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Existence  and  Uniqueness of the Solution to Holland’s 
Equations for a  Class of Multicolumn  Distillation 
Systems 

Abstract: The Holland equations for a multiunit system of distillation columns, interconnected so as to contain recycle  loops, can be 
expressed as a matrix generalization of the Holland equations for a single complex column. Proof of the existence and uniqueness of a 
positive solution for the single-column case has previously been given. In this paper a proof is given for the case of a multiunit system 
containing one recycle loop. 

Introduction 
A brief description of the  use  and action of single dis- 
tillation columns appears in a  previous paper in  this jour- 
nal [ 1 ]. In  practice  these units are usually employed in 
systems  (batteries) of from  two  to  twenty  interconnected 
columns. Batteries of units are  able  to accomplish  separa- 
tions of chemical compounds  beyond  the capability of a 
single unit. Units  interconnected  as  depicted in Fig. 1 
form a distillation  train. The solution of equations de- 
termining flow rates in a multicolumn train may be  ob- 
tained by successively  applying to  each unit the  conver- 
gence  acceleration  procedure  proposed by  Holland [2] 
for single columns or  some of the  other  methods  that  have 
appeared in the  literature [3 - 101. To whatever  extent 
units  comprising a battery  are not in a train the intercon- 
nections form recycle  loops. A very  simple example is 
depicted by Fig. 2. To handle such situations Nartker, 
Srygley and  Holland [ 1 1,121 extended Holland’s single- 
column convergence  acceleration  technique  to multi- 
column systems,  and  Petryschuk  and  Johnson [ 13,141 
subsequently successfully  employed  this extension  to  the 
simulation of a “light-ends’’ separation  system (light ends 
are low-molecular-weight  distillates.) 

Familiarity  with the  approaches of Holland [2] and 
Nartker,  et al. [12] is assumed. Subsequent nomencla- 
ture is similar to  that used in these  two references. In 
Ref. 15 a procedure different  from that of Nartker,  et al. 
[ 1 1,121 was presented  for computing the Holland  cor- 
rection factors  for a battery of distillation  units, and  an 
application of the new procedure  was given. The advan- 

482 tages of the new approach  are  that only the Holland  cor- 

rection  factors  for single columns are  invoked, it being 
unnecessary  to  introduce  an additional set  as is done by 
Nartker,  et al. [ 121, and  that  the  present  development 
permits  the  existence  and  uniqueness of a positive  solu- 
tion to  be  proven,  at  least  for  the  case of an  arbitrary 
number of units  comprising a single feedback  loop. Pre- 
sentation of this proof occupies  the  greater  part of this 
paper. As in the  case of Newton’s method it is desirable 
to  know sufficient conditions for a unique  solution to 
exist  even if these  are  not  necessary conditions. 

Preliminary considerations 
The only streams considered here  are  those entering or 
leaving  a  unit  (distillation  column), and  the  term “prod- 
uct  stream”  refers to any of the  several  streams  that 
may leave a unit. As Nartker [ 1 1 1  has pointed out,  the 
component flow rate in any  product  stream may be em- 
ployed as  the  denominator of product  ratios [i.e., ( ~ , / b ) ~ ,  
or ( d / b ) ,  , as defined in the  next  section]  for  that unit, 
and it is not  necessary  that  the  same  product stream sup- 
ply the  denominator  for  each  component in a particular 
unit. 

In  practice  one  selects  these  denominators so as  to 
avoid attempting  to divide  by zero;  however,  for nota- 
tional convenience, herein all such  denominators per- 
taining to  the  same unit are  assumed  to be flow rates in 
the  same  stream  from  that  unit,  and  that  stream is referred 
to  as a “base  stream.”  For definiteness the  bottom  stream 
from a unit is arbitrarily chosen  as  the  base  stream  for 
that unit. Recall that during any particular  iteration in 
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Figure 1 Configuration of a distillation  train. 

the computation the  product  ratios  are known  positive 
constants fixed by the choice of the  base  stream  for  each 
unit. 

An  “external” feed stream is one  that originates  out- 
side of the  system,  and in all cases  the  complete  state 
(Le., the flow rates of each  component in the  stream) 
of each  external feed is assumed  to  be known. Further, 
the total flow rate of every feed stream is assumed  to be 
specified. As  shown previously [ 11, if other specifica- 
tions are  used, a  positive  solution to  the Holland  equa- 
tions may not  exist. 

The  term  “recycle loop” denotes a  succession of 
streams  from  one unit to  another  and through  which some 
portion of a product stream  from a particular unit might 
eventually return  as feed to  that unit without leaving the 
system.  When a set of recycle  loops is considered,  the 
individual  recycle loops  are independent if and only if 
each  contains  at  least  one  stream  not in any other  recycle 
loop of the set. 

It  is, of course,  necessary  to employ a set of indepen- 
dent  stream flow specifications to  determine  the Holland 
correction factors. These independent  specifications are 
further  restricted in value by the condition that all de- 
pendent specifications  must  be  positive (i.e., the specifi- 
cations must  be  mutually  consistent). 

It is convenient  to employ the convention that  for any 
pair of matrices or vectors a and /3 the  expressions a > /3, 
a 1 /3, a = /3, a 5 p and a < /3 denote  that  the particular 
relation is  true for corresponding  elements of a and p. 
The symbol “0” denotes a scalar  zero or a vector or ma- 
trix, each element of which is zero. 

Holland equations 
The formulation given by Nartker,  et al. [ 1 1,121  em- 
ploys two  sets of correction  factors,  one for the individual 
units and  the  other  for  the  system as  a whole. The  former 
set is the  same as that used by Holland [2] in solving 
single units.  It is possible to  express all the Holland equa- 
tions for a multicolumn system in terms of the Holland 
factors  for  the individual units and so avoid the intro- 

i’ 

0 (known) 
- F2 

(known) 

duction of a set of redundant variables. For a system of 
of N units  and S + N product  streams (S P N ) ,  the feed- 
rate  vector of the ith component is defined  by 

o n  
fl EE (4, ,Az 9 * * . , f i n o , .  . .’AN 1 9 

O T  (la) 

where hno is the specified feed rate of component i into 
unit n. 

The  vector of total flow rates of bottom  streams is 

bi = ( b i , ,  bpi, * . . , bin,  * . . , biNIT,  (1b) 

where bin is the flow rate of component i in the bottom 
stream  from unit n. 

The  total flow rate of all components in the  bottom 
stream is defined by the  vector 

C B =  ( B 1 , B P , ” ’ ~ B n , ” ’ , ~ N ) T ~  (IC) 

where 

B ,  = 2 b i n ,  

and I denotes  the total number of components. 

1 

i= l  

The  vector of Holland correction  factors is denoted by 

e E ( e , ,  e,, . . . , e,,. . . , (e, 2 0 ) .  (Id) 

The  superscript T in the  above  equations  and  throughout 
the  paper  denotes a transpose. 

The material  balances for  the ith component in a sys- 
tem  can  be  expressed by the  matrix-vector equation 

q ib i  =f ,  , ( 2 )  

where ‘ P i  is an N by N matrix  expressing the  dependence 
of the  component material  balances  upon the  system con- 
figuration and  the  correction  factors. 

For  the  system configuration given by Fig. 2, one 
defines 
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where din is the flow rate of component i in the distillate 
from unit n. From  Eqs. (2) and (3) the material balances 
for Fig. 2 are 

Since in this case  the specifications of B ,  and B ,  are 
independent it is convenient  to use  them for evaluating 
the 0's. The  Holland  equations  for  the  base  streams  are 
represented by the  vector g, E (r l ,  r2, . . . , T,)T and 
are  expressed by the matrix-vector equation 

Equation (5) strongly  resembles the  set of Holland 
equations  for a single complex  column [1,2] except  for 
the  fact  that  the individual equations  cannot be  written 
separately,  since  the explicit expression  for qi-' is not 
usually  available. One  notes,  however,  that Ti is diagonal- 
ly  dominant (by columns) and is an "matrix. Conse- 
quently 1 0 as shown  by Varga [ 161. Equation ( 5 )  
is solved  by Newton-Raphson iteration. 

Existence and uniqueness 
The following proofs will be  carried  out in the non-nega- 
tive  orthant of the  space  spanned by the  set of Holland 
correction  factors (e', Os+,)'. Note  that  the  vector 8 as 
defined in Eq. (1) lies in an S-dimensional hyperplane of 
this space. A familiarity  with the  corresponding proofs 
by induction for  the  case of a single complex  column as 
given in Ref. 1 is presumed.  The proof here will be de- 
veloped by induction and  be restricted to a system of an 
arbitrary  number N of units  comprising exactly  one  feed- 
back loop;  that  is, each  unit  supplies exactly  one feed 
stream  to  another unit and  each unit receives  exactly 
one  such feed. Figure 1 would depict  such a system  for 
N = 3 if product 4 therein  were  fed  back  to unit 1 .  The 
units are  numbered so that unit n feeds  unit n + 1 and 
unit  N feeds unit 1.  The  number and  arrangement of ex- 
ternal  feeds and of product  streams leaving the  system  are 
unrestricted.  The  latter  are numbered  consecutively 
starting  with  unit 1 and with all such  product  streams 
from unit n numbered *prior  to any in unit n + 1 .  The 
specified total flow rate of the  sth  such  stream  is  denoted 
by Ws,  the flow rate of component i in this stream by 
w i s ,  and the  total  number of such  streams is S + 1.  N of 
the  product specifications are  not  independent,  and all 
specifications  must be mutually consistent.  The  base 
stream  from a unit is that  stream which feeds  another 
unit in the  system.  For notational convenience only the 

484 bottom stream  from  each unit is taken as the  base  stream. 
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One now defines 

c ,  = ( W ,  , W ,  , - * , W, , , W,)T, the Holland  vec- 
tor of specified flow rates in all non-base product 
streams; 

@ = the diagonal matrix  having Os as  its  sth diagonal 
element; 

A, E (AJi as a rectangular  constant matrix  having S 
rows  and N columns  with exactly  one  nonzero 
element in each  row  such  that 

A .  snz E { 
T i  = (+mn)i as an N by N square matrix with 

-1 i f n = m +  1 o r i f m = I   a n d n = N  

(ws/b) in if stream s is supplied  by  unit n 

0 otherwise; 

I *  $mni = I + (w,/b), 0, if m = n 

0 otherwise, 

where  the  subscript * denotes a  valde of s for which 
stream s leaves unit n. With the foregoing definitions 
Eq. (5) remains unaltered, and one verifies that  the  mate- 
rial balance relations must  constitute a positive  solution 
to  Eq. (6) together with one  component of Eq. (5). That is, 

g ,  = cW - @ 2 Ribi = C ,  - @ Ri'P"&=O, (6) 
i i 

rn = 0 for  some n . 

The  reader is reminded that all work is restricted to  the 
first orthant.  Existence  and  uniqueness of the solution to 
Eq. (6) together with one  component of Eq. (5) will be 
proven by showing the following: 

A. gB 5 0 only in a bounded region, and ag,laO, > 0 

B. If g, = 0 in the region where g, i 0 ,  then g, = 0 on 
a continuous  curve which passes  into  the region 
where gB 1 0 ,  and the tangent to which has  positive 
direction cosines; 

(7) 

and ag,/ae > 0 ; 

C. gw = 0 does  occur in the region where g, 5 0 .  

Existence and  uniqueness will then follow from  condi- 
tions A, B, C and  the continuity of all functions. 

Condition A 
The  above definitions for  the lCIrnni show  that  for  the class 
of configuration being considered  the graph of Ti is 
strongly connected.  Varga [ 161 shows  that this property, 
in addition to  those  that Ti has already  been shown  to 
possess,  insures  that qi-' > 0 rather  than merely 1 0. 
Thus, in the  present  case  Eq. (2) yields 

bi = 1Vt-'fi > 0 , (8) 

and since  the only nonzero element of alV,/aO, is positive, 
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Equations (5) and (9) show  that 

agBlae8 > 0 .  (10) 

Equation (10) shows immediately that 

On  the B,-axis, 0, is the only nonzero 0, and  hence all 
material fed  to  the unit  must leave via stream s if Eq. (4) 
is to  be satisfied. Consequently, if stream s leaves unit n 

(W8/bIin 0, bin = u T f , ,  ( 1  2 )  

where 

U T =  ( 1 ,  l ; . . ,  I ) .  

Equations (5) and (12) then  show  that  on  the 8,-axis 

r, = B ,  - bin = rn0((e8) 
1 

Since  Eq. (13) always  has a positive  root 0,' the  surface 
r, = 0 must intersect  the 0,-axis when stream s leaves 
unit n .  Further, in view of Eq.  (lo), only one  such inter- 
section is possible. In general no single surface r, = 0 
intersects  each  axis, although every 0,-axis is intersected 
at a finite point Os = 0,' by some  surface rk = 0 .  Equa- 
tions ( 1  l )  and (13)  show  these  surfaces  to  have  the gen- 
eral  shape  depicted in  Fig. 3. One  sees  that  any solution 
to  Eqs. (5) must lie in the region R +  for which 

0 5 0, 5 os+ , ( s = 1 , 2 ; . . , S + l ) .  

Condition B 
Some knowledge of the  surfaces defined by g, = 0 in 
Eq. (6) is now required. If C ,  denotes  an  arbitrary ele- 
ment of g,, then  Eq. (6) shows 

where  stream s leaves unit n. Equation (6) does  not in- 
volve Cs+l or W,,, , and  for this  specification, 

E ws+l- (y)i,v bi.v. (15) 

Then, in view of Eq. (9) and since Os > 0 ,  

// aer 1 0  

Figure 3 Section of possible level surface of rk = 0 

The  overall  component material  balance is 

where  the  subscript * denotes  the  number of the unit sup- 
plying stream s. Differentiating  Eq. ( 1  7) with respect  to 
0, yields 

Then  Eqs. (14), .( 16), and (1 8) produce 

except  on  the 0,-axis, where aC,la0, = 0 .  Equation (17) 
shows bi is not defined at  the origin. The physical  ex- 
planation is, of course,  that  for all 0's equal  to  zero, ma- 
terial is being fed  to  the  system but none is being with- 
drawn. 

The induction assumption will subsequently be  used to 
show  that  the S surfaces g, = 0 intersect in a continuous 
curve in the first orthant of the S + 1 dimensional space 
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e3= 

e3 / 
e, =o 

Figure 4 Path exhibiting point of 0* (Os+,) . 

where 0 denotes Os+l , the  subscript S + 1 being suppres- 
sed  for notational  convenience. 

The behavior of e*(O) is now to  be investigated. Let 
r), be proportional to  the cosine of the angle between the 
tangent to @*(e) and the @,-axis. Now  at  any point e*(@) 
must be orthogonal to  the normal to each  surface given 
by g ,  = 0 .  This is expressed by 

The number of unknowns r), is S + 1 ; consequently, 
one  sets qS+, = 1 so that  the  above relations become 

where 

r)= ( r ) 1 r r ) 2 ' . . . ' r ) S ) T .  

Equation (19) shows that ag,/ae is diagonally dominant 
by columns; in fact  the sum of all elements in column p 
is  precisely -dCs+l lae, [ 11. Furthermore, Eqs. (16) and 
(1 9) show  that all off-diagonal elements of this  matrix 
are positive.  Varga [ 161 shows  that  these conditions 
are sufficient to  insure  that (agwlae)" exists  and  contains 
only negative  elements,  since the graph of ag,/de is 
strongly  connected. Thus, in view of Eq. (16), 

-1 
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Hence,  as  one  proceeds along @*(e) in the  direction of 
increasing 6 the distance from the origin steadily in- 
creases. In particular, within the finite region R+ each 
element of g ,  is a continuous  function of each O s ,  and 
hence  for each s, r),/ exceeds  some finite positive 
minimum 7,- [17]. Consequently,  two points  on e*(@ 
and further  apart than 6,'/r),- cannot both be in R'. It 
would be sufficient if r),- existed for only one s. One ob- 
serves  that @*(e)  cannot  intersect any coordinate hyper- 
plane except  perhaps  that of es+, = 0 ,  since for e, = 0, 
G,=W,  > 0. 

Condition C 
The induction  assumption is invoked at this point to show 
the  existence of e*(@ and that g, [e*(O)]  < 0. Proof in 
the  case of N = 1 , as required for induction, is deferred 
to a subsequent paragraph. The assumed  solution for  the 
case of N - 1  units will be  the solution for  the  present 
system of N units  when  each 0 corresponding to a stream 
from unit N is zero, hence all material  entering  unit N 
leaves  through the  base (bottom) stream and  is thus fed 
to unit 1. This is the  same  as if unit N were absent, unit 
N - 1  fed unit 1 and all external feeds to unit N were  ex- 
ternal  feeds to unit 1 entering on  the  same  stage  as  the 
feed from unit N - 1 . The specification for  the bottom 
stream  from unit n will be B ,  + 1 + xi&;.,", n # N . All 
remaining specifications will be  the  same  as in the  case 
of N units except  for  the stream denoted by s = 1 . The 
specification for this stream will be 

WI0 = w, + w,,, . (22) 

At  least  one specification of the  type given by Eq. (22) 
is necessary  for  the  total specified output  to  equal  the 
total feed  (mutual  consistency). T o  avoid confusion re- 
garding the dimension of the  space  under consideration 
it is assumed that  stream S + 1 is the only  non-base 
stream leaving unit N .  This restriction is removed  sub- 
sequently. 

In  the  absence of a recycle  loop the existence of @*(e) 
follows trivally from the induction  assumption [ 11. Here, 
because of the necessity for Eq. (22), the solution for 
N - 1  units does  not lie on 0 * ( 0 )  but rather  on Os+l = 0 
and the intersection of the surfaces given by 

G , = w , - B , ~ ( ~ )  W b. = w l - w o = -  
b il 'I 

1 W,+I < 0 ' 

G , = O ,  ( s = 2 , 3 ; . . , S ) .  (23) 

Thus  the  curve  represented by Eqs. (23) exists. It is con- 
tinuous since  the implicit function theorem [ 181 holds 
except  at  the origin. Hence it intersects  the hyperplane 
e,,, = E for sufficiently small values of E > 0. Denote 
this intersection by e1(OI1), where 

e'(e,) = [e,,  e2*(el), . . ., es*(el), E I ~ .  
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The procedure to exhibit a point  on 0*(0) is depicted 
in Fig. 4 for the case N = 3 = S + 1 . Roughly, one pro- 
ceeds from the point 0'(0,') along the  curve 0'(0,) de- 
fined by 

until this curve  intersects  the surface G I  = 0 [point e*(&) 
on Fig. 41. In this  way the path is always on  the surface 
given by Eqs. (24a). What  must be  shown is that  the last 
intersection  actually exists; certainly  no  corresponding 
intersection exists in the hyperplane for Os+, = 0 .  TO 
this  end  select  an e small enough so that g,[0'(0,')] < 0 
for  the original specifications for N  units. This is always 
possible  since  from the solution for N - 1  units 

rn = B ,  - bin = B ,  - ( B ,  + 1 + X&,') < 0 ,  
z i 

( n = 1 , 2 ; . . , N - l ) ,  

rN = B,v - 2 bi(N--l) = B ,  - (BtV-, + 1 + EL,") < 0 . 
i i 

In  the hyperplane defined by e,+, = e one verifies 

a. @'(e,) exists  because 0'(0,') is a point on it and re- 
mains in the hyperplane by definition; 

b. the origin does  not lie in the hyperplane; hence all 
functions are continuous [ 191 there and the implicit 
function theorem holds [ 181 ; 

c. G,[0'(0,)] = 0 by definition, and G, = W ,  > 0 for 

0'(0,) intersects no coordinate hyperplane except pos- 
sibly that of 0, = 0 ; 

d. 0'(0,) is subject to the analysis  and  results of sub- 
section B but in one less  dimension  and with 0, taking 
the role of Os+, and the region 0 < (0,  e) 5 0'(0,') 
replacing R' ; 

e. 0'(0) exists as  the intersection of 0'(0,) and  the coor- 
dinate hyperplane 0, = 0 ,  due  to  d); 

f. G,[0'(0)] = W ,  > 0 in view of c) and e) while 
G I  [0'(0,')] = -Ws+l < 0 by construction; hence, in 
view of  b), G,[0' (0 ,*) ]  = 0 exists for 0 < 0,* < 0'' 
and is unique by virtue of d); 

g. 0*(0) exists  since 0'(0,*) = e*(&) is a  point on  it; 
e*(@ intersects Os+, = E at no other point  since 
G, [0'(0,*)] = o is unique. 

0 , = 0 ,  ( s = 1 ,  2 ,  . . .  , S) , in view of b); hence 

With the  existence of 0*(0) now established one ob- 
serves  that Eqs. (IO) and (21)  together with item d) and 
the construction of 0'(0,') show 

so that e*(&) lies within R+ . As shown in subsection B, 
0*(0) must  leave  this region, but  since q > 0 it cannot 

Figure 5 Single unit with feed loop. 

intersect  any coordinate  hyperplane.  Consequently 0*(0) 
intersects  at least  one of the hyperplanes 0, = O s f ,  (s = 

1 , . . . , S + I ) .  Let 0, = OP+ denote  the first such inter- 
section, and suppose unit n supplies stream p .  Then 

g,=o,  

r, = o (25) 

comprises the  set of S + 1 independent  Holland equa- 
tions  for  the system of N  units. Since  at 0, = 0,' , rn > 0 
while r,[0*(e)] < 0 and r, is  continuous, 0*(0) inter- 
sects  the surface rn = 0 .  Since q > 0 ,  Eq. (10) shows 
that only one  such intersection is possible. Thus Eqs. 
(25)  possess  exactly one positive solution 0*(0,+,*) > 0 .  
Because of requirement that all specifications be mu- 
tually consistent,  there is also 

8L3[0* (0 .y+,*) I  = 0 9 

(26) 

and G,+, is now to  be included in g ,  . 
The existence  and  uniqueness of the positive  solution 

to  the Holland  equations  when unit N  has  an  arbitrary 
number of side draws is now shown by further induction 
from  a system of N  units and S + N product streams to a 
system of N  units and S + N + 1 product  streams, where 
the N  units are arranged in exactly one recycle  loop as 
before,  and thus S + 1 product  streams  leave the  system. 
The argument is the  same  as  that  just  presented with 
minor simplifications due  to  the fact that  no additional 
units are considered. 

Single unit recycle loop 
Proof by induction  requires the desired  result to  be estab- 
lished when only one unit is  present. Physically this 
corresponds  to a "feedaround" such as is often  present in 
crude distillation units. It will  suffice to carry out  the 
proof for a unit with one side  draw as depicted in Fig. 5. 
The base  stream constitutes  the feedaround  and for nota- 407 
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Figure 6 Solution for a single unit. 

tional convenience  and  consistency  is arbitrarily taken 
as  the bottom stream.  The Holland equations  for this 
system  are 

r = B -  A 
(d /bI i  O2 + (w l /bI i  0, ' 

In  the  second of Eqs.  (27)  set 0,/0, = p and  obtain 

showing G, to be constant  on radial  lines from  the origin, 
as  depicted in Fig. 6. The origin itself is excluded from 
consideration since  the  functions  are undefined there. As 
before, 0, = O2 = 0 corresponds  to feed  entering the unit 
without any  product being withdrawn.  Define 

p' = max [ ( w , / b ) i / ( d / b ) i l   ( F I W , ) .  

Then  Eq. (28) shows G I  ( 0 )  = W ,  - F < 0 ,  G I  (p') > 0 
and G I  is a continuous function of p. Thus G (Po)  = 0 
has a  solution [ 191. Since dG, /dp  > 0 this  solution is 

unique. The required  result is then available  from the 
first of Eqs. (27) as 

1 

B i (dlb)iPo+ ( ~ l / b ) i  
e,=-x .A 

Summary 
For the special case of exactly  one  recycle  loop with an 
arbitrary  number of columns the  existence of a  unique 
positive  solution to  the Holland equations  has been 
proven. One  sees  that  the only  point at which the limita- 
tion to  exactly  one recycle  loop was crucial  was in ob- 
taining Inequality (9). 
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