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Computational  Model of a  Closed  Queuing  Network 
with  Exponential  Servers 

Abstract: A simplification and  extension to  Gordon  and Newell's approach  to closed  queuing networks is derived. The  equations, valid 
for exponential servers, with one  server being a  multiserver,  greatly reduce  the  computation time  required by the  former  approach. In 
addition, simplified equations  for  the  details of the queuing network  are derived. 

Introduction 
In this paper we deal with  closed  queuing networks of 
exponential servers. When  only one of the queuing sta- 
tions is a multiserver, we  derive simple equations  that 
greatly reduce  the computation  time  required from  that 
of the  Gordon and  Newell approach [ 11. 

This model  often arises in analyzing computer  systems 
when  shared serially reusable  resources  are  requested 
by  multiple  users. In  the Appendix, one  such  system  is 
analyzed. 

The  Gordon and Newell equations require  summations 
over  the  total number of states of the queuing  network. 
When there  are N requestors and M + 1 stations, this 
requires a summation over ("LM) states.  In  our  approach, 
we  reduce this to a  summation over M functions,  each 
of which is a sum of N + 1 factors divided  by a product 
of M - 1 factors,  thus greatly  reducing the  computation 
time. 

Assumptions 
A queuing network is a set of multiserver  queuing sta- 
tions,  as  shown in Fig. 1. Each  station has  a single first- 
in first-out (FIFO) queue in which  arrivals are noted. 
The ith station has Ri parallel,  identical servers,  and  the 
first element in the  queue always  moves to any idle serv- 
er  as long as a server is not busy. Each  server in a  given 
station will service a request in a  time that  has  an iden- 
tical exponential  distribution. The ith station  has  average 
service time TSi.  
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Figure 1 Multiserver queuing station. 

Thus  the  parameters  for  station i are  the  service time 
TSi and  the  number of servers Ri. The  stations may be 
interconnected by an  arbitrary,  constant,  interconnec- 
tion matrix: 

provided Pi j  = 1 . 
j=l 

Each Pi j  is  the probability that a requestor leaving 
station i will go to the  entrance  to  station j .  Since  we 
specify that  the  matrix is a constant, this  matrix is inde- 
pendent of the  state of the  system. 567 
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A  closed queuing network is one in which the total 
number of requestors, N ,  circulating in the  system is 
finite and constant. Thus  there  are no entries or exits 
from the system  and each  requestor  on completion of 
his service  time  proceeds  directly,  subject to  the proba- 
bility distribution P ,  to  the  entry of another queuing sta- 
tion with no  transit  delay. 

Note  that if the number of servers R ,  of any  station 
is greater than or equal  to N ,  there is never a waiting 
line  and we  have  just  an exponential  delay  function. On 
the  other hand if any  Ri is one, we have a simple single 
server queue. 

Equation derivations 
The derivation  assumes that  there  are M + 1 server  sta- 
tions, with exactly one station,  station M + 1, being a 
multiserver.  All the  other M stations are assumed to  be 
simple single servers.  The derivation  assumes three equa- 
tions (Eq. (A),  (B),  and ( C )  in Ref. l ) ,  which are valid 
for all multiserver  stations. The  interested  reader is re- 
ferred to Ref. 1 for notations not explained here and for 
derivation of these equations. 

The derivation begins similarly to  one alluded to by 
Saaty [ 2 ] ,  although later portions of the derivation are 
different. 

Gordon & Newell's  derivation 
The  state of the system of server stations  is uniquely 
determined by the M + 1-tuple 

(nl, n2, * . ., nM, n M + l )  in which ni = N .  
M + l  

i = l  

Each n, is the number of requestors at  the ith  station. 
Note  that  the total number of states of the system  is the 

partition of N requestors  over M + 1 stations (":"I. 
Now, if we take p ( n l ,  . . ., nM, nM+l)  as  the steady- 

state probability that the system is in state (nl, . . ., nM, 
n M + , ) ,  we can write the  standard queuing equations [ 1 1. 
We define for  the kth station the function P, ( n )  as follows: 

where CY, ( n )  = 
n i f n i  R,  
R , i f n l R k  

Then  the standard queuing equations can  be trans- 
formed  into the following set of equations, as shown in 
Ref. 1 :  
M+ 1 

Pi, ( p i x i )  = p k X k  k =  1 ,  2 ,  . . ., M + 1 
i= 1 

or Y p = Y  (A) 
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and p. =-. 1 
' 'si 

The X i  are a set of unknown parameters whose solution 
in the  above equation  leads  us to a solution for p ( n , ,  . . ., 
nM+,) as follows: 

'In this  equation G ( N )  is a normalizing factor  that is de- 
rived from the  fact  that all probabilities  must sum to one: 

"+ 1 

n i = N .  
i = l  

Note  that  at this  point the equations, while solvable, 
require  a  large  amount of calculation,  since Eq. ( C )  sums 
over (NLM) = ( N  + M )  ! / M ! N !  different points. 

At this point  some simplifications are in order  to bring 
computation within bounds. 

Further  simplifications 
We would like  to simplify the summation in Eq. ( C ) .  To 
do this we will use a lemma from  combinatorial  theory 
and an assumption. We  use  the assumption that all queu- 
ing stations  except  one  are single-server  queues. We  have 
M + 1 servers, and  we  let R, = 1 for i = 1 ,  . . 3, M ;  
R,,, = R .  Then using the definition of Pi, we find: 

M 
or letting n = 2 ni 

i=l  

then nM+l = N - n (2)  

since we have N requestors. 
Now since the solution to (A) is arbitrary  to within a 
constant, we can  choose 

X,+, = 1 . 
Then Eq. ( C )  becomes 

x n i 5  N .  
i=l 

Now we would like to  prove a  combinatorial  theory 
lemma having to  do with the  generating  function for com- 
binations with repetitions fork distinct  objects [ 31. 
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Let T," be  an  enumeration of the ways of distributing 
k distinct objects  into b slots. For example: 

T," = XI2 + X,' + X ;  + 2 X , X ,  + 2X,X3 

is meant to  represent  that  there is one way that  each of 
the  three distinct objects, X , ,  X,,  X ,  may each be  fitted 
into the  two  slots, allowing repetitions,  and two  ways 
that we may choose  one  each of the  objects to fit into  the 
slots. 

Then if t is a  dummy enumeration variable, then  the 
generating  function for combinations with repetitions 
fork  distinct objects is: 

GF = Tbktb. 

Lemmu: In  the generating  function for combinations with 
repetitions for k distinct objects, 

x 

b=O 

T,k = X i b + k - l  

i = l  ( X i  - X j )  
j = 1  
j # i  

Proof: By the definition of a  generating  function we have: 

i = l  

Expanding (4) in partial fractions we get: 

j = 1  
j # i  

or switching to  an infinite summation: 

k xjlC-1 
i = l  rI ( X i  - X j )  

G F ( k )  =E k (1  + X i t  + X y  + .  . .) 
j = l  
j # i  

Now collecting the coefficients of tb we find: 

k T,"=x k ; Q.E.D. 
i = l  n ( X i  - X j ,  

j = 1  
j # i  

Now, we apply  this  lemma to  Eq. ( 3 ) ,  noting that we 
are trying to assign the M single-server stations  to  the n 
requestors  not  at  the multiserver station, allowing repe- 
titions. We find: 

j#i 
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Switching sums: 

j=1  
j # i  

where: 

Now we can also define 

Xi"l 

n (Xi  - xj, 
H ( X ,  i, M )  = - 

j = 1  
j # i  

where X = (Xl, . . ., X M )  - 

and we have 

G ( N )  =x H ( X ,  - i, M ) F ( X , ,  N ,  R ) .  (10) 

Note also that  Eq. (B)  has now  become 

M 

i = l  

Utilization of the  multiserver 
We can find the utilization of the multiserver, U,,, ,  by 
using Eqs. (1 l ) ,  (9) and (10) and  summing, with 
nM+l = 0. That  is,  the multiserver is not being utilized 
whenever  there  are  zero people in the  station.  Thus, 

1 - u,+, = 2 P b , ,  . . ., n" 0 )  (12) 
( n l ,  ' . ', n M )  
M 

$l,=N 
i = l  

Servers  operating for the  multiserver 
We would like to find LR, which is the  expected  number of 
servers operating at device M + 1 (which is also  the 
expected number of requestors being served). By defini- 
tion: 569 
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Lw=length of waiting  line T ,  =wait time 
L, =number of servers  operating T, =service  time 
E ( n )  =number of requestors  elsewhere T, =elsewhere  time 

Figure 2 The network as seen by the multiserver. 

z n i 5  N 
i = l  

where S ( n )  = 
N - n Y R  
N - n P R '  

Using Eqs. ( l l ) ,  (9) and (lo),  we get: 

where 

( N -   n ) X i n  

n=N-R+l ( N  - n ) !  
' 

or reversing the  order of summation: 

F A ( X i , N , R ) =  z"--+- R ~ , ( N - l ) - n  
1 N-* x ( N - l ) - n  

n=o n! R !  n=R+1 Rn-, 

= F ( X i ,  N - 1, R )  . (18) 

Substituting  this in (16) we get: 
M 

570 
L, = H ( X ,  - i, M ) F ( X i ,  N - 1, R )   G - ' ( N )  (19) 

i = l  
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Details for the multiserver 
Referring to Fig. 2, we can define the queuing network  as 
seen by the multiserver. Note  that we have lumped the 
average time spent  not in the  multiserver  and  the  number 
of requestors  not at the multiserver into single param- 
eters.  Now  we  use  the  proportion: 

T ,  : T ,  : T ,  : T ,  + T ,  + Te = Lw : LR : E ( n )  : N. 
(20 )  

We  know N ,  T ,  and have calculated L,, and  can find 
E ( n )  from summing the  queue lengths for all other 
queues.  Therefore we can  calculate the  rest of the  above 
variables,  provided we  can calculate the individual queue 
lengths for all other  queues. 

Utilization for the single servers 
We can find the utilization for the single servers, Ui,  as 
we did for the  multiserver, by summing E q .  ( 11) with 
ni = 0. 

Thus  we find 1 - U i  for i = 1, . . ., M: 

1 - Ui = P(n, ,  . . ., ni-l, 0,  ni+l, . . ' 9  nM9 
( n ,  , . . . , n , " j  

z n i 5 N  
M 

i = l  

Or letting: 

and using Eqs. (9) and (10) 

M 

1 - U i = c  Hi* ( X , j ,  M )  F (Xi, N ,  R )  G"(N) 
j = 1  
j # i  

- 

Queue  lengths for the single servers 
We would like to find LQi, the  queue lengths (waiting line 
and in service) for the single servers. But 
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Now  from  Eq. (10) 

d n , ,  . . ., n'" n"1) 
(n ,  ,..., n,,) 

M 

=CH(&, j ,  M )  F ( X j ,  N ,  R )  G " ( N ) .  
j = l  

Therefore 

Lpi = Xi ("  H ' ( X ,  - j ,  M )  F (Xj, N ,   R )  
j =  1 

+ H ( X ,  - i ,  M )  F'  (xi ,  N ,  R ) )  G - ' ( N ) ,  ( 2 5 )  

where  the prime denotes partial derivative with respect 
to X i ,  or 

M 

L~~ = 2 H ( X , j ,  - M )  A ( i , j )  F (xj, N ,  R )  G - ' ( N )  
j= 1 

+ (M - 1 )  H ( X ,  - i ,  M )  F ( X j ,  N ,   R )   G " ( N )  

+ H ( X ,  - i ,  M )  [ N  F ( X i ,  N ,   R )  

- F *   ( X i ,  N ,   R ) ]   G " ( N )  , 

Since 

F ' ( X i ,  N ,  R )  =- F ( X , ,  N ,  R) -- F * ( X i ,  N 1 
Xi Xi 

and 

M 

f f i  

Details for the single servers 
We  can find the  rest of the  statistics  for  the single servers, 
as we did for  the multiserver, by using Eq. (20) where 

LQi = LWi + LRi 

and LRi = C l i  for single servers. 

LWi = Lpi - LRi, we can find  all the  others. 
Since we know N ,  Tsi and have calculated LRi and 

8 processors 
with level 0 
buffers 

Level 1 directory 0 I 0 'Ore storage 

I I 

Level 3 directory 

cartridge 
library 

16 tasks circulating 
I 

Figure A1 Typical multiprocessor system. 

Other important statistics 
One  other  statistic  that can  be  calculated is the  average 
minimum time for a requestor  to  return  to  the  same  queu- 
ing station  once  he leaves. This could be calculated by 
letting N = 1 in the  above  equations, or using Markov 
chain theory as in Ref. 4 since, if all waiting lines are 
empty,  each  station  becomes a simple exponential  delay. 

Conclusions 
In this paper we have simplified and extended  Gordon 
and Newell's approach  to closed  queuing networks.  In 
particular, we  have greatly reduced  the  amount of com- 
putation  involved and  derived  other  statistics  not derived 
by them. 

Appendix 
A typical  multiprocessor computer  system analyzed by 
the method  given in this paper is shown in Fig. A l .  The 
results of an analysis of this system  are shown in 
Table A 1. 571 
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Table A1 Results of a typical analysis 

lNTERQUE 
1NTERCONNECTlNG  OUEUE  NETWORK  WlTH  ONE  MULTl  SERVER  QUEUE ~~ 

F. R.  MOORE i017170 
STATlON 7 IS THE  MULTISERVER  WlTH 8 SERVERS 
REQUESTORS - 16 

0 0.99 
0 0 

0.01 
0 

0 0 0 
0 1 0 
0 0 0 
0 0 0 
1 0 0 

N TRANSlTlON  PROBABlLlTY  MATRlX 

AVERAGE AVERAGE 
ELSEWHERE QUEUlNG 

SERVER  TlME  TIME 
1 1402098.8 1 110.14 
2 1400162.30  2046.65 
3 140218894.07  2000.46 
4 128723309.88 
5 

11497584.65 
14017060797.16  5028655.53 

6 13672638397.31  349451055.38 
7 152600.61  1249608.34 

SERVER  AVERAGE 
STATlON  QUEUE 

SERVER  UTlLlZATlON  LENGTH 
1 0.0012552 
2 

0.001257 
0.022821 1 

3 
0.023353 

0.0002282  0.000228 
4 0.5705284 
5 

1.31 1940 
0.0057053 

6 
0.005738 

0.2852642 
7 

0.398743 
0.9999998  14.258740 

RUNNlNG  TIME-1 .2 SECS. 
RUN  DATE - 2/29/72 
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0 
0 
0.99 
0 
0 
1 
0 

AVERAGE 
WAITING 

TlME 
0.14 
46.65 
0.46 

6497584.65 
28655.53 

99451055.38 
549608.34 

AVERAGE 
WAlTlNG  LlNE 

LENGTH 
0.000002 
0.000532 
0.000000 
0.74141 1 
0.000033 
0.1  13479 
6.271343 

0 0 
0 0 
0.0 1 0 
0 0 
0 1 
0 0 
0 0 

SERVlCE 
TlME 

110.00 
2000.00 
2000.00 

5000000.00 
5000000.00 

250000000.00 
700000.00 

AVERAGE 
SERVERS 

OPERATlNG 
0.00 1255 
0.022821 
0.000228 
0.570528 
0.005705 
0.285264 
7.987397 

0 
1 
0 
0 
0 
0 
0 

MINIMUM 
ELSEWHERE 

TlME 
777520.00 
775630.00 

77761000.00 
72763000.00 

7771299999.99 
7526299999.99 

77630.00 

MlNlMUM 
SERVERS 

OPERATlNG 
0.000141 
0.002572 
0.000026 
0.064298 
0.000643 
0.032149 
0.900  17 1 
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