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Widely  Convergent Method for Finding Multiple 
Solutions of Simultaneous  Nonlinear  Equations* 

Abstract: A new  method has been  developed for solving a system of nonlinear equations g ( x )  = 0 . This  method  is based on solving the 
related system of differential equations d g / d t  f g(x )  = 0 wherein the sign is changed whenever the  corresponding trajectory x ( t )  en- 
counters a change in sign of the  Jacobian  determinant or arrives  at a solution  point of g(x) = 0 .  This  procedure  endows  the  method with 
a much wider region of convergence than other  methods (occasionally,  even global convergence)  and  enables it to find multiple solutions 
of g(x)  = 0 one  after  the  other.  The principal  limitations of the method relate  to  the  extraneous singularities of the differential equation. 
The role of these singularities is illustrated by several examples. In addition, the  extension of the  method  to  the problem of finding 
multiple extrema of a function of N variables is explained and  some examples are given. 

Introduction 
A  new method  has been  developed for solving systems 
of nonlinear equations [ 1 1. The  method,  based  on inte- 
grating  a  related system of differential equations,  has a 
wide region of convergence and may occasionally  be 
globally convergent. Moreover,  it is capable of finding 
multiple solutions  (sometimes all  of them) one  after  the 
other without  requiring deflation of the original equations. 
The method does  have significant limitations, however, 
and these will be discussed below. 

This method  evolved as a  result of unsuccessful  efforts 
to  solve a certain  nonlinear  electrical  problem, the “tun- 
nel  diode”  problem of Fig. 1, which frustrated  the usual 
methods of solution. The basic difficulty in this  problem 
-a difficulty which is common to many other nonlinear 
systems-is  the  fact  that  the  Jacobian matrix may be- 
come singular. When  this happens,  Newton’s method  and 
its variants cease  to function. However, a simple and 
effective way of circumventing  this difficulty has been 
found. As a result,  the method has a  much larger region 
of convergence than those  methods  to which a Jacobian 
singularity presents  an impasse. 

By a  straightforward  extension of this method,  it is 
possible to find multiple extrema of a scalar function of 
a vector variable  and under  favorable conditions to find 
the global maximum and/or global minimum. This ex- 
tension, which is based  on finding multiple zeroes of the 
gradient of the  function, is described in a companion 
paper  [2]  and in condensed  form in Appendix C .  The 
application of the  method  to  the  case of complex zeroes 

504 will be  treated in a subsequent  paper. 

During  the  course of this development  the  author  has 
made  extensive  use of visual displays generated by an 
IBM  1130  computer driving an  IBM 2250-4 display 
unit. All of the drawings in this paper  were  computer- 
generated, first being presented  on  the display  unit and 
then being copied by an  IBM 1627 plotter (only the label- 
ling has been added  for  purposes of publication). The 
value of these visual displays’in guiding the  development 
and in providing insight to  the workings of the new 
method  can  scarcely  be overemphasized. 

Genesis of the method 
Let  the  system of nonlinear equations be written in the 
form 

& ? ( x )  = 0 9 (1) 

where g ( x )  is an n-dimensional vector-valued function of 
an n-dimensional vector x. One  variant of Newton’s 
method  which the  author  has  studied is based  on  the re- 
cursion  formula 

where xi  is the  ith approximation to  the solution vector 
and (aglax) is the  Jacobian matrix. As  Broyden  shows 
[3],  divergence of this  iteration process  can  be avoided 
by choosing the  step size hi so as  to minimize ~ ~ g ( x i + l ) ~ ~ ,  

*The method reported in this paper  was  presented orally at  the  Conference on 
Numerical  Methods  for  Nonlinear  Optimization,  University of Dundee,  Scotland, 
June, 1971. 
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the magnitude of the new residual or error vector-or  at 
least so as  to  make 

llg(xi+])Il 5 llg(xi)II. (3) 

But avoiding  divergence does  not  guarantee  conver- 
gence. For in the  case of the  tunnel diode problem of 
Fig. 1,  the foregoing algorithm  fails to  converge  from  any 
starting  point to  the left of the vertical line through  point 
B. What  happens is the following. 

For this  problem, the  equations  are 

wheref(x,) is the function  describing the nonlinear  tunnel 
diode  curve, R is a resistance value, and E a battery 
voltage. For  any given  values of x 1  and x,, as  shown in 
Fig. l(b), gl(xI,xx,) is the vertical distance  from point PI 
to  .the point (x,,x,) while g2(x,,xx,) is the horizontal  dis- 
tance  from (x,,~,) to.  the point P , .  Thus  the line P,P, 
represents  the g vector in this  problem. 

For  any starting  point to  the right of the vertical  line 
through B, the foregoing minimization algorithm will 
force  both PI and P, towards  the solution  point C ,  caus- 
ing the g vector  to shrink to  zero. But for  any  starting 
point to  the left of this  line, the algorithm drives PI 
toward point A and P, towards  point A‘, where  the length 
of the g vector is minimum - but not  zero.  The algorithm 
is  then  unable  to  proceed  further  because  at  every point 
on  the vertical line through A, the  Jacobian matrix, 

becomes singular since dfldx, = -1/R. (This also 
happens  everywhere  on  the vertical line through B.) 
Thus,  det J = 0 and so the  inverse  Jacobian matrix J” 
required by Eq. ( 2 )  no longer  exists. 

Now it is well known in circuit  analysis that difficult 
non-linear problems,  such  as  the  one  just  described,  can 
often be solved by integrating  a  related system of dif- 
ferential equations until a steady-state solution is ob- 
tained. This  observation suggested the  use of a synthetic 
differential equation  such  as 

- + g ( x ) = O ,  dx 
dt (6) 

which  provides the  desired solution to  Eq. (1) when 
dxldt = 0 .  This  approach works well for  the tunnel diode 
problem  but fails on  other problems and has  been 
abandoned in favor of the equation 

suggested  by L. E. Kugel [4]. 

2t I I I 

I 

Figure 1 The tunnel diode problem. (a) Curves defined in 
Eq. (4); (b) graphical interpretation; (c) trajectories through a 
single solution; (d) trajectories through three solutions. 

Equation (7), which was found later  to  have been 
studied  extensively in connection with the  methods of 
“continuation”  and  “parameter imbedding,” [ 5-  1 1 ] 
proves  to be  effective as long as  the  Jacobian matrix is 
nonsingular. For it is obvious  from  the  analytic solution 
of Eq. (7), namely 

g [ x ( t ) I   = g [ x ( ~ ) I e - ~  (8) 

that  Eq. ( 1 )  will be satisfied when t -+ m .  

the  chain rule that 
Since g(x) is not  an explicit  function oft, it follows from 

so that Eq. (7) can  be  recast in the form 
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as long as the  Jacobian matrix  remains  nonsingular. How- 
ever, when det J = 0 ,  Eqs. (7) and (10) cease  to  exist 
and instead we  have 

with dxldt # 0 .  Accordingly,  this approach fails in the 
tunnel diode problem  when x1 = a or x1 = b . 

The way to  remove  the  impasse  presented by the 
Jacobian singularity is simply to allow  a change of sign 
in Eq. (7) so that  we  have 

with  solution 

Thus, when det J changes sign (after passing  through 
zero), the sign in Eq. (12) is reversed so that  the inte- 
gration process may be  continued.  Equation  (lo),  there- 
fore,  becomes 

- = + J  g(x) .  dx - -1 

dt 

In  the  case of the tunnel diode  problem,  assume  that 
the starting  point is (0, 0.6), as shown in Fig. I(c),  and 
that initially the positive sign is taken in Eq. (1 2) since 
det J > 0 .  The integration path  (or  trajectory)  proceeds 
as shown up  to  the  Jacobian singularity at point  A while 
the g vector  decreases exponentially in magnitude 
(without changing direction)  according to  Eq. (13). If 
then  the negative sign is taken in Eq. (12), the  trajectory 
proceeds  to  the  next  Jacobian singularity at point B. 
During this interval,  det J < 0 and  the g vector is in- 
creasing  exponentially -as it obviously must if the tra- 
jectory is to  get  “over  the hump” en  route  to  the solu- 
tion at point C. Finally, the positive sign is restored  and 
the integration path  proceeds directly to  the solution at 
point C. If the sign is reversed  once  more,  the integration 
path beyond  point C diverges to infinity. (Two  other 
trajectories  are also shown in the drawing.) 

Now if the value of the  constant E in Eq. (4) is reduced 
sufficiently, the tunnel diode problem  exhibits three solu- 
tions as  shown in Fig. l(d). All three of these solutions 
can  be found in sequence by appropriate  use of the fore- 
going rules  for changing the sign in Eq. (12) -namely, 
reversing sign whenever  det J changes sign and  whenever 
a solution  point has been  reached. Moreover,  the algo- 
rithm is globally convergent  for this  problem and  for 
certain  other problems that  have  been studied. However, 
the  method is not globally convergent in  general, as ex- 

506 plained in the following section. 

F. H. BRANIN,  JR. 

// 

(b)  
Figure 2 Brent’s problem. (a) Curves defined by Eq. (15); 
(b) trajectories  in the presence of a saddle point and a vortex 
point. 
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Theoretical basis of the method 
R. Brent [ 121 proposed  the following problem as  an 
example in which the  present  method  is  not globally 
convergent. 

g , ( x , , x , ) = a ( x , + x , ) = O  ( 1 5 4  

g ~ ( X I Y T ~ ~ = a ( x , + x , ~ + ( x , - x , ~ [ ( x l - b ) 2 + x , 2 - c l = 0 .  
( 1  5b) 

These  functions,  for  the values a = 4 ,  b = 2 , c = 1 , are 
shown in Fig. 2(a),  the  locus defined by det J = 0 being an 
ellipse. 

Brent  correctly predicted that  any  trajectory starting 
from a point within the  disc defined by 

( x 1  - 2)2 + X Z 2  = 1 (16) 

would fail to  converge  on  the solution  point at (0,O). 
Indeed,  the region of nonconvergence is slightly larger 
than  this disc  and  is  characterized by the  fact  that all 
trajectories within it are closed curves.  Outside this 
region convergence is always  obtained. 

Now  it is obvious  from  the  trajectories  shown in Fig. 
2(b) that point A, which lies on  the ellipse det J = 0 , has 
all the  earmarks of a saddle  point while point B, which 
also lies on this  ellipse, resembles a vortex  point. Initially, 
these points were thought to be  somehow different from 
the usual singular points of a second  order differential 
equation  because  Eq. (14) implies the  existence of a con- 
jugate  pair of (vector) differential equations. 

These special points, and the  trajectories in their 
neighborhoods, were surmised to be phenomena peculiar 
to  the interaction between this  conjugate  pair of dif- 
ferential equations  across the boundary,  det J = 0 ,  
separating  their  respective domains. However,  further 
study  has shown that  these points are indeed true singular 
points. Moreover,  every solution of g(x) = 0 is also a 
singular point- specifically a degenerate  node that may 
be  either  stable or unstable, depending on  the  choice of 
sign in Eq. (14). 

To explain these  features of the  method,  let us recast 
Eq. (14) in the  form of a single vector differential equa- 
tion instead of a  conjugate pair. Using Cramer's rule for 
the  inverse of a matrix in terms of its  adjoint we have 

dx adj J 

dt ldet J (  

Here  the rule for changing sign when det J changes sign 
is automatically incorporated by using the  absolute 
magnitude of det J .  Thus,  whenever  the right hand  side 
of Eq. (17) is a null vector, a  singular  point occurs.  In 
particular, all solutions of g(x) = 0 correspond  to singular 
points. 

To determine  the  type of singular  point in any  instance, 
it is sufficient to  determine  the eigenvalues of the coeffi- 

" " &?(x) . (17) 

cient  matrix of the variational equation [ 131 related to 
Eq. ( 1  7). In  the  present  case, this  matrix may be called 
a secondary Jacobian and is defined in terms of Eq. (14) 
by the  expression 

where x = dxldt . 
Whenever g(x) = 0 ,  this secondary  Jacobian  matrix 

reduces  to T Z  with eigenvalues 71 . Hence,  each solu- 
tion point of g(x)  = 0 corresponds  to a degenerate  node 
[ 141 which is stable if the negative sign is used in 
Eq. (14) and  unstable if the positive sign is used. Since 
the solutions of g(x) = 0 are of primary interest, we shall 
call them essential singular  points of Eq. (14). 

Extraneous singular points may also  occur  when 
g(x) # 0 provided that  the g vector satisfies the homo- 
geneous  equation 

(adj J ) g  = 0 ,  (19) 

for this  condition will make the right-hand side of Eq, ( 1  7) 
vanish. Equation (19) also implies that  adj J is singular. 
Moreover,  since  Cramer's rule requires  that 

J . a d j J = J J I . Z ,  (20) 

the singularity of adj J implies that IJI = 0 .  Hence, J 
itself is singular. 

Now it is well established that  adj J is a null matrix if 
the  rank of J is n - 2 or less; but if rank ( J )  = n - 1 , 
then  rank  (adj J )  = 1 . In  this  case,  adj J can  be  expressed 
in dyadic  form  as [ 151 

adj J = pqt (2 1) 

where p is a column vector and qt a row  vector.  (An ex- 
plicit method  for computing p and q is given in Appen- 
dix A.) 

Equation ( 1  9) can now be  written in the  form 

( 4  J ) g  = ( P q f ) g  = p ( q t g )  = 0 (22) 

or, equivalently, 

qlg  = 0 . (23) 

Thus, if rank ( J )  = n - 1 , every g vector in the (n - 1)- 
dimensional subspace orthogonal to  the q vector of 
Eq. (21) will satisfy  Eq. (19); if rank ( J )  = n - 2 , then 
every g vector in the  entire n-space  satisfies Eq. (19). 
In  summary  then,  extraneous singular  points of Eq. (14) 
occur  whenever  any point on  the  locus defined by det 
J = 0 corresponds to a nonzero g that satisfies  Eq. (19). 

The  theoretical basis of the  present  method  for solving 
g(x) = 0 is thus intimately  tied to  the  nature of the 507 . 
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singular  points of Eq. (14) and  their influence on the  tra- 
jectories defined by this equation. Although no definitive 
explanation can  yet be offered, it is evident from  experi- 
mental results  that  the  existence of one  or more extra- 
neous  singular  points may, and  often will, preclude the 
method  from  being globally convergent  and may also pre- 
vent some  trajectories  from traversing all solutions. 

So far,  the only types of extraneous singular  points 
observed  have  been  saddle  points  and  vortex points. In- 
deed, it seems unlikely that spiral  points (foci) will 
occur  since  they  represent points of stable equilibrium, 
which are  to be expected only  when g(x)  = 0 .  However, 
neither experimental  nor  theoretical  evidence  can  be 
given to justify  this conjecture. 

Unfortunately,  saddle points and  vortex points are  not 
only extraneous but troublesome.  On  the  one  hand,  every 
vortex point is surrounded by  a region of nonconver- 
gence.  On  the  other  hand,  every  saddle  point will repel 
any  trajectory  that  comes within its  range of influence. 
This may  occasionally  give  rise to a region of noncon- 
vergence.  A more  frequent effect of these  saddle points 
is to deflect certain  trajectories so that they fail to 
traverse  zeroes of g(x) that neighboring trajectories will 
find. Sometimes  this deflecting action of saddle points 
has  no harmful effects at all. But this is more  likely to 
be the exception than  the rule. 

In  the  absence of extraneous singular points, it seems 
plausible to expect  not only that  the method will be 
globally convergent  but  also  that  every  trajectory will 
pass  through all solution  points of g(x )  = 0 .  This con- 
jecture is based on the behavior of the algorithm in two 
problems where  extraneous singular  points are known to 
be  absent.  It is also  supported by the  observation  that 
the nodal  points act like electric  charges and the  tra- 
jectories like electrostatic field lines that  either  terminate 
on  charges  or  else pass to infinity. A sound  theoretical 
treatment of the role of both essential and  extraneous 
singular  points is needed,  however,  to establish definitive 
conditions for global convergence  and  the ability to find 
all solutions of g(x )  = 0 .  

Computational  techniques 
Although  numerical  integration of Eq.  (14) may be used 
to obtain  any trajectory x( t )  in x-space, the  existence of 
an analytic  solution for  the image trajectory in g-space, 
given by Eq.  (13), provides  a  unique  and  distinct advan- 
tage. For  as  Eq. (1 3) shows,  every  trajectory in x-space 
must be  such  that its  image under  the transformation 
g(x )  lies on a  straight  line determined by g[x (O) ]  . Recog- 
nition of this important  property of the method  can  lead 
to significant improvements in the numerical  solution of 
Eq. ( I  4) as we shall show. 

In particular, Euler’s method, which is the simplest 
508 and  least accurate of the commonly  used  integration 

F. H. BRANIN, JR. 

schemes, can be  supplemented by the  technique of 
“steering” to  provide very accurate solutions of Eq. (14). 
Euler’s method, applied to  Eq. ( 1  4) yields the recursion 
formula 

xi+l = xi  IF hiJ , - ’g(x , )  , (24) 

which is identical to Eq.  (2) for  the variable-step Newton 
method except  for  the alteration of sign. 

According to  Eq. (14), the  “Newton  vector”  TJ-lg is 
tangent  to  the  trajectory  at  each point  and may be  re- 
garded as the velocity,  if t is taken  to  represent time. 
Equation  (24)  then  shows  that  the  trajectory may be 
approximated by taking  a finite step along this  velocity 
vector.  Obviously,  the new point xi+l will be displaced 
more  or  less  from  the actual trajectory, depending on  its 
curvature.  Consequently,  even if the point xi is on  the 
actual trajectory so that g(x,) satisfies Eq. (1 3), the image 
of the new  point,  namely g(xi+l )  , cannot, in general, satis- 
fy  Eq. (13). The  idea of “steering,”  then, is to modify 
or  correct  the direction of the velocity vector  somewhat 
so as  to make g ( ~ , + ~ )  satisfy Eq. (13) more closely  than 
it otherwise could. 

The  actual algorithm, which amounts  to a  predictor- 
corrector  scheme, is as follows: First,  rather  than using 
the  Newton  vector  TJ-’g, which may vary  considerably 
in magnitude, we actually  normalize it. The effect of this 
normalization is to replace the independent  variable t by 
the variable s representing distance along the trajectory. 
Specifically, we use 

”_ dx  dx . & 
d t  - ds  dt  

and 

so that  Eq. (1 7)  can be written as 

dx adj J ldet J I - &?(x) ds l d e t  J ’  (27)  
[g‘(adj  J)‘(adj  J)g]% 

or, using the Euclidean norm, 

dx (adj J ) x  
ds Il(adj J)gll’ 

Next,  Eq.  (24) is replaced by 

” - 

where hi now corresponds  to a fixed-length step along 
the trajectory. Equation (29) is used to predict the new 
point xi+l and then g ( ~ , + ~ ) ,  or  more concisely gi+l , is 
evaluated. The  component of gi+l orthogonal to  the 
vector g [ x ( O ) ]  , or go , is then computed according to 
the relation 
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LJ = gi+l - k g , .  (30) 

where kg,  is the projection of gi+, along g o  and 
f t  

k = gi+, g,lg, go. 

Annihilating  this u vector by adding the  appropriate 
correction  vector to x i + ,  will insure  that  the image of the 
corrected point  satisfies Eq. (13). To  first order, this 
correction  vector is computed by the relation 

6~ = -J”u (3 1) 

where  the  same  inverse  Jacobian matrix (or better still, 
its LU factors [ 161) already computed  for  Eq. (14) can 
be  used  unchanged. The  corrected  new point is 

xi+, = .xi+, + ax (32) 

and if g(.fi+ ,) does not have a sufficiently small orthogonal 
component,  the  corrector  equations  can be  applied  re- 
peatedly. 

The  trajectories  shown in most of the  examples in the 
paper were  obtained by combining  Euler’s predictor  and 
the “steering” corrector  formulas  just  described.  In this 
way,  very accurate  trajectories  were obtained at minimal 
computational  cost.  Of course,  the  basic objective of the 
method is to find the solutions of g(x) = 0 so that  the 
actual  shape of these  trajectories is of no  real con- 
sequence  as long as all the  zeroes of g(x) can be reliably 
found. This will be a governing objective in developing 
an efficient computational algorithm.  But for  the  present 
purposes of highlighting the underlying  mathematical 
character of the  method,  accurate  trajectories  have been 
thought desirable. 

Recently Broyden [ 171 has  proposed a new method of 
solving non-linear equations which  has a noteworthy 
resemblance  to  the  present method.  Broyden’s  new  meth- 
od is based  on a  differential equation of the  form 

- = d.w 
dt (33) 

which,  like  Eq. (lo), is limited to problems in which the 
Jacobian matrix is nonsingular. However, Broyden 
uses  the  initial g vector, g o ,  or g[x(O)] , in place of the 
current g vector, g [ x ( t ) ]  , on  the righthand  side. He  then 
solves  Eq. (33) by a method akin to Euler’s method of 
integration, but with the  step size computed according 
to.  the  curvature of the trajectory. The net  result is to 
replace our  Eq. (2) by the relation 

xi+, = xi  - b J - l g , ,  (34) 

where bi is used to  represent Broyden’s step size. 
Now Broyden’s equation  incorporates  somewhat  the 

consequences, though not  the basic idea, of “steering” 
in the following sense.  When  the steering correction is 
applied as  described  above,  the  current g vector, g(xi)  
in Eq.  (24), is made to  be codirectional  with g o .  There- 
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fore,  we may set g(xi )  = k i g ,  so that  Eq. (24) can  be 
written in the  form 

xitl = xi T hikiJi”go. 

By amending  Broyden’s equation to include our sign 
change, we see  that  the  expression 

bi = hiki  (36) 

for  the  step sizes correlates Broyden’s equation with 
ours. 

It must be recognized, however,  that  even with 
equivalent step  sizes  chosen according to Eq. (36), 
these  two  methods will not give  identical results.  For 
although  Broyden’s predictor will give the  same new 
point as  Eq. (35) on  thefirst  step (when k,, = 1) , all sub- 
sequent points will differ. (This is because Broyden’s 
predictor  alone  cannot satisfy Eq. (13), whereas  our 
steering  technique can.) Moreover,  the cumulative 
effects of this discrepancy will cause  the  successive 
Jacobian matrices in Broyden’s  method and ours to be- 
come increasingly  dissimilar. Thus  the  two  trajectories 
will be noticeably  different,  especially with large step 
sizes. 

This  observation  has been confirmed experimentally 
and our predictor-corrector  scheme  has been  found to 
produce  trajectories  that  “home in” on  the  zeroes of 
g(x)  considerably better  than  trajectories  produced by 
Broyden’s  method. In  fact,  convergence  to  the single 
solution of the tunnel diode problem of Fig. l(c)  has 
been  obtained from  the points (0.75, -+loo) and (0.8,-+100) 
with only two or three  “Newton  steps”  each followed 
by one ot more  steering corrections.  Thus,  the steering 
principle alone is a powerful adjunct  to existing methods 
of solving  nonlinear equations. 

Experimental results 
Several two-dimensional  problems have been  studied in 
some detail. In order  to  discuss their extraneous singu- 
lar points,  we first display explicitly the singular  adjoint 
matrix for  the  2x2 case. According  to  Eq.  (A10) of Ap- 
pendix A, we have 

(37) 

so that  the qt vector of Eq.  (21) is [-J,, J , , ]  . Hence, 
any  point on  the locus det J = 0 which has  as its image a 
nonzero g vector orthogonal to q will correspond  to an 
extraneous singular point. 

Since in the  case of a singular 2x2 matrix the rows  (and 
columns) are proportional, it follows that q‘ may also be 
represented by [ J , ,  -J12] . Therefore,  the  necessary 
orthogonality  condition is either 
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(a )   (b)  (C) 
Figure 3 Trigonometric  problem. (a) Curves defined by Eq. (41) for c = 0 ; no extraneous  singularities  present; (b) c = 0.05 ; extrane- 
ous singularities  far  from  solution points; (c) c = 0.13 ; extraneous  singularities closer to  solution  points. 

or 

J,,gl - Jl,g2 = 0 .  (39) 

In  the tunnel diode  problem,  discussed earlier in terms 
of Eqs. (4) and ( 3 ,  it will be  recalled that  the loci defined 
by det J = 0 are  the vertical  lines  through  points A and 
B of Fig. l(a).  Hence,  det J = 0 implies that x, = a or 
x, = b . But the orthogonality  condition of Eqs. (38) and/ 
or (39) reduces to 

f (x,) = ( E  - x,)lR , (40) 

which must hold simultaneously with x, = a or x, = b . 
Now if the variable x, is eliminated from  Eq. (4), the 

result is Eq. (40)- which must  therefore correspond  to 
a solution of Eq. (4). That  is,  the null vector, g = 0 ,  is 
the only vector  that satisfies the orthogonality  condition 
of this  problem. Obviously,  then,  no  extraneous singular 
points  can occur in the tunnel diode problem. 
i Clearly,  the situation just  described  corresponds  to 
the tangency of the  curves g,(x,,x,) = 0 and g,(x,,x,) = 0 
at point A or at point  B in Fig. l(a).  It is natural  there- 
fore,  to  consider  the effect of such tangencies on  the 
present algorithm. Since  exact tangency cannot  be 
achieved on a digital computer,  the  curves  must  either 
approach  veiy closely to  each  other  without touching, 
or else they  must intersect in two  distinct,  but very 
close,  points. In  the first instance,  the main problem is 
that of deciding on  an  appropriately small convergence 
criterion that  the g vector must satisfy. But in the  second 
instance, computational difficulties may arise during the 
process of projecting the  trajectory through the first 

51 0 solution point and continuing the  search  for additional 

solutions. Neither situation has  been  studied in detail, 
however. 

A problem somewhat like the tunnel diode problem is 
that of solving the  equations 

gl (x , , x2 )  = a - bx, + c sin (dx,) - x, = 0 (4 1 4  

g ,  (x, ,x,) = x, - e sin ( f x ,  ) = 0 . (4 I b) 

In Fig. 3(a), we  show  these  two  curves  for  the  case  where 
c = 0 , so that g ,  = 0 is a straight  line, and  where a = 1 , 
b = 2 , d = 4 ~ - ,  e = 0.5 , f = 2 ~ .  In this instance,  the loci 
for  det J = 0 are straight  lines,  satisfying the  equation 

cos (fx,) = -l/bef, (42) 

and  the orthogonality  condition reduces  to 

sin (fx,) = ( a  - x , ) / b e .  (43) 

But Eq. (43) is identical  with the result  obtained from  Eqs. 
(41a) and (41b)  by eliminating the variable x2. Thus,  the 
null vector, g = 0 , alone satisfies the orthogonality  condi- 
tion so that  no  extraneous singularities exist, just as in 
the tunnel diode problem. 

However, when c # 0 ,  extraneous singularities come 
into  the picture  with  a vengeance,  as Figs. 3(b)  (for 
c = 0.05) and 3(c)  (for c = 0.13)  clearly demonstrate. 
(The  extraneous singular  points are designated by cross 
marks.) Note  that  as c increases,  these singularities ap- 
proach  closer  to  the solution  points. Note  also  that be- 
cause  the functions in Eq.  (41) are periodic, there is an 
infinite number of extraneous singular  points. 

In Figs.  4(a), (b) and (c), several different trajectories 
are  shown, many of which pass through all of the solution 
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Figure 4 Trajectories  for  trigonometric  problem. (a) c = 0.13 ; convergent  and  cyclic trajectories; (b) c = 0.5 and e = 1.0 ; cyclic 
trajectories without  vortex point; (c) c = 2 and e = 1.9 ; showing 119 solution  points. 

points. (To reduce clutter in these drawings, we  have 
taken  advantage of the  symmetry of the problem  relative 
to  the point (1,O) by  showing only half of the  centrosym- 
metric  trajectories.) 

Figure 4(a) (for c = 0.13) seems  to indicate that  each 
saddle point is paired with a vortex point. But this is not 
always so. In Fig. 4(b) (for c = 0.5 and e = 1 .O) the  saddle 
point at (-0.28,0.91) is not  associated with a vortex point 
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at all. Instead,  there is a neighboring family of closed 
trajectories  that  pass through the  two left-most  solution 
points. Many cyclic trajectories  are,  however, shown to 
be associated with vortex points. 

In Fig. 4(c),  the  trajectories starting at x1 = 3 and 
x2 = 2.5,2.0,1.5,1.0,0.5,0.0,-0.5, and -1.0 pass through 
all of the solution  points. (Incidentally,  the starting  points 
( 3 , O )  and (3,-1) lie on the  curves g 2  = 0 and g ,  = 0 .  51 1- 
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Figure 5 Rosenbrock's  function defined by Eq. (44). (a) a = 100 and b = 1 ; (b) gradient equations, Eq. (45); a = 0.5 and b = 1 ; 
(c)  solution  showing  region  of nonconvergence; (d) solution  showing escape  path  from region of nonconvergence. 

But these  curves  are  always valid solutions of Eq. (14) 
anyway, so that  the  trajectories need not be computed.) 
The  trajectory starting at (-1.1,1.3) also  passes through 
all solutions;  but its neighbor,  starting at (-1.1,1.4) does 
not. It is deflected by the  saddle point at  (4.28,0.91) so 
that it entirely  misses the  two left-most  solutions. In 
Fig. 4(c),  where c = 2 and e = 1.9, there  are 119  solutions 
and the  trajectory  starting from the point (-3.9,1.6) 
passes through all of them. But the neighboring trajectory, 
starting at  the point (-3.9,1.9) fails to find three pairs of 
solutions. For  each of these pairs,  incidentally, there is 
a family of cyclic trajectories passing through them,  as 
shown in the drawing. 

A problem that is often  used to  test optimization  pro- 
cedures is to find the minimum of Rosenbrook's func- 
tion [ 181 

f ( x l , x , )  = a b l '  - x,I2 + (x1 - b ) ' ,  (44) 

where  the usual  values  given are a = 100 and b = 1 . 
This function is displayed in Fig. 5(a). Its minimum, 
which occurs  at x, = x, = 1 , can  be found by computing 
the simultaneous  solution of the  two  gradient  functions 

a f  
8x1 
" - g, (x,,x,) = 4ax1 (x,' - x,) + 2(x, - b )  = o (45a) 

51 2 and 

In Fig. 5(b), we  have  shown  the loci of gl = 0 and 
g, = 0 for  the  case a = 0.5 and b = 1 , these  values being 
chosen  to  make  the solution point  more readily discerni- 
ble. The  locus of gz = 0 is the  parabola x, = x,, while the 
locus of g, = 0 is a curve with two  branches.  The locus 
of det J = 0 turns  out  to  be  the  parabola x, = x,' + f a ,  
shown  as a dashed line. The solution  point is at x1 = x2 
= 1 .  

Applying the orthogonality  condition to Eq. (45), we 
obtain  the result x, = b which, together with the condition 
det J = 0 shows  that  the only extraneous singularity is 
at  the point (b  , b' + ia ) .  As Fig. 5(c)  shows, this singu- 
larity turns  out  to  be a saddle point which has  the remark- 
able  property of deflecting away from the solution  point 
every  trajectory  that lies above  the  locus  det J = 0 .  
This  locus,  then,  acts  as a separatrix  between  the region 
of convergence  and  the region of convergence. It is 
interesting to  observe in passing that Broyden [ 171, in 
using Rosenbrock's problem to  test his method,  chose a 
starting  point  inside the region of nonconvergence  just 
described. We  have not  tried to  see if his method would 
actually converge  from a  point within our region of non- 
convergence. 
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Figure 6 Brent’s  problem. (a) solution  showing  escape  path from region of nonconvergence; (b) u = 4, b = 1 , and c = 2.05 ; solution 
shows two saddle  points, but convergence is global except along x, = x p  ; (c )  a = 4, h = 2 , and c = 2.5 ; three  saddle  points  and  one 
vortex  point. 

However, by  suppressing our steering correction and 
using Euler’s  method of integration with large step  size, 
trajectories  starting  from  points  not too  far inside the 
region of nonconvergence  can be made  to converge. 
Two  examples  are shown in Fig. 5(d). “Sloppy”  integra- 
tion also  enables  trajectories  to  escape  from  the region 
of nonconvergence in Brent’s problem as illustrated in 
Fig. 6(a)  In this case,  the  escape path is a spiral, as would 
be expected, and the smaller the  step size, the tighter the 
spiral. 

In Fig. 6(a),  a step size of 0.05 was  used in generating 
the  escape path  illustrated. In addition,  a step size of 
0.01 was  used to form an almost  complete cycle  to  show 
how imperfect the  closure of this  cycle is without the 
use of the steering correction. With steering,  perfect 
closure is readily attained with a step size  as  large as 0. I .  

At this point, it is difficult to predict whether sloppy 
integration will provide  more  than a stand-by strategy for 
getting out of regions of nonconvergence. Obviously, 
some  strategy must  be  evolved to handle this problem; 
but sloppy  integration seems  to lack the  force  that is 
needed  to deal with a  situation as intricate as this one. 

Returning to Brent’s problem, we  find that  the orthog- 
onality  condition in this case  leads  to  two  expressions, 
one  for  the straight line 

x ,  = X I  (464  

and the  other  for  the circle 

(x, - b ) 2  + x2’ = b2/4,  (46b) 

either of which will satisfy Eq. ( 3 8 )  or  Eq. (39). The 
intersections of these  curves with the ellipse det J = 0 
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determine  the locations of the  extraneous singular points 
shown in Figs. 6(a),  (b), and (c). 

In Fig. 6(b),  for which a = 4 ,  h = 1 , and c = 2.05 , 
there  are two saddle  points  caused by the  intersection of 
det J = 0 with the line x, = x,. In this instance,  our meth- 
od turns  out  to be globally convergent and  every trajec- 
tory  passes through all three solutions. 

But in Fig. 6(c), where u = 4 ,  b = 2, and c = 2.5 , a 
much different situation arises.  Here,  det J = 0 and the 
line x, = x, determine  two  saddle  points while the circle 
and det J = 0 determine  one  saddle point  and one  vortex 
point, the  latter being surrounded by the only region of 
nonconvergence in the problem. Three  types of trajectory 
occur in this  case. Trajectories starting from  points below 
the  separatrix marked  B in the first quadrant or below 
the  separatrix  marked A in the third quadrant,  pass 
through all three solutions. But if the starting  points are 
above  these  separatrices,  the corresponding  trajectories 
pass  through  only the  one solution point  at  the origin. 
Finally,  there is a family of trajectories, cyclic in nature, 
that  pass through the  other  two solutions. 

The only  three-dimensional  problem  studied so far is 
defined by the  equations 

g ,  (x,, x 2 ,  x,) = a sin(bx,) sin (bx , )  - x2 = 0 (47a) 

g2(x, , xg , x,) = c - dx, + ex, sin(&) - x, = 0 (47b) 

g3(x, , x2 , x,) = g + hx, sin(kx,) - x, = 0 .  (47c) 

In Fig. 7(a), the  two  surfaces gl = 0 and g2 = 0 ,  corre- 
sponding to  Eqs.  (47a)  and (47b), are  depicted along with 
their  intersection curve.  Fig.  7(b)  shows the  surfaces 
defined by Eqs. (47a)  and (47c)  and their  intersection 51 3 
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Figure 7 Three-dimensional  trigonometric  problem  defined  by Eq. (47). (a) gl = 0 and g, = 0 and  their intersection curve; (b) g ,  7 0 ,  
Y, = 0 ,  and  their intersection  curve; (c) three  trajectories to single  solution  point;  (d)  with  values of constants e and h changed,  slngle 
t;ajectory  through  nine solution  points. 

curve g ,  = g, = 0 , as well as  the  curve g ,  = gz = 0 .  In 
Fig. 7(c), which shows only g ,  = 0 and  the  two foregoing 
intersection  curves,  three  trajectories converging on  the 
lone solution  point are displayed. These  trajectories 
were  calculated  by using a fourth-order  Runge-Kutta 
integration  formula. In all three figures, the  values of the 
coefficients are: a = 2 , b = 0.4.rr, c = 2.5 , d = 1 , 

51 4 e = 0 . 1  ,f=2r,g= 1 , h = O . l , a n d k = 2 ~ .  
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By increasing the amplitude constants e and h to 0.75 
and 0.80, respectively,  the  intersection  curves  shown in 
Fig. 7(d) are  generated.  In this instance,  there  are nine 
solution points  and  there  is  one  trajectory, again com- 
puted  by fourth-order  Runge-Kutta integration, passing 
through all of these solutions. This problem has  not been 
studied enough to  ascertain  the  nature of its singularities, 
but  there  has  been occasional evidence of trajectories 
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that  try  to  take  the “long way around” what is probably 
a region of nonconvergence,  as in Fig. 2(b). The most in- 
teresting aspect of this  problem will be to establish the 
nature of the two-dimensional  singular  regions  predicted 
by Eq. (23). 

Topics for future  development 
The most  serious drawback of the  present method of 
solving  nonlinear equations  is  the  bothersome side-effects 
of extraneous singular  points. And  yet  the very existence 
of these unwanted  singularities is an almost  inevitable 
consequence of our  attempt  to  deal with Jacobian sin- 
gularities - at  least using Eq. (14). For a  singular Jacobian 
implies a  singular adjoint-  and this is a necessary  (but 
not sufficient) condition for  the  existence of extraneous 
singular  points. Moreover, if we insist on looking for 
multiple solutions of g ( x )  = 0 ,  then the  inverse function 
theorem  forewarns us that we are bound to  encounter  at 
least one  Jacobian singularity on  each  trajectory  that 
joins  two  adjacent solution  points. 

Now we may be able  to modify Eq. ( I  4) if not to elim- 
inate,  then  at  least  to ameliorate, the effects of extraneous 
singular  points. 

One possible way of doing this is to inject a smattering 
of the gradient  method by writing 

For if we define the  scalar function f ( x )  = g‘g as  the 
square magnitude of g ( x ) ,  then  the gradient of f is 

df= (E)‘ g + g‘ (E) = 2J‘g 
d x  (49) 

The coefficient matrix of Eq.  (48) is still singular when 
det J = 0 so that  the  extraneous singular  points are not 
eliminated - although their  character may change. But 
the solution  points of g ( x )  = 0 are still guaranteed  to be 
degenerate  nodes as long as k 1 0 .  To show this,  we 
first note  that  the  secondary  Jacobian matrix correspond- 
ing to  Eq.  (48) is 

ax  ax 1 
When g ( x )  = 0 , this reduces  to I + kJ‘J which is positive 
definite since if k 1 0 , then x # 0 implies 

x‘(1 + k J ‘ J )  x = Ib’Il + kll(Jx)’/I > 0 .  (51) 

Hence all the eigenvalues of this  matrix are real and posi- 
tive,  assuring  that  the singularity is a degenerate node. 

Now  the real payoff in using Eq. (48) is the following: 
if we introduce Eq. (17) and modify the  scalar k so that 
ldet J I  can  be factored  out,  Eq. (48) may be  written as 
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dx (adj J + k J ‘ ) g ( x )  . d t  - Idet JI (52) 

When det J = 0 , both adj J and J‘ become singular. But 
the rank of the coefficient matrix is no longer  unity, as 
it was in the  case of Eqs. (17) and (22);  instead it is  equal 
to  the rank of J‘ (presumably  n - 1) no  matter how small 
k may be. Consequently,  instead of having an (n - 1)-  
dimensional subspace of g vectors satisfying the orthog- 
onality  condition of Eq.  (23), we now have  the con- 
dition 

(adj J + k J ‘ ) g  = 0 .  (53) 

Thus,  the admissible g vectors  are confined to a one- 
dimensional subspace so that instead of singular (n - 1)- 
regions,  as predicted by Eq. (23), we have  singularpoints 
again. The practical  value of this approach remains to be 
established. 

Some efforts have been directed  towards developing 
a  practical  algorithm for implementing the  present 
method.  Although the results are inconclusive at  present, 
several useful  guidelines  can  be reported. Because of the 
side  condition expressed in Eq. ( 1  3), the usual focus  on 
the  pros  and  cons of implicit vs  explicit,  multistep  vs 
singlestep methods of integrating  Eq. (14) is of little con- 
sequence. Indeed, any  numerical technique  that  can be 
devised to  generate a trajectory  that will satisfy Eq. (13) 
is acceptable,  whether  or not it happens  to be classified 
as  an “integration” process.  It should also be remem- 
bered  that  the  shape of the  trajectory  generated during 
the solution of Eq. (14) is of no  consequence  as long as 
the solutions of g ( x )  = 0 can  be  found. 

With these principles in mind, we have  found  that very 
large step sizes can be  used with Eq.  (24) when  coupled 
with the steering techniques  described  above.  One dan- 
ger,  however, is that if too large a step is taken,  even 
though Eq. ( 1  3) is satisfied, the  trajectory may actually 
skip over  several solution points of g ( x )  = 0 .  To avoid 
this difficulty, it  is helpful to compute  the size of the or- 
thogonal component of the g vector,  from  Eq.  (30),  as a 
function of distance along the tangent to  the trajectory. 
If this  orthogonal component  increases rapidly, then a 
smaller step  size  is requisite. Another  danger is that  the 
Jacobian matrix  may change sufficiently to invalidate the 
steering correction. (This may happen in a very nonlinear 
region.) The  remedy in this case is to  use Broyden’s  meth- 
od  [3]  for updating J” (or  its LU factors)  after  each 
steering correction is applied. In this  way ‘‘local’’ in- 
formation about  the  Jacobian matrix at  the new point can 
be  fed into the algorithm. 

Another useful technique is to keep a record of several 
previous  points along the  trajectory and to fit these points 
with a polynomial or spline curve.  Extrapolation of this 
curve may be  used in place of an integration formula  to 51 5 
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predict the  next point on the  trajectory.  The steering 
correction  can  then be  applied to  insure satisfaction of 
Eq. (13). This  technique  has  been tried  with some  suc- 
cess  but  needs  further refinement. 

Since regions of nonconvergence  appear  to be an 
inevitable hazard of the  present  method,  any effective 
algorithm  must  include means of recognizing a noncon- 
vergent  situation,  very likely by  detecting  cyclic  trajec- 
tories. It must then find a way out of the region of non- 
convergence,  perhaps by the  temporary  expedient of 
using sloppy  integration. But it would be  better, if possi- 
ble,  to avoid such regions  entirely. 

One possibility of doing  this stems  from  the following 
basic property of Eq. (13): if any element of the initial 
error  vector g[x(O)] is zero,  the corresponding  element of 
g [ x ( t ) ]  must  remain zero.  In  other  words, if one  or more 
of the n equations of the  system g,(x) = 0 , i = 1 , 2  , . . . , 
n are initially satisfied, they will remain so as long as  the 
side  condition of Eq. (1 3) is satisfied. 

Now if there  are,  say, rn linear equations in the original 
system, we can  immediately  satisfy all of them by taking 
one full .Newton  step  from  any  arbitrary starting  point. 
If this  be done,  then  any  subsequent  trajectory defined 
by Eq. (14) will be confined to  the ( n  - rn)-dimensional 
hyperplane in x-space defined by the simultaneous  satis- 
faction of these rn linear  equations. Clearly, all solution 
points of g(x) = 0 must lie on this  hyperplane.  (See  Ap- 
pendix B.) 

If we can  then devise a way to satisfy one additional 
nonlinear equation  at a time until n - 1 elements of the 
g vector  are  zero, we will have reached  a  point on  the 
particular space  curve  that is defined by the satisfaction 
of the  corresponding n - 1 equations of the system. This 
curve not  only passes through all the solution  points of 
g ( x )  = 0 but also  is a valid trajectory defined by Eq. (14). 
Therefore, if this curve is simply connected,  one com- 
plete traversal of it will locate all the desired solutions.;, 
If the  curve  consists of several  branches  (as in the  case 
of g, = 0 in Rosenbrock’s  problem), the  traversal of any 
one  branch will locate only those solution points, if any, 
that lie on it. 

It is not yet  clear how to  devise  an “inflation” method 
for solving one additional equation  at a  time and it is by 
no  means certain that  such a method will successfully 
avoid  regions of nonconvergence.  Neither is there  an 
obvious way of deciding  beforehand which n - 1 equa- 
tions should  be  solved first so as  to  arrive  at a simply (or 
simplest) connected  space  curve. But there may be some 
merit in pursuing  this approach. 

summary  and conclusions 
1. A new method of finding multiple solutions of a SYS- 

tern of nonlinear equations, g(x) = 0 ,  has been  de- 
51 6 veloped. It  is  based on solving the related differen- 
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tial equation d g / d t  f g(x) = 0 which  defines  trajec- 
tories,  or integration paths, in x-space. The sign of 
this differential equation is changed whenever a  tra- 
jectory  encounters a change of sign in the  Jacobian 
determinant laglax I and  whenever it passes through 
a solution  point of g(x)  = 0 .  This  procedure  causes 
the  trajectories  to pass  through one solution after 
the  other. 

2.  The solution  points of g(x)  = 0 are shown to be  de- 
generate nodes of the basic differential equation  and 
are classed as essential singular  points. Extraneous 
singular  points may also  exist  on  the loci defined by 
laglax I = 0 ; only saddle points  and vortex points 
have been observed.  These  extraneous singularities 
may prevent  the method from being globally conver- 
gent  and/or prohibit  certain trajectories  from passing 
through any  or all of the solution  points of g(x) = 0 .  

3. The solution of the basic differential equation in 
g-space is analytic  and  serves  as a valuable  side con- 
dition for computing accurate trajectories. This side 
condition is the  foundation of the “steering”  tech- 
nique for altering the direction of the  Newton  vector 
so as  to  speed  convergence  to a  solution  point. 

4. The “steering” technique, coupled with Euler’s in- 
tegration formula, leads to an effective  predictor- 
corrector  scheme  for computing  trajectories. But the 
predictor formula  need  not be based on numerical 
integration techniques;  instead, it may involve  a 
curve-fitting process. 

5. The influence of extraneous singular points  on  the 
trajectories of several two-dimensional  problems 
has been discussed in conjunction with computer- 
generated drawings of these trajectories. One  three- 
dimensional  problem has  also been  described. 

6. Several suggestions  and  guidelines for  future de- 
velopment of the method have  been proposed. 

7. It  has been  pointed out  that  the underlying cause of 
the difficulties encountered is the  fact  that  the method 
attempts  to deal  directly with the related problems of 
multiple  solutions  and Jacobian singularities. If 
neither of these problems is encountered,  then global 
convergence is assured  and can  be  rapidly  achieved 
with the aid of the steering  technique, 

8. The method has been extended  to  the problem of 
finding multiple extrema of a scalar function of n 
variables  by finding multiple zeroes of the gradient 
of the function. Examination of the  Hessian matrix 
of the function (i.e., the  Jacobian matrix of the gra- 
dient)  indicates whether  the  extremum is a maxi- 
mum, minimum, or saddle  point. 

9. A  discussion of the possible use of Broyden’s  method 
for updating the  inverse  Hessian matrix has been 
given. Broyden’s  method is not  recommended for 
use in integrating the basic differential equation; but 
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it can be used in conjunction  with the "steering" 
technique, provided that  the integration process is 
supplanted with a curve-fitting method for predicting 
the  next point on a trajectory. 

10. Two sample  problems, involving functions of two 
variables, have been  treated. One function has an 
infinite number of minima, but no global minimum; 
the  other  has a finite number of maxima, and a global 
maximum. In  both  cases, it has been demonstrated 
that all of the  stationary points  can  be  found by this 
method. 

Appendix A. Computation of the adjoint of a 
singular matrix 
To compute  the adjoint of a  singular  matrix of rank 
n - 1 , we may follow a procedure similar to  that de- 
scribed by Frazer,  Duncan and Collar [ 151 in which one 
element of the singular  matrix is perturbed by adding an 
infinitesimal increment. If IJI = 0 and rank ( J )  = n - 1 , 
J can always be  partitioned in the  manner 

J = , 

where J , ,  is a  nonsingular  submatrix of dimension n - 1 , 
J , ,  is a column vector, J,,  a  row vector,  and J,, a  scalar. 

Consider  the  perturbed matrix J + EE,, where E,, is 
an  elementary matrix with 1 in the nn position  and zeroes 
everywhere else. Assume  that  the adjoint of the  perturbed 
matrix is A + EB . In  accord with Eq. (20), we must have 

(J + EE,,) ( A  + E B )  = IJ + EE, ,~  . I .  (A21 

The  determinant of J + E,, can  be computed  as follows: 

where IJ,,J f 0 by hypothesis. 

the L U  decomposition [ 161 in the form 
Next,  assume  that  the  perturbed matrix is subjected  to 

where J , ,  - L , , U , ,  , so that  both L , ,  and U , ,  are non- 
singular, and  where r is a  row vector, c is a  column vec- 
tor and s is a  scalar. Expansion of the right hand  side of 
Eq. (A4) shows that 

c = L , , ~ l J , ,  , 

r = J,,  U,,-' , and 

s = J , , - r c + ~ .  (A71 

But since IJ( = 0 by hypothesis, J,, = rc , and so s = E .  

Substituting Eq. (A4) in Eq. (A2) and  then inverting 
the L and U factors, we find that 

Accordingly, in the limit E + 0 ,  it follows that 

which is the  desired dyadic  form of the adjoint matrix. 
Finally,  since the  determinant of J , ,  is the  product of the 
diagonal terms of U , , ,  we have 

when  rank ( J )  = n - 1 . 

Appendix B. The "funneling" theorem 
The following theorem is central  to  the method described 
in  this paper. 

Theorem: Let gi(x,,x2, . . .,x,) = 0 for i = 1 , 2 , . . . , n 
be  any  system of nonlinear equations  and let x( t )  be a 
trajectory defined by  a  solution of the related system of 
differential equations dg /d t  k g(x) = 0 .  Finally,  let S, 
denote any ( n  - k)-dimensional hypersurface in x-space 
defined by the simultaneous  satisfaction of any k of the 
equations g,(x) = 0 .  Then if the starting  point x(0)  lies 
on any given hypersurface S,, the  entire  trajectory x(?) 
must also lie on S,. Conversely, if x(0) does not lie on S,, 
the  trajectory x(t )  can  never  intersect S, except  at a com- 
mon solution of all n equations of the  system g,(x) = 0 .  

Proof:  The solution (in g-space) of the underlying dif- 
ferential equation dg /d t  k g ( x )  = 0 is g [ x ( t ) ]  = g[x(O)] 
eTt . Therefore, if x(0) lies on  any particular hypersurface 
S,, it follows that  the corresponding k elements of the 
image vector g[x(O)] are zero. Since  the  same k elements 
of the image vector  g[x(t)] must also remain zero  for all 
t ,  the  trajectory x(t )  necessarily  remains on S,. On  the 
other  hand, if any  one of these k elements of  g[x(O)] is 
nonzero,  corresponding  to  the  fact  that x ( 0 )  is not on S,, 
the  same is true of g [x ( t ) ]  until and unless e-t = 0 as 
t .+ m .  But in this case, all elements of g[x(m)]  vanish 
simultaneously-and  this, of course,  corresponds  to a 
solution of g ( x )  = 0 .  

A consequence of this theorem is the  fact  that  no tra- 
jectory defined by Eq. (14) can penetrate through any 51 7 
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hypersurface S, except  at a  common intersection of all 
such hypersurfacCs, that  is, when g(x) = 0 .  Hence,  these 
hypersurfaces (of all dimensions) serve  to “funnel” the 
trajectory  into  each solution point. 

Appendix C. Finding multiple extrema of a function 
of n variables 
The problem of determining the global maximum and/or 
minimum of a scalar function of n variables is crucial in 
the field of optimization. This problem may be approached 
(though not definitively solved) using the  present  method 
of solving  nonlinear equations  to find multiple zeroes of 
the gradient of the function. Since  the gradient vector 
vanishes at  each  stationary point of the  function, a cor- 
responding number of these  stationary points are  thereby 
located. Then, by examining the  Hessian matrix of the 
function  (which is identical with the  Jacobian matrix of 
the gradient) a determination  can be  made as  to  whether 
a  particular stationary point is a  maximum, a minimum, 
or a  saddle  point. Thus,  the “global” maximum and/or 
minimum- at  least  among  those  stationary points  ac- 
tually  found - can  be identified. 

Although the  present method cannot  guarantee finding 
all of the  zeroes of the  gradient, which are needed to in- 
sure identifying the  true global maximum and/or mini- 
mum of the  function,  the method does  constitute a useful 
advance in the  techniques of nonlinear  optimization. 

The  procedures already  described are applied  directly 
to  the gradient of the function being examined. As each 
solution  point of g(x) = 0 is  found,  the  corresponding 
value off (x) is  saved  and  the  Hessian (Jacobian)  matrix 
examined. If the  Hessian matrix is positive  definite, the 
point is a  local  maximum; if the  Hessian is negative defi- 
nite, the point is a local minimum. Finally, if the  Hessian 
is indefinite, the point is a saddle point. 

The  necessary  and sufficient condition for  the  Hessian 
to  be positive definite is that  its  determinant and the de- 
terminants of all of its  principal  minors  must  be  positive. 
These  determinants may be  computed by multiplying the 
appropriate diagonal terms of the U factor  (upper tri- 
angular  matrix)  obtained  from the LU decomposition 
provided that  proper  account  has been taken of the effects 
of row-column  interchanges on  the signs of these  deter- 
minants [ 191. Accordingly, the  “adjusted” signs of all 
the diagonal elements of U (adjusted with respect  to row- 
column  interchanges)  must be positive iff(x) is to be a 
local maximum. 

Correspondingly,  the  necessary  and sufficient condition 
for  the  Hessian  to  be negative definite is that  the  adjusted 
signs of the diagonal terms of U be negative;  this will in- 
dicate  thatf(x)  is a local minimum. Finally, if the  adjusted 
signs of these diagonal terms  are mixed,  a saddle point 
has been  found. Thus,  for negligible extra  cost  beyond 

51 8 that required for  the LU decomposition of H - which is 
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needed anyway in Eq.  (24)  -the  type of each  stationary 
point  can  be identified. 

Use of quasi-Newton  methods 
In  order  to avoid the computational cost of evaluating the 
Hessian matrix and carrying out  the LU decomposition 
at  each iteration for  Eqs. (24) and (31), it is possible to 
use Broyden’s  approximation method  for updating the 
inverse  Hessian  [3].  This may’ be particularly advan- 
tageous  when the  Hessian involves  very  complicated 
Functions. Using the definitions 

it follows  straightforwardly that Broyden’s “full step” 
formula  for updating the  inverse  Hessian is 

By factoring out B,, the right-hand  side of Eq.  (C5) can 
be  written in a more  convenient  form so that 

B,,, = ( I  + anbnt )Bn ,  (C6) 

where I is the identity matrix, 

a, = 3 z , p ,  - B,y, and  (C7) 

b,  = P,/PfltB,Y,. (C8) 

Now  Eq. (C6) can be  used to  compute  the  determinant 
of B,,, as follows: 

lB,+ll = I I  + anbn‘l . IBJ = (1  + anfb,) . IBJ . (C9) 

If the initial Hessian, H,,  has been  calculated explicitly 
and  its  determinant  found, this  defines the  determinant 
of B ,  and permits the  determinant of B ,  to be computed 
by the  expression 

n 

IBJ = IBoI n ( 1 + aktb,) . (C 10) 
k=l  

Thus,  the changes in sign of IBJ can  be  monitored sim- 
ply by  observing the changes in sign of the  successive 
expressions ( 1  + antb,) . 

If B ,  is a good enough  approximation to H,-I , then 
the sign of [ B J  will change  at  the  same time as  that of 
IHJ , thus enabling Eq. (C10) to  be used for deciding 
when to  change signs in Eq. (24). In practice, however, 
this procedure  proves to be  unreliable since IBJ often 
changes sign a  few steps before or after 1HJ does.  It is 
possible to  recover  from this discrepancy  at  the  cost of 
actually  evaluating H ,  whenever ( B J  changes sign and 
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Figure C1 Undulating  valley  function. (a) Curves  defined by Eq. (C12); (b) gradient  equations; (c) two trajectories through  several 
solution  points. 

retracing  any erroneous  steps. But this is not  recom- 
mended. 

If a polynomial or spline curve-fitting technique is used 
in place of Eq. (24) to predict x,+~ , the B ,  matrix  can 
still be used in Eq. (3 1) during application of the steering 
correction.  Thus,  the computational advantages of Broy- 
den's updating  algorithm can be  realized. This  approach 
has not yet been fully developed,  but preliminary  experi- 
ments  indicate that it has considerable  promise. 

Experimental  results 
Earlier we described  the application of the  present 
method  to  the problem of finding the minimum of Rosen- 
brock's function, 

f(x,x,)  = 1oo(x,2  -xJ2 + (x, - 1 )  , (C11) 

which is characterized by having a  curving valley with 
steep walls. A similar function  whose  curving valley has 
an undulating floor is the following: 

f(x,,x,) = a(x, - bxI2 + ex, - d l 2  + e(1  -f) cos x, + e .  
(C 12) 

The valley follows the parabolic curve defined by the 
equation 

x, - bx,, + cx, - d = 0 (C13) 

and the undulation of the valley floor is due  to  the  cosine 
term. 

A perspective drawing is shown in Fig. Cl(a)  for  Eq. 
(C12)wi tha=1 ,b=5/4 .rr ' ,c=5/ .rr ,d=6,e=lO,and 
f =  1/8.rr. This function has an infinite number of minima, 
of which six can  be  seen.  Included in the drawing is the 
parabola of Eq. (C 13) as well as its projection on  the  sur- 

The gradient equations, whose  solutions determine  the 
face  f(x,,x,) . 

locations of the  stationary points of this function,  are 

af 
8x1 
- = g,(x,,x,) = 2a(x, - bX,* + ex, - d )  (-2bx, + c) 

- e ( l  - f )  sin x, = 0 

and 

" af - 
ax, 

g2 (x , ,~ , )  = 2a (X, - b ~ , '  + CX, - d )  = 0 .  (C 14) 

The  corresponding  curves  are  shown in Fig. Cl(b).  Here 
the dashed line depicts  the locus of points for which 
IH( = 0 .  The  cross marks on this  locus  designate the ex- 
traneous singular  points of the differential equation, Eq. 
(14). All of these  singulai  points  turn  out  to be saddle 
points. 

In Fig. Cl(c),  two  trajectories  are  shown passing 
through several solution points of Eq. (C 14). These trajec- 
tories, like those in subsequent drawings, were  computed 
by means of Eqs.  (24)-(32).  In  Table 1, the  coordinates 
of a number of the  stationary points  off(x,,x,) are listed 51 9 
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Figure C2 Camelback  function with three humps. (a) Curves defined by Eq. ((215); (b) gradient  equations; (c) trajectories  through five 
solution  points. 

Table 1 Stationary points for Fig. Cl(a). 

-9.4536 
-6 .3  149 

4 . 0 3 9 7  
3.0962 
6.2303 
9.3614 

12.4874 
15.6034 
18.6954 
21.7071 

-3.1769 

32.3651 
21.1013 
12.3344 
6.0634 
2.2863 
1.0003 
2.2001 
5.875 1 

12.0019 
20.5124 
31.1303 

-3.7557 
22.5063 
-1.2570 
20.0079 

1.2409 
17.5105 
3.7373 

15.0157 
6.229 1 

12.5309 
8.69 15 

minimum 
saddle 
minimum 
saddle 
minimum 
saddle 
minimum 
saddle 
minimum 
saddle 
minimum 

Table 2 Stationary points for Fig.  C2(a). 

-1.7475 0.8737 4 . 2 9 8 6  
“1.0705 0.5352 

maximum 
4 . 8 7 7 3  

0.0000 
saddle 

0.0000 
1.0705 

0.0000 maximum (global) 
4 . 5 3 5 2  -0.8773 saddle 

1.7475 -0.8737 4 . 2 9 8 6  maximum 

along with the  corresponding function  values and  type of 
stationary point. 

Notice  that  the  trajectory marked A exhibits a decreas- 
ing undulation as it moves to  the right. Once this  trajec- 
tory  passes through the solution at (9.36,2.20), it gets 
captured  between  the  curves gl = 0 and g2 = 0 .  Since it 
cannot  escape this captivity, by virtue of the “funnelling 
theorem” described in Appendix B, it must  certainly 
pass through all the solution points along the right hand 
branch of the  curve g, = 0 . 

By contrast, as  this trajectory moves to  the left, it 
necessarily crosses  to  the outside of the  area bounded  by 
gl = 0 and g2 = 0 .  As a result,  the amplitude of its un- 
dulation increases  and eventually  a  point of instability is 
reached, beyond which the  trajectory  recedes  to infinity. 
Thus, it passes through  only  a finite number of the solu- 
tion points on  the left hand branch of the  curve g ,  = 0 .  A 
similar situation, but with the  reverse  sense of direction, 
occurs  on  trajectory B .  This  trajectory  passes through all 
of the solutions on  the left hand branch of gl = 0 and 
through  only a few of those on the right hand  branch. 
Thus,  these  two  trajectories  are sufficient to  locate all of 
the  stationary points of Eq. (C12). 

Another problem that  has been  solved by the  present 
method is that of finding the global maximum of the “cam- 
elback” function, 
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Figure C3 Camelback function  with  six  humps.  (a) Curves defined by Eq. (C 15) with different  values of constants  from  those used in 
plotting  Fig. C2(a); (b) trajectories  through  solution  points. 

f(x,,x,) = ax12 + bx14 + cx16 - x , x ,  + dx,’ + (C15) 

This function has  three maxima when a = -2 , b = 1.05 , 
c = -1/6, d = -1 and e = 0 ,  as shown in Fig.  C2(a). 
The corresponding  gradient equations, 

- = g, (x1,x2) = 2ax, + 4bXI3 + 6 4  - xz = 0 a f  
ax1 
and 
a f  
” - g,(x,,x,) = -x1 + 2dx, + 4exZ3 = 0 (C 16) 
ax, 

are depicted in Fig. C2(b).  This  instance of Eq. (C16), 
with e = 0 ,  can be shown  to  be  free of extraneous singu- 
lar  points  since  the  equations  are a special case of those 
used to  describe  the “tunnel diode” problem, which has 
no  extraneous singularities. (A fifth-degree polynomial 
was used to  represent  the tunnel diode  characteristic 
curve.) 

In all the problems that  have been  studied using the 
present  method,  the  presence of at  least  one  extraneous 

singular  point has always appeared  to be a necessary con- 
dition for  the  existence of a region of nonconvergence 
and  for  the deflection of a trajectory so that it fails to pass 
through all solution  points. Therefore,  even in the ab- 
sence of a mathematical  proof of its  validity, it is reason- 
able  to make the claim that  for  the  case depicted in Fig. 
C2(b),  the method will be globally convergent and all 
trajectories  (except  those  whose xl coordinate is identical 
to  that of any  solution  point) will pass through  every solu- 
tion. This conclusion is borne  out by the trajectories 
shown in Fig. C2(c). (Here, only half  of each  trajectory is 
shown  since the problem is centrosymmetric.)  The co- 
ordinates  and function  values of all five stationary points 
are listed in Table 2. 

By using the values a = -4 , b = 2.1 , c = -1/3 , d = 4 , 
e = -4 , Eq.  (C15) may be made  to exhibit  six  maxima, 
as  shown in Fig.  C3(a). The corresponding zero gradient 
curves  are  shown in Fig. C3(b) along with several IHI = 0 
loci and a number of extraneous singularities, all of which 521 
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Table 3 Stationary points for Fig. C3(a). 

-1.7035 0.7960 0.2 154 
-1.1092 0,7682 -0.5437 saddle 

maximum 

-0.0898 -.7126 1.0316 
1.2960 0.6050 -2.2294 saddle 

maximum  (global) 

1.607 1 0.5686 -2.1042 
1.6380 0.2287 -2.2293 

maximum 
saddle 

1.2302 0.1623 -2.4962 
0.0000 0.0000 0.0000 saddle 

minimum 

(The remaining seven points are conjugate to the first seven.) 

prove  to be saddle points.  Of the five trajectories  shown, 
only those labelled A ,  C ,  and D pass through all fifteen 
solution  points.  (Again,  only half of each  centrosymmet- 
ric  trajectory is drawn; this reduces  clutter in the fig- 
ure.) 

Trajectory B ,  however,  passes through  only seven 
solution points; it is deflected  by the saddle point at 
(0.72,0.40) so that it entirely  misses the right-most four 
solutions. These  four  points  are  threaded by a cyclic 
trajectory conjugate to  the  one labelled E .  Thus,  even 
though there  are many extraneous singularities present, 
these  trajectories  and  others  that  have  been examined 
give no evidence  that any  regions of nonconvergence 
exist in  this  problem.  Accordingly, it is an  easy  task to 
find all the  stationary  points in this  problem and  to identi- 
fy the global maximum. The  pertinent  data  are listed 
in Table 3. 
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