considered of block j and all the indices of the 
blocks  1 for which a, , = 1 are directly introduced in 
the  next partial solutikon and  the corresponding  com- 
ponents  are immediately set  to zero. 

If an  upper  bound is available or if a (best)  feasible 
solution has  been  enumerated so far, this scheme may 
still be  used.  However, if we  want to make  the nonopti- 
mality test  more powerful, other  ways of ordering may 
be utilized. 

One  can think of ordering the whole set of the compo- 
nents  according to  the increasing  values of the Ei. The 
result is  for a given subset Pj the  enumeration of the 
solutions in a lexicographical order. But, as we have al- 
ready said  this  ordering process is time  consuming for 
large  problems. Hence we suggest the following approach. 

Partition  the indices into  four  blocks Bo,  B , ,  B , ,  B, ,  
where 

B ,  = {ili G B , ,  C, < So} ; 

B ,  = { i l i  G B , ,  i B , ,  Ci < S}  ; 

B ,  = { i l  i $ Bo,  i B,, i $ B, ,  Ci 2 S} . 
(It is possible to  consider Bo U B ,  as a single block B l . )  

Incidentally, these blocks will be used later  on  to de- 
rive  optimality  conditions.  Within the blocks the indices 
are  ordered arbitrarily. The indices are  selected first in 
Bo,  then in B , ,  B ,  and finally in B,. From  such a strategy, 
good (feasible) solutions are expected  and,  thanks to 
the nonoptimality test, it is possible to  exclude a large 
number of solutions (all the  components with their in- 
dices in B,  will be automatically set  to  zero). 

The Bi’s are  dependent  on Pj and S. Therefore during 
the  process of enumeration  some of the indices  move 
from  one  set  to  another  (from B ,  to B ,  or B ,  to B , ) .  As a 
result B,  tends  to grow  larger and larger  while the  set 
Bo U B ,  U B ,  becomes smaller and smaller.  If  this set 
is small  enough the bookkeeping task concerning the 
position of the indices can  be simplified if we  order  the 
indices in Bo U B ,  U B ,  (actually  only B ,  U B ,  need 
be considered) according to  the increasing  values of 
the C i s .  

If  at  the  same time it is desired  to exclude more solu- 
tions for infeasibility, it is possible to  use  the  schemes 
defined for  the no-feasible-solution case within each 
subset Bj. The bookkeeping task will always  be kept in 
mind since in that  case a subset of the  form Si,  i = 1, 
. . ., rn, may appear in the  four blocks Bj .  

When  the  enumeration  process  terminates we are in 
one of the following situations: 

1. No feasible  solution has  been found and  the problem 

2.  The  best feasible  solution enumerated  is obviously 
is infeasible. 

the optimal  solution of the problem. 

This  result may be achieved  prior to  the  complete 
exhaustion of the partial  solutions thanks  to  the fol- 
lowing rules. 

1. Infeasibility 
As already  pointed out,  any feasible vector x, of P 
must satisfy x,,, A, 5 b ,  where again L denotes  the 
set of the indices of the variables  (of the x, vector)  set 
to one. 

Therefore any solution of a subset Pj is infeasible 
for j > m. Suppose  that  more than m vectors Ai are 
present.  At  least  two of them  have a same  component 
equal  to  one  and  the  vector inequality cannot  be satis- 
fied. As a  result none of the Pj’s j > m need  be  con- 
sidered in the  enumeration  process. 

2.  Nonoptimality 
Similarly, a solution x, of P with a cost less  than S satis- 
fies < S. 576 Bo = { i l  ?, = 0) ; 
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Applied to Pj this yields Fi  < S V i E L and Ci < S / j  

Let us partition the indices of the variables of prob- 
for  at  least  one  component  equal  to one. 

lem ( 3 )  into three  subsets defined as follows: 

B ,  = { i l C j  < dj} ; 
B,  = { i l i  $ B , ,  Ci < S} ; 

B ,  = { i l i  $ B , ,  i $ B,, Ci 2 S} . 
If lB,l = 0 or ( B , (  + IB21 < j  in Pj ,  then no  better 
value than S can be  obtained in Pj. Since  the  above re- 
lations are  also  true  for 1 > j we  conclude  that X, is 
an optimal  solution of problem ( 3  ). 

Finally, in the  case  where  the  cost  components of 
problem ( 1) are  integers  (any practical  problem can 
be formulated in this  way, using an  adequate  scale), 
another useful relation implying the optimality of X, is 
given  by S 5 { K }  - K ,  where K is the optimal  value 
of problem ( 1 )  [defined after  Eq. ( 3 ) ]  and { K }  the 
smallest  integer greater  than  or  equal to K .  

Extensions and conclusions 
As we have already said,  the method is also valid in the 
case of an original problem (1)  with aij P 0 and bi 5 0, 
j =  1 , .  . ., n and i =  1 , .  . ., m. This is obvious since 
nonnegativity is the only  assumption  used in the exclu- 
sion  rules. However, in this case  some of the  results  are 
slightly modified. For  instance  there is no reason for  the 
solutions of the Pj’s to  be infeasible a priori f o r j  > m. 
(In  some  cases a weaker condition may be drawn from 
the values of the hi's.) Also, in the definition of the Si’s 
the condition uij = 1 must be replaced by a i j  > 0, in 
which case  the application of the infeasibility rules is not 
so straightforward. And, of course, in this  general case 
the optimal  solution of problem ( 3 )  may be very  far from 
the solution of (2) ,  making the  enumeration  process 
much longer. 

We have written an experimental FORTRAN code based 
on the method we have  just  described;  the  performances 
of this code  are largely dependent of its  implementation. 
This implementation will not  be  described here, but let 
us say  that,  for  instance,  the LP procedure  must  be  very 
efficient. In many cases solving the LP part with an in- 
efficient LP  code will require more time  than to  solve  the 
entire problem  with  a code like the  one of Pierce [6] ; 
see  also Ref. 15. 

To  conclude,  we would like to give some of the com- 
putational experiences we have obtained so far. Not very 
large problems with 10 to 20 constraints and 5 to 250 
variables  were  run on  an  IBM 1130 in approximately 
from 5 to 30 seconds.  Larger problems are reviewed in 
Table 1 .  

Most of these problems are to be  found, with their 
data, in Marilley’s thesis [ 151. All problems were run on 
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Table 1. Computational  experience. 

Size Time in seconds 
(mxn 1 Problem  type  Proposed  method  Pierce  method 

42 X 249 crew scheduling 6.5 600“ 
67 X 536 crew scheduling 20  600” 
12 X 538 delivery 5 41.3 
18 X 273 stability 5 

‘No optimal solution after 600 seconds. 

an  IBM 360/75. In  the rightmost  column are  the timings 
obtained  by  Marilley on  an  IBM 360165 using Pierce’s 
method. 

On more than 25 practical  problems, the computation 
time  obtained  was  always good and the optimal  solutions 
were always  found in a level less  than four  (two was  a 
very frequent  value). 

At first it would seem  that  the level of the optimal 
solution is closely  related to  the problem-solving  time. 
However,  matters  are much more complicated and in 
many cases  other  factors  are  at  least  as  important, e.g., 

the level of the first feasible  solution (if no  value  is 
assigned to S at  the beginning of the  enumeration 
process) ; 
the starting  point  (and the  number of iterations) of 
the  LP; 
the optimal  basis  used. 

This last  point is extremely important since, for degen- 
eracy  reasons,  the optimal  basis of the  continuous  prob- 
lem is not  unique, even in the  case of a unique optimal 
continuous solution, and the levels of the first feasible 
solution and of the optimal  solution are  dependent on 
the optimal  basis  selected. This  dependence is still more 
complicated in the  case of more than one optimal solu- 
tion, for  the LP  problem as well as  for  the partitioning 
problem. 

For  these  reasons all the numerical experiments men- 
tioned here  have been  made in the following way: No 
starting solution  was used for  the  LP (a phase 1 was 
used),  the nonbasic  variables  used for  the  enumera- 
tion were the  ones naturally  found by the LP algorithm, 
and no initial feasible  solution or bound was assumed to 
start  the enumeration. 
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