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Compiling Optimized Code from Decision Tables

Abstract: This paper reviews the structure of decision tables and methods for converting them into procedural code, It describes new
optimization methods, which are applied before, during, and after code generation. Some results from an experimental decision table

processor are provided.

Introduction

Decision tables have been in use for over ten years,
principally in business applications, to state problems
that contain a relatively high proportion of programmed
tests. Numerous compilers have been built that convert
the logic expressed in decision tables into algorithms
that are executable by computer. Emphasis in decision-
table compilers has typically been placed on producing
logically correct code, on checking the decision table for
completeness and consistency, and on ordering condi-
tion tests for efficient execution. Most decision table
compilers produce code that is in a higher-level lan-
guage, leaving optimization of the produced object code
up to the high-level language compiler. However, the
structure of the code produced by typical decision-table
compilers is of a type that is improved little by any of
the optimizing algorithms used by commercial compilers
today.

General-purpose support programs (systems pro-
grams) are also typified by a high proportion of pro-
grammed tests. It would therefore appear that effective
use of decision tables could be made in describing sys-
tems programs. However, systems programs must also
be comprised of highly optimal code. This paper de-
scribes some decision-table compiling algorithms that
provide a program structure of high enough quality to
satisfy most systems programming needs. The output can
be used either by a post-processing compiler or by a pro-
grammer as a guide in hand coding.

For the project, we constructed a running compiler
and support system into which were introduced numer-
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ous decision tables based on actual systems programs.
From these decision tables, procedural code (in PL/1
format) was produced. Some samples of the code struc-
ture produced are included in the Appendix to enable the
reader to judge the effectiveness of the compiler. The
system was produced in an interactive APL environment,
which allows considerable flexibility in revising and
augmenting algorithms.

In the paper, we first review the structure of decision
tables and the procedures used to map them into code.
However, the main emphasis is on the optimization
methods we use before, during, and after code genera-
tion,

Decision tables

In order to make this paper reasonably self-contained,
we review here the structure of decision tables and the
general methods used to convert them into procedural
language. We attempt to emphasize those aspects of the
process that provide opportunities for optimization.

A sample decision table is shown in Fig. 1.

The stub portion (2) of the table gives descriptions of
conditions (5,6) actions (7,8) and exits (9,10). The for-
mat of the stub contents is generally constrained by the
target language into which the table is being translated.
Our processor places no constraint on the contents of
the stubs; if correct PL/1 code is to be produced, the
condition stubs must contain one PL/I relational expres-
sion each; the actions should contain a PL/1 assignment
statement, call statement (or other nonbranching execut-
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2 3

10000000 &4

11234567
NAME FIELD PRESENT INYNYNYN

5 OPERAND 1 IN REG. NOTATION|NNYYNNY 6

FILE DEFINED |NNN-YYY
GENERATE NAME 11111

7 ERROR 1 | 12 2 8
ERROR 2 112

g PUTTWO | XX 10
FINISH |XXxx X

1. Decision table name
2. Stub portion
3. Entry portion
4. Table header
5. Condition stubs
6. Condition entries ( ¥ =yes, N =no, —= don't care)
7. Action stubs
8. Action entries (numbers indicate execution sequence)
9. Exit stubs
10. Exit entries ( X indicates exit taken)

Figure 1 Sample decision table.

able statement); and the exit stubs should contain only a
valid pL/1 name. The table name should also be valid in
PL/L

Each column in the entry portion (3) of the table repre-
sents a rule. Rule numbers (two-digit numbers read ver-
tically) and the table name appear in the table header (4).
Rule 02 in Fig. 1, for example, indicates that if a NAME
FIELD IS PRESENT (Y means yes) and if OPERAND 1
IS NOT IN REGISTER NOTATION (N means no) and if
FILE IS NOT DEFINED, then the actions taken are
GENERATE NAME and ERROR 2 (in that.order), fol-
lowed by an exit to FINISH. In general, a rule specifies
that for a unique combination of conditions, some select-
ed actions are performed and a selected exit is taken.

The decision-table representation of logic does not
impose any strict ordering on the sequencing of condi-
tion tests. Furthermore, actions in a given table are not
allowed to modify factors that would cause a change in
the outcome of a condition test in the same table. This
gives the compiler more latitude in selecting an optimal
ordering of condition tests with respect to each other
and with respect to actions.

The ordering of actions with respect to each other can
be loosely defined. In Fig. 1 the order required is speci-
fied by an integer opposite a selected action. If there is
no integer, the action is not selected. Within a given rule,
actions are executed in the order specified (e.g., in rule
07 GENERATE NAME occurs before ERROR 1). Exactly
one exit is taken after execution of the actions of the se-
lected rule.

In this experiment, we consider limited-entry type
decision tables, in which the value of a condition is limit-
ed to yes or no. The alternative, extended entry tables,
allows values that are numbers or number ranges. How-

ever, as Press [1] demonstrates, these can be converted
into limited-entry tables, so that our methods apply to
both types of decision tables.

The occurrence of a third value (—) in rule 04 of Fig. 1
does not contradict the two-value restriction. Rule 04 is
actually a condensation of two rules (say 4a and 4b),
which have identical action and exit entries, but whose
condition entries are:

Condition 4a 4b 4c
1 Yyryyvy
2 Yvry
3 Y N -

Rules 4a and 4b mean that the specified actions and ex-
its are to be performed when conditions 1 and 2 are both
yes, regardless of the value of condition 3. Therefore in
rule 04, condition 3 is immaterial —a don’t-care condi-
tion. As will be shown later, in the code produced by the
compiler, there will be no test for condition 3 in the flow
path for which conditions 1 and 2 are both true.

Because conditions in a limited-entry table are binary
valued, there are 2" unique combinations of the values of
n conditions, and therefore 2" rule columns. In practice,
the number of rules is greatly reduced by the introduc-
tion of don’t-care entries and consolidation of the rules
as shown for rule 04, If rules 4a and 4b had been counted
as part of the table in Fig. 1, that table would have 8 (2%
rules for 3 conditions. A detailed discussion of column
combining is presented later in the section on pregenera-
tion optimization.

With the 2" requirement on the rule count, one can
program a verification of the rule entries that checks for
both consistency and completeness. However, as will be
seen, the check does not extend to an interpretation of
the stub information and so it cannot be regarded as a
complete check.

Decision-table code production

One of three methods is generally used to map decision
table logic into procedural representation. In the rule
mask method [2-4] every condition is first tested and
then a selection mask is created. Next, for each action
and exit, an action mask (created at compile time) is
compared to the selection mask. If the masks coincide,
the action (or exit) is performed.

In the second method, a variation on the rule-mask
method, a unique power of 2 is assigned to each condi-
tion, which is then tested and its number added to a
counter if the condition is true. At the end of condition
testing, the counter is used as an index into a branch ta-
ble and control is transferred to the appropriate action-
exit sequence. (Note that the branch table must have 2"
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{Ann] Action n

(Xnn) Exitn

Figure 2 Tree corresponding to sample decision table.

entries for n conditions.) These two methods require
that all tests be performed regardless of the don’t-care
entries in the table. They tend to produce (when bit
masks are used) a small program that runs longer than is
usually necessary.

We use the third scheme, called the condition tree
method, which causes the generation of a tree-structured
program with condition tests at each node. Each action-
exit sequence is placed at the leaves. Figure 2 shows an
unoptimized tree corresponding to the decision table of
Fig. 1. The rule numbers for each action-exit sequence
are placed under the leaves for clarity.

Notice the one-to-one correspondence between the
leaves of the tree in Fig. 2 and the rule columns of the
decision table shown in Fig. 1. Notice also the large
amount of redundancy in the code generated. In this
case, the penalty for this redundancy is not lengthened
execution sequences, but excessive storage consump-
tion. Figure 3 shows the effect of the optimization algo-
rithms on the tree of Fig. 2.

Figure 4 shows an abstract listing of the program dia-
grammed in Fig. 3. This listing is called abstract because
nothing in it refers to the actual (concrete) conditions,
actions, or exits that are described in the table stubs. In
fact, the processing algorithms ignore the contents of the
stubs except for listing purposes.

Because we are principally interested in compilation,
the abstract format is the one used in this paper. Howev-
er, with little difficulty, concrete listings can be produced
for any procedural language.

Figure 5 is a concrete listing in PL/1 format of the pro-
gram shown in Fig. 4. Because the stubs in the original
table (Fig. 1) do not follow PL/I conventions, the result is
not a pL{1 procedure.
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Figure 3 Optimized tree.

Figure 4 Optimized listing.

LINE BRANCH
NUMBERS LABELS OPERATIONS OPERANDS
\\\‘oool C01>06
001 €02+03
002]01:€03+02
003| A03
ook X02
005|02:X01
006103:€03>05
007|04:402
008] X02
009[05:401
010]| --->0y
011]06:401
012] Co2+04
013] --->01

Note: Cnn > indicates a conditional branch, and
- - - indicates an unconditional branch.

Figure 5 Concrete listing.

DPUT: BEGIN;
IF NAME FIELD PRESENT THEN GO TO DPUT6;
IF OPERAND 1 IN REG. NOTATION THEN GO TO DPUT3;
DPUT1: IF FILE DEFINED THEN GO TO PUTTWO;
ERROR 2,
GO TO FINISH;
DPUT3: IF FILE DEFINED THEN GO TO DPUTS;
DPUT4: ERROR 1;
GO TO FINISH;
DPUTS: GENERATE NAME;
GO TO DPUTu;
DPUT6: GENERATE NAME;
IF OPERAND 1 IN REG. NOTATION THEN GO TO DPUTH4;
GO TO DPUT1;
END;

s Code generation

Various methods exist for the generation of tree-form
code from decision tables [5-7]. Briefly, one selects (by
criteria described later) a condition. The rule columns
are then partitioned into two groups —a no-group and a
yes-group —according to the values in each column of
the selected condition. If the condition value is don’t-
care in a particular column, that column is placed in both
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RULE 1 2 3 4 5 8
A1 1 1 1 1=
A2 1 1% 1 1x
A3 1 1x 1% 1%

X1 1 1x 1% 1% 1x 1

Figure 6 Cross-linked action-exit sequences.

groups. Code is then produced for the selected condi-
tion. Assume that the line

Cnn - label —m

is generated, where label-m is a created label. The code
generator is then re-entered recursively with a subtable
consisting of the no-group of rule columns, but with the
selected condition row removed from them. Next, the
generated label (label-m) is produced and the generator
is re-entered with the yes-group columns (without the
selected condition row). The resulting structure appears
as follows:

Cnn ~ label —m
no — group
Label —m: yes — group
Because every action sequence terminates in an exit,
control will not flow from the no-group into the yes-
group.

It can be seen that the yes- and no-groups are com-
posed of substructures analogous to the main structure.
Recursion is terminated when there is no condition re-
maining to be selected. At this time, there should be
exactly one rule column remaining. The action-exit se-
quence is then produced from that column. Because of
the presence of don’t-care conditions, a special check
must be made before generating each conditional
branch. This consists of locating any column in which all
of the conditions have don’t-care entries. If such a col-
umn is found, its action-exit sequence is generated and
recursion terminates.

Other special tests are made for handling else rules
and optimization procedures, which will be discussed
later.

An extension of this algorithm, called cross-linking, is
used in the Preprocessor for Encoded Tables (P.E.T.)
processor [8] to reduce the number of instances of ac-
tions generated. Each action-exit sequence is compared
to the action-exit sequences to its left. If some action
and its selected successors exactly match the corre-
sponding elements in some rule to the left, they are linked
leftward. For example, in Fig. 6, the cross-linked action-
exits are marked by an asterisk. When code is generated,
the first linked action is replaced by a branch to the action
corresponding to it in the rule it is linked to. This reduces
redundancy in the generated actions, providing better
code than other processors [8,9].

Most published accounts concerned with object code
optimization concentrate on the order of condition test-
ing. Reinwald and Soland [10,14] give algorithms
(supported by proofs) for generation of optimal object
code with respect to time and space. These algorithms
require that storage and time costs be associated with
each condition test, but do not take into account the op-
timization of action sequences.

The P.E.T. processor reduces redundancy in action
sequences (a space optimization) but does not remove
redundant testing sequences. (It relies upon the table-
writer to order condition tests and to introduce don’t-
cares to provide adequate optimization of testing.)
P.E.T. also allows the table writer to place actions into
the condition portion of the table. This is called precon-
ditioning, and is allowed when an action is to be per-
formed regardiess of the outcome of the conditional test-
ing that it precedes.

In summary, previous processors have placed the op-
timization burden on the user to a large extent. This par-
tially reduces the principal benefit of the decision table —
the separation of the logic required from the procedural
mechanism that implements it.

A recent paper by Dailey [11] has been published
since this work was concluded. Although his approach is
different, his optimizations seem to overlap some of
those presented here. A careful comparison of his meth-
ods to ours has not yet been carried out.

The methods described in this paper attempt to opti-
mize with a minimum amount of guidance from the user.
Optimization processes are applied before, during, and
after code generation, with major emphasis on the final
optimization process. The basic generation process pro-
duces excellent code from the point of view of time op-
timization. It generates no unnecessary tests in a given
test sequence. It could be further improved if frequency
information were provided (see [12] for the method).
Most of our optimization methods are aimed at reducing
space requirements. Our experience shows considerable
success in removing redundant code, and the program
structure is suitable for systems programs.

Optimization techniques

Our pregeneration optimization consists of consolidating
rule columns and introducing don’t-care values into the
rule portion of the table. The optimization methods that
are carried out during code generation are concerned
with the ordering of the condition tests and the “factor-
ing” of actions. (The latter technique is called precondi-
tioning in {8], but is more commonly known in compiler-
writing circles as ‘“hoisting.”) Postgeneration optimi-
zation procedures include removal of duplicate se-
quences of code and consolidation of duplicate flow
paths. These procedures often leave dead code, branch
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chains, and other dross in their wake, which is cleaned
up by some scavenger optimization methods. A final
optimization process was introduced into the program
that we use to create a concrete pL/I listing. This process
is an example of a scavenger procedure. Its purpose is to
remove unneeded conditional branches to exits, which
are themselves branches. These optimization methods
are discussed in the succeeding sections.

* Pregeneration optimization
The first optimization method used is that of consolidat-
ing rules where possible so as to introduce don’t-cares
into the condition entries. We call this the merge pro-
cess. Figure 7 shows the initial state of a decision table,
which we will use to illustrate the process.

Two rule columns can be combined into one if:

e They are identical except for one condition entry,
and

e In the differing entry, one column has Y and the
other has N (neither is a don’t-care).

The algorithm used first groups rule columns according
to action-exit sequences. In Fig. 7 the grouping gives

(07 08 09) (20 11 12 12 14 15 16)

(Note that groups containing only one column are ig-
nored.) It then forms subgroups according to don’t-care
patterns. If two rule columns were

Yy
NY

YN

they would have the same don’t-care pattern and would
be put into the same subgroup. Because there are no
don’t-cares in the table in Fig. 7, all elements of each
group have the same don’t-care pattern, so that the
groups default to subgroups. Within each subgroup, the
condition entries are compared to determine if a differ-
ence exists in exactly one position. Two columns from
Fig. 7 that qualify can be combined as follows:

11 11
45 45
Yy Y
NN N
Yy Y

NY (DIFFERENT) - (DON'T CARE)

The value at the position of difference is replaced by a
don’t-care value and one of the rules is discarded. Once
a pair of rules is consolidated, it is removed from the
subgroup because its don’t-care pattern has changed.
The remaining columns in the subgroup are processed
similarly until no further combinations can be found.
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PYT1{0000000001111111
11234567890123456

C1  |NYNYYYNYNNNNNYYY
c2 |NNYYYNNYYNNYYNNY
3 |NENRYNNRNYYYYYYY
C4 |NNNNNYYYYNYNYNYY

111
1111
111111111

X1 | XXXXXXXXXXXXXXXX

Figure 7 Decision table initial state.

After all subgroups have been processed, the combined
columns are regrouped and reprocessed. This iterative
process continues until no new combinations are possi-
ble. (Note that the particular combinations that occur
depend upon the order in which the columns are
matched.)

The effect of this optimization on basic code genera-
tion (in the absence of other optimization methods) is to
remove unnecessary condition testing. It therefore im-
proves both the space and time costs of the resulting
code.

Figure 8 shows the results of the merge process and
examples of its effects, as well as the effects of different
ordering (in the absence of other optimization methods).
On the other hand, in the presence of other optimization
procedures, the effect is reduced because of overlap of
optimization function. This pregeneration optimization
gives the user a better insight into his decision table. It
also reduces, at an early stage, the amount of work that
the other optimizers have to do. This method generally
results in a net reduction in compile time.

Both of the compilers that we examined [8,9] require
that the user perform this optimization in order to pro-
duce better code. It is often convenient for the user to
do part of this optimization himself when the situations
giving rise to don’t-cares are patently obvious. (It allows
him to greatly reduce the number of rule columns he has
to deal with.) The use of don’t-cares also can be a trick
that allows conditional test dependencies (a violation of
decision-table ground rules); therefore the implemented
merge function was designed to leave original don’t-
cares intact.

It is instructive to compare our merge process to the
electrical engineering problem of circuit simplification.
Recall that we identified two groups from Fig. 7 having
the same action-exit sequence. Consider rewriting the
condition entries of the second of these groups as fol-
lows so that they look like a Boolean expression.
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Figure 8 Effects of merge process.

1111111
0123456

NNNNYYY
NNYYNNY
YYyryyy
NYNYNYY

The equivalent Boolean expression with 4, B, C, and D
representing conditions 1 through 4, respectively, is:
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
+ ABCD.
Note that each rule represents a term in the expression,
and that all rules are in effect ored (+) together. The
elements within a rule column are aNDed. The decision
table effectively states in this case, “If all of the condi-
tions of any column are met, the common action/exit
sequence is performed.”

Now if we use the Quine-McCluskey technique [13],
to find the optimal Boolean expression, the result is:

AC + BC + CD.

The equivalent decision-table rule columns are:

- -
_N_
YyYy
-~y

Investigation of the code generated from a table so
optimized shows no improvement over that for the
merge method. This is because the Quine-McCluskey
method introduces don’t-cares that ultimately cause the
code generator to place a rule column in two subtables.
It can therefore be concluded that Quine-McCluskey
optimization methods are not applicable to the decision-
table optimization process. Note that the first two col-
umns actually overlap (e.g., the condition sequence
NNYY could apply to either one of them). Indeed, if it
were not for the fact that both columns specify the same
action-exit sequence, the decision table would be incon-
sistent.

e Qptimization during code generation

The code generation process we used has already been
outlined. However, the method of selecting the “next
test”” was deferred to this section since it has an impact
on the quality of the code produced.

The most significant work published relating to code
optimization is, in the author’s opinion, that of Reinwald
and Soland in Refs. [10] and [14]. Primary papers have
also been published by Montalbano [6] and Pollack [7],
and contributions made by King [2] and Press [1].
Most recently, Shwayder [12] extends the work of Pol-
lack. King describes the rule-mask technique, which
produces compact code but requires that all condition
tests be performed regardless of the logic needed. The
other papers deal with optimizing methods for sequential
testing procedures (the condition-tree method).

Press takes advantage of an else column, reducing the
number of instances of tests to a minimum (both statical-
ly —presence in storage—and dynamically —presence in
a flow path). However, the Reinwald and Soland work is
the most general and requires that the time and space
costs of performing tests be included as input to the op-
timization process. Reference [10] describes time op-
timization and Ref. [14] describes space optimization.
Both papers provide formulas for calculating the extra
cost involved in performing test i after test j has been
performed. They next demonstrate a means for deter-
mining a lower bound on the extra costs of all tests per-
formed after test j. Then they provide an algorithm for
searching a subset of all possible generated testing se-
quences to find the sequence with minimal lower bound.
They prove this sequential procedure to be optimal in
terms of the number of tests. The costs of actions were
not considered. This, we presume, is because action
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sequences were considered by them to be atomic units
and therefore could not be subjected to reorganization.
It should be noted that the time consumed by the search
algorithm goes up rapidly with the number of condition
tests in the table. (This approach falls in the area of
combinatorial mathematics and is akin to the “traveling
salesman’’ problem.)

Our initial approach to test selection followed along
the lines suggested by Pollack [7]. It was the simplest,
and our attention was focused on postgeneration optimi-
zation —a subject treated only lightly elsewhere. The
first criterion was the selection of the condition row with
the fewest don’t-care values. Beyond that, if a tie had to
be broken, the row was selected that had the minimum
difference between the number of Y’s and N’s (again on
the advice of Pollack). Later this was compared to the
Press method.

It was found that the Press method

% Required more compile time,

% Did not improve object code in the presence of post-
generation optimization, and

% Interfered with “hoisting” optimization steps.

We felt that concentration on postgeneration optimiza-
tion should be continued, and no further effort was ex-
pended on enhancing condition test selection. Clearly,
further investigation is warranted. The original selection
algorithm is therefore retained. Because an else-column
capability was desirable in a decision-table processor, it
was provided. The implementation was simply to con-
struct the missing condition rule entries and to supply
them with a common action-exit sequence (specified by
the user). These added columns are compressed via the
merge routine and require no subsequent special treat-
ment. Test selection and hoisting are applied equally to
all columns.

Schwayder [12] shows how to incorporate frequency
information into test selection. Although this was not
incorporated into the processor, the impact on our cur-
rent generation technique of including Schwayder’s algo-
rithm was investigated. If the frequency information
specifies the rule frequencies, only one line of APL code
need be added to take them into account. Another
line of ApL code would be required if condition test fre-
quencies are given. More effort would be required to
incorporate frequency specification in the decision table
format than in making use of it in code generation. Inclu-
sion of optional frequency information is recommended
for follow-on work. (As will be described later, some
postgeneration optimization methods may destroy some
of the effectiveness of test selection.)

The second optimization performed during code gen-
eration is that of “hoisting.” When one or more actions
are to occur in all flow paths following from a single
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Figure 9 The effects of “hoisting.”

condition test, it does not destroy program logic to move
(hoist) these actions to a position in front of the condi-
tion test. This is a space optimization, because duplicate
instances of these actions can be removed from all suc-
cessor paths to the test. Figure 9 demonstrates the ef-
fects of hoisting.

It should be noted that an action cannot be hoisted
past another action that must precede it in sequence.

Hoisting can most readily be performed during code
generation. Just prior to selection of a condition test, the
subtable is examined for an action that:

% Is performed in all remaining rules, and
% Is not required to follow an action that is not per-
formed in all the remaining rules.

Any actions that fulfill these criteria are immediately
generated and removed from the subtable.

The action entries accepted by the processor allow the
user to indicate an ordering, a lack of ordering, or a par-
tial ordering requirement on the actions. This is a degree
of freedom not provided in procedural descriptions.

It is not always easy for the user to recognize hoist-
able actions because he cannot easily recognize the subta-
bles. However, he always has a clear picture of the or-
dering requirements (or their lack) on the action. Auto-
matic hoisting lets the user specify his logic require-
ments in terms most easily understood by him.

Unfortunately, hoisting can, on occasion, exert a neg-
ative influence on duplicate sequence removal, an op-
timization procedure that occurs after code generation.
This problem is discussed after the description of the
affected optimization. But a way has not been discov-
ered to detect the situation without exhaustive (time
consuming) combinatorial analysis of the entire table.
Fortunately, in the practical éexamples we have exam-
ined, hoisting is more often good than bad. (It seldom
had any effect on duplicate sequence removal.) We ex-
plicitly resist taking the route of the P.E.T. processor,
which requires that the user control this optimization.
As mentioned earlier, post-generation hoisting might
improve the situation, but was not investigated deeply.
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003} C02+16 035 €02+02
ooul 401 036 A01
0051 402 0371 A02
006[02:C03+03 038)16:C03>17
0071 Xo1 039! X01
008103:407 040|17:407
009 C07+25 ou1l C07+13
0101 --->18 ou2|18:40u4

Figure 10 Possibly duplicate sequences.

* Postgeneration optimization

The two principal postgeneration optimization pro-
cedures are duplicate sequence removal (DSR) and du-
plicate path removal (DPR). In addition, “scavenger”
optimization techniques remove

*» Dead (unreferenced) code,

* Redundant condition tests,

*. Redundant unconditional branches (branch chains),
. Redundant exits.

The major effect of these optimization procedures is to
save space.

*e Duplicate sequence removal (DSR)

The code generation technique we use assures the per-
formance of all testing required to isolate a rule. If don’t-
cares are inserted by the user or the merge process, then
no tests are performed beyond those actually needed to
isolate a rule. Note that rule frequencies are not taken
into account, and that a reduced execution time cannot
be assured. Average performance can be varied by
changing the order of testing, but the minimum amount
of testing required to isolate a rule cannot be varied
[10]. Beyond reducing the tests to a minimum, one can
attempt to restructure the generated code so as to re-
duce the number of duplicated code sequences. This is
done by replacing one of the duplicate sequences with a
branch to its equivalent (DSR). In this way a small time
loss is introduced (to execute the branch) to save storage
space.

DSR is easy to perform because the code generator
produces code containing easily noticed patterns of du-
plicated code. Pairs of code sequences with identical
operation codes are first isolated and then more carefully
scrutinized (longer sequences first) to assure logical
equivalence. If they are logically equivalent, one of them
is replaced with a branch to the other. The compared
sequences are considered not equivalent for the follow-
ing reasons:

s They are dissimilar at any point,

* One sequence overlaps a portion of the other, or

* A portion of either sequence has been previously
removed (because it was equivalent to some other
sequence).

If any of these conditions occur, the unequivalent por-
tions of the sequences are masked off and the remaining
“good” portions are individually compared by a recur-
sive procedure. Any duplicated sequence longer than
one line of code is removed if it is logically equivalent to
another.

Figure 10 shows two possibly duplicate sequences.
Note first that lines 010 and 042 are not included in the
sequences being compared, but are shown because they
are germane to the detailed comparison. Operation
codes in lines 003 through 009 match those of lines 035
through 041. The flow paths following these sequences
pass to lines 010 and 042, which are seen to be equiva-
lent. The branch paths from lines 003 (035) and 006 (038)
are readily compared because they lie within the two
sequences being compared. These can be' certified as
being logically equivalent by comparing the offsets of the
branch targets from the beginning of the sequences.
Note that in the case of the 003~ 035 pair the branch tar-
gets are across sequences but that this fact does not mat-
ter in the comparison. A lengthy analysis must be per-
formed only on the paths emanating from the pair 009 -
041. This requires a line-by-line comparison of the code
starting at label 25 with that starting at label 13.

The cross-link process performed by the P.E.T. pro-
cessor is an attempt to eliminate duplicate code. Its ef-
fect, however, is to eliminate only common trailing por-
tions of action sequences (those that end in an exit). Our
algorithms remove all trailing sequences of redundant
code, including redundant test trees. In addition, all non-
trailing redundant sequences are removed if they flow
into logically equivalent code. In general, the results
have been very good when applied to actual system pro-
grams, as shown by the examples in the Appendix.

It was mentioned earlier that the hoisting optimization
can have a negative effect on DSR, because hoisting of
an action may remove it from one of a pair of duplicate
sequences. When this happens, the pair no longer quali-
fies for consolidation. It is possible, for example, for
hoisting to remove two lines and prevent the removal of,
say, ten or twelve lines of duplicated sequences. On the
other hand, the removal of an action from a sequence
could also cause that sequence to match another, when
it would not have done so otherwise. Some cases like
this were actually encountered, such as Tables 8 and 9
in the Appendix. Through use of compiler options,
selective elimination of hoisting is allowed. Further
work should be done to try to establish an effective
method for predicting the effect of hoisting on DSR.

Deferment of hoisting until the post-generation phase
was considered. Hoisting at that time is much less con-
venient and will definitely lead to longer compile time.
More information must be carried and maintained to
keep track of the rule column(s) that were the source of
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a particular action. The problem is made more complex
by the folding actions of the other optimizers. On the
other hand, reasonably good results were obtained with
the algorithm used, and we judged the effort-to-payoff
ratio too high to implement delayed hoisting.

e Duplicate path removal (DPR)

The second major postgeneration optimization technique
is duplicate path removal (DPR). When two flow paths
that emanate from a condition test have identical leading
logic, the leading portion of these paths can be consoli-
dated by moving the condition test down the paths to the
point(s) where they differ. Figure 11 illustrates DPR.

As can be seen, DPR may cause reordering of condi-
tion testing. The method is to isolate as potential candi-
dates those flow paths emanating from the same condi-
tion test and that start with the same operation code.
Then a test is selected whose branch target and succes-
sor lines contain the same operation code. For each such
test, the flow paths are compared and points of differ-
ence (POD) are located. (Note that if there are no
POD’s, the test is redundant and can be removed imme-
diately.) The two paths emanating from the test will be
referred to as the ‘““fall-through path” and the “branch
path.” Conceptually, the process is as follows. Locate
the POD’s in each of the two paths. Remove the test
and place a copy of it just in front of each POD in the
fall-through path. The address of each test copied is
changed to point to the corresponding POD in the
branch path.

With the removal of the original test, it is expected
(but not guaranteed) that a large portion of the branch
path will become dead code. However, there is no sim-
ple way to determine this prior to performing DPR.
Therefore a copy of the code is saved before performing
DPR. If the code resulting from DPR shows improve-
ment, it replaces the old code. If not the old code is re-
stored. Some time was spent trying to develop some cor-
relation between the amount of improvement and both
number of POD’s and number of lines in the duplicated
paths. However, nothing developed that was useful.
Furthermore, the conceptual algorithm described above
did not work. This was because DPR was applied after
DSR, and DSR could destroy the tree nature of the orig-
inal unoptimized code. Therefore, DPR has to contend
with the interesting possibility that the two flow paths
being compared might merge, or cross over. In fact,
some cases examined had a single line in the code turn
up as-POD’s in two different paths. This caused the
same test to be inserted twice in the same place.

The algorithm finally developed avoids the problems
by making a separate copy of the fall-through path, and
placing at each POD (in the duplicate) a copy of the
original test with the target of the POD in the original
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Figure 11 The effects of duplicate path removal.

branch path. This test is followed by an unconditional
branch whose target is the POD in the fall-through path.
At the end of the path comparison, the original test is
replaced with an unconditional branch to the duplicated
code, which is placed at the end of the code body. Both
the branch and fall-through paths then become candidates
for dead code removal.

Because DPR reorders condition testing, it may de-
stroy the effectiveness of optimization procedures that
depend upon test ordering. Since DPR never increases
storage consumption, only time optimization can be
adversely affected. This is a typical time-space trade-off
situation. Unfortunately, the user may wish to trade off
differently for different points of application of DPR
within code from a single table. At present, sufficient
information is not carried in the generated code to calcu-
late the overall time costs. A recommended follow-on
would be to try to include this.

DPR can recognize only those duplicate paths that
emanate from the same condition test. Some tables that
were processed contained duplicate paths that did not
emanate from the same point and couldn’t be removed
by the processor. When these paths were removed
manually, it was discovered that they could be removed
only at the expense of inserting additional tests in the
paths. The resulting code then would contain two tests
for the same condition in a single path. This is typical of
a situation in which the programmer would ordinarily set
a switch for later testing. Table 6 in the Appendix con-
tains this type of program structure. No algorithm was
discovered that could expeditiously locate duplicate
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e . e ces
oou| --->07 004 | --=>17

e . | A
009]07:--->08 009]07:=--->17
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011{08:---»17 011108:---+17
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015[17:. .. 015[17:...
BEFORE AFTER
Figure 12 Branch removal.
Figure 13 Reordering.
007] 403 007  Ao03
008] --->06 oo8| ---  (REMOVE)
009|0L:C02+17 009]06:404
- e s .
015|  x01 013] ---+03
0161 06:404 014|04:C02+17
020] --=>03 020]  X01
021[12:405 021112:405
BEFORE AFTER
Figure 14 Backward branch movement.
012] 403 012]  Ao03
013] A0k - ---  (REMOVE)
014} --->07 013] --->07
015] 014}
e P cond e
026  A01 025] 401
0271  AOx 026107:404
028|07:405 027] 405
BEFORE AFTER
Figure 15 Dead code removal.
012] ~-->07 0121 --->07
0131 = A06 0131 ---
s - sl ---  (REMOVE)
021  xo01 021] ---
022109:402 022]09:402
cend e el e
026  XOu 026]  Xou
027 * 409 027 ---
v e e ---  (REMOVE)
030] --->02 030 ---

031]12:C06>04 031{12:C06>04

BEFORE AFTER

*NO LABEL PRESENT

paths of this nature. This is.also an area that needs fur-
ther exploration.

e Scavenger optimization
Scavenger optimization procedures, as their name im-
plies, clean up the leavings of other optimizers. The

scavenger procedures to be described in the paragraphs
below are

Redundant branch removal,
* Redundant exit removal,

» Redundant test removal, and
» Dead code removal.

- Redundant branch removal is a procedure for seeking
out branches that receive control from other branches
and removing them. (Sequences of directly connected
branches are called branch chains.) Labeled branches
are readily detected. All references (in other instruc-
tions) to the label on a branch are replaced with the
branch operand, effectively removing the branch from
the chain. The labels can then be removed. Figure 12
illustrates branch removal.

The second step is to locate all branches that are pre-
ceded by either an unconditional branch or an exit and to
remove them. All branches whose targets are exits are
replaced with the exits themselves. If a branch has a tar-
get that can receive control only from the branch (i.e.,
the target is preceded by an unconditional branch or an
exit), then the branch can be eliminated by reordering
the code. This is done, thereby placing the target and all
code physically following it (up to a branch or exit) in
place of the branch. Figure 13 indicates the method.

While cleaning up branches, this optimizer can perform
one additional optimization step, which, strictly speak-
ing, is not redundant branch elimination. It is a type of
reverse hoisting. If the predecessor line to a branch tar-
get is the same as the predecessor to the branch, the
branch predecessor can be removed, and the branch
address reduced by one, to refer to the predecessor of
the former target. Figure 14 shows this optimization
method.

Redundant exit removal is a procedure to remove all
exits of any one type that are preceded by a branch or
another exit. Care must be taken, however, that there is
always one exit of each type left. All conditional branch-
es that have exits as their targets are set so that all refer-
ences to an exit of one type refer to the same exit. This
reduces the requirements for instances of exits to a mini-
mum. (Note that unconditional branches to exits were
eliminated by the branch optimizer.) No further process-
ing by the exit optimizer is necessary.

Redundant test removal requires that the flow paths
emanating from each conditional branch be examined. If
the fall-through path is logically equivalent to the branch
path, the test is eliminated. No other clean-up is per-
formed by the test optimizer.

Dead code removal is a procedure that first removes
all unreferenced labels, It then locates any uniabeled
lines that follow exits or unconditional branches. These
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lines are dead and can be removed. Any unlabeled line
following a dead line is also dead and can be removed.
All dead lines are located and removed at one time.
However, because a dead line may have been a branch
(conditional or unconditional), the removal of dead lines
may give rise to more unreferenced labels. Therefore,
the process is iterated until there are no more such la-
bels. Figure 15 illustrates dead code removal.

& Interaction of the optimizers
The order of all optimization procedures is:

Pregeneration
Merge
Generation
Test selection
Hoisting
Postgeneration
Duplicate sequence removal (DSR)
Scavengers v
Redundant branch removal
Redundant exit removal
Redundant test removal
Dead code removal
Duplicate path removal (DPR).

The postgeneration optimization procedures are itera-
tive whenever their application can possibly introduce
new program structure that would be susceptible to their
further application. Further, the scavenger steps are
called by both DPR and DSR, and DSR calls DPR.
Specifically, DSR processes all of the sequences it can,
then calls the scavengers. It then determines whether
code was reduced. If so, it repeats. In the case of DPR,
after each test instruction is processed, the scavenger
procedures are called, followed by DSR. (Calling the
scavenger procedures before entering DSR speeds up
the latter.) Then DPR checks for code improvement as
described earlier.

Concluding remarks

About seventy decision tables taken from actual applica-
tion areas have been compiled by the system. The code
for only two of these could be improved by hand. Fur-
thermore, the compiler running times under the APL sys-
tem were short enough to allow the experimental model
to operate as a production tool. Although there must be
manual intervention between processing a decision table
and the production of the final code, the processor as it
stands has already proved to be a useful aid to some
programmers by helping them organize their code. It can
be concluded that the processor can be used now to
gainful ends. If the algorithms described above were
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recoded into a more fully automated environment, pro-
gram production could be improved even more.

As has been noted earlier, certain optimization prob-
lems are yet unsolved. These are:

» The interference among test-order selection, hoisting,
DSR and DPR, and

~ Duplicate path removal where the paths do not start
at the same condition test.

Some additional optimization procedures couild be added
to the processor. These are:

» The use of frequency information in test-order selec-
tion,

» The use of timing information in conjunction with
space/speed priority setting for DPR, and

» The reversal of condition tests.

An investigation of the benefits of post-generation hoist-
ing should also be made.

The optimization methods described in this paper do
not include all possible program optimization pro-
cedures. We have concentrated on optimization methods
that are not usually done by higher-level language pro-
cessors, namely, the gross arrangement of program flow
structure. Specifically ignored are such optimization
methods as loop analysis, common subexpression elimi-
nation, code motion (except for hoisting and forward
code motion), and subsumption [15]. To perform these
would require analysis of the information in the deci-
sion-table entries, and would require a restriction on the
language permitted in the entries. It was felt that a wider
service could be performed by providing a framework
that would accept any language for entry statements. In
this way, optimization procedures that were not per-
formed could still be accomplished by passing the output
from the decision-table compiler through another optim-
izing compiler. Minor revisions to the PL/1 printing pro-
gram can cause it to produce output acceptable to FOR-
TRAN, ALGOL, and coBoL compilers (some of which per-
form optimization), and even to an assembler macro-
processor.

It should be noted that if a decision table has n rule-
columns, then there are exactly n ways of traversing the
generated program. This should suggest that exactly n
test cases need. be prepared to thoroughly test the pro-
duced program. Such a test battery would be guaranteed
to execute every instruction in the program, and to exe-
cute every conditional branch for both yes and no condi-
tions. Because the optimizers fold the program so that
some paths through the program execute the (physically)
same instructions, it is often possible to completely exer-
cise the program with fewer test cases than the number
of rule columns. A test-case generator could easily se-
lect a subset of the rule columns that would exercise all
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of the code. It is recommended that such a generator be
added to the system.

Table 1 Decision table compile times.

TABLE TIME LINES OF
NAME (SECS) CODE
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Appendix: Samples of decision table compilations

This appendix contains decision tables and flow charts
of code compiled from them. The reader is invited to
browse them to obtain a subjective appraisal of the ef-
fectiveness of the compiler. The tables are representa-

Table 2 Examples of simple decision tables and their corres-
ponding flow charts.
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Table 4 Table compiled by our processor and by P.E.T.
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Table 6 Manually improved example.
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Table 5 A more complex table.
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<C0S5> |-YYYYYNYYYYYNYYYYYN-
<C06> |-YYYYN-YYYYN-YYYYN--
<C07> |-YNNN--YNNN-~YNNN---
<C08> |--YYNw--YYN-~-YYN---
--YH--~-YN----
[4011 | 11111 11111 11111
[A02] | 11211 11111 11111
[A033 | 11 11 11
[Aou] | 1
[4051 | 1 1 1
(x01) X
(x02) | X X X
(x03) | X X X X
(xou) | XXXX XXXX XXXX
Table 7 Another example of manual improvement.
CHECKHY
HECK Ty
Ty <CO1>+++>arsa0
<C01 >++>>rr+0 + 03+
¥ 03+ [402] [409]
[402) [A09] ¥ 2
v + [A03] (X01)
CHECX 00000 4031 (X01) + T
112345 4 -t <C02>%+0
——————————— <CO2>++>+r>>0 + +
<Co1>{YNINN + 02+ [4081 ¢
<CD2>| -YANN [406] [404] + +
<C03>| --YHl + + o«+<C03> ¥
<COu>|~=-YN 0++<(03> + + v +
----------- ¥ v ¥ + [A07] +
{40111 6 v+ [A07] + + + +
{4021) 1111 + v + + [408] +
40311 2222 + [Ao08] v + + +
fAo43] 3 66 + + ¥ v <CDU>e+4
{4083} wu77 + [Aou] + v ¥ +
faoel! 333 v v + + [401] +
[A6711 uy ree<COU> + + v v
fAa083} 55 ¥ + + + v v
409711 v+ [401] + + Oly+eeso
----------- ¥ ettt + [A041
(X01) I XXXXx LY ST + +
01+ [ R
[4051] 02+
+ [A05]
(Xxo01) +
(X01)
COMPILED

MANUALLY IMPROVED
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Table 8 Effects of arbitrary condition row selection. Table 9 Effects of detrimental hoisting.

D190F3 FEDY
EeE i
ottt <01 > ou:*"""“‘"<cil >
01y ¥ ot btettet<CO> <COU>+rrrrrro
<C02>+>0  (X03) 0S4 v + 02+
D190F3]00000000011111 + v [/“:53 [/“:11 EAQU <Cg?>*****;;
112345678901234 M eI ye r4081 [a027 [402] 4071 {4057
--------------------- + 02+ ' . ' ' .
<C01> {YYYYYYYYYYYYYN (X01) o+«<C03> <C02>++e orr>r0  [403] (X01) [408]
<C02> |YYYYYYYYYYYYH- T v ' ‘ ‘ + b +
<C03> |YYYYYNNNNNRN-- Ottt Ol > : °**;g: : : j
<CO4> [am=--m YYYYYNN-- 05+ B ¥
<COS5> |YNNRNYRERNYN-- [402] [401] X2 [4331 . “3”] o
<C06> |~YNNN-YHHU~-~- v + f4os] + [405]
<C07> |=-YHN--YHN-==- °++<C05> f40u] * ‘ *
<C08> |===Yl=ne-YN-n-~ v + v FED 1000000 t “*;;t
--------------------- + [4ou] <C05>++0 123456 X02 1
[4011 | 11 N v v v . jamsuse (en L40s)
[402] 1111411111 + <006 >>rrrrrsy + <C01> |YNYNYN (x02)
f408) I 11 11 + + ¥ + <C02> |Y-NA-Y
[A04] | 1111 114411 b <COT>rrrrarsd N :ggg; :f;.'f}l-v; 23 LINES COMPILED WITHOUT HOISTING
f40s] |1 11 11 + + 03+ L i
--------------------- + [A03] (x01) + [401) (1 1 FED2
(X01) | XX X XX X XX v + v [4021 |1 1 e
(x02) X xXx XX R et et e S v f403] |11 ° <C01>
(XO3) l X 4 v v [A04] |11 03+ +
f40s51 111 1 <003 >+>>>>>20 <COU>>>r>rrda
<COB>>rrrssy ¥ [4063 | 1 1 ‘ ouv v 02+
+ O ieecero [A07] | 1 [A01] <C02>++rsrrr0 [4A011 o++<(02>
(xo1) f405] {4087 (1 1 1 + + 06+ + v +
g ¢ mmmmemeeeaoa {4021 + [a03] f402] + (4071
(X02) (xo01) | X + v v + + 4
(X02) |XXX xx + + [Aou] [403] + (xo01)
v v v v v T
+ ettt eetto [404] +
+ + ¥ +
D190F3R|00000000011111 : o5 e
112345678901234 + [40s] [40s]
...................... + + +
<C08> |-=-YN---YN---- N t
<C07> |--YNH--YHH---- . 01s
<C06> | -YNNN-YNNN---- [408] {4067
<C05> |YNNNNYNNRNYN-- v ‘
<COY4> f--m-w YYYYYNH-~ (x02) (x02)
<C03> |YYYYYNNHNNNN-- 26 LINES COMPILED 7ITH ROISTING
<C02> |YYYYYYYYYYYYN-
<CO1> |YYYYYYYYYYYYYN
ETC. levs 11
D190F3 WITH CONDITONS Table 10 A very complex table.
REVERSED
DTABCD|00000000011111111112222222222333333
EEE‘:EEB 112345678901234567890123456789012345
<co1> |¥YYY-YY---YYYYNNNNNNNN----NNONNNANN
01+ + <C02> |YYYYNNNNNNNNNNYYYYYYYYNNNNNNNNNNNNN
<CO2>>+>+rtro (Xx03) <C03> |----YYYNNNNNNN -YYYYYNNNNNNNN
+ 02+ YNNNNNN-~ocmmmmmmee NNNNNNNN
(X01) <CO5>+>>r>rro -YNNNNN ------NNNNNNEN
+ 06+ [ER T INENN-===mmmmmmem e NNNHNNNN
4043 f40s] <C07> |YYYNNNN---YYYNYYYYNNNNYYYYNYYYYNNNN
+ + <C08> |¥N-~-=-=-- IN--YYNNYYNNYYNN-YYNNYYNN
sttt ee<(0I> <CO3>>>+r+2+r0 <C09> |==-=YNNeoomcomc e e cce e fee e e e e
+ + + v <C10> |YYN--YN---YYN-YNYNYNYNYNYN-YNYNYNYN
$et et e-<O04> CCOUDF»>+>>4 e e m e m e e —m e m—— am e m———————
03+ + + 07+ [401] |1 1 11 1 11
{402] [401] [A011} [402] 4021 | 11 1 1
v + + ¥ 4037 | 1
°++<(06> (xo1) fA04] (X02) [daoul | 11 11
+ + + [405] | 1
$+¢<C07> (X02) [A06] | 1
+ + (4071 | 1 11
+ [403] [A083 | 1
+ v [409] | 111
+ <0085+ r>rrrro [410] | 9 9 99999999 9999
+ + 2 ekt TP Ey PR Uy
obbprd + (x01) | XX
ou+ 05+ (Xx02) | X X X x
(xo1) [A05] (x03) | X X X x
+ (xou) | X
(x02) (X05) |XXXXX XXXXXXX XXXXXXXX XXXX
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Table 10 A very complex table (continued).

1.

2.

DTABCD
+
°«<(02>
vy
v <003
v 164
¥ <CO04>++++>a <C07 °
oo + + 204
ottt <05> + <C09>+>+>+>>>0 <COB8>>>>rro0
15+ + 4 + + 19+ + 214
[A08] + <CO6>++>+>¢ ottt <(01> LA07)] + 0+<(10>
ooy v + ' + Yooy
v ey v + + + ooyt
¥ 01+ 134 17+ + ‘v o
° + €07> [A071  <C10>»s (XOu) (X05) v 4 [403]
+ + + v + v 077 T + v +
+ LR e e e e 2 v + + ¥ 4
+ ¥ + I yoov
07+ ¥ 14+ v 18+ ooy
<C01>+>>>rrrrrrrrra 0+«<(C01> 4091 [406] [4051] + + v
v 104+ ¥ + + v vy
<C08>+o s+etee<(10> ¢+ <C08>>0 (X05) (X01) (X01) ¥ + ¥
v + + v v + [ - T + + +
oo P veess o v 4
ooy T ; v
oo % R e ) v
v+ 11y v+ 02¢ 05+ P
[A04] + <CO8>»e (X05) + <C10>+e <C10>+o oo
v + + vOTTT + + + 12 + +
+ + + + + + o> + + +
ooy o oo oo
+ + + o>>ro + ¥ + + ° ¥
084«tvo ¥ 12+ + 03+ 06+ 4 v
v ‘v o4 o v
<C10>+0 (X05) 4011 + [4021] [401] + ¥
+ [ 2 v v + + + +
v vy s + o
¥ o>++o + + + +
+ 09+ ooy +
(X03) (X02) (X05) o+ rriectteteeo
- T T ouy
fA10]
+
(X05)
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