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Compiiing  Optimized  Code  from  Decision  Tables 

Abstract: This  paper reviews the  structure of decision  tables  and methods for converting them  into  procedural  code. It describes new 
optimization  methods, which are applied  before,  during, and  after  code generation. Some  results  from  an  experimental decision  table 
processor  are provided. 

Introduction 
Decision tables have been in use  for  over  ten  years, 
principally in business applications, to  state problems 
that  contain a relatively high proportion of programmed 
tests.  Numerous compilers have  been built that  convert 
the logic expressed in decision tables  into algorithms 
that  are  executable by computer.  Emphasis in decision- 
table compilers has typically been  placed on producing 
logically correct  code,  on checking the decision table  for 
completeness  and  consistency, and on ordering  condi- 
tion tests  for efficient execution. Most decision table 
compilers produce  code  that is in a higher-level lan- 
guage,  leaving  optimization of the produced object  code 
up to  the high-level language  compiler. However,  the 
structure of the  code produced by typical  decision-table 
compilers is of a type  that is improved  little by any of 
the optimizing algorithms  used by commercial  compilers 
today. 

General-purpose  support programs (systems pro- 
grams) are  also typified by a high proportion of pro- 
grammed tests.  It would therefore  appear that  effective 
use of decision tables could  be  made in describing sys- 
tems programs. However,  systems programs  must also 
be  comprised of highly optimal code.  This  paper  de- 
scribes  some decision-table compiling algorithms that 
provide a  program structure of  high enough  quality to 
satisfy  most systems programming  needs. The  output  can 
be used either by a  post-processing  compiler or by a pro- 
grammer as a  guide in hand  coding. 

For the  project, we constructed a  running  compiler 
and  support  system  into which were  introduced  numer- 

ous decision tables  based  on  actual  systems programs. 
From  these decision tables, procedural code (in PL/I 

format) was produced.  Some  samples of the  code  struc- 
ture  produced are included in the Appendix to  enable  the 
reader  to  judge  the effectiveness of the compiler. The 
system  was  produced in an interactive APL environment, 
which allows considerable flexibility in revising and 
augmenting  algorithms. 

In  the  paper, we first review the  structure of decision 
tables  and  the  procedures used to map them into  code. 
However,  the main emphasis is on  the optimization 
methods  we  use before,  during, and after  code genera- 
tion. 

Decision tables 
In  order  to  make this paper  reasonably self-contained, 
we review here  the  structure of decision  tables and  the 
general methods used to  convert them into procedural 
language. We  attempt  to  emphasize  those  aspects of the 
process  that  provide  opportunities  for optimization. 

The stub portion ( 2 )  of the table  gives descriptions of 
conditions (5,6) actions (7,8) and exits (9,lO). The for- 
mat of the  stub  contents is generally constrained by the 
target  language into which the table is being translated. 
Our  processor places no  constraint  on  the  contents of 
the  stubs; if correct PL/I code is to  be  produced,  the 
condition stubs  must contain one PL/I relational expres- 
sion each;  the  actions should  contain a PL/I assignment 
statement, call statement (or other nonbranching execut- 489 

A sample  decision table is shown in Fig. 1. 
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Figure 1 

2 3 

DPUT 10000000 4 
11234567 

NAME FIELD  PRESENT I NYNYNYN 
OPERAND 1 IN REG.  NOTATION1  NNYYNNY 6 
F I L E   D E F I N E D  I NNN-YYY 

GENERATE NAME 
ERROR 1 1 1 2 2 8  
ERROR 2 1 1 2  

PUTTWO 
F I N I S H  

""""""""""""""""" 

""""""""""""""""" 

1 1 1 1 1  

""""""""""""""""" 

I xx 10 
IXXXX x 

1 .  Decision table  name 
2. Stub  portion 
3. Entry  portion 
4. Table header 
5. Condition  stubs 
6. Condition  entries (Y =yes, N=no, -= don't care) 
7. Action stubs 

9. Exit stubs 
8. Action entries  (numbers  indicate execution sequence) 

10. Exit entries ( X  indicates exit taken) 

Sample decision table. 

able  statement);  and  the  exit  stubs should contain only a 
valid PLlI name. The  table  name should also  be valid in 
PLII. 

Each column  in the entry portion ( 3 )  of the  table  repre- 
sents a rule. Rule numbers (two-digit numbers read ver- 
tically) and  the  table  name  appear in the table  header (4). 
Rule 02 in Fig. 1 ,  for example,  indicates that if a NAME 
FIELD  IS  PRESENT (Y means  yes) and if OPERAND 1 
IS  NOT IN REGISTER  NOTATION  (N means no) and if 
FILE  IS NOT  DEFINED, then  the  actions  taken  are 
GENERATE  NAME and ERROR 2 (in that  'order), fol- 
lowed by an  exit  to FINISH. In general, a rule specifies 
that  for a unique  combination of conditions,  some select- 
ed  actions  are performed and a selected exit is  taken. 

The decision-table representation of logic does  not 
impose  any  strict ordering on  the sequencing of condi- 
tion tests.  Furthermore,  actions in a given table  are not 
allowed to modify factors  that would cause a change in 
the  outcome of a condition test in the  same table. This 
gives the compiler more  latitude in selecting an optimal 
ordering of condition tests with respect  to  each  other 
and with respect  to  actions. 

The ordering of actions with respect  to  each  other  can 
be loosely  defined. In Fig. 1 the  order required is speci- 
fied by an integer opposite a selected  action. If there is 
no  integer,  the  action is not  selected. Within a given rule, 
actions  are  executed in the  order specified (e.g., in rule 
07 GENERATE  NAME occurs before ERROR 1). Exactly 
one  exit is taken  after  execution of the  actions of the se- 
lected rule. 

In this experiment,  we  consider limited-entry type 
decision  tables,  in  which the value of a condition is limit- 
ed  to  yes  or no. The  alternative,  extended  entry tables, 
allows  values that  are  numbers  or  number ranges. How- 

ever,  as  Press [ l ]  demonstrates,  these  can  be  converted 
into limited-entry  tables, so that  our  methods apply to 
both  types of decision tables. 

The  occurrence of a third  value (-) in  rule 04 of Fig. 1 
does  not  contradict  the two-value  restriction. Rule 04 is 
actually a condensation of two  rules (say 4a and  4b), 
which have identical  action and  exit  entries,  but  whose 
condition entries  are: 

Condition 4a 4b 4c 
1 Y Y Y  

2 Y Y Y  

3 Y N -  

Rules 4a and 4b mean that  the specified actions  and ex- 
its are to be performed when conditions 1 and 2 are  both 
yes, regardless of the  value of condition 3 .  Therefore in 
rule 04, condition 3 is immaterial -a don't-care  condi- 
tion. As will be shown  later, in the  code produced by the 
compiler, there will be no  test  for condition 3 in the flow 
path  for which conditions 1 and  2 are  both  true. 

Because conditions in a limited-entry  table are binary 
valued, there  are 2" unique combinations of the values of 
n conditions,  and therefore 2" rule columns. In  practice, 
the  number of rules is greatly reduced by the  introduc- 
tion of don't-care entries  and consolidation of the rules 
as shown  for  rule 04. If  rules 4a  and  4b had  been counted 
as  part of the table  in  Fig. 1, that  table would have 8 (23) 
rules for 3 conditions.  A  detailed  discussion of column 
combining is presented  later in the section on pregenera- 
tion optimization. 

With the 2" requirement  on  the  rule  count,  one  can 
program  a verification of the rule entries  that  checks  for 
both  consistency  and  completeness.  However,  as will be 
seen,  the  check  does not extend  to  an  interpretation of 
the  stub information  and so it cannot be  regarded as a 
complete  check. 

Decision-table  code production 
One of three  methods is generally used  to map  decision 
table logic into  procedural  representation.  In  the rule 
musk method [2-41  every condition is first tested  and 
then a selection musk is created.  Next,  for  each  action 
and exit,  an action musk (created  at compile  time) is 
compared  to  the selection  mask.  If the masks  coincide, 
the action (or exit) is performed. 

In  the  second  method, a variation on  the rule-mask 
method, a  unique power of 2 is assigned to  each condi- 
tion,  which is then  tested  and  its  number  added  to a 
counter if the condition is true.  At  the  end of condition 
testing, the  counter is used as  an index  into  a branch ta- 
ble and control is transferred  to  the  appropriate action- 
exit sequence.  (Note  that  the  branch  table must have 2" 
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Flowchart  conventions 

I Condition  test n. (yes branch 
I Yes is horizontal, and no branch 

< Cnn > + is vertical downward.) 

INo 
nn , Label nn (generated by the compiler) 

[Ann] Action n 

( X n n )  Exitn 
I 

Figure 2 Tree corresponding to sample decision table. 

entries  for n conditions.) These  two  methods  require 
that all tests  be performed  regardless of the don't-care 
entries in the table. They  tend  to  produce (when bit 
masks  are used)  a small program that  runs longer than is 
usually necessary. 

We  use  the third scheme, called the condition  tree 
method, which causes  the generation of a tree-structured 
program with condition tests  at  each node. Each action- 
exit  sequence is placed at  the leaves. Figure 2 shows  an 
unoptimized tree corresponding to  the decision table of 
Fig. 1. The rule numbers  for  each action-exit sequence 
are placed  under the leaves for clarity. 

Notice  the one-to-one correspondence  between  the 
leaves of the  tree in Fig. 2 and  the  rule  columns of the 
decision table  shown in Fig. 1. Notice  also  the large 
amount of redundancy in the  code  generated.  In this 
case,  the penalty for this  redundancy is not  lengthened 
execution sequences, but excessive  storage consump- 
tion. Figure 3 shows  the effect of the optimization algo- 
rithms  on  the  tree of Fig. 2. 

Figure 4 shows  an abstruct listing of the program  dia- 
grammed in Fig. 3. This listing is called abstract  because 
nothing in it refers  to  the actual (concrete)  conditions, 
actions, or exits  that  are  described in the  table  stubs.  In 
fact,  the processing  algorithms  ignore the  contents of the 
stubs  except  for listing purposes. 

Because we are principally interested in compilation, 
the  abstract  format is the  one used in this  paper. Howev- 
er, with little difficulty, concrete listings can  be produced 
for any procedural language. 

Figure 5 is a concrete listing in PL/I format of the pro- 
gram shown in Fig. 4. Because  the  stubs in the original 
table  (Fig. 1) do  not follow pL/I conventions,  the  result is 
not a pL/I procedure. 

R 3  .R4 .Rl R 1  .R2 

Figure 3 Optimized tree. 

Figure 4 Optimized listing. 

NUMBERS LABELS  OPERATIONS  OPERANDS 
L I N E  BRANCH 

'000 C d + 0 6 /  
0 0 1  I C02+03 
0 0 2 1 0 1 : C 0 3 + 0 2  
0 0 3 1   A 0 3  
0 0 4 1  X 0 2  

0 0 6 1 0 3 : C 0 3 + 0 5  
0 0 5 1 0 2 : X O l  

0 0 7  I 0 4 : A 0 2  

0 0 9 1 0 5 : A O l  

0 1 1 1 0 6 : A O l  

0 0 8 1  x 0 2  

0101 - - - + 0 4  

0 1 2  I c 0 2 + 0 4  
0 1 3 1  ---+01 

Note: Cnn + indicates a conditional branch,  and 
- - -+ indicates an unconditional  branch. 

Figure 5 Concrete listing. 

DPUT:  BEGIN; 
I F  EIAME FIELD  PRESENT  TREN GO TO DPIITB; 
I F  OPERAND I IN REG.  NOTATION THEN GO TO 

ERROR 2 ;  
GO TO F I R I S M :  

D P U T I :   I F   F I L E  DEFINED  TRBN GO TO PUTTWO; 

DPUTB: I F   F I L E  DEFINED  TREN GO TO DPIITS: 
DPUT4: ERROR 1; 

DPUTS: GENERATE  NAME; 

DPUTS: GENERATE  NAME; 

~~ 

GO TO F I N I S R ;  

GO TO DPUT4; 

I F  OPERAND 1 IN REG.  NOTATION THEN GO TO 
GO TO DPUTI;  
END ; 

PIJT3 ; 

PUT4; 

Code  generation 
Various  methods  exist  for  the generation of tree-form 
code  from decision tables [ 5 - 71. Briefly, one  selects (by 
criteria  described later) a condition. The rule  columns 
are then  partitioned into  two  groups - a no-group  and  a 
yes-group  -according to  the values in each column of 
the  selected condition. If the condition  value is don't- 
care in a particular column, that column is placed in both 491 
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RLEE 1 2 3 4 5 6  
A 1  1 1 
A2 1 

1 I* 

A 3  1 1* 1* 1* 
1* 1 I* 

x1 1 1* I* 1* I *  I* 

Figure 6 Cross-linked  action-exit  sequences. 

groups.  Code is then produced  for  the  selected condi- 
tion. Assume  that  the line 

Cnn + label - m 

is generated,  where label-m is a created label. The  code 
generator is then ye-entered recursively with a subtable 
consisting of the po-group of rule columns, but with the 
selected condition  row  removed from them. Next,  the 
generated label (label-m) is produced and  the  generator 
is re-entered with the yes-group  columns  (without the 
selected  conditiqp row). The resulting structure  appears 
as follows: 

Cnn -f label - m 
no - group 

Label - m: yes - group 

Because  every  action  sequence  terminates in an exit, 
control will not flow from  the no-group into  the  yes- 
group. 

It can be  seen  that  the yes-  and  no-groups are  com- 
posed of substructures analogous to  the main structure. 
Recursion is terminated when  there is no  condition re- 
maining to be selected.  At this  time, there should  be 
exactly  one rule  column remaining. The action-exit se- 
quence is then produced from  that column. Because of 
the  presence of don’t-care  conditions,  a  special check 
must be made before  generating each conditional 
branch. This  consists of locating any column in which all 
of the conditions have don’t-care  entries. If such a col- 
umn is found, its  action-exit sequence is generated  and 
recursion  terminates. 

Other special tests  are  made  for handling else rules 
and  optimization procedures, which will be  discussed 
later. 

An  extension of this  algorithm, called cross-linking, is 
used in the  Preprocessor  for  Encoded  Tables (P.E.T.) 
processor [8] to  reduce  the  number of instances of ac- 
tions generated.  Each action-exit sequence is compared 
to  the action-exit sequences  to  its left. If some action 
and its selected  successors  exactly  match  the  corre- 
sponding elements in some rule to  the left, they  are linked 
leftward. For example, in Fig. 6, the cross-linked  action- 
exits are marked by an  asterisk. When code is generated, 
the first  linked action is replaced by a branch  to  the  action 
corresponding  to it in the rule it is linked  to. This  reduces 
redundancy in the  generated  actions, providing better 
code than other  processors [8,9]. 

Most published accounts  concerned with object  code 
optimization concentrate  on  the  order of condition test- 
ing. Reinwald and Soland [ 10,141 give  algorithms 
(supported by proofs) for  generation of optimal object 
code with respect  to time  and space.  These algorithms 
require that  storage and  time costs be  associated  with 
each condition test, but do not take  into  account  the  op- 
timization of action sequences. 

The  P.E.T.  processor  reduces  redundancy in action 
sequences (a space optimization)  but does  not  remove 
redundant testing sequences.  (It relies  upon the table- 
writer  to  order condition tests  and  to  introduce don’t- 
cares  to  provide  adequate optimization of testing.) 
P.E.T.  also allows the  table  writer  to  place  actions  into 
the condition  portion of the table. This is called precon- 
ditioning, and is allowed when an action is to be  per- 
formed  regardless of the  outcome of the conditional test- 
ing that it precedes. 

In  summary, previous processors  have placed the  op- 
timization  burden on the  user  to a large extent.  This  par- 
tially reduces  the principal benefit of the decision table - 
the  separation of the logic required from  the procedural 
mechanism that implements it. 

A recent  paper by Dailey [ 1 1 1  has been  published 
since this  work was concluded.  Although his approach is 
different, his optimizations seem  to  overlap  some of 
those  presented here.  A  careful comparison of his meth- 
ods  to  ours  has not yet been  carried out. 

The  methods  described in this  paper  attempt to opti- 
mize with a minimum amount of guidance  from  the  user. 
Optimization processes  are applied  before,  during, and 
after  code  generation, with major emphasis  on  the final 
optimization process.  The basic  generation process  pro- 
duces excellent code  from  the point of view of time op- 
timization. It  generates  no  unnecessary  tests in a  given 
test  sequence.  It could be  further improved if frequency 
information were provided (see  [12]  for  the method). 
Most of our optimization methods  are aimed at reducing 
space  requirements.  Our  experience  shows considerable 
success in removing redundant  code, and the program 
structure is suitable for  systems programs. 

Optimization techniques 
Our pregeneration  optimization consists of consolidating 
rule columns  and introducing  don’t-care  values into  the 
rule portion of the table. The optimization methods  that 
are  carried  out during code  generation  are  concerned 
with the ordering of the condition tests  and  the “factor- 
ing” of actions.  (The  latter  technique is called precondi- 
tioning in [8], but is more  copmonly  known in  compiler- 
writing circles  as  “hoisting.”) Postgeneration optimi- 
zation procedures include  removal of duplicate  se- 
quences of code  and consolidation of duplicate flow 
paths.  These  procedures often leave  dead  code,  branch 
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chains,  and  other  dross in their wake, which is cleaned 
up by some scavenger optimization methods. A final 
optimization process was  introduced into  the program 
that  we  use to create a concrete PL/,I listing. This  process 
is an  example of a scavenger  procedure.  Its  purpose is to 
remove  unneeded conditional branches  to  exits, which 
are  themselves  branches.  These optimization methods 
are  discussed in the succeeding sections. 

Pregenerution  optimizution 
The first  optimization  method  used is that of consolidat- 
ing rules where possible so as  to  introduce don't-cares 
into  the condition entries. We call this the merge pro- 
cess.  Figure 7 shows  the initial state of a  decision table, 
which we will use to illustrate the  process. 

Two  rule columns can be  combined into  one if  

They  are identical except  for  one condition entry, 

In  the differing entry,  one column has Y and  the 
and 

other  has N (neither is a  don't-care). 

The algorithm used first groups rule  columns  according 
to action-exit sequences.  In Fig. 7 the grouping  gives 

( 0 7  o a  0 9 )  (IO 11  12  12  14  1s  16) 

(Note  that  groups containing  only one column are ig- 
nored.) It then forms subgroups  according to don't-care 
patterns. If two rule  columns were 

Y Y  
NY 

YN 

they would have  the  same don't-care  piittern and would 
be  put  into  the  same subgroup. Because  there  are  no 
don't-cares in the  table in Fig. 7, all elements of each 
group have  the  same  don't-care  pattern, so that  the 
groups default to subgroups.  Within each  subgroup,  the 
condition entries  are  compared  to  determine if a differ- 
ence  exists in exactly  one position. Two  columns from 
Fig. 7 that qualify can  be combined as follows: 

11 1 1  
95 $5 
Y Y  Y 
N N  N 
Y Y  Y 
N Y ( D I F F E R E N T )  - ( D U I V ' T   C A R E )  

- _  

The value at  the position of difference is replaced by a 
don't-care  value and  one of the rules is discarded.  Once 
a pair of rules is consolidated, it is removed from  the 
subgroup  because  its don't-care  pattern has  changed. 
The remaining  columns in the subgroup are  processed 
similarly until no  further combinations can be found. 

PuP110000000001111111 
11234557090123456 

C 1  INYNYYYNYNNNIJNYYY 

C3 I NRNlJYRNNNYYYYYYY 
C 2  I NNYYYNNYYNNYYNNY 

C4 I N~iNNnYYYYNY~IYNYY 

A1 I 1111111 
A 2  I 1  11 
A3 I 1  
A 4  I 111 
A 5  I 
A6 I 

111 

A 7  1111111111 
1111 

A8 I 1 

- - - - - - - - - - - - - - - - - - - - - 

""""""""""- 

x1 I  xxxxxxxxxxxxxxxx 
""""""""""- 

Figure 7 Decision table  initial state. 

After all subgroups have  been  processed,  the combined 
columns are regrouped and  reprocessed.  This  iterative 
process  continues until no new  combinations are possi- 
ble. (Note  that  the  particular combinations that  occur 
depend upon the  order in which the columns are 
matched.) 

The effect of this  optimization on basic code genera- 
tion (in the  absence of other optimization  methods) is to 
remove  unnecessary condition testing. It therefore im- 
proves  both  the  space  and time costs of the resulting 
code. 

Figure 8 shows  the  results of the merge process  and 
examples of its effects, as well as  the effec@ of different 
ordering (in the  absence of other optimization  methods). 
On  the  other hand, in the  presence of other optimization 
procedures,  the effect is reduced because of overlap of 
Optimization function. This pregeneration  optimization 
gives the  user a better insight  into his decision  table. I t  
also  reduces,  at  an early stage,  the  amount of work that 
the  other optimizers have  to  do.  This  method generally 
results in a net reduction in compile time. 

Both of the compilers that  we examined [8,9] require 
that  the  user perform  this  optimization in order  to  pro- 
duce  better  code.  It is often convenient  for  the  user  to 
do  part of this  optimization himself when  the situations 
giving rise to  don't-cares  are patently  obvious. (It allows 
him to greatly  reduce  the  number of rule columns he  has 
to deal with.) The  use of don't-cares also  can be  a  trick 
that allows conditional test  dependencies  (a violation of 
decision-table  ground  rules); therefore  the implemented 
merge function was  designed to  leave original don't- 
cares  intact. 

It is instructive  to  compare  our merge process  to  the 
electrical  engineering  problem of circuit simplification. 
Recall that we identified two groups from Fig. 7 having 
the  same action-exit sequence.  Consider rewriting the 
condition entries of the  second of these  groups  as fol- 
lows so that  they look  like  a  Boolean expression. 493 
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PUTlA 
"4" 

A4 
A3 

A5  

A7 
A6 

A8 

x1 
"". 

P U T 1 9 1 0 0 0 0 0 0 0 0 0 1 1  
1 1 2 3 4 5 6 7 8 9 0 1  

""""".""" 

C4 I N N N R ? l - Y N Y Y Y  

A 1  I 111 
"""""..."" 

A7 11111 1111 
A8 I 1 

x1 I xxxxxxxxxxx 
""""."""" 

1 

t m & )  (X!:) LA081  + 
TABLE WITH COLUMNS COMPRESSED ( X 0 1 )  

Figure 8 Effects of merge process. 

1111111 
"""_ 01234 5 6  
NNNNYYY 
NNYYNNY 
YYYYYYY 
NYNYNYY 

The equivalent Boolean expression with A ,  B ,   C ,  and D 
representing  conditions 1 through  4,  respectively, is: 

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD 
+ ABCD. 

Note  that  each rule represents a term in the expression, 
and that all rules are in effect oRed (+) together. The 
elements  within a rule  column are ANDed. The decision 
table effectively states in this case, "If all of the condi- 
tions of any column are met, the common  actionlexit 
sequence is performed." 

Now if we use  the Quine-McCluskey  technique [ 131, 
to find the optimal Boolean expression, the result is: 

494 A C  + BC + CD. 

The equivalent  decision-table  rule  columns are: 

N -  - 
- N -  
YYY 
- -Y 

Investigation of the code generated from a table so 
optimized shows  no  improvement over  that  for  the 
merge method. This is because  the Quine-McCluskey 
method  introduces  don't-cares that ultimately cause  the 
code  generator  to place a rule  column in two  subtables. 
It  can therefore be concluded that Quine-McCluskey 
optimization methods are not  applicable to  the decision- 
table  optimization  process. Note  that  the first two col- 
umns  actually  overlap (e.g., the condition sequence 
NNYY could apply to either one of them). Indeed, if it 
were not  for  the fact that both columns specify the  same 
action-exit sequence,  the decision  table would be incon- 
sistent. 

Optimization during code  generation 
The  code generation  process we used has already  been 
outlined. However, the  method of selecting the "next 
test" was deferred to this section  since it has  an  impact 
on  the  quality of the  code produced. 

The most significant work published relating to code 
optimization is, in the author's  opinion,  that of Reinwald 
and Soland in Refs. [ 101 and [ 141. Primary papers  have 
also  been published by Montalbano [6] and Pollack [7], 
and  contributions  made by King [2] and Press [ 1 1. 
Most recently,  Shwayder  [12] extends the work of Pol- 
lack. King describes the rule-mask technique, which 
produces compact  code but  requires that all condition 
tests be performed  regardless of the logic needed. The 
other  papers deal with optimizing methods for sequential 
testing  procedures  (the  condition-tree  method). 

Press  takes advantage of an else column,  reducing the 
number of instances of tests  to a minimum (both  statical- 
ly - presence in storage - and dynamically -presence in 
a flow path). However,  the Reinwald and  Soland  work is 
the most  general  and  requires that  the time and space 
costs of performing tests  be included as input to  the op- 
timization process.  Reference [ lo]  describes time op- 
timization and Ref. [14] describes space optimization. 
Both papers  provide  formulas for calculating the  extra 
cost involved in performing test i after  test j has  been 
performed. They next demonstrate a means for  deter- 
mining a  lower  bound  on the  extra  costs of all tests per- 
formed after  test j .  Then they  provide  an algorithm for 
searching a subset of all possible  generated  testing se- 
quences  to find the  sequence with minimal lower  bound. 
They  prove this sequential  procedure to be optimal in 
terms of the  number of tests. The  costs of actions  were 
not considered. This, we presume, is because action 
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sequences  were considered  by them  to be atomic units 
and  therefore could not be subjected  to reorganization. 
It should be noted that  the time consumed by the  search 
algorithm  goes  up  rapidly with the number of condition 
tests in the table.  (This approach falls in the  area of 
combinatorial  mathematics and is akin to  the “traveling 
salesman” problem.) 

Our initial approach  to  test selection  followed along 
the lines  suggested  by  Pollack [7]. It was the simplest, 
and  our  attention  was  focused  on postgeneration  optimi- 
zation -a subject treated only lightly elsewhere.  The 
first criterion  was the selection of the condition row with 
the  fewest don’t-care  values. Beyond  that, if a tie had to 
be  broken,  the  row  was  selected  that had the minimum 
difference between  the number of Y’s and N’s (again on 
the  advice of Pollack). Later this was  compared  to  the 
Press method. 

It was  found that  the  Press  method 

Required  more  compile time, 
Did  not  improve object  code in the  presence of post- 
generation optimization, and 
Interfered with  “hoisting”  optimization steps. 

We  felt  that  concentration  on postgeneration  optimiza- 
tion should  be continued,  and  no  further effort was ex- 
pended  on enhancing  condition test selection.  Clearly, 
further investigation is  warranted.  The original selection 
algorithm is therefore retained. Because  an else-column 
capability  was desirable in a decision-table processor, it 
was provided. The implementation was simply to con- 
struct  the missing condition  rule entries  and  to supply 
them with a common action-exit sequence (specified by 
the user). These  added columns are  compressed  via  the 
merge routine  and  require  no  subsequent special treat- 
ment. Test selection  and hoisting are applied  equally to 
all columns. 

Schwayder [ 121 shows how to  incorporate  frequency 
information into  test selection.  Although  this was  not 
incorporated  into  the  processor,  the  impact  on  our cur- 
rent generation technique of including Schwayder’s algo- 
rithm was investigated. If the  frequency information 
specifies the  rule  frequencies, only one line of APL code 
need be  added  to  take them into  account.  Another 
line of APL code would be required if condition test fre- 
quencies  are given. More effort would be required to 
incorporate  frequency specification  in the decision table 
format  than in making use of it in code  generation. Inclu- 
sion of optional frequency information is recommended 
for follow-on work. (As will be  described  later,  some 
postgeneration  optimization methods may destroy  some 
of the effectiveness of test selection.) 

The  second optimization  performed  during code gen- 
eration is that of “hoisting.” When one  or  more  actions 
are  to  occur in all flow paths following from a single 

NOHOIST 
”-+”- 
<~OI>*+*++++O 

t 
[,401] <CO2>*+***++0 

01 t 

t t 0 2 t  

t t 
C.4031 l.4021 

t t 

( m i )  c.4011  C.4011 

(X02)  (X011 

WITHOUT HOISTING 

IIOIST 
“t“ 
C A O l l  

WITH  HOISTING 

Figure 9 The effects of “hoisting.” 

condition test, it does not destroy program logic to  move 
(hoist) these  actions  to a position in front of the condi- 
tion test.  This is a space optimization, because  duplicate 
instances of these  actions  can  be removed from all suc- 
cessor  paths  to  the  test.  Figure 9 demonstrates  the ef- 
fects of hoisting. 

It should be noted that  an  action  cannot  be hoisted 
past another  action  that  must  precede it in sequence. 

Hoisting can  most readily be performed  during code 
generation. Just  prior  to selection of a  condition test,  the 
subtable is examined for  an  action  that: 

Is  performed in all remaining  rules, and 
Is  not required  to follow an action that is not per- 
formed in all the remaining rules. 

Any  actions  that fulfill these  criteria  are immediately 
generated  and  removed  from  the subtable. 

The action entries  accepted by the  processor allow the 
user  to indicate an ordering, a lack of ordering, or a par- 
tial ordering requirement  on  the  actions.  This is a degree 
of freedom not provided in procedural  descriptions. 

I t  is not always  easy for  the  user to recognize  hoist- 
able  actions  because  he  cannot easily  recognize the  subta- 
bles. However,  he always has a- clear  picture of the  or- 
dering requirements  (or  their lack) on  the action. Auto- 
matic  hoisting lets  the  user specify his logic require- 
ments in terms most  easily understood by him. 

Unfortunately, hoisting can,  on  occasion,  exert a neg- 
ative influence on duplicate sequence removal, an  op- 
timization procedure  that  occurs  after  code generation. 
This problem is discussed  after  the description of the 
affected optimization.  But a way has  not been  discov- 
ered  to  detect  the situation  without exhaustive (time 
consuming)  combinatorial analysis of the  entire table. 
Fortunately, in the practical  examples we  have exam- 
ined, hoisting is more  often  good than bad. (It seldom 
had any effect on  duplicate  sequence removal.) We ex- 
plicitly resist taking the  route of the P.E.T. processor, 
which requires  that  the  user  control this  optimization. 
As mentioned  earlier,  post-generation hoisting might 
improve  the situation, but was not investigated  deeply. 495 
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Figure 10 Possibly  duplicate sequences. 

Postgeneration  optimization 
The two principal postgeneration  optimization  pro- 
cedures  are duplicate  sequence  removal (DSR) and du- 
plicate  path  removal (DPR).  In addition,  “scavenger” 
optimization  techniques  remove 

Dead (unreferenced)  code, 
Redundant  condition tests, 
Redundant  unconditional branches (branch  chains), 
Redundant  exits. 

The major effect of these optimization procedures is to 
save space. 

Duplicate  sequence  removal (DSR)  
The  code generation  technique  we use  assures  the per- 
formance of all testing  required to isolate a rule. If don’t- 
cares  are inserted by the  user or the merge process,  then 
no tests  are performed  beyond those actually  needed to 
isolate a rule. Note  that rule  frequencies are  not taken 
into  account, and that a reduced  execution  time cannot 
be assured. Average performance can  be varied by 
changing the  order of testing,  but the minimum amount 
of testing  required to isolate a rule cannot  be varied 
[lo]. Beyond reducing the  tests  to a minimum, one  can 
attempt  to  restructure  the generated code so as  to re- 
duce  the number of duplicated code  sequences.  This is 
done by replacing one of the duplicate sequences with a 
branch to its equivalent (DSR).  In this  way a small time 
loss is introduced  (to execute  the branch) to  save  storage 
space. 

DSR is easy to perform  because the  code  generator 
produces code containing  easily  noticed patterns of du- 
plicated  code.  Pairs of code  sequences with identical 
operation codes  are first isolated and then  more carefully 
scrutinized (longer sequences first) to  assure logical 
equivalence. If they are logically equivalent, one of them 
is  replaced with a  branch to  the  other.  The compared 
sequences  are considered not equivalent  for the follow- 
ing reasons: 

They  are dissimilar at  any point, 
One  sequence overlaps  a  portion of the  other,  or 
A  portion of either sequence  has been  previously 
removed  (because it was  equivalent to  some  other 
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If any of these conditions occur,  the unequivalent  por- 
tions of the sequences are masked off and  the remaining 
“good”  portions are individually compared by a  recur- 
sive procedure.  Any duplicated sequence longer than 
one  line of code is removed if it is logically equivalent to 
another. 

Figure 10 shows  two  possibly  duplicate sequences. 
Note first that lines 010 and 042 are  not included in the 
sequences being compared,  but are shown because they 
are germane to  the detailed  comparison.  Operation 
codes in lines 003 through 009 match those of lines 035 
through 041. The flow paths following these sequences 
pass to lines 010 and 042, which are seen to be equiva- 
lent. The branch paths from lines 003 (035) and 006 (038) 
are readily compared because they lie within the two 
sequences being compared. These can be certified as 
being logically equivalent by comparing  the offsets of the 
branch  targets from  the beginning of the  sequences. 
Note  that in the case of the 003 - 035 pair  the  branch tar- 
gets are  across  sequences but that this fact does  not mat- 
ter in the comparison.  A  lengthy  analysis  must be per- 
formed only on  the  paths emanating  from the pair 009- 
041. This requires a line-by-line comparison of the  code 
starting at label 25 with that starting at label 13. 

The cross-link process  performed by the P.E.T. pro- 
cessor is an attempt  to eliminate duplicate  code. Its ef- 
fect,  however, is to eliminate only  common trailing por- 
tions of action sequences (those that end in an exit). Our 
algorithms remove all trailing sequences of redundant 
code, including redundant test  trees.  In addition, all non- 
trailing redundant sequences  are removed if they flow 
into logically equivalent  code. In general, the results 
have  been  very good when applied to actual system pro- 
grams, as shown by the examples in the Appendix. 

It was  mentioned  earlier that  the hoisting optimization 
can  have a negative effect on DSR, because hoisting of 
an  action may remove  it  from one of a pair of duplicate 
sequences.  When  this  happens, the pair  no longer quali- 
fies for  consolidation. It is possible, for example, for 
hoisting to remove  two  lines  and prevent  the removal  of, 
say,  ten  or twelve lines of duplicated  sequences. On  the 
other hand, the removal of an action  from a sequence 
could also  cause  that  sequence  to match another, when 
it would not have  done so otherwise.  Some cases like 
this were actually encountered,  such  as  Tables 8 and 9 
in the Appendix. Through  use of compiler  options, 
selective elimination of hoisting is allowed. Further 
work  should be done  to  try  to establish an effective 
method €or predicting the effect of hoisting on DSR. 

Deferment of hoisting until the post-generation phase 
was considered.  Hoisting at  that time is much  less  con- 
venient  and will definitely lead to longer  compile time. 
More information must be carried  and maintained to 
keep track of the rule column(s) that  were  the  source of 
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a particular action. The problem is made  more  complex 
by the folding actions of the  other optimizers. On  the 
other  hand,  reasonably good results  were obtained  with 
the algorithm used,  and we judged the effort-to-payoff 
ratio  too high to implement  delayed hoisting. 

Duplicate puth removal ( D P R )  
The  second major  postgeneration  optimization technique 
is duplicate  path removal (DPR). When two flow paths 
that  emanate from a condition test  have identical  leading 
logic, the leading  portion of these  paths  can be  consoli- 
dated by moving the condition test  down  the  paths  to  the 
point(s) where they differ. Figure 1 1  illustrates DPR. 

As can  be  seen, DPR may cause reordering of condi- 
tion testing. The method is  to  isolate  as potential  candi- 
dates  those flow paths emanating from  the  same condi- 
tion test  and  that  start with the  same  operation  code. 
Then a test is selected  whose  branch  target  and  succes- 
sor lines  contain the  same  operation  code.  For  each  such 
test,  the flow paths  are  compared and  points of differ- 
ence (POD) are  located.  (Note  that if there  are  no 
POD’s, the  test is redundant  and  can be  removed  imme- 
diately.) The  two  paths emanating from  the  test will be 
referred to  as  the “fall-through path”  and  the  “branch 
path.” Conceptually,  the  process is as follows. Locate 
the POD’s in each of the two paths.  Remove  the  test 
and  place a copy of it  just in front of each POD in the 
fall-through path.  The  address of each  test copied is 
changed to point to  the  corresponding POD in the 
branch  path. 

With the removal of the original test, it is expected 
(but not guaranteed)  that a large  portion of the  branch 
path will become  dead  code.  However,  there is no sim- 
ple  way to  determine this  prior to performing DPR. 
Therefore a copy of the  code  is  saved before  performing 
DPR. If the  code resulting from DPR shows improve- 
ment, it replaces  the old code. If not  the old code is re- 
stored.  Some time was  spent trying to  develop  some  cor- 
relation between  the  amount of improvement  and both 
number of POD’s and number of lines in the duplicated 
paths.  However, nothing  developed that  was useful. 
Furthermore,  the  conceptual algorithm described  above 
did not  work. This was because DPR was  applied after 
DSR, and DSR could destroy  the  tree  nature of the orig- 
inal unoptimized code.  Therefore, DPR has  to  contend 
with the interesting possibility that  the  two flow paths 
being compared might ‘merge, or  cross  over.  In  fact, 
some  cases examined had a single line in the  code  turn 
up as .POD’S in two  different paths.  This  caused  the 
same  test  to be inserted  twice in the  same place. 

The algorithm finally developed  avoids  the  problems 
by making a separate  copy of the fall-through path,  and 
placing at  each POD (in the duplicate) a copy of the 
original test with the  target of the POD in the original 
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Figure 11 The  effects of duplicate path removal. 

branch path. This  test is followed by an unconditional 
branch  whose  target is the POD in the fall-through  path. 
At  the end of the path comparison,  the original test is 
replaced  with an unconditional branch  to  the duplicated 
code, which is placed at  the  end of the  code body. Both 
the  branch and fall-through paths then become  candidates 
for  dead  code removal. 

Because DPR reorders condition  testing, it may de- 
stroy  the effectiveness of optimization procedures  that 
depend  upon  test ordering. Since DPR never  increases 
storage  consumption, only time  optimization  can be 
adversely  affected. This is a typical  time-space trade-off 
situation. Unfortunately,  the  user may wish to  trade off 
differently for different points of application of DPR 
within code  from a single table. At  present, sufficient 
information is not carried in the  generated  code  to calcu- 
late  the overall  time costs. A recommended follow-on 
would be to try to include  this. 

DPR can recognize only those  duplicate  paths  that 
emanate from the  same condition  test. Some  tables  that 
were  processed  contained duplicate paths  that did not 
emanate  from  the  same point and couldn’t be removed 
by the  processor. When these  paths  were removed 
manually, it  was discovered that they could be  removed 
only at  the  expense of inserting  additional tests in the 
paths.  The resulting code  then would contain two  tests 
for  the  same condition in a single path. This is typical of 
a  situation in which the programmer would ordinarily set 
a  switch for  later testing. Table 6 in the  Appendix  con- 
tains this type of program structure. N o  algorithm  was 
discovered that could  expeditiously locate  duplicate 497 
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Figure 13 Reordering. 
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Figure 15 Dead  code removal. 

..Redundant  branch  removal is a procedure  for seeking 
out  branches  that  receive  control  from  other  branches 
and removing them. (Sequences of directly connected 
branches  are called branch chains.)  Labeled branches 
are readily detected. All references (in other instruc- 
tions) to  the label on a branch  are replaced  with the 
branch  operand, effectively removing the  branch  from 
the chain. The labels can  then  be removed. Figure 12 
illustrates branch removal. 

The  second  step is to  locate all branches  that  are  pre- 
ceded by either  an unconditional branch  or  an  exit and to 
remove them. All branches  whose  targets  are exits are 
replaced  with the  exits themselves.  If a branch  has a tar- 
get  that  can receive control only  from the  branch (i.e., 
the target is preceded  by an unconditional branch  or  an 
exit),  then the  branch  can  be eliminated by reordering 
the  code.  This is done,  thereby placing the  target  and all 
code physically following it (up to a branch  or exit) in 
place of the branch. Figure 13 indicates the  method. 

While cleaning up  branches, this  optimizer  can  perform 
one additional  optimization step, which,  strictly  speak- 
ing, is not redundant  branch elimination. I t  is a type of 
reverse hoisting.  If the  predecessor  line  to a branch  tar- 
get is the  same  as  the  predecessor  to  the  branch,  the 
branch  predecessor  can  be  removed,  and  the  branch 
address  reduced by one,  to  refer  to  the  predecessor of 
the  former target. Figure 14 shows this  optimization 
method. 

Redundant exit removal is a procedure  to  remove all 
exits of any one  type  that  are  preceded by a branch  or 
another exit. Care must  be taken,  however,  that  there is 
always  one  exit of each  type left. All conditional branch- 
es  that  have exits as  their  targets  are  set so that all refer- 
ences to an  exit of one  type  refer  to  the  same exit. This 
reduces  the  requirements  for  instances of exits  to a mini- 
mum. (Note  that unconditional branches  to  exits  were 
eliminated by the  branch optimizer.) No further  process- 
ing by the exit  optimizer is necessary. 

Redundant  test  removal requires  that  the flow paths 
emanating from  each conditional branch  be examined. If 

paths of this nature.  This  is.also  an  area  that  needs  fur-  the fall-through path  is logically equivalent to the  branch 
ther exploration. path,  the  test is eliminated. No other clean-up is per- 

Scavenger  optimization Dead  code  removal is a procedure  that first removes 
Scavenger optimization procedures,  as  their  name im- all unreferenced labels. It  then  locates  any unlabeled 

498 plies,  clean  up the leavings of other optimizers. The lines that follow exits  or unconditional branches.  These 

formed by the  test optimizer. 

BEFORE  AFTER 

*NO LABEL PRESENT 

scavenger  procedures to be  described in the paragraphs 
below are 

Redundant  branch removal, 
Redundant  exit removal, 
Redundant  test removal,  and 
Dead  code removal. 
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lines are  dead and can  be removed. Any unlabeled line 
following a dead  line is also  dead  and  can  be removed. 
All dead lines are  located and removed  at  one time. 
However,  because a dead line may have been a branch 
(conditional or unconditional), the removal of dead  lines 
may give rise  to  more unreferenced  labels. Therefore, 
the  process is iterated until there  are  no  more  such la- 
.bels. Figure 15 illustrates  dead code removal. 

Interaction of the optimizers 
The  order of all optimization procedures is: 

Pregeneration 
Merge 

Generation 
Test selection 
Hoisting 

Postgeneration 
Duplicate  sequence removal  (DBR) 
Scavengers 

Redundant  branch removal 
Redundant  exit removal 
Redundant  test removal 
Dead  code removal 
Duplicate  path removal (DPR). 

The postgeneration  optimization procedures  are itera- 
tive  whenever  their application can possibly introduce 
new  program structure  that would be  susceptible  to  their 
further application. Further,  the  scavenger  steps  are 
called by both DPR and  DSR,  and  DSR calls DPR. 
Specifically, DSR  processes all of the  sequences  it  can, 
then calls the  scavengers.  It  then  determines  whether 
code was reduced. If so, it  repeats.  In  the  case of DPR, 
after  each  test  instruction is processed,  the  scavenger 
procedures  are called, followed by DSR. (Calling the 
scavenger  procedures before  entering DSR  speeds up 
the latter.) Then  DPR  checks  for  code  improvement  as 
described  earlier. 

Concluding remarks 
About  seventy decision tables  taken  from  actual applica- 
tion areas  have  been compiled  by the  system.  The  code 
for only two of these could be improved  by  hand. Fur- 
thermore,  the compiler running times under  the APL sys- 
tem  were  short enough to allow the experimental  model 
to  operate  as a  production  tool.  Although there must be 
manual intervention  between processing  a  decision table 
and  the production of the final code,  the  processor  as it 
stands  has already  proved to be  a  useful aid to  some 
programmers by helping them organize  their  code.  It  can 
be concluded  that  the  processor  can be used now to 
gainful ends. If the algorithms described  above  were 

recoded  into a more fully automated  environment,  pro- 
gram  production  could  be  improved even more. 

As has  been  noted earlier,  certain optimization prob- 
lems are  yet unsolved. These  are: 

The  interference among test-order selection, hoisting, 

Duplicate  path removal where  the  paths  do not start 
DSR  and  DPR,  and 

at  the  same condition test. 

Some additional  optimization procedures could  be added 
to  the  processor.  These are: 

The  use of frequency information in test-order  selec- 

The  use of timing information in conjunction  with 

The  reversal of condition tests. 

An investigation of the benefits of post-generation  hoist- 
ing should also  be made. 

The optimization methods  described in this paper  do 
not include all possible  program  optimization pro- 
cedures. We have  concentrated  on optimization methods 
that  are not usually done by higher-level language  pro- 
cessors, namely, the  gross  arrangement of program flow 
structure. Specifically ignored are  such optimization 
methods  as  loop analysis, common  subexpression elimi- 
nation,  code motion (except  for hoisting and  foryard 
code motion),  and subsumption [ 151. To perform these 
would require analysis of the information in the deci- 
sion-table entries,  and would require a restriction on  the 
language  permitted in the  entries.  It  was felt that a wider 
service could be performed  by  providing a framework 
that would accept  any language for  entry  statements.  In 
this  way,  optimization procedures  that  were not  per- 
formed could still be accomplished  by  passing the  output 
from  the decision-table  compiler through  another optim- 
izing compiler. Minor revisions to  the PL/I printing  pro- 
gram can  cause it to  produce  output  acceptable  to FOR- 

TRAN,  ALGOL, and COBOL compilers (some of which per- 
form optimization),  and even  to an assembler macro- 
processor. 

It should  be noted  that if a decision table  has n rule- 
columns,  then  there  are  exactly n ways of traversing the 
generated program. This should  suggest that exactly n 
test  cases need. be  prepared  to thoroughly test  the  pro- 
duced program. Such a test  battery would be  guaranteed 
to  execute  every  instruction in the program, and  to exe- 
cute  every conditional branch  for  both  yes  and  no condi- 
tions.  Because  the optimizers fold the program so that 
some  paths through the program execute  the (physically) 
same  instructions, it is often possible to completely exer- 
cise  the program  with fewer  test  cases  than  the number 
of rule  columns.  A test-case  generator could easily se- 
lect a subset of the rule  columns that would exercise all 

tion, 

space/speed priority  setting for  DPR,  and 
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of the  code.  It is recommended  that  such a generator  be 
added  to  the  system. 

Table 1 Decision table compile times. 

T A B L E   T I M E   L I N E S  OF 
NAME ( S E C S )  CODE 

Acknowledgments 
The  author  is indebted to D. H. Manning and P. C.  Ja- 
cobs  for first bringing the problems of decision table 
compiling to his attention.  D. H. Manning, and R. E. 
Gaiduk  are  to  be  thanked  for  their enlightening discus- 
sions  on  the  subject,  and  our  thanks  go  to  May  Li  and 
D. H. Manning for providing some "real" decision  tables 
against which the  processor was tested.  R. H. Williams 
contributed  to  the solution of DPR problems. 

Appendix: Samples of decision table compilations 
This appendix contains decision tables  and flow charts 
of code compiled from them. The  reader is invited to 
browse  them  to  obtain a  subjective  appraisal of the ef- 
fectiveness of the compiler. The  tables  are  representa- 
tive of those examined  during the  development of the 
compiler. They  were  selected  to  demonstrate  several 
points. 

The range of table complexity, 
Compile-time  range, 
The effects of various  optimization procedures, 
Comparison with other  methods, 
Some unsolved  problem areas. 

In addition to  these  points  the  reader should also be able 
to verify that: 

There is a unique flow path  through the  object  code  for 
each rule  column, 
A given flow path  contains  no  redundant  tests, 
Hoisting  situations are not  always  readily seen in a deci- 
sion  table by the  user, 
The compiler produced  correct  code, 
The  code  cannot be  improved by hand except  where 
noted. 

Table 1  lists the sample  decision  tables, the time  re- 
quired to compile  them on a System/360 Model 50, and 
the number of lines of object  code  produced. 

In  reference  to  Table 8, note  that in some  cases  the 
order of condition  row  selection is arbitrary. When  this 
happens, it is possible that different orderings will pro- 
duce different amounts of final object code.  The condi- 
tion rules were reversed in D190F3 in Table 8 to  create 
D190F3R.  The  code  produced  from  D190F3R was 26 
lines compared with 20 lines produced  from D 190F3. 
Careful examination of the produced code  shows  that 
the reversal of selection of conditions  3 and 5 (in the 
subtable  for condition  2 = yes) caused a  difference in 
the hoisting of action 4. When  action 4 was  hoisted 
(compiling D190F3), a pair of duplicate  paths  appeared, 

500 one of which was  removed  by the optimizer. 

C H E C K  
CIIECKM 
D 1 9 0 F 3  
D 1 9 0 F 3 R  
D 1 9 0 F 4  
D190F4M 
D 1 9 0 P 1 2  
D 2 0 0 C 1 9  
D 2 0 0 C 3  
D200C9  
4 2 0 0 6 5  
D200G7 
D 2 0 0 R 9  
DTABCD 
FED 1 
FED2 
H9PET 

1 5   1 7  
1 5  

2 5  20 
2 6  
5 0  3 1  

2 6  

11 
26 

9 
7 
6 

7 
4 

2 3 
4 8  
19 

1 5  

9 
1 8  

8 
2 3 8  

1 9  
4 8  
2 3  

1 9   2 6  
I n  

Table 2 Examples of simple decision tables and their corres- 
ponding flow charts. 

( X 0 1 )  I x 0 1 s  O ? t  
( X 0 2 1  IX x (XO?) ( X O l )  

D19OP12 
"-4"- 

LAO11 + 
D190P121OOOO <COl>++ 

D200Cl91OOOO 11234 t 

"-+"- <CO1> IYNNN t 
<co1, IYYNfJ o++++++t<c01> 
<CO2, I--YN 0 2 +  

<co2> I-YNI <c02>++ 

<C03> t i ' / ? - -  CAOll o++<C02> 
<co3> l--Y?l + 

1 1 2 3 4  
"""""" 

D200C19 _ _ _ _ _ _ _ _ _ _ _ _  [ A 0 2 1  

+ 
"""""" [ A 0 3 1  

"""""" t i t  
[ A 0 1 1  111 <C03>+++ (X~CI) 

[ A 0 1 1  11111 + 
CA021 I 2 2 2  c C 0 3  

t t  C A O 3 l  I 33 + 
LAO41 1 4 1,404 
[ A 0 5 1  1 5 5 5 5  + 

"""""" 

(X01) IX x t -+++-to 

( X 0 2 )  I x t 013. 
( X 0 3 )  I X ( X O 2 )   ( X O l )  """""" 

( x n l )  I X X X X  OI++ 
[ A 0 5  

( X 0 1  
+ 

1 

+. 
1 

Table 3 A complex table. 

D Z I J O G ~  
"-4" 

LAO51 
4 

D 2 0 0 C 5  

""" 

< c o 1 >  
< c o 2 >  

<co4> 
< c n 3 >  

< c n 5 >  
< C 0 6 >  
""" 

Can11 
[ A 0 2 1  

CAO41 
C A 0 3 l  

[ A 0 5 1  

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

n o o o o o o n o 1 1 1  
1 2 3 4 5 6 7 0 9 0 1 2  
"""""" 

YYN~lNf lN i l l~NN?l  
" Y Y Y Y Y Y Y Y N N  
"YYYYYYUN" 
- - Y Y N N N N - - - -  

YYRN"" "" 

Y N Y N Y I I Y N Y N Y I I  
"""""" 

1111 
1 1 1 1  
1 1 1 1  

1 1 1 1 1 1 1 1 1 1 1 1  
11 

4 
t 
t 
t 
4 
+ 
t 
4 
4 
t 
4 
t 
t 
4 
t I """""""""_ 4 4  [ A 0 4 1  

(X01) I X  x x x x x + 4 4 
( x n 2 )  I x x x x x x o-+++t+++++++-t++++t~ 

O l t  
<C06>+++++0 

4 0 2 4  
( X 0 2 1  ( X O l )  

t 
+- t 

t 
t 
+ 
+ 

c+o 
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Table 4 Table compiled by our processor and  by P.E.T. 

+ 
[ A 0 2 1  + 

t 

01t 
0+++++++<C01, 

t 

SOURCE T A B L E   ( X O l )  

BY OUR COMPILER 
BY P . E . T .   C O M P I L E R  

Table 6 Manually improved example. 

D 1 9 0 F 4 M  
"-&"- 

C A O 5 l  t 
f t  

Table 5 A more complex table. 

D200C7 
"-4" 

C A O l l  
+ 

.."_.."""""" b 

C A O 1 1  Illlllll11111 

[ A 0 3 1  I111 
[ A 0 4 1  I 111111 
C A O S J  I111111111111 
L A O 6 1  I 1  1 1 1 
[A071 Ill 11 11 1 1  st**( 

C11021 I111 

D 1 9 f l F 4 1 0 f l f l f l ~ 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2  
1 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 6 7 8 9 0  """""""""""""- 

< C O 1  > I Y ~ ? R N N N N N N N N I N N N N ~ i N N N  
<CO2> I-YYYYYYNNNNNRNNr1r?Nl~h' 
<c03> I - - - - - - - Y Y Y Y Y Y N N N N N N N  
<C04> I - - - - - - - - - - - - - Y Y Y Y Y Y N  

< C O S >  I -YYYYN-YYYYN-YYYYN--  
< C f l 7 >  I - Y N W U - - Y N ~ / N - - Y N N N - - -  
< C 0 8 >  I - - Y Y N - - - Y Y N - - - Y Y N - - -  

<cfl5> I -YYYYYNYYYYY?/YYYYYP?- 

"""""-"""""""" 
< c o g ,  I"ypJ""yF[ "" YJI"" 

C A O l l  I 11111 11111 Ill11 
C A 0 2 1  I 1 1 2 1 1  l l l l l  11111 

C A f l 4 1  I 
C A f l 3 1  I I 1 1 1 1 1 

C A f l 5 l  I 1 I 1  

( X 0 1 )  I X  
(x02) I x x x  

1 

"""""""""""""- 

( X f l 3 )  I x x x x 
( X 0 4 )  I xxxx xxxx xxxx 

Table 7 Another example of manual improvement 

C:I E CX 
"f" 
<COI,.+++*++*O 

t 
[ A 0 2 1   [ A 0 9 1  

0 3 +  

+ t 
C A O 3 l  ( X O l )  
< c o 2 > + * + + u + o  

t 
C A O E l   L A O 4 1  

0 2 t  

t t 
o + + < c 0 3 >  t 
t t  t 
t C A O 7 1  + 
t t  t 
t [ A 0 8 1  
t t  t 
t [ A 0 4 1  t 
t t  t 
t + + < C O 4 >  t 
t t  t 
t C A O l l  + 
+ t"+t+++c 0 

9+-++ 

O l t  
LAO 5 1 

t 
( X O I )  

C O M P I L E D  

t 

"-4" 
CiIECXM 

< c o 1  >++*++++o 

t 
C A O 2 l   C A O 9 l  

03t 

t t 
C A f l 3 l  (x!:) 
<CO2>"0 

C A 0 6 l  .I 
t +  

I +  
o + + < C 0 3 >  t 
t t +  
t [ A 0 7 1  t 
t t t  
t C A 0 8 1  t 

t < C O 4 > + + t  
+ t t  

t t r  
t [ A 0 1 1  t 
t t 4  
t t t  
t Olt++++O 

t t  
D++++ 4 

02t 
C A O 5 1  + 
( X 0 1 1  

t 

t c n o v 1  
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Table 8 Effects of arbitrary condition  row selection 

D190F3~00000000011111 
112345678901234 """"""""""- 

<COl> IYYYYYYYYYYYYYN 
<co2> IYYYYYYYYYYYYN- 
<C03> IYYYYYliNNN€lI~Y-- 
<co4> I""-YYYYY€lN" 
<CO5> IYNllbNY!!i?lIIlYB-- 
<COS> I-YNNN-Y~~~iN---- 
<C07> I--YliEi--YIJN---- 
<CO8> ~"-yfI"-yI"" 

C A O l l  I 
C.4021 11111111111 
C.4031 I 11  11 
[A041 I 1111 111111 
EA051 I 1  1 1 1 l 

(X01) I xx x xx x xx 
f X O 2 )  IX x x x x 
(X03) I X 

""""""""""_ 
11 

""""""""""_ 

D190F3 
"-&" 

D190F3R100000000011111 
112345678901234 

""""""""""" 

<cog> I"-y;l"-YN"" 
<co7> I - - Y N R - - Y I I B - - - -  
<C06> I-YIINR-YBNN---- 
<C05> IYNNEiBYNNIlIYN-- 

<C03> ~YYYYYNll?lNNEIR-- 
<CO4> I-----YYYYYNN-- 

<co2> IYYYYYYYYYYYYII- 
<co1> lYYYYYYYYYYYYY?l 

ETC. I . .  . 11 
""""""""""" 

D190F3 WITIf  CONDITONS 
REVERSED 

C190F3R 
---+--- 

+ + 
o+++++++<CO3> 
+ 

<C03>+++++++0 
+ + t 

+++ci-+++<cD4> 
03) 

<co 4 >+++++++ t 

CA021  CAOll 
+ + 07 + 

CAOll  CA021 + t + t 

Table 9 Effects of detrimental  hoisting. 

F E D  1000000 
11231156 

<CO1, IYIIYNYN 
< C 0 2 >  IY-NN-Y 
<C03, IY-Y-N- 

"""""___ 

<co4, I-N-Y-Y 

[ a n 1 1  I 1 I 
""".""" 

[ A 0 2 1  I 1 1 
C A D 3 1  I l l  
[ A O i i l  I l l  
C A O 5 1  I111 1 
C A 0 6 1  I 1 1 
C A O I I  I 1 
E A 0 8 1  I 1  1 1 

(X01) I x 
( X 0 2 )  IXXX xx 

""""""_ 

+ 4 4 4 
C A 0 8 7   [ A 0 2 1   C A O 2 l   [ A 0 1 1   [ A 0 5 1  

0 3 4  

4 4 4 4 4 
<C02>**0 o****o C A O I I  (!!I) [ A 0 9 1  

4 +   4 4  4 
4 ***t+O 4 4 4 

[ A 0 4 1  4 L A 0 5 1  
4 4 4  
4 0+**+4 
+ (]io?) [ A 0 6 1  

0 1 +  

4 
( x n 2 )  

2 3  L I N E S  COMPILED  WITJIOUT YOISTINI :  

Table 10 A very  complex  table. 

DT.4BCDlOOOOOOOOOllllllllll22'22'22222'2333333 
11234567890123456789012345678901'2345 

<CO1> IYYYY-YY---YYYYNNNNNNNN----NNNNNNNNN 
..................... 

<c02> IYYYYNNNNNNNNNNYYYYYYYYNNNNNNNNNNNNN 
<C03> I----YYYNNNNNNN--------  YYYYYNNNNNNNN 
<COl+> I-------YNNNNNN------------- NNNNNNNN 
<COS> I--------YNNNNN-------------NNNNNflNN 
<COS> I---------YNNNN-------------NJlNN?JNNN 
<C07> IYYYNNNN---YYYNYYYYNNNNYYYYNYYYYNNNN 
<COB> IYN--------YN--YYNNYYNNYYNN-YYNNYYNfl 
<Cog> I----yNN-------------------N-------- 
<ClO> I Y Y N - - Y N - - - Y Y N - Y N Y N Y N Y N Y N Y N - Y N Y N Y N  
..................... 

C.4011  I1 1 11 1 11 
C.4021 I 
C.4031 I 

11 1  1 
1 

C.4041 I 11 
[A051 I 
C.4061 I 

1 
1 

C.4071 I 1 1 1 
C.4081 I 1 
LA091 I 
C.4101 I 9 

111 

(X011 I xx 
( X 0 2 )  I x x  
( X O 3 )  I x x  
( X 0 5 )  IXXXXX  XXXXXXX  XXXXXXXX  XXXX 
( X 0 4 )  I X 

11 

9  99999999  9999 
..................... 

x x  
x x  

502 

H .  J .  MYERS IBM J .  RES. DEVELOP. 



Table 10 A  very  complex table (continued). 
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