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A New Class of Automatic Equalizers* 

Abstract: A new  class of automatic  equalizers with  very fast  convergence is discussed in this  paper. This  fast convergence is accom- 
plished by means of an iterative procedure which successively  makes  higher-order  approximations on  the desired equalizer function. 
The  iterative  procedure can be conveniently  realized in the  form of transversal filter stages in casqde. For a  given  distortion D < 1, 
the residual distortion at  the  equalizer  output  after n iterations  can  be  reduced to no more than D' in the noise-free  cases.  When  this 
approach is applied to  the feed-forward part of a recursive  structure,  the front  distortion (due  to  precursors)  can be reduced in a similar 
fashion  without  unduly  increasing  the  overall distortion.  The resulting distortion, mainly in the rear  end,  can then be cancelled out via 
feedback  paths.  Other topics treated include certain generalizations,  the  truncation error  due to limited length in cascaded  equalizer 
sections,  and the effect of noise. Several numerical examples are also presented to illustrate the effectiveness of the approach. 

1. Introduction 
One of the significant developments in recent  years in 
digital data transmission has been the  use of transversal 
filters as time-domain equalizers. Various algorithms 
have been  developed to automatically  adjust the tap-gain 
settings  in such  an  equalizer during  a  training  period in 
which a  train of isolated reference pulses is transmitted 
[ 1 -31. Adaptiveness  can  be achieved during actual data 
transmission by adjusting the tap-gain settings as a func- 
tion of estimated  channel response [4-71. It is clear 
that,  for high-speed data transmission systems,  fast con- 
vergence in automatic equalization is important  to  keep 
the  turn-around time small. In this paper,  we  describe a 
new equalization technique with very  fast convergence 
time. The  technique  is based on an iterative procedure 
that makes  successively  higher-order  approximations 
on  the  desired  equalizer  transfer function. This  procedure 
can be  conveniently  implemented in the  form of cas- 
caded transversal filter stages. We also describe how  this 
technique  can be applied to  the feed-forward  part of a 
recursive  structure, resulting in the suppression of the 
front  distortion without unduly increasing the overall 
distortion. Other topics treated include certain generali- 
zations of this  technique, the effect of truncation (limiting 
the  number of delay  units in an equalizer stage),  and  the 
effect of noise. Several  examples with numerical results 
obtained via an APL simulation  program are  also included 
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to illustrate the effectiveness of the  approach. I t  should 
be  noted that base-band  pulse  transmission is assumed 
throughout. A number of related  topics of practical im- 
portance,  such  as time jitter, digital round-off errors, and 
other implementation  details are  beyond  the  scope of 
this paper. 

2. Equalizer structures 

Nonrecursive  equalizer with cascaded  stuges 
The first  equalizer structure considered in this paper con- 
sists of n cascaded stages of transversal filters as  shown 
in Fig. 1.  The  channel  output  feeds  the first stage of the 
equalizer. The  output of the first stage in turn  feeds the 
second stage,  and so on. Let us denote  the  channel im- 
pulse response by the sample sequence {ak")} = , 

the  ith stage is denoted by { c x ~ ' ~ ) }  = { c x - ~ ~ ' ~ ) ,  . . ., , 
a,, , a ,  , . . ., }. On  the  other  hand, tap-gain settings 
of the ith stage  form a vector &(i'  = (@-Mi , . . ., @-, , 

. . ., The  term a,,(i1 represents  the main 
pulse, wh'ile other  terms ak'" ( k  # 0) represent sidelobes. 
The length of the  sequence { C X ~ ' ~ ) }  is 2 N ,  + 1, where N i  
is a function of i. There is no loss of generality in assum- 
ing Ni samples to  exist  on  either  side of the main pulse 
a,, since certain  samples can always take  zero values. 
Note  that  the tap gain @ k ' f )  in the ith stage is used mainly 
to  suppress  the  interference  term akl f - l )  in the  input se- 
quence of that  stage;  thus M i  5 Ni-l .  

(01 

. . .  , IO)  , a,, (0) , a1 (01 , . . ., aNi'')}. Similarly, the  output of 
If) 

lil l i)  f i )  

(il ( i )  

(iJ 
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Figure 1 System  diagram for the cascaded  nonrecursive  equalizer. 

Recursive equalizer with cascaded  stages 
Another equalizer structure considered in this paper is 
that of a recursive filter with n cascaded  stages in the 
feed-forward  section (Fig. 2) .  In  the  cascaded  section, 
the tap-gain settings of the ith stage form  a vector 
pi"' = (p-,,"'. . . ., p-l"', and the  output of the 
ith stage  is'{akci'}= { a ! - N i  , * . ., , a0 , a1 , . . .. 

}. Here again M i  5 Ni_ l .  Note  that  no  attempt is 
made  to  suppress  the interference in the  rear  end; this 
results in a constant width for rear-end  sidelobes in the 
output of all stages. These rear-end  sidelobes at  the  out- 
put of the feed-forward  section are then  cancelled out in 
the  recursive  section  via  feedback  paths weighted by tap 
gains p, = (p,, p2, . . 1, BN0)  as  shown in Fig. 2. 

( i )  ( i )   ( i )  (i) 

( i )  

3. Gain-setting algorithms for cascaded equalizers 

8 Nonrecursive type 
The following procedure is observed during the training 
period: 

1. Preset p,,"), par2), . . , pa(") to unity and all other 
weights to zero. 

2. In the ith iteration (i = 1, 2, . . ., n ) ,  the  tap gains of 
the ith stage  are  set according to  the  response of the 
ith training  pulse at  the input of the ith  stage, as 
follows: 
p,"' = - 

poli) = 2 - a!, . 

(i-1) for k # 0, -Mi 5 k I Mi and 
(i-1) 557 
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Figure 2 System diagram for cascaded recursive equalizer. 
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3. The  procedure  ends  either  when  tap gains in all n 
stages  are  set  or when the desired  eye-opening is ob- 
tained. 

Without  truncation, we have M i  = Ni-" .  In  such a case, 
the widths of both  front  and  rear sidelobes double  after 
each iteration. That  is, Ni = 2jNo. 

Recursive type 
The following procedure is observed during the training 
period: 

1 .  Preset pocl', . . ., &("' to unity  and all other 
weights to zero. 

2 .  In  the ith iteration (i = I ,  2 ,  . . ., n ) ,  the  tap gains of 
the ith stage in the feed-forward  section are  set  accord- 
ing to  the  response of the ith training pulse at  the input 
of the ith stage,  as follows: 

p,"' = -ak li-1) for Mi 5 k < 0, and 

po'i'= 2 - (Yo . ( i - 1 )  

3 .  The  above iteration ends  either when tap gains in all 
n stages in the  feed-forward  section are  set  or when the 
front distortion is sufficiently small. 

4. The  tap gains in feedback paths of the  recursive  sec- 
tion are  set according to  the  rear sidelobes at  the  out- 
put of the  cascaded feed-forward  section: 

p k  = -ak for 0 5 k 5 N o .  

If Mi = Ni-,, the width of the  front sidelobe doubles 
after  each iteration ( N i  = 2 i N o ) ,  while the  rear sidelobe 
maintains a constant width of No. 

4. Performance analysis 
The channel response  sequence {ak("'} can  be expressed 
in terms of the z-transform expansion: 

In) 

A'o '=  : at z . (0) -k (1)  
k=-Ni 

An initial distortion sequence can  be  defined, giving: 
A'') = 1 -A"' . (2) 

The initial total (peak)  distortion, Do'"! is defined as  the 
sum of the magnitudes of sidelobes  when the main pulse 
is normalized to unity. Thus 
D'O' = (A'o'/ao'o' 1 - 1 ,  (3)  

where 1.1  denotes  the  sum of absolute values of coeffi- 
cients in the z-transform  expansion. The eye-opening of 
the initial channel response  sequence is defined as 
I ' O '  = 1 - D'" (4) 

Similarly, one  can define the peak  distortion D'i' and 
eye-opening I"' of the ith stage  output  sequence.  Eye- 
opening is a measure of the margin against  noise in the 
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presence of worst-case cumulative  intersymbol  inter- 
ference when using simple  threshold detection of the 
sampled signal. 

Let us now consider  the gain-setting  algorithm for non- 
recursive  cascaded equalizers  without truncation  as 
described in the  last  section. According to  the algorithm, 
the  transfer function for  the ith stage  can  be written  as a 
polynomial in z-": 
B ( i )  = Z-Ni-l (2  -A'""' ) = z -  ( 1 ,  ( 5  1 1 + ~ ( i - 1 )  

where N i  = No2"'. With  the  input  at  the ith stage being 
A l i-11 - - - ~ ( i - 1 )  , the  output  at this stage  is 
A l i l  = A ( i - l l B ( i l  = Z-Ni-l [ 1 - (A'i"1')2] . (6) 

It follows that, with the initial input being A"' = 1 - A'", 
the  output  at  the nth stage is 

-(No+N1+...+>Vn-1J AIn' = z [ l  - 

= z - ~ [  1 - , (7 1 

where N = No(2" - 1 ). The overall transfer function 
for  the n cascaded  equalizer  stages is: 

n--1 
= fi B ~ )  = Z-N [ 1 + (A"')2i]  . ( 8 )  

It is clear from  the  expression of A'") that,  as long as 
/A'"'/ < 1 ,  the  quantity IA'"'/ 5 /A(o')2n converges  to  zero 
exponentially as n increases. 

We shall next  show  that if the initial input is scaled SO 

that (a,,"'l = 1 ,  then the final total  distortion and  eye- 
opening are bounded as follows: 

i = l  i=o 

D'n' [D'O)12n (9 1 

and 

1'") 2 1 - [D("]'". (10) 

This can  be done by first showing in general, D 5 / A / .  
That is, the unnormalized  total  distortion is always greater 
than or equal to  the normalized one.  Consider  the fol- 
lowing cases: 

(a )  If (ao( = 1, then D = / A / .  ( 1 1 )  

(b) If /ao/  > 1 ,  let /ao/  - 1 = E ,  where E > 0 .  Then 

D = [ / A I  - ~ ] / ( 1  + E )  < / A / .  (12) 

(c) I f  /ao/  < 1 ,  let 1 - /sol = E where 0 < E < 1. Then 

D = [ lA - el]/(  1 - E )  

= /AI - ( 1  - IAl)E/(l - E )  < IA/ (13) 

as long as / A /  < 1 .  
Since Ia,,(''( = 1 implies Dlo' = (A'o' / ,  we  have 

Dln' 4 /A(")l 5 jA(oJ(2n = /D(o) /2",  and (14) 

1'" 2 1 - [D'o ' ]2n (15) 559 
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Figure 3 Minimum eye-opening of the  nonrecursive  equalizer 
vs number of iterations with agiven initial distortion, D'O'. 

as long as the initial condition D'O' = lA'o'l < 1 is satis- 
fied. It should  be  noted that this is a sufficient but  not a 
necessary condition for  the  convergence of the  total dis- 
tortion. However, given D'O' 2 1, it is possible to  have 

- for all i. This situation exists,  for  instance, 
when all ak'O)(k # 0) have negative signs. 

The minimum (guaranteed) eye-openings vs  the num- 
ber of iterations  are plotted in Fig. 3 with  various  values 
of initial total  distortion D'O'. This  shows what  can  be  ex- 
pected of the  cascaded  equalizer described above  under 
noise-free  conditions. 

We next  consider  the gain-setting  algorithm for  the 
cascaded feed-forward  section in a recursive  equalizer 
as described in the  last section. Let hf denote  the  front 
distortion sequence including the distortion at  the main 
pulse, i.e., 

D({+') > D'f) 

(16) 

Similarly, the  rear distortion sequence gives 
Ni 

560 A, --x ( i i  - z . ( i )  -k (17) 
k = l  
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Thus 
A li-1) = 1 - ~ ( i - 1 )  - - 1 - Af'i-') - 

hr(i-i) . (18) 

According  to  the algorithm, the  transfer function for  the 
ith stage in the  cascaded section is 
~ ( i )  = Z-Ni-l  ( 1  + Af(i-l)) . (19) 

The  output  at  the ith stage is therefore 
A li) = A ( i - l I ~ ( i i  = Z-Ni-l  (1 - ~ ~ ( i - 1 )  - ~ ~ ( i - 1 ) )  (1  + ~ ~ ( i - 1 )  1 

- - Z - H i - ~  [ 1 - &Ii-') (A,"") + Ar(i-l)) 

- . (20) 

Thus 
( ~ ( f i l  = ( 1  - A ( ~ I  5 l ~ ~ ( i - 1 i l l ~ ( i - 1 ) 1  + ~ ~ , ( i + + " l  

< l ~ ~ C i - 1 ) ~  + ( ~ ~ ( i - 1 )  I = lA[(i-lil for IA"-l'l < 1 . 
(21 1 

Therefore if the initial input is normalized  with ( ( ~ ~ ( ~ ' 1  = 1, 
then 

D'n '5  < IA'oi(=D'o)forD'o'< 1 . 
That  is,  the  total distortion decreases.  On  the  other  hand, 

) I 5 lAf(i-'ll IA"-l'I . (22) 

If we define Df and D,, respectively, as  the  total  front  and 
rear  distortions, Le., contributions of, respectively,  front 
and  rear sidelobes to  the total distortion,  and if Icyo(olI = 1, 
then 

l A f l i ) l  < (Af( i - l ) (Af( i - l )  + hr(i-l)  

Df(nl < D , ( O i  n-I n D(i l  < D f ( 0 ) [ D ( o ) ~ n  

(23 1 
i = O  

It should be pointed out  that  the  above inequality  gives 
a very  loose bound for Df("'. In  practice Df"' converges 
much faster  than Df'o'[D'o']i since a) D"' itself converges, 
b) only  a  portion of Af"-llAr(i-l) in Eq.  (22) actually be- 
comes  part of the  front  distortion, and c)  many product 
terms with  different  signs tend  to partly cancel  one 
another. 

After IZ stages of front equalization, feedback  paths 
are  used  to cancel out  the final rear distortion. Since com- 
ponents in Df(n) are multiplied by  appropriate  components 
in Dr(") and  fed  back recursively, the  worst-case condition 
of an eye-opening can be seen  to be 

I = 1 - [Dfcn)! (1 - D,'"')] . (24) 

Since Df(n) + 0 as n increases,  and  since Dr(n) 5 D(n' 

Note  that  there can be  no  guarantee  for eye-opening if 
Dr(n) 1 1, and it is therefore vital for  the gain-setting 
algorithm to  keep  the  rear distortion  below  unity. 

The effectiveness of these gain-setting  algorithms will 
be  illustrated later  by numerical  examples. 

< - D(O) , the eye-opening approaches unity as n increases. 
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5. Effect of truncation 
We shall define the  “truncation  error” to be the residual 
distortion  resulting from  our iterative  equalization pro- 
cedure, in which the maximum number of delay  units 
per  stage is limited to a constant K while the  number of 
stages is unlimited. For simplicity, let 

K = 2 ’ M ,   ( 2 5 )  

where p is a  positive  integer  and M is the  number of side- 
lobe  samples in the original channel response.  Thus, 

p = log, ( K I M )  ( 2 6 )  

is the  number of stages without  truncation.  We shall de- 
note  the  corresponding  truncation  error by E@’.  

The  upper bound of the truncation error E@’,  with a 
given initial distortion,  can  be  readily  derived from  the 
worst-case  input  sequence, which has only one sidelobe 
in addition to  the main pulse: 

5 [Dco’]zp+’ ( 2 7 )  

Although bounds of truncation  error,  as indicated  in 
the  above  equation,  can actually be  attained  under  worst- 
case  conditions,  truncation  error in practical cases may 
fall well below these bounds. A reasonable approxima- 
tion of the  truncation  error can be  written  in the following 
linear  form: 
E‘p’ N N b,+,[D (0) ] 91’ + .  . * + b,[D‘0’]2fl 

= 5 bk[Dio ’ ]2k .  ( 2 8 )  

This is based  on  the  obserqation  that  the  output  at  the 
( p  + 1)th  stage  consists of two  parts;  the uncontrollable 
sidelobes which lie outside  the  span of K delay units,  and 
the controllable  sidelobes  which  lie  inside the  span. I t  is 
then  assumed  that  the  contribution of the first ( p  + 1)  
stages in E@’ is b,+l[D ] . The contribution of the (0) 2p+l 

( p  + 2)th stage  to Ew’ is a fraction of its  output  when 
its input  is  the  actual  output of the ( p  + 1)th  stage with 
uncontrollable  sidelobes  removed. This is approximated 
by bp+,[D ] . The  same reasoning is applied to  the 
following stages. The coefficients are  determined by the 
estimated fraction of the total distortion  corresponding 
to uncontrollable  sidelobes.  When the total  distortion 
becomes  “uncontrollable” after ( p  + 1) stages,  we  have 
b,,, = 1 and b, = 0 fork > p + 1, in which case  Eq. ( 2 8 )  
reduces  to  Eq. ( 2 7 ) .  

We  have found the following case  to yield a conserva- 
tive but realistic estimate of E@’:  The  input  sequence  to 
the  equalizer (original  channel response)  is assumed to 
have M flatly distributed sidelobes with identical mag- 
nitudes  and  the  worst-case sign pattern. We also  assume 
p 1 1, i.e., the maximum  number of delay sections al- 
lowed  in each  stage  is  at  least 2M + l .  The  outputs of 
the first two  iterations with p = 1 are  shown in Fig. 4. 

k=p+l  

(0) 2p+2 
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N 

I € ‘ = r / ( l - 2 N € )  

I 

Figure 4 First and second iterations of the nonrecursive 
equalizer with  flatly distributed sidelobes as input; (a) output 
sequence after first iteration, (b) output sequence after second 
iteration. 

Clearly, if D‘O’ < 1, only a few  terms in ( 2 8 )  are neces- 
sary  to give a good  approximation. For small b,, we may 
further simplify the approximation of ( 2 8 )  to give 
E“’ w b,[ (D(o’)22 + + (D(o ’ )24 ]  . ( 2 9 )  

By inspecting the  output of Fig. 4 (b),  one  can  estimate 
b,, the  fraction of uncontrollable  distortion to be about 
one fifth, hence 

k=2 

The  estimated  truncation  error I?‘’’ and  the  actual E“’ 
after five iterations  are  tabulated in Table 1 under  the as- 
sumption that  the  inputs to the equalizers all have worst- 
case flatly distributed  sidelobes  with initial distortions 
of 0.9, 0.8, 0.7,  and 0.6, respectively, 

Example 1 : 
Given {ak } =  (0.005, -0.064, -0.138, 1, 0.315, 
- 0.13 1, - 0.059), which has  an initial distortion, D‘O’ = 
0.712,  we wish to find 1) the  number of iterations, 
and 2 )  the  number of delay  sections  for  the  nonrecursive 
type,  truncated  nonrecursive  type,  and  recursive  type 
equalizers in order  to  obtain  an eye-opening of 95% or 
better.  The  results  are  shown in Table 2.  561 
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Percent o truncation  Percent of truncation 
Initial distortion  error E ( I f  , estrmated . error E"' determined 

D'o' 
by E4. (30)  by  simulation 

N = 4  N = 5  

0.9 
0.8 
0.7  6.9 
0.6 2.9 

26.1 24.7  23.3 
12.1 9.7 9.2 

4.4 4.2 
2.1 1.9 

Table 2 Results of example 1 .  

Type of No. of iterations Max. no. of delay  Eye-opening 
equalization  required units per  stage in percent 

Nonrecursive 3 24 98.9 
Nonrecursive 3 12 
with 

98.1 

truncation 
Recursive 2 6 97.7 

6. Noise consideration 
So far we have  discussed gain-setting  algorithms for cas- 
caded  equalizer sections and  their  performance  under  the 
noise-free  assumption.  We shall now  investigate the ef- 
fect of noise, making the common  assumption that it is 
additive and  Gaussian. 

Let us introduce a signal-averaging circuit just  before 
the equalizer. The  output signal sequences from the  aver- 
aging circuit represent  the  estimates of the channel 
response.  These  estimates of the channel response  are 
used  successively to  tune  (set  the  tap  gains)  the cas- 
caded stages.  Although the training pulses  at  the  input of 
the averaging  circuit can be separated  at a regular mini- 
mum of 2 N  + 1 samples, the  estimated channel responses 
at  the  output of the averaging  circuit are  separated  at 
appropriate  (and  varying)  distances  to satisfy: a) mini- 
mum delays required for  the signal to  pass through the 
equalizer  stages  without overlapping,  and b)  the allow- 
able noise  level at  the stage being tuned.  If the ith esti- 
mated  channel response is used to  tune  the ith cascaded 
stage,  then  consideration a) above gives a minimum sepa- 
ration of 3N, + 1 sample  periods between  the first and 
the  second,  and  (3 X 2 i")N,  + 1 sample periods  be- 
tween  the ith and  the ( i  + 1)th estimated  channel  re- 
sponses.  This  requirement  can  be satisfied  by the follow- 
ing scheme: When the  second  test pulse is being re- 
ceived,  the averaging  circuit produces, with negligible 
delay,  the first  estimated  channel response by averaging, 
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fashion,  when the 2ith test pulse is being received,  the 
averaging  circuit produces,  almost simultaneously, the 
ith estimated  channel  response.  The  separation  between 
the ith and  the ( i  + 1)th  estimated channel responses is 
thus 2'(2N0 + 1 ) sample periods 183. The  fact  that  the 
first 2' test  pulses  are averaged for  stage i simplifies great- 
ly the division procedure involved,  since  only shifts on 
the accumulated  sample values in binary representation 
are  necessary. 

Another interesting property of the  above averaging 
scheme is that  more  test pulses are averaged for larger i, 
and  thus  more  accurate  estimates of channel  responses 
are used for finer tuning of later stages. More specifically, 
since  we  double  the  number of test pulses  averaged for 
each additional stage, a 3dB gain in signal-to-noise ratio 
is obtained  automatically per stage. If we denote  the 
initial signal-to-noise ratio in dB by (S/N),  and  that of 
the ith  averaging  circuit output by (S/N)', then we have 

(S/N)' = (S/N), + 3;. (31) 

Clearly,  one should  always limit the noise to a level con- 
siderably  below the residual  distortion at all stages,  i.e., 

(SIN), > - 20 loglo D'i' 

or (S/N), + 3i > - 20 X 2' log,, D'" . (32) 

If the  above condition is satisfied for all is n with a 
certain prespecified margin, then  the averaging scheme 
suggested above should  be satisfactory.  Note  that  since 
D'i' in dB changes  exponentially with i, the  above in- 
equality needs  to be checked only for i = n in most  cases. 
If,  on  the  other  hand,  Eq. ( 3 2 )  is not satisfied for  some i, 
then it is necessary  to  average  over  more  test pulses for 
these i. For  instance,  the  separation  between  the ith and 
the ( i  + 1)th estimated  channel response may  now  be 
pi, where j j  satisfies the inequality 

(S/N), + 3ji > - 20 X 2i log,, D'O' 

for all i with a certain specified margin. 

Example 2: 
Given a  binary  transmission system with a transmission 
rate of 4800  bits/sec  and  an initial channel signal-to-noise 
ratio, (S/N), = 25 dB,  where  the  exact channel response 
is {ak")} = (-0.012, 0.023, -0.081, -0.314, 1.0, 
-0.189, -0.1 15, 0.093, -0.048, 0.014), it is desired to 
achieve a final eye-opening of 95%  or  better. 

The initial distortion in this case is D'O' = 0.89. From 
Fig. 3, one finds n = 5 to yield 0"' = 2.5%. If 2' test 
pulses are averaged for  stage i, the final estimated  channel 
response ( i  = n = 5) has a signal-to-noise ratio 

(S/N), = 25 + (3 X 5 )  = 40 d B .  

Since this implies an  expected  noise  perturbation of I%, 
well below the guaranteed  noise-free final distortion of 

(33) 
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Figure 5 Software  implementation of the  automatic  non- 
recursive  equalizer. 

2.5%, no additional  averaging is necessary.  The settling 
time T ,  in this case  is 

T ,  = (1/4800) 2' ( M ,  + 1) = 32 X 10/4800 M 67 ms.  

We assumed earlier that  the averaging  circuit is capable 
of producing,  sample-by-sample, an estimated  channel 
response with negligible delay. This is true when the high- 
speed logic circuit  performs the additions and shifts 
needed for averaging in less than one sample  period - a 
feat easily accomplished with the LSI technology over a 
wide  range of transmission speeds.  In  fact,  one can take 
further  advantage of the logic speed by driving the clock 
of the  equalizer stages at the limit of the circuitry after an 
estimated  channel response is obtained,  thus minimizing 
the delay in obtaining the signal at  the input of the equal- 
izer stage  to  be  tuned.  In  cases  where (S/N),  is high, the 
settling  time can  be reduced to approximately the time it 
takes  to receive a sufficient number (say 2') of test  pulses 
such  that 

(S/N), = (S/N), + 3j > -20 log,, D',) 

is satisfied with  a specified margin. 

7.  Some generalizations 

Single  stage  implementation 

(34) 

The gain setting  algorithms  described in this paper can  be 
viewed as iterative procedures  to approximate desired 
equalizer responses.  The  cascaded  structure is mainly a 
hardware implementation in which each  stage in cascade 
corresponds  to  an iteration. Various  other  forms of im- 
plementation are possible with different software and 
hardware combinations. For instance, a  completely 
general  equalizer transfer function for  the ith iteration can 
be  written as 

j i l  = Z-(NO+Nl+...+N. 2-1) fi B ( i ) ,  (35) 
j=l 

where Bfi '  is the  transfer function of the equivalent ith 

Eaualizer invut 

Feedback 
control 

Tap-setting 
control for 

Equalizer output 

Figure 6 Software  implementation of the  automatic  recursive 
equalizer. 

cascaded equalizer stage, which depends  on  the ( i  - 1 ) th 
iteration  output 
A ii-11 = A fOJJCi-1) (36) 

and the algorithm used. In  the  case of the  nonrecursive 
equalizer algorithm described in Section 3 ,  we have 
p' = p- ,  (2  - A  (i-lJ) J ( i - l l  

- -Ni- l  (2 - A  fo)J(i-l)) J( i - l )  . - z  (37)  

The  above iterative  expression can be  implemented in a 
form shown in Fig. 5. Here all calculations may be  done 
in software, or  one may retain the left J"' box in the con- 
ventional  equalizer form while realizing the function of 
the right Jii' box by either  software  or special purpose 
hardware.  The equalizer in this case  no longer consists of 
cascaded  stages  as  shown in Fig. 1.  

When the noise level is not negligible, an averaging cir- 
cuit can be  used in the  same way as discussed in Sec- 
tion 6. Furthermore, only slight modifications are needed 
for  the equalizer structure of Fig. 5 to  operate in a re- 
cursive mode, i.e., to  operate  as  the equivalent of the re- 
cursive equalizer with cascaded feed-forward  section 
described earlier in this  paper. This is shown in Fig. 6. 

In Figs. 5 and 6, each J"' or box represents a con- 
ventional single stage equalizer. Duplicate boxes are 
required for  software implementations. The first four 
iterations of the  nonrecursive equalizer (see Fig. 5 )  are 
illustrated in Table 3. 

Partiul adjustment of tap gains 
We shall next  consider  the effect of a  proportionality 
constant c(c > 0) which is now  introduced in our gain- 
setting adjustment algorithm as follows: In  the ( i  + 1)th 
iteration,  the  input is first scaled so that a,,(i' = 1. The tap- 
gain settings  are: & ( i + l '  = - C ( Y ~ ( ~ )  for k # 0 and = 1. 
For 0 < c < 1, this modification amounts to a  partial 
adjustment of tap gains  in comparison with the original 
algorithm. The  output of the ( i  + 1)th  iteration with the 563 
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proportionality constant c is denoted by Ar' i+ l ) ,  where 
A t ( i + l ) =  1 -A,@+')  - -A'"[  ( 1  - C )  + ~ ( 2  - A " ' ) ]  

= ( 1  - C )  ( 1  - A'i ) )  + C( 1 - A ( i ) )  ( 1  + A'") , (38)  

( 1  - c ) A ' ~ )  - C I  , (39) At ( i + l )  = 

and 

/A"i+l)l 4 11 + C I  IA"'I + cl[A'"]'l (40) 

with the equality satisfied for {a,"'} having worst-case 
sign patterns. From  Eqs. ( 1 1) - ( 13) ,  we  have 
~ t ( i + l ) ~  l A t ( i + l )  == I - 11 - C( lA"'l + C I  

= D"'[ 11 - C I  + cD(i)] = $,D(i) , (41 1 

where 

$=  11 - CI - C L P .  (42) 

The eye-opening is therefore 

Table 3 Tap-settings and output response for nonrecursive equalizer.* 

1 l , ( i + l )  = 1 - 4D"' . (43 1 
The plot of $, as a  function of c is shown in Fig. 7. It  can 
be seen  that  the  rate of convergence in the  distortion D'i) 
is scaled down  almost linearly for { ( Y ~ ' ~ ) }  with worst-case 
sign patterns.  However, it has been  found that  for many 
other sign patterns,  the  use of a proportionality constant 
c < 1 may well improve  the  convergence rate. This is 
shown in Figs. 8 (a)  and 8 (b)  for various sign patterns of 
a particular numerical  example.  Figs. 9 (a )  and 9(b)  
show  the improvement of eye-opening as  functions of c, 
again with various sign patterns  for a different  input 
sequence. I t  is interesting to  note  that, although here  the 
initial eye-opening is closed, the  use of a proportionality 
constant c in the  range of 0.6 to 0.8 yields good eye- 
openings in most  cases. 

Adaptive  operation 
While an  automatic  equalizer  is  capable of reducing the 
intersymbol  interference in the channel response  by 
automatically  adjusting its  tap gains based  on a set of 
isolated training pulses  received  prior to  actual  data 
transmission, an  adaptive equalizer is capable of equaliz- 
ing the  channel and  tracking the time  variations of the 
channel response during data transmission. Such  adaptive 
operation  can be  realized in the  cascaded  structure. 

Figure 10 shows  the  system diagram of a cascaded 
adaptive equalizer.  We note  that  the input to  the first 
stage of the equalizer is no longer a set of isolated im- 
pulse responses of the channel  during the  data transmis- 
sion. However,  the desired  impulse response of the chan- 
nel can  be  estimated  by  cross-correlating the input to  the 
equalizer and the decision output [9]. This information 
is used to adjust the  tap gains of the first stage according 
to the  same algorithm for  automatic equalization. Sim- 
ilarly, the combined  impulse response of the channel  and 
the first stage can  be estimated by  cross-correlating the 

Equalizer  tap- 
No.  of setting for  ith  Output  response, A"', 

Equalizer  tap- 
settings for ( i  +1)th 

iterations, i iteration, J"' of the  equalizer  iteration, .I"+" 

0 (initial) 1 1 - A  1 + A  

1 - A* 

1 - A 4  

1 - A8 

1 - AI6 
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Figure 8 Eye opening vs proportionality constant c with given sign  patterns {ak(’)}.  

input to the  second  stage and the decision output, which, 
in turn, is used to  adjust  the tap-gain setting of the second 
stage.  Analogous procedures  are employed for all n 
stages. It should be  noted  that  the  adaptive  operation 
discussed  above  works only if the decision output  con- 
tains  relatively  few errors  such  that  their effect is av- 
eraged out during the  cross-correlation. 

Once  the initial equalization is completed, some minor 
tuning may still be  necessary  to  track  the possible channel 
variations. It is likely here  that only the  last  stage will 
need adjustment in most cases, since the channel is not 
expected  to  change  too much during  a  normal  period of 
transmission. In  such a case, the  inpulse estimator cir- 
cuit cross-correlates  the  last  stage input  and the decision 
circuit output using no more than a certain  number of 
past data bits. 

We  point out  that  an efficient equalization can often  be 
achieved  by  combining automatic and adaptive modes of 
operation. The  automatic pre-equalization is carried out 
only to  an  extent sufficient for  the  adaptive mode to  take 
over. The  adaptive mode will then refine the initial equali- 
zation and  track  the time  variations of the channel. 

8. Concluding remarks 
A new type of automatic equalizer algorithm has been 
developed  and  analyzed. Its main advantage is the  fast 
convergence of gain settings,  especially in cases with 
high signal-to-noise  ratios. The main idea is applicable to 
recursive  as well as nonrecursive equalizers. The general 
iterative  procedure  can  be implemented in various  forms. 
The  cascaded implementation, having certain potential 
advantages  enhanced by the LSI technology, is studied 
in greater detail. The effects of truncation error and  ad- 
ditive  noise are  also analyzed. 

Finally, we  note  that  fast  convergent equalizers are 
not only necessary in high-speed data transmission,  but 
may also find applications in lower-speed  transmission 
systems in which time-sharing of a  fast  equalizer offers an 
attractive  cost-performance advantage. 
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Figure 10 Implementation of a cascaded  adaptive equalizer. 
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