504

F. H. Branin, Jr.

Widely Convergent Method for Finding Multiple
Solutions of Simultaneous Nonlinear Equations*

Abstract: A new method has been developed for solving a system of nonlinear equations g(x) = 0. This method is based on solving the
related system of differential equations dg/dt + g(x) = 0 wherein the sign is changed whenever the corresponding trajectory x(¢) en-
counters a change in sign of the Jacobian determinant or arrives at a solution point of g(x) = 0. This procedure endows the method with
a much wider region of convergence than other methods (occasionally, even global convergence) and enables it to find multiple solutions
of g(x) = 0 one after the other. The principal limitations of the method relate to the extraneous singularities of the differential equation.
The role of these singularities is illustrated by several examples. In addition, the extension of the method to the problem of finding
multiple extrema of a function of N variables is explained and some examples are given.

Introduction

A new method has been developed for solving systems
of nonlinear equations [1]. The method, based on inte-
grating a related system of differential equations, has a
wide region of convergence and may occasionally be
globally convergent. Moreover, it is capable of finding
multiple solutions (sometimes all of them) one after the
other without requiring deflation of the original equations.
The method does have significant limitations, however,
and these will be discussed below.

This method evolved as a result of unsuccessful efforts
to solve a certain nonlinear electrical problem, the “tun-
nel diode” problem of Fig. 1, which frustrated the usual
methods of solution. The basic difficulty in this problem
—a difficulty which is common to many other nonlinear
systems—is the fact that the Jacobian matrix may be-
come singular. When this happens, Newton’s method and
its variants cease to function. However, a simple and
effective way of circumventing this difficulty has been
found. As a result, the method has a much larger region
of convergence than those methods to which a Jacobian
singularity presents an impasse.

By a straightforward extension of this method, it is
possible to find multiple extrema of a scalar function of
a vector variable and under favorable conditions to find
the global maximum and/or global minimum. This ex-
tension, which is based on finding multiple zeroes of the
gradient of the function, is described in a companion
paper [2] and in condensed form in Appendix C. The
application of the method to the case of complex zeroes
will be treated in a subsequent paper.
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During the course of this development the author has
made extensive use of visual displays generated by an
IBM 1130 computer driving an IBM 2250-4 display
unit. All of the drawings in this paper were computer-
generated, first being presented on the display unit and
then being copied by an IBM 1627 plotter (only the label-
ling has been added for purposes of publication). The
value of these visual displays in guiding the development
and in providing insight to the workings of the new
method can scarcely be overemphasized.

Genesis of the method
Let the system of nonlinear equations be written in the
form

g(x) =0, 8y

where g(x) is an n-dimensional vector-valued function of
an n-dimensional vector x. One variant of Newton’s
method which the author has studied is based on the re-
cursion formula

g
Xigr =X hi<a_x>

where x; is the ith approximation to the solution vector
and (9g/ox) is the Jacobian matrix. As Broyden shows
[3], divergence of this iteration process can be avoided
by choosing the step size /; so as to minimize [g(x,, )|,

-1

g(x;), 2)

£

*The method reported in this paper was presented orally at the Conference on
Numerical Methods for Nonlinear Optimization, University of Dundee, Scotland,
June, 1971.

IBM J. RES. DEVELOP.




the magnitude of the new residual or error vector—or at
least so as to make

llg G M1 = llg G- 3

But avoiding divergence does not guarantee conver-
gence. For in the case of the tunnel diode problem of
Fig. 1, the foregoing algorithm fails to converge from any
starting point to the left of the vertical line through point
B. What happens is the following.

For this problem, the equations are

-l B e
g, (x,.x,) x,+Rx,— E 0l’

where f(x,) is the function describing the nonlinear tunnel
diode curve, R is a resistance value, and E a battery
voltage. For any given values of x, and x,, as shown in
Fig. 1(b), g,(x,,x,) is the vertical distance from point P,
to.the point (x,,x,) while g,(x ,x,) is the horizontal dis-
tance from (x,,x,) to.the point P,. Thus the line PP,
represents the g vector in this problem.

For any starting point to the right of the vertical line
through B, the foregoing minimization algorithm will
force both P, and P, towards the solution point C, caus-
ing the g vector to shrink to zero. But for any starting
point to the left of this line, the algorithm drives P,
toward point A and P, towards point A’, where the length
of the g vector is minimum — but not zero. The algorithm
is then unable to proceed further because at every point
on the vertical line through A, the Jacobian matrix,

oo ]

becomes singular since dffdx,=—1/R. (This also
happens everywhere on the vertical line through B.)
Thus, det J = 0 and so the inverse Jacobian matrix J =
required by Eq. (2) no longer exists.

Now it is well known in circuit analysis that difficult
non-linear problems, such as the one just described, can
often be solved by integrating a related system of dif-
ferential equations until a steady-state solution is ob-
tained. This observation suggested the use of a synthetic
differential equation such as

dx

4 e =0, (6)

which provides the desired solution to Eq. (1) when
dx/dt = 0. This approach works well for the tunnel diode
problem but fails on other problems and has been
abandoned in favor of the equation

d
S +80=0 ™

suggested by L. E. Kugel [4].
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Figure 1 The tunnel diode problem. (a) Curves defined in
Eq. (4); (b) graphical interpretation; (c) trajectories through a
single solution; (d) trajectories through three solutions.

Equation (7), which was found later to have been
studied extensively in connection with the methods of
“continuation” and ‘“‘parameter imbedding,” [5-11]
proves to be effective as long as the Jacobian matrix is
nonsingular. For it is obvious from the analytic solution
of Eq. (7), namely

glx()]=glx(0)le”™ ®

that Eq. (1) will be satisfied when ¢t — o .
Since g(x) is not an explicit function of ¢, it follows from
the chain rule that

dg  (9g\ dx

dr (ax) dr’ ©)
so that Eq. (7) can be recast in the form

dx ag\ " o

=) e =g (10)
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as long as the Jacobian matrix remains nonsingular. How-
ever, when det J =0, Eqgs. (7) and (10) cease to exist
and instead we have

an

dg ag) dx
_—= =0
dt <

ox) dt
with dx/dt # 0. Accordingly, this approach fails in the
tunnel diode problem when x, =a orx, = b.

The way to remove the impasse presented by the
Jacobian singularity is simply to allow a change of sign
in Eq. (7) so that we have

d,
g0 =0 (12)

with solution
glx(n)] = glx(0)]e™. (13)

Thus, when det J changes sign (after passing through
zero), the sign in Eq. (12) is reversed so that the inte-
gration process may be continued. Equation (10), there-
fore, becomes

dx

0 g . (14)

In the case of the tunnel diode problem, assume that
the starting point is (0, 0.6), as shown in Fig. 1(c), and
that initially the positive sign is taken in Eq. (12) since
det J > 0. The integration path (or trajectory) proceeds
as shown up to the Jacobian singularity at point A while
the g vector decreases exponentially in magnitude
(without changing direction) according to Eq. (13). If
then the negative sign is taken in Eq. (12), the trajectory
proceeds to the next Jacobian singularity at point B.
During this interval, det J < 0 and the g vector is in-
creasing exponentially —as it obviously must if the tra-
jectory is to get “over the hump” en route to the solu-
tion at point C. Finally, the positive sign is restored and
the integration path proceeds directly to the solution at
point C. If the sign is reversed once more, the integration
path beyond point C diverges to infinity. (Two other
trajectories are also shown in the drawing.)

Now if the value of the constant E in Eq. (4) is reduced
sufficiently, the tunnel diode problem exhibits three solu-
tions as shown in Fig. 1(d). All three of these solutions
can be found in sequence by appropriate use of the fore-
going rules for changing the sign in Eq. (12) —namely,
reversing sign whenever detJ changes sign and whenever
a solution point has been reached. Moreover, the algo-
rithm is globally convergent for this problem and for
certain other problems that have been studied. However,
the method is not globally convergent in general, as ex-
plained in the following section.
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(a)

3+

(b)
Figure 2 Brent’s problem. (a) Curves defined by Eq. (15);
(b) trajectories in the presence of a saddle point and a vortex
point.
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Theoretical basis of the method

R. Brent [12] proposed the following problem as an
example in which the present method is not globally
convergent.

g (xx,) =a(x,+x,)=0 (15a)

8, (x,x,) = alx, +x,) + (x,—x,) [(x,—b)*+x,"— c] =0.
(15b)

These functions, for the values a=4,b=2,c=1,are
shown in Fig. 2(a), the locus defined by detJ = 0 being an
ellipse.

Brent correctly predicted that any trajectory starting
from a point within the disc defined by

(r,—2)+x"=1 (16)

would fail to converge on the solution point at (0,0).
Indeed, the region of nonconvergence is slightly larger
than this disc and is characterized by the fact that all
trajectories within it are closed curves. Outside this
region convergence is always obtained.

Now it is obvious from the trajectories shown in Fig.
2(b) that point A, which lies on the ellipse det J = 0, has
all the earmarks of a saddle point while point B, which
also lies on this ellipse, resembles a vortex point. Initially,
these points were thought to be somehow different from
the usual singular points of a second order differential
equation because Eq. (14) implies the existence of a con-
jugate pair of (vector) differential equations.

These special points, and the trajectories in their
neighborhoods, were surmised to be phenomena peculiar
to the interaction between this conjugate pair of dif-
ferential equations across the boundary, det J =0,
separating their respective domains. However, further
study has shown that these points are indeed true singular
points. Moreover, every solution of g(x) =0 is also a
singular point—specificaily a degenerate node that may
be either stable or unstable, depending on the choice of
sign in Eq. (14).

To explain these features of the method, let us recast
Eq. (14) in the form of a single vector differential equa-
tion instead of a conjugate pair. Using Cramer’s rule for
the inverse of a matrix in terms of its adjoint we have

dx adjJ

d—t=mg(x)- (17)

Here the rule for changing sign when det J changes sign
is automatically incorporated by using the absolute
magnitude of det J. Thus, whenever the right hand side
of Eq. (17) is a null vector, a singular point occurs. In
particular, all solutions of g(x) = 0 correspond to singular
points.

To determine the type of singular point in any instance,
it is sufficient to determine the eigenvalues of the coeffi-
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cient matrix of the variational equation [13] related to
Eq. (17). In the present case, this matrix may be called
a secondary Jacobian and is defined in terms of Eq. (14)
by the expression

2@ ) e ()]
=ﬂﬁgﬁgu)+q, (18)

where x = dx/dt .

Whenever g(x) =0, this secondary Jacobian matrix
reduces to +/ with eigenvalues F1. Hence, each solu-
tion point of g(x) = 0 corresponds to a degenerate node
[14] which is stable if the negative sign is used in
Eq. (14) and unstable if the positive sign is used. Since
the solutions of g(x) = 0 are of primary interest, we shall
call them essential singular points of Eq. (14).

Extraneous singular points may also occur when
g(x) # 0 provided that the g vector satisfies the homo-
geneous equation

(adjJ)g=0, 19)

for this condition will make the right-hand side of Eq. (17)
vanish. Equation (19) also implies that adj J is singular.
Moreover, since Cramer’s rule requires that

JoadjJ=\J|-1, (20)

the singularity of adj J implies that |J| = 0. Hence, J
itself is singular.

Now it is well established that adj J is a null matrix if
the rank of J is n — 2 or less; but if rank (J)=n—1,
then rank (adjJ) = 1. In this case, adjJ can be expressed
in dyadic form as [15]

adjJ = pqt Q21

where p is a column vector and ¢ a row vector. (An ex-
plicit method for computing p and ¢ is given in Appen-
dix A))

Equation (19) can now be written in the form

(adjJ)g = (pq')g =p(d's) =0 (22)
or, equivalently,
q'g=0. 23)

Thus, if rank (J)=n — 1, every g vector in the (n — 1)-
dimensional subspace orthogonal to the g vector of
Eq. (21) will satisfy Eq. (19); if rank (J) =n — 2, then
every g vector in the entire n-space satisfies Eq. (19).
In summary then, extraneous singular points of Eq. (14)
occur whenever any point on the locus defined by det
J = 0 corresponds to a nonzero g that satisfies Eq. (19).

The theoretical basis of the present method for solving
g(x) =0 is thus intimately tied to the nature of the
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singular points of Eq. (14) and their influence on the tra-
jectories defined by this equation. Although no definitive
explanation can yet be offered, it is evident from experi-
mental results that the existence of one or more extra-
neous singular points may, and often will, preclude the
method from being globally convergent and may also pre-
vent some trajectories from traversing all solutions.

So far, the only types of extraneous singular points
observed have been saddle points and vortex points. In-
deed, it seems unlikely that spiral points (foci) will
occur since they represent points of stable equilibrium,
which are to be expected only when g(x) = 0. However,
neither experimental nor theoretical evidence can be
given to justify this conjecture.

Unfortunately, saddle points and vortex points are not
only extraneous but troublesome. On the one hand, every
vortex point is surrounded by a region of nonconver-
gence. On the other hand, every saddle point will repel
any trajectory that comes within its range of influence.
This may occasionally give rise to a region of noncon-
vergence. A more frequent effect of these saddle points
is to deflect certain trajectories so that they fail to
traverse zeroes of g(x) that neighboring trajectories will
find. Sometimes this deflecting action of saddle points
has no harmful effects at all. But this is more likely to
be the exception than the rule.

In the absence of extraneous singular points, it seems
plausible to expect not only that the method will be
globally convergent but also that every trajectory will
pass through all solution points of g(x) = 0. This con-
jecture is based on the behavior of the algorithm in two
problems where extraneous singular points are known to
be absent. It is also supported by the observation that
the nodal points act like electric charges and the tra-
jectories like electrostatic field lines that either terminate
on charges or else pass to infinity. A sound theoretical
treatment of the role of both essential and extraneous
singular points is needed, however, to establish definitive
conditions for global convergence and the ability to find
all solutions of g(x) =0.

Computational techniques
Although numerical integration of Eq. (14) may be used
to obtain any trajectory x(f) in x-space, the existence of
an analytic solution for the image trajectory in g-space,
given by Eq. (13), provides a unique and distinct advan-
tage. For as Eq. (13) shows, every trajectory in x-space
must be such that its image under the transformation
g(x) lies on a straight line determined by g[x(0)] . Recog-
nition of this important property of the method can lead
to significant improvements in the numerical solution of
Eq. (14) as we shall show.

In particular, Euler’s method, which is the simplest
and least accurate of the commonly used integration
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schemes, can be supplemented by the technique of
“steering’’ to provide very accurate solutions of Eq. (14).
Euler’s method, applied to Eq. (14) yields the recursion
formula

Xy = X F hi‘li_lg(xi) ’ (24)

which is identical to Eq. (2) for the variable-step Newton
method except for the alteration of sign.

According to Eq. (14), the “Newton vector” g s
tangent to the trajectory at each point and may be re-
garded as the velocity, if t is taken to represent time.
Equation (24) then shows that the trajectory may be
approximated by taking a finite step along this velocity
vector. Obviously, the new point x,,, will be displaced
more or less from the actual trajectory, depending on its
curvature. Consequently, even if the point x, is on the
actual trajectory so that g(x) satisfies Eq. (13), the image
of the new point, namely g(x,, ) , cannot, in general, satis-
fy Eq. (13). The idea of ‘“steering,” then, is to modify
or correct the direction of the velocity vector somewhat
so as to make g(x,, ) satisfy Eq. (13) more closely than
it otherwise could.

The actual algorithm, which amounts to a predictor-
corrector scheme, is as follows: First, rather than using
the Newton vector =/ 'g, which may vary considerably
in magnitude, we actually normalize it. The effect of this
normalization is to replace the independent variable ¢ by
the variable s representing distance along the trajectory.
Specifically, we use

d
=@ @)

and

[ )

dt dr/ \dt

so that Eq. (17) can be written as

@_ adj J |det J| )
ds  |detJ]| , A
det /| [¢'(adj J)"(adj J) g]?

or, using the Euclidean norm,

dr _ (adjJ)e
ds | (adj J)gl’

Next, Eq. (24) is replaced by

(adj J)g

=t Mg el @9
where h, now corresponds to a fixed-length step along
the trajectory. Equation (29) is used to predict the new
point x,,, and then g(x,, ), or more concisely g,,,, is
evaluated. The component of g, orthogonal to the
vector g[x(0)], or g,, is then computed according to
the relation
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v=2g,,, —kg,. (30)

where kg, is the projection of g, , along g, and
t
k= gi+1tg0/g0 8o -
Annihilating this v vector by adding the appropriate
correction vector to x,,, will insure that the image of the

corrected point satisfies Eq. (13). To first order, this
correction vector is computed by the relation

Sr=—J""v €3))

where the same inverse Jacobian matrix (or better still,
its LU factors [16]) already computed for Eq. (14) can
be used unchanged. The corrected new point is

'fi+1 = xi+1 + dx (32)

and if g(x,, ) does not have a sufficiently small orthogonal
component, the corrector equations can be applied re-
peatedly.

The trajectories shown in most of the examples in the
paper were obtained by combining Euler’s predictor and
the “steering” corrector formulas just described. In this
way, very accurate trajectories were obtained at minimal
computational cost. Of course, the basic objective of the
method is to find the solutions of g(x) =0 so that the
actual shape of these trajectories is of no real con-
sequence as long as all the zeroes of g(x) can be reliably
found. This will be a governing objective in developing
an efficient computational algorithm. But for the present
purposes of highlighting the underlying mathematical
character of the method, accurate trajectories have been
thought desirable.

Recently Broyden [17] has proposed a new method of
solving non-linear equations which has a noteworthy
resemblance to the present method. Broyden’s new meth-
od is based on a differential equation of the form

ﬁjf:__j‘lg

s ! (33)

which, like Eq. (10), is limited to problems in which the
Jacobian matrix is nonsingular. However, Broyden
uses the initial g vector, g,, or g[x(0}], in place of the
current g vector, g[x(t)], on the righthand side. He then
solves Eq. (33) by a method akin to Euler’s method of
integration, but with the step size computed according
to.the curvature of the trajectory. The net result is to
replace our Eq. (2) by the relation

Xip1 = X5 biJiA‘go s (34)

where b, is used to represent Broyden’s step size.

Now Broyden’s equation incorporates somewhat the
consequences, though not the basic idea, of “‘steering”
in the following sense. When the steering correction is
applied as described above, the current g vector, g(x,)
in Eq. (24), is made to be codirectional with g, . There-
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fore, we may set g(x;)=k,g, so that Eq. (24) can be
written in the form

Xpy =%, F hkJ g, . (35

By amending Broyden’s equation to include our sign
change, we see that the expression

b, = hik, (36)

for the step sizes correlates Broyden’s equation with
ours.

It must be recognized, however, that even with
equivalent step sizes chosen according to Eq. (36),
these two methods will not give identical results. For
although Broyden’s predictor will give the same new
point as Eq. (35) on the first step (when k,= 1), all sub-
sequent points will differ. (This is because Broyden’s
predictor alone cannot satisfy Eq. (13), whereas our
steering technique can.) Moreover, the cumulative
effects of this discrepancy will cause the successive
Jacobian matrices in Broyden’s method and ours to be-
come increasingly dissimilar. Thus the two trajectories
will be noticeably different, especially with large step
sizes.

This observation has been confirmed experimentally
and our predictor-corrector scheme has been found to
produce trajectories that ‘“home in” on the zeroes of
g(x) considerably better than trajectories produced by
Broyden’s method. In fact, convergence to the single
solution of the tunnel diode problem of Fig. 1(c) has
been obtained from the points (0.75, =100) and (0.8, =100)
with only two or three “Newton steps’ each followed
by one ot more steering corrections. Thus, the steering
principle alone is a powerful adjunct to existing methods
of solving nonlinear equations.

Experimental results

Several two-dimensional problems have been studied in
some detail. In order to discuss their extraneous singu-
lar points, we first display explicitly the singular adjoint
matrix for the 2X2 case. According to Eq. (A10) of Ap-
pendix A, we have

1 = ]
diJ=— 12 21 Y11
adyJ [1]

11

37)
11

so that the ¢’ vector of Eq. (21) is [J,, J,,]. Hence,
any point on the locus det J = 0 which has as its image a
nonzero g vector orthogonal to g will correspond to an
extraneous singular point.

Since in the case of a singular 2X2 matrix the rows (and
columns) are proportional, it follows that ¢’ may also be
represented by [J,, —J,,]. Therefore, the necessary
orthogonality condition is either

8 T8 = 0 (38)
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Figure 3 Trigonometric problem, (a) Curves defined by Eq. (41) for ¢ = 0 ; no extraneous singularities present; (b) ¢ = 0.05 ; extrane-
ous singularities far from solution points; (c) ¢ = 0.13 ; extraneous singularities closer to solution points.

or
I8 —J1,8,=0. 39)

In the tunnel diode problem, discussed earlier in terms
of Egs. (4) and (5), it will be recalled that the loci defined
by det J =0 are the vertical lines through points A and
B of Fig. 1(a). Hence, det J = 0 implies that x, = a or
x, = b. But the orthogonality condition of Eqgs. (38) and/
or (39) reduces to

flx)=(E—x)IR, (40)

which must hold simultaneously with x, =a or x, = b.

Now if the variable x, is eliminated from Eq. (4), the
result is Eq. (40)— which must therefore correspond to
a solution of Eq. (4). That is, the null vector, g=20, is
the only vector that satisfies the orthogonality condition
of this problem. Obviously, then, no extraneous singular
points can occur in the tunnel diode problem.

Clearly, the situation just described corresponds to
the tangency of the curves g (x,.x,) = 0 and g,(x,,x,) = 0
at point A or at point B in Fig. 1(a). It is natural there-
fore, to consider the effect of such tangencies on the
present algorithm. Since exact tangency cannot be
achieved on a digital computer, the curves must either
approach vefy closely to each other without touching,
or else they must intersect in two distinct, but very
close, points. In the first instance, the main problem is
that of deciding on an appropriately small convergence
criterion that the g vector must satisfy. But in the second
instance, computational difficulties may arise during the
process of projecting the trajectory through the first
solution point and continuing the search for additional
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solutions. Neither situation has been studied in detail,
however.

A problem somewhat like the tunnel diode problem is
that of solving the equations

(41a)
(41b)

g, (x,,x,) = a—bx, + ¢ sin (dx,) —x, =0
g,(x,,x,) = x, —esin (fx;) =0.

In Fig. 3(a), we show these two curves for the case where
c¢=0, so that g, = 0 is a straight line, and where a=1,

=2,d=4w,e=0.5,f=2x . In this instance, the loci
for det J =0 are straight lines, satisfying the equation

cos (fx,) = —1/bef, 42)
and the orthogonality condition reduces to
sin (fx,) = (a— x,)/be. 43)

But Eq. (43) is identical with the result obtained from Eqgs.
(41a) and (41b) by eliminating the variable x,. Thus, the
null vector, g = 0, alone satisfies the orthogonality condi-
tion so that no extraneous singularities exist, just as in
the tunnel diode problem.

However, when ¢ # 0, extraneous singularities come
into the picture with a vengeance, as Figs. 3(b) (for
¢=0.05) and 3(c) (for ¢=0.13) clearly demonstrate.
(The extraneous singular points are designated by cross
marks.) Note that as ¢ increases, these singularities ap-
proach closer to the solution points. Note also that be-
cause the functions in Eq. (41) are periodic, there is an
infinite number of extraneous singular points.

In Figs. 4(a), (b) and (c), several different trajectories
are shown, many of which pass through all of the solution
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Figure 4 Trajectories for trigonometric problem. (a) ¢ = 0.13 ; convergent and cyclic trajectories; (b) ¢ = 0.5 and ¢ = 1.0 ; cyclic
trajectories without vortex point; (c) ¢ = 2 and ¢ = 1.9 ; showing 119 solution points.

points. (To reduce clutter in these drawings, we h#ve
taken advantage of the symmetry of the problem relative
to the point (1,0) by showing only half of the centrosym-
metric trajectories.)

Figure 4(a) (for ¢ = 0.13) seems to indicate that each
saddle point is paired with a vortex point. But this is not
always so. In Fig. 4(b) (for ¢ = 0.5 and ¢ = 1.0) the saddle
point at (—0.28,0.91) is not associated with a vortex point
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at all. Instead, there is a neighboring family of closed
trajectories that pass through the two left-most solution
points. Many cyclic trajectories are, however, shown to
be associated with vortex points.

In Fig. 4(c), the trajectories starting at x, =3 and
x,=2.5,2.0,1.5,1.0,0.5,0.0-0.5, and —1.0 pass through
all of the solution points. (Incidentally, the starting points
(3,0) and (3,~1) lie on the curves g, =0 and g, =0.
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Figure 5 Rosenbrock’s function defined by Eq. (44). (a) a =100 and b = 1 ; (b) gradient equations, Eq. (45); a=0.5and b=1;
(¢) solution showing region of nonconvergence; (d) solution showing escape path from region of nonconvergence.

But these curves are always valid solutions of Eq. (14)
anyway, so that the trajectories need not be computed.)
The trajectory starting at (—1.1,1.3) also passes through
all solutions; but its neighbor, starting at (—1.1,1.4) does
not. It is deflected by the saddle point at (—0.28,0.91) so
that it entirely misses the two left-meost solutions. In
Fig. 4(c), where ¢ = 2 and e = 1.9, there are 119 solutions
and the trajectory starting from the point (—3.9,1.6)
passes through all of them. But the neighboring trajectory,
starting at the point (—3.9,1.9) fails to find three pairs of
solutions, For each of these pairs, incidentally, there is
a family of cyclic trajectories passing through them, as
shown in the drawing.

A problem that is often used to test optimization pro-
cedures is to find the minimum of Rosenbrook’s func-
tion [18]

) =alx’—x,)" + (x, = b)°, (44)
where the usual values given are ¢a= 100 and b=1.
This function is displayed in Fig. 5(a). Its minimum,

which occurs at x, = x, =1, can be found by computing
the simultaneous solution of the two gradient functions

0, ;
:9{_2 g, (x,.x,) = dax, ()clZ —x,)+2(x,—b)=0 (453)
1

and
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3
¥ _ g,(x,.x,) =—2a(x*—x,) =0. (45b)
ax,

In Fig. 5(b), we have shown the loci of g, =0 and
g, = 0 for the case a = 0.5 and b = 1, these values being
chosen to make the solution point more readily discerni-
ble. The locus of g, = 0 is the parabola x, = xl2 while the
locus of g, = 0 is a curve with two branches. The locus
of det J =0 turns out to be the parabola x, = xl2 + }a,
shown as a dashed line. The solution point is at x, = x,
=1.

Applying the orthogonality condition to Eq. (45), we
obtain the result x, = b which, together with the condition
det J = 0 shows that the only extraneous singularity is
at the point (b, b° + 3a). As Fig. 5(c) shows, this singu-
larity turns out to be a saddle point which has the remark-
able property of deflecting away from the solution point
every trajectory that lies above the locus det J=0.
This locus, then, acts as a separatrix between the region
of convergence and the region of convergence. It is
interesting to observe in passing that Broyden [17], in
using Rosenbrock’s problem to test his method, chose a
starting point inside the region of nonconvergence just
described. We have not tried to see if his method would
actually converge from a point within our region of non-
convergence.
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(a)

Figure 6 Brent’s problem. (a) solution showing escape path from region of nonconvergence; (b)a=4,b =1, and ¢ = 2.05 ; solution

shows two saddle points, but convergence is global except along x, =x,; (¢) a=4, b =2, and c = 2.5 ; three saddle points and one

vortex point.

However, by suppressing our steering correction and
using Euler’s method of integration with large step size,
trajectories starting from points not too far inside the
region of nonconvergence can be made to converge.
Two examples are shown in Fig. 5(d). “Sloppy” integra-
tion also enables trajectories to escape from the region
of nonconvergence in Brent’s problem as illustrated in
Fig. 6(a) In this case, the escape path is a spiral, as would
be expected, and the smaller the step size, the tighter the
spiral.

In Fig. 6(a), a step size of 0.05 was used in generating
the escape path illustrated. In addition, a step size of
0.01 was used to form an almost complete cycle to show
how imperfect the closure of this cycle is without the
use of the steering correction. With steering, perfect
closure is readily attained with a step size as large as 0.1.

At this point, it is difficult to predict whether sloppy
integration will provide more than a stand-by strategy for
getting out of regions of nonconvergence. Obviously,
some strategy must be evolved to handle this problem;
but sloppy integration seems to lack the force that is
needed to deal with a situation as intricate as this one.

Returning to Brent’s problem, we find that the orthog-
onality condition in this case leads to two expressions,
one for the straight line

X, =X, (46a)
and the other for the circle
(x, = b)Y + x," = b/4, (46b)

either of which will satisfy Eq. (38) or Eq. (39). The
intersections of these curves with the ellipse det J =0
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determine the locations of the extraneous singular points
shown in Figs. 6(a), (b), and (c).

In Fig. 6(b), for which a=4, b=1, and ¢=2.05,
there are two saddle points caused by the intersection of
det J = 0 with the line x, = x, . In this instance, our meth-
od turns out to be globally convergent and every trajec-
tory passes through all three solutions.

But in Fig. 6(c), where a=4, b=2,and c=2.5,a
much different situation arises. Here, det J = 0 and the
line x, = x, determine two saddle points while the circle
and det J = 0 determine one saddle point and one vortex
point, the latter being surrounded by the only region of
nonconvergence in the problem. Three types of trajectory
occur in this case. Trajectories starting from points below
the separatrix marked B in the first quadrant or below
the separatrix marked A in the third quadrant, pass
through all three solutions. But if the starting points are
above these separatrices, the corresponding trajectories
pass through only the one solution point at the origin.
Finally, there is a family of trajectories, cyclic in nature,
that pass through the other two solutions.

The only three-dimensional problem studied so far is
defined by the equations

g,(x,. x,, x,) = asin(bx) sin (bx,) —x,=0 (47a)
g (x,, x,, x;) =c—dx, + ex,sin(fx,) —x, =0 (47b)
g,(x, . x,, x,) =g+ hx,sin(kx) —x,=0. 47c¢)

In Fig. 7(a), the two surfaces g, =0 and g, =0, corre-
sponding to Eqs. (47a) and (47b), are depicted along with
their intersection curve. Fig. 7(b) shows the surfaces
defined by Eqs. (47a) and (47¢) and their intersection
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Figure 7 Three-dimensional trigonometric problem defined by Eq. (47). (2) g, = 0 and g, = 0 and their intersection curve; (b) g, =0,
&, =0, and their intersection curve; (c) three trajectories to single solution point; (d) with values of constants ¢ and h changed, single

trajectory through nine solution points.

curve g, = g, =0, as well as the curve g = ¢,=0. In
Fig. 7(c), which shows only g, = 0 and the two foregoing
intersection curves, three trajectories converging on the
lone solution point are displayed. These trajectories
were calculated by using a fourth-order Runge-Kutta
integration formula. In all three figures, the values of the
coefficients  are: a=2, b=04w, ¢c=25, d=1,
e=0.1,f=2m,g=1,h=0.1,and k =27.
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By increasing the amplitude constants e and 4 to 0.75
and 0.80, respectively, the intersection curves shown in
Fig. 7(d) are generated. In this instance, there are nine
solution points and there is one trajectory, again com-
puted by fourth-order Runge-Kutta integration, passing
through all of these solutions. This problem has not been
studied enough to ascertain the nature of its singularities,
but there has been occasional evidence of trajectories
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that try to take the “long way around” what is probably
a region of nonconvergence, as in Fig. 2(b). The most in-
teresting aspect of this problem will be to establish the
nature of the two-dimensional singular regions predicted
by Eq. (23).

Topics for future development

The most serious drawback of the present method of
solving nonlinear equations is the bothersome side-effects
of extraneous singular points. And yet the very existence
of these unwanted singularities is an almost inevitable
consequence of our attempt to deal with Jacobian sin-
gularities — at least using Eq. (14). For a singular Jacobian
implies a singular adjoint—and this is a necessary (but
not sufficient) condition for the existence of extraneous
singular points. Moreover, if we insist on looking for
multiple solutions of g(x) = 0, then the inverse function
theorem forewarns us that we are bound to encounter at
least one Jacobian singularity on each trajectory that
joins two adjacent solution points.

Now we may be able to modify Eq. (14) if not to elim-
inate, then at least to ameliorate, the effects of extraneous
singular points.

One possible way of doing this is to inject a smattering
of the gradient method by writing

&2+ kg0 (48)
For if we define the scalar function f(x) = ¢'g as the
square magnitude of g(x), then the gradient of f is

t

df sog . (08 .
—=(=) g+g (=)=2J"%.
dx (6)() ETe (8x> T8 (49)

The coefficient matrix of Eq. (48) is still singular when
det J = 0 so that the extraneous singular points are not
eliminated — although their character may change. But
the solution points of g(x) = 0 are still guaranteed to be
degenerate nodes as long as &k = 0. To show this, we
first note that the secondary Jacobian matrix correspond-
ing to Eq. (48) is

. -1 t

a—"::[(‘” +k£>g+1+k1‘1]. (50)
ax dx ax

When g(x) = 0, this reduces to I + kJ'J which is positive
definite since if £ = 0, then x # 0 implies

U+ kI x= |+ K| (Ix)*] > 0. B

Hence all the eigenvalues of this matrix are real and posi-
tive, assuring that the singularity is a degenerate node.

Now the real payoff in using Eq. (48) is the following:
if we introduce Eq. (17) and modify the scalar k so that
|det J| can be factored out, Eq. (48) may be written as
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dx 1

dr~ {det J|

(adj J + kJg(x) . (52)

When det J = 0, both adj J and J' become singular. But
the rank of the coefficient matrix is no longer unity, as
it was in the case of Eqgs. (17) and (22); instead it is equal
to the rank of J¢ (presumably n — 1) no matter how small
k may be. Consequently, instead of having an (n — 1)-
dimensional subspace of g vectors satisfying the orthog-
onality condition of Eq. (23), we now have the con-
dition

(adj J + kJHg=0. (53)

Thus, the admissible g vectors are confined to a one-
dimensional subspace so that instead of singular (n — 1)-
regions, as predicted by Eq. (23), we have singular points
again. The practical value of this approach remains to be
established.

Some efforts have been directed towards developing
a practical algorithm for implementing the present
method. Although the results are inconclusive at present,
several useful guidelines can be reported. Because of the
side condition expressed in Eq. (13), the usual focus on
the pros and cons of implicit vs explicit, multistep vs
singlestep methods of integrating Eq. (14) is of little con-
sequence. Indeed, any numerical technique that can be
devised to generate a trajectory that will satisfy Eq. (13)
is acceptable, whether or not it happens to be classified
as an ‘“‘integration” process. It should also be remem-
bered that the shape of the trajectory generated during
the solution of Eq. (14) is of no consequence as long as
the solutions of g(x) = 0 can be found.

With these principles in mind, we have found that very
large step sizes can be used with Eq. (24) when coupled
with the steering techniques described above. One dan-
ger, however, is that if too large a step is taken, even
though Eq. (13) is satisfied, the trajectory may actually
skip over several solution points of g(x)=0. To avoid
this difficulty, it is helpful to compute the size of the or-
thogonal component of the g vector, from Eq. (30), as a
function of distance along the tangent to the trajectory.
If this orthogonal component increases rapidly, then a
smaller step size is requisite. Another danger is that the
Jacobian matrix may change sufficiently to invalidate the
steering correction. (This may happen in a very nonlinear
region.) The remedy in this case is to use Broyden’s meth-
od [3] for updating J~' (or its LU factors) after each
steering correction is applied. In this way “local” in-
formation about the Jacobian matrix at the new point can
be fed into the algorithm.

Another useful technique is to keep a record of several
previous points along the trajectory and to fit these points
with a polynomial or spline curve. Extrapolation of this
curve may be used in place of an integration formula to
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predict the next point on the trajectory. The steering
correction can then be applied to insure satisfaction of
Eq. (13). This technique has been tried with some suc-
cess but needs further refinement.

Since regions of nonconvergence appear to be an
inevitable hazard of the present method, any effective
algorithm must include means of recognizing a noncon-
vergent situation, very likely by detecting cyclic trajec-
tories. It must then find a way out of the region of non-
convergence, perhaps by the temporary expedient of
using sloppy integration. But it would be better, if possi-
ble, to avoid such regions entirely.

One possibility of doing this stems from the following
basic property of Eq. (13): if any element of the initial
error vector g[x(0)] is zero, the corresponding element of
g[x(r)] must remain zero. In other words, if one or more
of the n equations of the systemg,(x)=0,i=1,2,- -+,
n are initially satisfied, they will remain so as long as the
side condition of Eq. (13) is satisfied.

Now if there are, say, m linear equations in the original
system, we can immediately satisfy all of them by taking
one full Newton step from any arbitrary starting point.
If this be done, then any subsequent trajectory defined
by Eq. (14) will be confined to the (n — m)-dimensional
hyperplane in x-space defined by the simultaneous satis-
faction of these m linear equations. Clearly, all solution
points of g(x) = 0 must lie on this hyperplane. (See Ap-
pendix B.)

If we can then devise a way to satisfy one additional
nonlinear equation at a time until n — 1 elements of the
g vector are zero, we will have reached a point on the
particular space curve that is defined by the satisfaction
of the corresponding n — 1 equations of the system. This
curve not only passes through all the solution points of
g(x) = 0 but also is a valid trajectory defined by Eq. (14).
Therefore, if this curve is simply connected, one com-

plete traversal of it will locate all the desired solutions.:

If the curve consists of several branches (as in the case
of g, = 0 in Rosenbrock’s problem), the traversal of any
one branch will locate only those solution points, if any,
that lie on it.

It is not yet clear how to devise an ‘““inflation” method
for solving one additional equation at a time and it is by
no means certain that such a method will successfully
avoid regions of nonconvergence. Neither is there an
obvious way of deciding beforehand which n — 1 equa-
tions should be solved first so as to arrive at a simply (or
simplest) connected space curve. But there may be some
merit in pursuing this approach.

summary and conclusions
1. A new method of finding multiple solutions of a sys-
tem of nonlinear equations, g(x) =0, has been de-
veloped. It is based on solving the related differen-
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tial equation dg/dt = g(x) = 0 which defines trajec-
tories, or integration paths, in x-space. The sign of
this differential equation is changed whenever a tra-
jectory encounters a change of sign in the Jacobian
determinant |dg/dx| and whenever it passes through
a solution point of g(x) = 0. This procedure causes
the trajectories to pass through one solution after
the other.

. The solution points of g(x) =0 are shown to be de-

generate nodes of the basic differential equation and
are classed as essential singular points. Extraneous
singular points may also exist on the loci defined by
lag/ox| = 0; only saddle points and vortex points
have been observed. These extraneous singularities
may prevent the method from being globally conver-
gent and/or prohibit certain trajectories from passing
through any or all of the solution points of g(x) =0.

. The solution of the basic differential equation in

g-space is analytic and serves as a valuable side con-
dition for computing accurate trajectories. This side
condition is the foundation of the ‘‘steering’ tech-
nique for altering the direction of the Newton vector
so as to speed convergence to a solution point.

. The “steering” technique, coupled with Euler’s in-

tegration formula, leads to an effective predictor-
corrector scheme for computing trajectories. But the
predictor formula need not be based on numerical
integration techniques; instead, it may involve a
curve-fitting process.

. The influence of extraneous singular points on the

trajectories of several two-dimensional problems
has been discussed in conjunction with computer-
generated drawings of these trajectories. One three-
dimensional problem has also been described.

. Several suggestions and guidelines for future de-

velopment of the method have been proposed.

. It has been pointed out that the underlying cause of

the difficulties encountered is the fact that the method
attempts to deal directly with the related problems of
multiple solutions and Jacobian singularities. If
neither of these problems is encountered, then global
convergence is assured and can be rapidly achieved
with the aid of the steering technique,

. The method has been extended to the problem of

finding multiple extrema of a scalar function of »
variables by finding multiple zeroes of the gradient
of the function. Examination of the Hessian matrix
of the function (i.e., the Jacobian matrix of the gra-
dient) indicates whether the extremum is a maxi-
mum, minimum, or saddle point.

. A discussion of the possible use of Broyden’s method

for updating the inverse Hessian matrix has been
given. Broyden’s method is not recommended for
use in integrating the basic differential equation; but
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it can be used in conjunction with the ‘“‘steering”
technique, provided that the integration process is
supplanted with a curve-fitting method for predicting
the next point on a trajectory.

10. Two sample problems, involving functions of two
variables, have been treated. One function has an
infinite number of minima, but no global minimum;
the other has a finite number of maxima, and a global
maximum. In both cases, it has been demonstrated
that all of the stationary points can be found by this
method.

Appendix A. Computation of the adjoint of a
singular matrix

To compute the adjoint of a singular matrix of rank
n— 1, we may follow a procedure similar to that de-
scribed by Frazer, Duncan and Collar [15] in which one
element of the singular matrix is perturbed by adding an
infinitesimal increment. If |[J| =0 and rank (J)=n—1,
J can always be partitioned in the manner

7T
J: 11 12 , (A])
Iy J

22

where J | is a nonsingular submatrix of dimensionn — 1,
J,, is a column vector, J,, a row vector, and J,, a scalar.

Consider the perturbed matrix J + €E,, where E_, is
an elementary matrix with 1 in the nn position and zeroes
everywhere else. Assume that the adjoint of the perturbed
matrix is 4 + eB . In accord with Eq. (20), we must have

(J+eE,)(A+eB)=|J+eE,| 1I. (A2)

The determinant of J + E,, can be computed as follows:

J, 0
= elJ,,l, (A3)
€

[J+eE, | =1J|+

21

where |.J | # 0 by hypothesis.
Next, assume that the perturbed matrix is subjected to
the LU decomposition [16] in the form

J J L. olfu. c]
11 12 - 11 11 i (A4)
Jy Jy tE r 1 0 =

where J, =L, U, , so that both L, and U,, are non-
singular, and where r is a row vector, c¢ is a column vec-
tor and s is a scalar. Expansion of the right hand side of
Eq. (A4) shows that

e=L, "y, (AS)
r=J21Uu_1, and (A6)
s=J,, —rct+e. (A7)

But since |J| = 0 by hypothesis, J,, = rc, and so s = €.

SEPTEMBER 1972

Substituting Eq. (A4) in Eq. (A2) and then inverting
the L and U factors, we find that

U™ —U “'¢ell L,70 0
A+eB=4J || " " "
0 l/e —rL, ™" 1

"y U, —U, |l L, 0
=|J )
"l oo 1 =L, 1 (A8)

Accordingly, in the limit € — 0, it follows that
—u,e|l-rL,, " 1]
A = |‘111| 1 H (A9)

which is the desired dyadic form of the adjoint matrix.
Finally, since the determinant of J | is the product of the

diagonal terms of U, we have

w1 [=U e (=L, 1]
adj/=TJ] U,
1

i=1

(A10)

whenrank (J)=n—1.

Appendix B. The ‘“funneling’ theorem
The following theorem is central to the method described
in this paper.

Theorem: Let g(x,;.x,, * + ~x,)=0fori=1,2,---,n
be any system of nonlinear equations and let x(¢) be a
trajectory defined by a solution of the related system of
differential equations dg/dr = g(x) = 0. Finally, let S,
denote any (n — k)-dimensional hypersurface in x-space
defined by the simultaneous satisfaction of any k& of the
equations g(x) = 0. Then if the starting point x(0) lies
on any given hypersurface §,, the entire trajectory x(¢)
must also lie on §,. Conversely, if x(0) does not lie on §,
the trajectory x(7) can never intersect §, except at a com-
mon solution of all n equations of the system g/(x)=0.

Proof: The solution (in g-space) of the underlying dif-
ferential equation dg/dt + g(x)=0 is g[x(t)] = g[x(0)]
e~'. Therefore, if x(0) lies on any particular hypersurface
S, it follows that the corresponding k& elements of the
image vector g[x(0)] are zero. Since the same k elements
of the image vector g[x(¢)] must also remain zero for all
t, the trajectory x(f) necessarily remains on §,. On the
other hand, if any one of these k elements of g[x(0)] is
nonzero, corresponding to the fact that x(0) is not on S,
the same is true of g[x(r)] until and unless e '=0 as
t — «. But in this case, all elements of g[x(«)] vanish
simultaneously —and this, of course, corresponds to a
solution of g(x)=0.

A consequence of this theorem is the fact that no tra-
jectory defined by Eq. (14) can penetrate through any
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hypersurface §, except at a common intersection of all
such hypersurfacds, that is, when g(x) = 0 . Hence, these
hypersurfaces (of all dimensions) serve to “funnel’” the
trajectory into each solution point.

Appendix C. Finding multiple extrema of a function
of n variables

The problem of determining the global maximum and/or
minimum of a scalar function of » variables is crucial in
the field of optimization. This problem may be approached
(though not definitively solved) using the present method
of solving nonlinear equations to find multiple zeroes of
the gradient of the function. Since the gradient vector
vanishes at each stationary point of the function, a cor-
responding number of these stationary points are thereby
located. Then, by examining the Hessian matrix of the
function (which is identical with the Jacobian matrix of
the gradient) a determination can be made as to whether
a particular stationary point is a maximum, a minimum,
or a saddle point. Thus, the “‘global” maximum and/or
minimum-—at least among those stationary points ac-
tually found — can be identified.

Although the present method cannot guarantee finding
all of the zeroes of the gradient, which are needed to in-
sure identifying the true global maximum and/or mini-
mum of the function, the method does constitute a useful
advance in the techniques of nonlinear optimization.

The procedures already described are applied directly
to the gradient of the function being examined. As each
solution point of g(x) =0 is found, the corresponding
value of f(x) is saved and the Hessian (Jacobian) matrix
examined. If the Hessian matrix is positive definite, the
point is a local maximum; if the Hessian is negative defi-
nite, the point is a local minimum. Finally, if the Hessian
is indefinite, the point is a saddle point.

The necessary and sufficient condition for the Hessian
to be positive definite is that its determinant and the de-
terminants of all of its principal minors must be positive.
These determinants may be computed by multiplying the
appropriate diagonal terms of the U factor (upper tri-
angular matrix) obtained from the LU decomposition
provided that proper account has been taken of the effects
of row-column interchanges on the signs of these deter-
minants [19]. Accordingly, the “adjusted” signs of all
the diagonal elements of U (adjusted with respect to row-
column interchanges) must be positive if f(x) is to be a
local maximum.

Correspondingly, the necessary and sufficient condition
for the Hessian to be negative definite is that the adjusted
signs of the diagonal terms of U be negative; this will in-
dicate that f(x) is a local minimum. Finally, if the adjusted
signs of these diagonal terms are mixed, a saddle point
has been found. Thus, for negligible extra cost beyond
that required for the LU decomposition of H —which is
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needed anyway in Eq. (24)—the type of each stationary
point can be identified.

s Use of quasi-Newton methods

In order to avoid the computational cost of evaluating the
Hessian matrix and carrying out the LU decomposition
at each iteration for Eqgs. (24) and (31), it is possible to
use Broyden’s approximation method for updating the
inverse Hessian [3]. This may be particularly advan-
tageous when the Hessian involves very complicated
functions. Using the definitions

ag(x,)

" ©n
B, = Hn_1 s (C2)
p,=—B,g,,and (C3)
Ve =8pi1— &n» (C4)

it follows straightforwardly that Broyden’s ‘“‘full step”
formula for updating the inverse Hessian is

t
(+h,p, — B,y,)P, B,

B t
p, B,

=B, +

n+1 n

(C%)

By factoring out B,, the right-hand side of Eq. (C5) can
be written in a more convenient form so that

B, ,=(I+ap')B,, (C6)

where [ is the identity matrix,

a,==*hp, — By, and (€7

b, = P./P,B,Y,. (C8)
Now Eq. (C6) can be used to compute the determinant

of B, as follows:

B =11 +a,b,] 1B =(1+a,b,) - B, (C9)

If the initial Hessian, H, has been calculated explicitly
and its determinant found, this defines the determinant
of B, and permits the determinant of B, to be computed
by the expression

IB,l =B} T] (1+a,b,). (C10)
k=1

Thus, the changes in sign of |B,| can be monitored sim-
ply by observing the changes in sign of the successive
expressions (1 + a,'b,) .

If B, is a good enough approximation to Hn_' , then
the sign of |B,| will change at the same time as that of
|H,|, thus enabling Eq. (C10) to be used for deciding
when to change signs in Eq. (24). In practice, however,
this procedure proves to be unreliable since |B,| often
changes sign a few steps before or after |H,| does. It is
possible to recover from this discrepancy at the cost of
actually evaluating H, whenever |B,| changes sign and
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(a)

Figure C1 Undulating valley function. (a) Curves defined by Eq. (C12); (b) gradient equations; (c) two trajectories through several

solution points.

retracing any erroneous steps. But this is not recom-
mended.

If a polynomial or spline curve-fitting technique is used
in place of Eq. (24) to predict x,, , the B, matrix can
still be used in Eq. (31) during application of the steering
correction. Thus, the computational advantages of Broy-
den’s updating algorithm can be realized. This approach
has not yet been fully developed, but preliminary experi-
ments indicate that it has considerable promise.

o Experimental results

Earlier we described the application of the present
method to the problem of finding the minimum of Rosen-
brock’s function,

flxx,) =100(x, — x,)° + (x, — 1), (C11)

which is characterized by having a curving valley with
steep walls. A similar function whose curving valley has
an undulating floor is the following:

flxpx,) =alx,—bx*+cx,—d)’+e(l—f)cosx, +e.
(C12)

The valley follows the parabolic curve defined by the
equation
x,—bx’+cx,—d=0 (C13)

and the undulation of the valley floor is due to the cosine
term.
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A perspective drawing is shown in Fig. C1(a) for Eq.
(C12) witha=1,b=5/47" ,c=5/m,d=6,e=10,and
f= 1/8a . This function has an infinite number of minima,
of which six can be seen. Included in the drawing is the
parabola of Eq. (C13) as well as its projection on the sur-
face f(x,,x,) .

The gradient equations, whose solutions determine the
locations of the stationary points of this function, are

of

Poiat (x,.x,) =2a(x, — bx,* + cx, —d) (2bx, +¢)
1

—e(l—f)sinx, =0
and

)
LI g, (x,.x,) =2a(x, — bx’+ex,—d)=0.
ox, N

(C14)

The corresponding curves are shown in Fig. C1(b). Here
the dashed line depicts the locus of points for which
|H| = 0. The cross marks on this locus designate the ex-
traneous singular points of the differential equation, Eq.
(14). All of these singular points turn out to be saddle
points.

In Fig. Cl(c), two trajectories are shown passing
through several solution points of Eq. (C14). These trajec-
tories, like those in subsequent drawings, were computed
by means of Egs. (24)—(32). In Table 1, the coordinates
of a number of the stationary points of f(x,,x,) are listed
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Figure C2 Camelback function with three humps. (a) Curves defined by Eq. (C15); (b) gradient equations; (c) trajectories through five
solution points.
along with the corresponding function values and type of
stationary point.
Table 1 Stationary points for Fig. C1(a). Notice that the trajectory marked A exhibits a decreas-
ing undulation as it moves to the right. Once this trajec-
X X fxpx,) Type tory passes through the solution at (9.36,2.20), it gets
—9.4536 32.3651 —3.7557 minimum captured betweer.l the CUTVEs &4 =.0 and g, z‘(‘)' Smc? i
—6.3149 21.1013 22.5063 saddle cannot escape this captivity, by virtue of the *“funnelling
—3.1769 12.3344 -1.2570 minimum theorem” described in Appendix B, it must certainly
—0.0397 6.0634 20.0079 saddle : : :
3.0962 22863 12400 mininum pass through all the solution points along the right hand
6.2303 1.0003 17.5105 saddle branch of the curve g, = 0.
9.3614 2.2001 3.7373 minimum By contrast, as this trajectory moves to the left, it
12.4874 5.8751 15.0157 saddle : :
15,6034 12.0019 6.2291 minimum necessarily crosses to the outside of the ar.ea boun('ied by
18.6954 20.5124 12.5309 saddle g, =0 and g,= 0. As a result, the amplitude of its un-
21.7071 31.1303 8.6915 minimum dulation increases and eventually a point of instability is
reached, beyond which the trajectory recedes to infinity.
Thus, it passes through only a finite number of the solu-
tion points on the left hand branch of the curve g, = 0. A
similar situation, but with the reverse sense of direction,
Table 2 Stationary points for Fig. C2(a). occurs on trajectory B. This trajectory passes through all
of the solutions on the left hand branch of g, =0 and
X X2 flax,) Type through only a few of those on the right hand branch.
—1.7475 0.8737 ~0.2986 maximum Thus, tl.lese two Fra_]ectorles are sufficient to locate all of
~1.0705 0.5352 —0.8773 saddle the stationary points of Eq. (C12).
(1)8(7)8(5) _8(5)(33(5)(2) _832(7)(3) mf:;((iilmum (global) Another problem that has been solved by the present
. . . saddle . . . o
17475 08737 —0.2986 maximum method is that. of finding the global maximum of the “cam-
520 elback” function,
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Figure C3 Camelback function with six humps. (a) Curves defined by Eq. (C15) with different values of constants from those used in

plotting Fig. C2(a); (b) trajectories through solution points.

flx x) =ax +bx*+cx’—xx, +dx, +ex,!. (C15)
1772 1 1 1 172 2 2

This function has three maxima when a=-2,b=1.05,
c=-—1/6, d=—1 and e=0, as shown in Fig. C2(a).
The corresponding gradient equations,

0

g{= g, (x,.x,) = 2ax, + 4bx,” + 6cx,” —x,=0
1

and

af 3

67: gz(xl,x2) :—xl +2dx2+4ex2 =0 (Cl6)
2

are depicted in Fig. C2(b). This instance of Eq. (C16),
with e = 0, can be shown to be free of extraneous singu-
lar points since the equations are a special case of those

used to describe the “tunnel diode” problem, which has
no extraneous singularities. (A fifth-degree polynomial

was used to represent the tunnel diode characteristic
curve.)

In all the problems that have been studied using the
present method, the presence of at least one extraneous

SEPTEMBER 1972

singular point has always appeared to be a necessary con-
dition for the existence of a region of nonconvergence
and for the deflection of a trajectory so that it fails to pass
through all solution points. Therefore, even in the ab-
sence of a mathematical proof of its validity, it is reason-
able to make the claim that for the case depicted in Fig.
C2(b), the method will be globally convergent and all
trajectories (except those whose x, coordinate is identical
to that of any solution point) will pass through every solu-
tion. This conclusion is borne out by the trajectories
shown in Fig. C2(c). (Here, only half of each trajectory is
shown since the problem is centrosymmetric.) The co-
ordinates and function values of all five stationary points
are listed in Table 2.

By using the valuesa=—4 ,b=2.1,c=—1/3,d=4,
e =—4, Eq. (C15) may be made to exhibit six maxima,
as shown in Fig. C3(a). The corresponding zero gradient
curves are shown in Fig. C3(b) along with several |H| =0
loci and a number of extraneous singularities, all of which

521
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Table 3 Stationary points for Fig. C3(a).

X, X, Jx;.x,) Type
—1.7035 0.7960 0.2154 maximum
—1.1092 0.7682 —0.5437 saddle
—0.0898 7126 1,0316 maximum (global)

1.2960 0.6050 —2.2294 saddle
1.6071 0.5686 —2.1042 maximum
1.6380 0.2287 —2.2293 saddle
1.2302 0.1623 —2.4962 minimum
0.0000 0.0000 0.0000 saddle

(The remaining seven points are conjugate to the first seven.)

prove to be saddle points. Of the five trajectories shown,
only those labelled 4, C, and D pass through all fifteen
solution points. (Again, only half of each centrosymmet-
ric trajectory is drawn; this reduces clutter in the fig-
ure.)

Trajectory B, however, passes through only seven
solution points; it is deflected by the saddle point at
(0.72,0.40) so that it entirely misses the right-most four
solutions. These four points are threaded by a cyclic
trajectory conjugate to the one labelled E. Thus, even
though there are many extraneous singularities present,
these trajectories and others that have been examined
give no evidence that any regions of nonconvergence
exist in this problem. Accordingly, it is an easy task to
find all the stationary points in this problem and to identi-
fy the global maximum. The pertinent data are listed
in Table 3.
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