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Exact Implicit Enumeration Method for Solving the

Set Partitioning Problem

Abstract: The partitioning problem may be stated as follows: Minimize 2 =1 C;X; subject to E;‘ Ve =1 i=1 -

x; are binary numbers.

5 -, m, where a..and

The proposed method consists in solving a new problem equivalent to the original one, the solution of this new problem being obtained
by implicit enumeration. Computational experience indicates that this approach yields good results; for example, problems involving

several hundred variables were solved in a few seconds.

Introduction

The set partitioning problem, a special case of the set
covering problem with equality constraints, may be
stated as follows: Minimize 2;;, ¢;x; subject to the con-
straints

> a,;x,=b=1, i=1,--+m, (1)
j=

in which

ai].=00r1, i=1,-+-m and j=1, - n;
x].=00r1, j=1,---n,

where the cj’s are arbitrary numbers.
Using matrix notation the problem is restated as:

Minimize cx subject to
Ax=0»b
x].=00r1 j=1 - n,

where A is an m X n binary matrix, ¢ and x n-vectors and
b an m-vector of ones.

The term ““set partitioning” may be interpreted by con-
sidering a set S of m elements. Any column 4; j=1,

s n, of 4 represents a subset S; of § where a;; =1 if
i € S;and 0 if i € S, - ¢; is the cost of .

The problem is to select among the S’s (xj =1if
is selected, x; == 0 if §; is not selected) a partition of §
with a minimal cost. .

The literature devoted to methods far solving this prob-
lem is very extensive. Some of lt is surveyed in [1]
and [2].
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Of special interest are the methods used for solving
integer programming problems. Major approaches in-
clude implicit enumeration, cutting plane, and group
theoretic techniques.

The implicit enumeration principle, first utilized by
Land and Doig [3], became largely used after the Balas
algorithm was published [4]. Basically any implicit enu-
meration method enumerates all the potential solutions
but actually considers only a subset of them. The re-
maining solutions are said to be implicitly enumerated.
Various algorithms using this approach have been pro-
posed for the resolution of ‘partitioning problems; for
example, Garfinkel and Nemhauser [5] and Pierce [6]
and also Rubin [7] for the crew scheduling problem.

The cutting plane and the group theoretic techniques,
both originally proposed by Gomory [8,9], start with
the solution of the continuous problem associated with
the original one: '

1. In the first case new constraints are added to the con-
tinuous problem and the augmented problem is solved
by linear programming. This process is repeated until
the solution of the augmented problem is a feasible
solution of the original integer programming problem.
Such a method has been used by Martin {10] for par-
titioning problems.

2. In the second case an asymptotic problem is defined.
This new problem is itself converted into a group
optimization problem. Unfortunately these two prob-
lems are not equivalent to the original one. This weak-
ness may be avoided by adding constraints in the
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group optimization problem. See, for instance,
Shapiro’s algorithm [11]. Numerical experience con-
cerning crew scheduling (covering and partitioning)
problems using the group theoretic approach may be
found in the thesis of Thiriez [12].

The proposed method is a composite of these two meth-
ods. First the continuous problem is solved. This yields
an equivalent problem with disjunctive constraints. Then
instead of using the cutting plane or the group theoretic
techniques as above, the new problem is solved by using
an implicit enumeration method.

Proposed method
The present procedure has the following properties:

1. Although presented for solving the set partitioning
problem, the method gives the exact solution for any
problem where

aUEO,biEO,xJ:Om 1,

j=1,---nandi=1,- -, m.

2. Problem-solving time may be considerably shortened
if a feasible solution or an upper bound of the optimal
value of the problem is available at the beginning of
the solving process.

3. In the case of a feasible problem, a (good) feasible
solution is usually found prior to the ultimate com-
pletion of the problem-solving process.

We now describe how the initial problem (1) is re-
placed by an equivalent one and how this new problem
is solved by implicit enumeration.

Let us define the continuous problem derived from
problem (1) as follows. Minimize cx subject to

Ax=Db,
x=0. (2)

The constraints X, = Oorl, j=1, -, nofproblem (1)
are replaced by x; =0, j=1,- -, n (the constraints
x;=1, j=1,---, n are not introduced since they are
implied by Ax = b).

To the optimal solution obtained by solving problem
(2) by linear programming corresponds the following de-
composition: x = (x,,x;), A= (A4,,4,) andc= (¢,,c,),
where D is the set of indices of the dependent (basic)
variables and I the set of indices of the independent
(nonbasic) ones. The elimination of the basic variables
in problem (1) yields the following formulation: Mini-
mize ¢,x, + (K) subject to the constraints
Xp= AD_1 (b —A;x,)
x;=0o0rl, i € Dand

x;=0orl, i €1, (3)

with ¢,x, + K= c,;x, + cyA,  (b—Ax,) =cx,

where K = ¢, 4, 'b and ¢,=c¢,— c,4, 'A,.

Problem (3), equivalent to problem (1), has n — m
variables and the cost coefficients ¢,, i € I, are positive
since A4, is an optimal linear programming (LP) basis
of problem (2).

In this new problem the components of the m-dimen-
sional x, vector are no longer variables but express the
fact that each of the relations in (3) takes the value zero
or one. In fact problem (3) may be interpreted as an
integer programming problem with disjunctive con-
straints of a very special type.

Computational experience with the cutting plane and
group theoretic algorithms tends to demonstrate that
the optimal solution of problem (3) [and (1)] is closely
related to the optimal solution of (2) [2,10,12]. In both
cases the optimal solution of (3) is derived rather easily
from the optimal solution of (2). This situation is not
true, however, for general integer programming problems.

This fact is one of the motivations of the implicit
enumeration method we now describe for solving prob-
lem (3).

To begin let us call P the set of all the solutions (feasi-
ble or infeasible) of problem (3). We partition this set
into (n — m) + 1 subsets P, j=0,1,-- -, n— mwhere
the jth subset consists of all the solutions x, of (3) with
exactly j components equal to one (the remaining compo-
nents being equal to zero). More precisely the Pj’s are
defined as

P,= {x,[x, € P, Exi=j},

iel
where |P,| = <n ; m)

To enumerate the solution of P we shall proceed as
follows. We enumerate the solutions of P, then of P ,P,
and so on until P,_,.

If we define the distance between the vectors in P by
dixpy) =3, |x; — ¥, the enumerative scheme may be
interpreted as follows. Start with x,= 0, the optimal
solution of (2), then enumerate all the solutions within
a distance of 1 (from the 0 vector), then all the solutions’
within a distance of 2, 3 and so on until n — m. The ob-
tainment of a feasible solution as close as possible to the
0 vector is one of the essential points of the method.

We now give a few definitions.

e Solution
A solution will be defined by successively specifying
the values of its n — m components to zero or one. The
components will be considered one after the other in
any order.
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e Partial solution

At the stage k, we have specified the value of & compo-
nents x, , - - -, x, . We shall define a partial solution (of
order k) to be the set Sj(x¢1, -+, x, ) of all the solu-
tions of P; that can be deduced by specifying the values
of the (n — m) — k remaining components.

* Associated partial solution
To a partial solution S; (xy,l, ceey, xv,k) or order k in P,
corresponds an associated partial solution § 1(xv,,l, I
xwk) of order kin P, 1=0, 1,---, n— m. This as-
sociated partial solution in P, if existing, is obtained by
specifying the components found in P; to the same value.
The components need not be fixed in the same order.

e Representation of a solution by a partial solution
When a partial solution of order & has j components equal
to one, the only solution of P; that it is possible to deduce
will be the one where the (n — m) — k remaining com-
ponents are set to zero. In that case we shall identify the
partial solution with the solution. During the process of
enumeration the best feasible solution enumerated so
far will be referred to as x, while 5 will represent ¢ x,.
We now define the enumeration scheme in P; as follows:
Take P, as a starting partial solution, i.e., no compo-

J
nents are assigned a value.

1. Is the partial solution just defined equivalent to a

solution?
* Yes, go to 3.
* No, go to 2.

2. Select a new component and assign it a value.
* Gotol.

3. Has the partial solution, obtained by giving the last
component fixed its complementary value (0 instead
of 1 or 1 instead of 0), already been considered?

* Yes, goto 5.
* No, go to 4.

4. Give this new value to the last component specified.
Go to 2.

5. Rule out (free) this last component. Is the partial
solution just defined equal to P, (backtracking)?

* Yes, go to 6.
¢ No, go to 3.
6. All the solutions have been enumerated; END.

The enumeration procedure described above generates
once and only once the (";™) solutions of P,. The proof
for similar enumeration schemes (the enumeration being
in P instead of Pj) can be found in Glover [13] or
Geoffrion [14].

As is true in every implicit enumeration method only
a subset of all the possible solutions need actually be
considered. This will be achieved by ruling out partial

NOVEMBER 1972

solutions for nonoptimality or nonfeasibility considera-
tions and by fixing the components in a special way.

The elimination of the partial solutions is obtained
thanks to the following rules:

1. Infeasibility
If a partial solution S ; (X”I’ cee x¢k) satisfies
k
S A4, x, b, then Ax,
=

£b Vix € Sj(xv,], an -,xv,k).

(This results from the fact that, in the original prob-
lem (1), A,x, + A, x, = b implies 4,x, = b); therefore
a feasible solution of (3) must satisfy 4 1%, = b). Thus
this partial solution of P, is eliminated.

Practically we shall test, at stage &, whether

k-1
Ap Xp =b— ]Zl Ay X
This will only be necessary if x,, is set to one. In that
case the test is reduced to 4, = b — Y. _ A, where
L is the set of the indices of variables already set
to one.

2. Nonoptimality

Similarly, if a partial solution § 5 (xwl, N xwk) satisfies

M=

Cq,jij > 5, thenc,x, >5Vx, € Sj(x%, ceey, x¢k)
1

J

and this partial solution of P, is also eliminated.
As above, the corresponding test, at stage &, is

and again this test will be necessary only if g, is fixed
to one, the test being reduced to E“’k > 5 — E . ¢, with
L as defined above.

In both cases if a partial solution of P; is eliminated,
so are the associated partial solutions of P, for 1 = .
When a partial solution is ruled out one must go di-
rectly to stage 4 in the enumeration scheme.

During the enumeration process we wish to have a
ratio of exclusion as large as possible. For this reason it
is desirable to eliminate the partial solutions at an early
stage k. This will be achieved by adequately selecting, at
stage k, the new variable.

Suppose we have generated a partial solution of order
k — 1 and we are attacking a stage k. For elimination
considerations, the partial solution of order £ withx, =1
will always be considered first (at least implicitly).

The choice of the variable x, will be obtained by or-
dering the variables x,. This ordering will vary according
to the subsets P]. and the enumeration status (i.e., whether
afeasible solution has already been found or not).
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For example, in case of P,, the ordering of the variables

- will be the one obtained at the end of the LP process of
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problem (2). Since no solution is a priori eliminated for
infeasibility reasons the (partial) solutions actually con-
sidered are S, (1), §,(0,1), - - -, §,(0,0, - - -,1) etc, until
a feasible solution x, is found.

In this case, the generation of the partial solutions will
continue by setting directly to zero all the variables for
which ¢; > 3.

Every time a new best solution is found, the value of 5
is updated. Moreover if an upper bound of the optimal
value of problem (2) is known at the beginning of the
process (take this value instead of §) still fewer solutions
need be enumerated.

We now consider the case of the subset P, j > L. If
no feasible solution has already been found and if no
upper bound of the optimal value of problem (3) is
known, a simple way of ordering the indices of the
variables is as follows:

Define m blocks (subsets) S, S,, - - -, S,,, where the
block S, is composed of all the indices of the vectors 4,
for which a,, = I; the set S, is composed of all the in-
dices of the vectors 4, notin S, for which a,, = 1; and in
general the jth subset §; is composed of all the indices of
the vectors 4; not in S, §,, - - -, §;_, for which a; = 1.
Within a block the indices are ordered arbitrarily.

One method of refinement is to order the indices within
a block according to the increasing values of the ¢; or the
c¢/m,, where m; denotes the number of ones of the vector
A,. Although it may seem attractive, this ordering within
the sets §; may well be time consuming, especially in the
case of a block including a large number of indices.

At a stage k we shall choose the first variable not al-
ready fixed. Suppose ¢, is in block j. If the value Xy, = 1
is not rejected by the infeasibility test, then all the indices
not yet considered of block j and all the indices of the
blocks 1 for which oy = 1 are directly introduced in
the next partial solution and the corresponding com-
ponents are immediately set to zero.

If an upper bound is available or if a (best) feasible
solution has been enumerated so far, this scheme may
still be used. However, if we want to make the nonopti-
mality test more powerful, other ways of ordering may
be utilized.

One can think of ordering the whole set of the compo-
nents according to the increasing values of the ¢;. The
result is for a given subset P, the enumeration of the
solutions in a lexicographical order. But, as we have al-
ready said this ordering process is time consuming for
large problems. Hence we suggest the following approach.

Partition the indices into four blocks B, B,, B,, B,,
where

Bo={i|5i=0}§

B, = {ili ¢B0, ¢ < slits

B,={ili¢ B, i¢B,c, <5};
=1{ili¢B,i¢€B,i&B, ¢ =5},

(It is possible to consider B, U B, as a single block B,.)

Incidentally, these blocks will be used later on to de-
rive optimality conditions. Within the blocks the indices
are ordered arbitrarily. The indices are selected first in
B, then in B, B, and finally in B,. From such a strategy,
good (feasible) solutions are expected and, thanks to
the nonoptimality test, it is possible to exclude a large
number of solutions (all the components with their in-
dices in B, will be automatically set to zero).

The B/’s are dependent on P, and 5. Therefore during
the process of enumeration some of the indices move
from one set to another (from B, to B, or B,to B,). As a
resuit B, tends to grow larger and larger while the set
B, U B, U B, becomes smaller and smaller. If this set
is small enough the bookkeeping task concerning the
position of the indices can be simplified if we order the
indices in B, U B, U B, (actually only B, U B, need
be considered) according to the increasing values of
the ¢;’s.

If at the same time it is desired to exclude more solu-
tions for infeasibility, it is possible to use the schemes
defined for the no-feasible-solution case within each
subset B;. The bookkeeping task will always be kept in
mind since in that case a subset of the form S, i=1,

- -, m, may appear in the four blocks B;.

When the enumeration process terminates we are in
one of the following situations:

1. No feasible solution has been found and the problem
is infeasible.

2. The best feasible solution enumerated is obviously
the optimal solution of the problem.

This resuit may be achieved prior to the complete
exhaustion of the partial solutions thanks to the fol-
lowing rules.

1. Infeasibility
As already pointed out, any feasible vector x, of P
must satisfy > _, 4, = b, where again L denotes the
set of the indices of the variables (of the x, vector) set
to one.

Therefore any solution of a subset P, is infeasible
for j > m. Suppose that more than m vectors A4, are
present. At least two of them have a same component
equal to one and the vector inequality cannot be satis-
fied. As a result none of the Pj’s j > m need be con-
sidered in the enumeration process.

2. Nonoptimality
Similarly, a solution x, of P with a cost less than § satis-

fies >, ¢ <3
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Applied to P; this yields ¢, <5 Vi€ Land ¢, <5/j
for at least one component equal to one.

Let us partition the indices of the variables of prob-
lem (3) into three subsets defined as follows:

B1 = {Ilfl < 5/.]}»
B,={ili¢B, ¢, <s};
B,={ili¢B,, i ¢ B, ¢,=5}.

If |B|= 0or [B|+|B,| <jin P, then no better
value than s can be obtained in P;. Since the above re-
lations are also true for 1 > j we conclude that x, is
an optimal solution of problem (3).

Finally, in the case where the cost components of
problem (1) are integers (any practical problem can
be formulated in this way, using an adequate scale),
another useful relation implying the optimality of x, is
given by 5 = {K} — K, where K is the optimal value
of problem (1) [defined after Eq. (3)] and {K} the
smallest integer greater than or equal to K.

Extensions and conclusions

As we have already said, the method is also valid in the
case of an original problem (1} with a; =0 and b, =0,
j=1,-+-, nand i=1, .-, m This is obvious since
nonnegativity is the only assumption used in the exclu-
sion rules. However, in this case some of the results are
slightly modified. For instance there is no reason for the
solutions of the P;’s to be infeasible a priori for j > m.
(In some cases a weaker condition may be drawn from
the values of the b;’s.) Also, in the definition of the §,’s
the condition a;; =1 must be replaced by a;; > 0, in
which case the application of the infeasibility rules is not
so straightforward. And, of course, in this general case
the optimal solution of problem (3) may be very far from
the solution of (2), making the enumeration process
much longer.

We have written an experimental FORTRAN code based
on the method we have just described; the performances
of this code are largely dependent of its implementation.
This implementation wiil not be described here, but let
us say that, for instance, the LP procedure must be very
efficient. In many cases solving the LP part with an in-
efficient LP code will require more time than to solve the
entire problem with a code like the one of Pierce [6];
see also Ref. 15.

To conclude, we would like to give some of the com-
putational experiences we have obtained so far. Not very
large problems with 10 to 20 constraints and 5 to 250
variables were run on an IBM 1130 in approximately
from 5 to 30 seconds. Larger problems are reviewed in
Table 1.

Most of these problems are to be found, with their
data, in Marilley’s thesis [15]. All problems were run on
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Table 1. Computational experience.

Size Time in seconds
(mxn) Problem type  Proposed method Pierce method
42 X 249 crew scheduling 6.5 6002
67 X 536 crew scheduling 20 6002
12 x 538 delivery S 41.3
18 X 273  stability 5

aNo optimal solution after 600 seconds.

an 1BM 360/75. In the rightmost column are the timings
obtained by Marilley on an IBM 360/65 using Pierce’s
method.

On more than 25 practical problems, the computation
time obtained was always good and the optimal solutions
were always found in a level less than four (two was a
very frequent value).

At first it would seem that the level of the optimal
solution is closely related to the problem-solving time,
However, matters are much more complicated and in
many cases other factors are at least as important, e.g.,

« the level of the first feasible solution (if no value is
assigned to § at the beginning of the enumeration
process);

«~ the starting point (and the number of iterations) of
the LP;

« the optimal basis used.

This last point is extremely important since, for degen-
eracy reasons, the optimal basis of the continuous prob-
lem is not unique, even in the case of a unique optimal
continuous solution, and the levels of the first feasible
solution and of the optimal solution are dependent on
the optimal basis selected. This dependence is still more
complicated in the case of more than one optimal solu-
tion, for the LP problem as well as for the partitioning
problem.

For these reasons all the numerical experiments men-
tioned here have been made in the following way: No
starting solution was used for the LP (a phase 1 was
used), the nonbasic variables used for the enumera-
tion were the ones naturally found by the LP algorithm,
and no initial feasible solution or bound was assumed to
start the enumeration.
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