F. R. Moore

Computational Model of a Closed Queuing Network

with Exponential Servers

Abstract: A simplification and extension to Gordon and Newell’s approach to closed queuing networks is derived. The equatiéns, valid
for exponential servers, with one server being a multiserver, greatly reduce the computation time required by the former approach. In
addition, simplified equations for the details of the queuing network are derived.

Introduction

In this paper we deal with closed queuing networks of
exponential servers. When only one of the queuing sta-
tions is a multiserver, we derive simple equations that
greatly reduce the computation time required from that
of the Gordon and Newell approach [1].

This model often arises in analyzing computer systems
when shared serially reusable resources are requested
by multiple users. In the Appendix, one such system is
analyzed.

The Gordon and Newell equations require summations
over the total number of states of the queuing network.
When there are N requestors and M + 1 stations, this
requires a summation over (N;,M) states. In our approach,
we reduce this to a summation over M functions, each
of which is a sum of N + 1 factors divided by a product
of M — 1 factors, thus greatly reducing the computation
time.

Assumptions

A queuing network is a set of multiserver queuing sta-
tions, as shown in Fig. 1. Each station has a single first-
in first-out (FIFO) queue in which arrivals are noted.
The ith station has R, parallel, identical servers, and the
first element in the queue always moves to any idle serv-
er as long as a server is not busy. Each server in a given
station will service a request in a time that has an iden-
tical exponential distribution. The ith station has average
service time T .
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Figure 1 Multiserver queuing station.

Thus the parameters for station i are the service time
T, and the number of servers R, The stations may be
interconnected by an arbitrary, constant, interconnec-
tion matrix: )

- P

im

P Pom
m ,
provided » P;=1.
j=1
Each P; is the probability that a requestor leaving
station / will go to the entrance to station j. Since we
specify that the matrix is a constant, this matrix is inde-
pendent of the state of the system.

567

CLOSED QUEUING NETWORK




568

F. R. MOORE

A closed queuing network is one in which the total
number of requestors, N, circulating in the system is
finite and constant. Thus there are no entries or exits
from the system and each requestor on completion of
his service time proceeds directly, subject to the proba-
bility distribution P, to the entry of another queuing sta-
tion with no transit delay.

Note that if the number of servers R, of any station
is greater than or equal to N, there is never a waiting
line and we have just an exponential delay function. On
the other hand if any R, is one, we have a simple single
server queue.

Equation derivations
The derivation assumes that there are M + 1 server sta-
tions, with exactly one station, station M + 1, being a
multiserver. All the other M stations are assumed to be
simple single servers. The derivation assumes three equa-
tions (Eq. (A), (B), and (C) in Ref. 1), which are valid
for all multiserver stations. The interested reader is re-
ferred to Ref. 1 for notations not explained here and for
derivation of these equations.

The derivation begins similarly to one alluded to by
Saaty [2], although later portions of the derivation are
different.

e Gordon & Newell's derivation
The state of the system of server stations is uniquely
determined by the M + 1—tuple

M+1

"y My My i Which > =N,

i=1

(A, ny,

Each n; is the number of requestors at the ith station.
Note that the total number of states of the system is the
partition of N requestors over M + 1 stations (N;,M)
Now, if we take p(n,, * - -, ny, n,,,) as the steady-
state probability that the system is in state (n,, * - -, n,,
.0 We can write the standard queuing equations [1].

We define for the kth station the function 8, (n) as follows:
Bk(l’l) = ak(n)Bk(n - 1)

nif n=R,

where a, (n) = {R =R
k - k*

Then the standard queuing equations can be trans-
formed into the following set of equations, as shown in
Ref. 1:

M+1

> Py (X)) =mX, k=1,2,-- M+1

=1

or l_=l (A)
where y = W Xy s gy Xpgan)

and /,Li=TL.

si

The X, are a set of unknown parameters whose solution
in the above equation leads us to a solution for p(n,, - - -,
Hy.,) as follows:

M+1 n

Py s my,,) = {[1 ﬁi(n»} G'(N). (B)

“In this equation G (N) is a normalizing factor that is de-

rived from the fact that all probabilities must sum to one:

ww-, 3 e ©

M+1

2 n=N.
=

Note that at this point the equations, while solvable,
require a large amount of calculation, since Eq. (C) sums
over (V") = (N + M)!/M!N! different points.

At this point some simplifications are in order to bring
computation within bounds.

Further simplifications

We would like to simplify the summation in Eq. (C). To
do this we will use a lemma from combinatorial theory
and an assumption. We use the assumption that all queu-
ing stations except one are single-server queues. We have
M + 1 servers, and we let R,=1 for i=1, ., M;

R,,., = R. Then using the definition of 8;, we find:
Bi(fli)zl i=1-- M
(D)

Buss (Myrr) = Blny, )

M
or letting n =Y n,

i=1
then Ay =N—n (2)

since we have N requestors.
Now since the solution to (A) is arbitrary to within a
constant, we can choose

X 1.

M+1 ™
Then Eq. (C) becomes

X

1

B (N—n)

)

G(N)=

—

1

1

=

(np,

(3)
n=N.

1

M

1

1

Now we would like to prove a combinatorial theory
lemma having to do with the generating function for com-
binations with repetitions for k distinct objects [3].
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Let Tbk be an enumeration of the ways of distributing
k distinct objects into b slots. For example:

T,)=X7+X,+X,+2X X, +2X,X,

is meant to represent that there is one way that each of
the three distinct objects, X,, X,, X, may each be fitted
into the two slots, allowing repetitions, and two ways
that we may choose one each of the objects to fit into the
slots.

Then if ¢ is a dummy enumeration variable, then the
generating function for combinations with repetitions
for k distinct objects is:

_ i Tbktb
=0

Lemma: In the generating function for combinations with
repetitions for & distinct objects,

btk—1
X,

k
T, =3 ——.

Proof: By the definition of a generating function we have:

k
H A+Xt+X1E+ )

GF (k) = 2
b=0
k
1
=\l177— (4)
l.Ul (1—X,t)
Expanding (4) in partial fractions we get:

Xkt 1
(1—X,1)°

or switching to an infinite summation:

k-1

k
GFk)=Y w+——— (1 + X+ X1 +- - ).

Now collecting the coefficients of /° we find:

brk—1
X,

* k
T, =3

; QE.D. (5)

Now, we apply this lemma to Eq. (3), noting that we
are trying to assign the M single-server stations to the n
requestors not at the multiserver station, allowing repe-
titions. We find:

X n+M-1

N M
GN) =3 s S 6)

M
n=0 i=1 H (X X)

1
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Switching sums:

M XM E(X N, R)

G(N) =3 —— : (7)
i=1 H (XI_X])
j=1
i
where:
N X
F(X,N,R)= —_—
(X, ) gﬂ N =)
1 N-R Y™ N x"
— 1 i + i
R! & RV™ME &y (N —n)!
R yNm | x N
= = — | (8)
,;, n! R!ngk:ﬂ R""
Now we can also define
X.M_]
HX, i, M) =—-———, 9)
I &x,—x;)
j=1
i
where X =(X,- - -, X,)
and we have
M
G(N)=EH(£,:’,M)F(X1.,N,R)‘ (10)

i=1
Note also that Eq. (B) has now become

- - 1 ;| -t
pln, ,nM,nMH)—{ﬁ(N_ )HX la (N)(m

Utilization of the multiserver

We can find the utilization of the multiserver, U, , by
using Eqs. (11), (9) and (10) and summing, with
fy., = 0. That is, the multiserver is not being utilized
whenever there are zero people in the station. Thus,

1=Uy,, = > p(n, - -+, n,,0) (12)
<"1’ T nM)
M
2 =
i=1
M
> [1X G (N)
NSOV Ul

(E H(X, i, M)X,.>G‘ (N). (13)

Servers operating for the multiserver

We would like to find L, which is the expected number of
servers operating at device M -+ 1 (which is also the
expected number of requestors being served). By defini-
tion:
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Ly E(n)

T,, =wait time
T =service time
T, =elsewhere time

Ly,=length of waiting line
L =number of servers operating
E (n) =number of requestors elsewhere

Figure 2 The network as seen by the multiserver.

L,= > S(n) p{n,, + « - myp ny,) (14)
(Ryy - o My
M
E n=N
i=1
N—n N—n=R
whereS(n)—{ R Nen=R"
Using Egs. (11), (9) and (10), we get:
S(n) d n; ~—1
L,= ———— [T X" G (N) 15
o= 2 BN-m X (1
y S(n) d n -1
= H(X,i, M\)X" G (N
,;)B(N—)i; (X, i, M)X, (N)
M
=3 HX, i, M)F*(X, N, R) G™'(N), (16)
i=1
where
N S(n)X
F* (X, N,R) = Em (17)
__R—N”‘ X" Yo (N—n)X;
R! S RV n:NEIM (N — n)!
or reversing the order of summation:
A R (N—l) n 1 N—1 (N-1)-n
F*(X, N,R) = — Y
, E 3 ,.§+1 R""
=F(X,N—1,R). (18)
Substituting this in (16) we get:
\ ‘
L,=3 H(X,i, M)F(X, N—1,R) G'(N) (19)

i=1

Details for the multiserver

Referring to Fig. 2, we can define the queuing network as

seen by the multiserver. Note that we have lumped the

average time spent not in the multiserver and the number

of requestors not at the multiserver into single param-

eters. Now we use the proportion:

r,:7T,:T,: T, +T +T,=L, :L,:E(n):N
(20)

We know N, T, and have calculated L,, and can find
E(n) from summing the queue lengths for all other
queues. Therefore we can calculate the rest of the above
variables, provided we can calculate the individual queue
lengths for all other queues.

Utilization for the single servers
We can find the utilization for the single servers, U, as
we did for the multiserver, by summing Eq. (11) with
n,=0.

Thus we find 1 — U, fori=1,- - -, M:

1— Ui = 2 p(”p Tt ni—l’ Oa ni+1’ A nM, nMH)
<”1" oS "M>
M
2 n=N
i=1
= X i GTU(N) . 21)
(n, an> B(N_n H (
]#1
Or letting:
X, — X))
HF (X, jo M) = H(X, j, M) —L5—= (22)
i
and using Eqs. (9) and (10)
M
1-U=SH*(X,j,M)F (X, N,R) G'(N) (23

j=1
=i

Queue lengths for the single servers
We would like to find L, the queue lengths (waiting line
and in service) for the single servers. But

LQi= E ”ip("l" C My "M+1)
(nl,...’nnn
En].EN
j=1
3 > pln, - mn, )
(’l,"‘,
=X. : , 24
X, X (24)
since p(n,, - - -, n,, n,,.,) is a product ofX “in Eq. (B).
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Now from Eq. (10)

S oplay, sy ny)

(ryse oy

= H(X,j,M)F (X, N,R) G'(N).
> HK, ;

j=1

Therefore

M
La=X, (3 H' X, M) F (X, N, R)

J=1

+H(X,i,M) F' (X, N, R)) G(N),  (25)

where the prime denotes partial derivative with respect
to X, or

=

Qi

J

I

Ly=3 H(X.j, M) A (i,j) F (X, N,R) G"'(N)

+(M—1)H (X,i, M) F (X;, N,R) G'(N)
+H(X,i, M)[N F(X, N, R)

—F* (X, N,R)]G'(N), (26)
Xi ;é .
— i
(Xj_Xi) J
where A(i,j) =<4 u X
2 J=i (27)
=1 (Xl—Xi) S
I#i
Since
, =N 1 s
F(Xin’R)_ F(X,N7R)__F (X~’N,R)’
X, ! X, i
! (28)
EoaxMm o YoaxM
F*(Xi’N’R)=ET+E _Z RE (29)
n=0 n=R+1
and
1 ..
H (X, jMy=HX,j,M) ———-— whenj # i,
(X,Jj, M) (X, Jj )(Xj—X,-) J
H i M) =YL i v
M 1
+H(X, i M);——(XI—XJ' (30)

I#i

Details for the single servers
We can find the rest of the statistics for the single servers,
as we did for the multiserver, by using Eq. (20) where

Lyi=Ly; + Ly
and L,, = U, for single servers.

Since we know N, T, and have calculated Lg; and

L,;= Ly — Ly, we can find all the others.
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Figure A1 Typical multiprocessor system.

Other important statistics

One other statistic that can be calculated is the average
minimum time for a requestor to return to the same queu-
ing station once he leaves. This could be calculated by
letting N = 1 in the above equations, or using Markov
chain theory as in Ref. 4 since, if all waiting lines are
empty, each station becomes a simple exponential delay.

Conclusions

In this paper we have simplified and extended Gordon
and Newell’s approach to closed queuing networks. In
particular, we have greatly reduced the amount of com-
putation involved and derived other statistics not derived
by them.

Appendix
A typical multiprocessor computer system analyzed by
the method given in this paper is shown in Fig. Al. The
results of an analysis of this system are shown in
Table Al.
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Table A1 Results of a typical analysis

INTERQUE
INTERCONNECTING QUEUE NETWORK WITH ONE MULTI SERVER QUEUE
F. R. MOORE 10/7/70
STATION 7 IS THE MULTISERVER WITH 8 SERVERS
REQUESTORS—16
N TRANSITION PROBABILITY MATRIX

0 0.99 0.01 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0.99 0.01 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
Q a 0 1 0 0 0
1 0 0 0 0 0 0
AVERAGE AVERAGE AVERAGE MINIMUM
ELSEWHERE QUEUING WAITING SERVICE ELSEWHERE
SERVER TIME TIME TIME TIME TIME
1 1402098.81 110.14 0.14 110.00 777520.00
2 1400162.30 2046.65 46.65 2000.00 775630.00
3 140218894.07 2000.46 0.46 2000.00 77761000.00
4 128723309.88 11497584.65 6497584.65 5000000.00 72763000.00
S 14017060797.16 5028655.53 28655.53 5000000.00 7771299999.99
6 13672638397.31 349451055.38 99451055.38 250000000.00 7526299999.99
7 152600.61 1249608.34 549608.34 700000.00 77630.00
SERVER AVERAGE AVERAGE AVERAGE MINIMUM
STATION QUEUE WAITING LINE SERVERS SERVERS
SERVER UTILIZATION LENGTH LENGTH OPERATING OPERATING
l 0.0012552 0.001257 0.000002 0.001255 0.000141
2 0.0228211 0.023353 0.000532 0.022821 0.002572
3 0.0002282 0.000228 0.000000 0.000228 0.000026
4 0.5705284 1.311940 0.741411 0.570528 0.064298
S 0.0057053 0.005738 0.000033 0.005705 0.000643
6 0.2852642 0.398743 0.113479 0.285264 0.032149
7 0.9999998 14.258740 6.271343 7.987397 0.900171

RUNNING TIME-1.2 SECS.
RUN DATE—-2/29/72

References

1. W.J. Gordon and G. F. Newell, “Closed Queuing Systems
with Exponential Servers,” Operations Research 15, 254 -
265 (1967).

2. T. L. Saaty, Elements of Queueing Theory, McGraw-Hill
Book Co., Inc., New York, 1961, p. 330.

3. An explanat10n of generating functions is provided in I ntro-
duction to Combinatorial Mathematics, by C. L. Liu, Mc-
Graw-Hill Book Co., Inc., New York, 1968, although the
book does not show this lemma.

4. A. L. Leiner, Supermod: An Analytic Tool for Modeling the
Performance of Large-Scale Systems, RC 2796, IBM Corp.,
Feb. 12, 1970.

Received May 15, 1972

The author is located at the IBM Systems Development
Division Laboratory, Poughkeepsie, New York 12601.

572

F. R. MOORE

IBM J. RES. DEVELOP.




