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D. S. Billingsley

Existence and Uniqueness of the Solution to Holland’s
Equations for a Class of Multicolumn Distillation

Systems

Abstract: The Holland equations for a multiunit system of distillation columns, interconnected so as to contain recycle loops, can be
expressed as a matrix generalization of the Holland equations for a single complex column. Proof of the existence and uniqueness of a
positive solution for the single-column case has previously been given. In this paper a proof is given for the case of a multiunit systegq

containing one recycle loop.

Introduction

A brief description of the use and action of single dis-
tillation columns appears in a previous paper in this jour-
nal [1]. In practice these units are usually employed in
systems (batteries) of from two to twenty interconnected
columns. Batteries of units are able to accomplish separa-
tions of chemical compounds beyond the capability of a
single unit. Units interconnected as depicted in Fig. 1
form a distillation train. The solution of equations de-
termining flow rates in a multicolumn train may be ob-
tained by successively applying to each unit the conver-
gence acceleration procedure proposed by Holland [2]
for single columns or some of the other methods that have
appeared in the literature [3-10]. To whatever extent
units comprising a battery are not in a train the intercon-
nections form recycle loops. A very simple example is
depicted by Fig. 2. To handle such situations Nartker,
Srygley and Holland [11,12] extended Holland’s single-
column convergence acceleration technique to multi-
column systems, and Petryschuk and Johnson [13,14]
subsequently successfully employed this extension to the
simulation of a “light-ends” separation system (light ends
are low-molecular-weight distillates.)

Familiarity with the approaches of Holland [2] and
Nartker, et al. [12] is assumed. Subsequent nomencla-
ture is similar to that used in these two references. In
Ref. 15 a procedure different from that of Nartker, et al.
[11,12] was presented for computing the Holland cor-
rection factors for a battery of distillation units, and an
application of the new procedure was given. The advan-
tages of the new approach are that only the Holland cor-
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rection factors for single columns are invoked, it being
unnecessary to introduce an additional set as is done by
Nartker, et al. [12], and that the present development
permits the existence and uniqueness of a positive solu-
tion to be proven, at least for the case of an arbitrary
number of units comprising a single feedback loop. Pre-
sentation of this proof occupies the greater part of this
paper. As in the case of Newton’s method it is desirable
to know sufficient conditions for a unique solution to
exist even if these are not necessary conditions.

Preliminary considerations

The only streams considered here are those entering or
leaving a unit (distillation column), and the term “prod-
uct stream” refers to any of the several streams that
may leave a unit. As Nartker [11] has pointed out, the
component flow rate in any product stream may be em-
ployed as the denominator of product ratios [i.e., (w,/b),,
or (d/b),,, as defined in the next section] for that unit,
and it is not necessary that the same product stream sup-
ply the denominator for each component in a particular
unit,

In practice one selects these denominators so as to
avoid attempting to divide by zero; however, for nota-
tional convenience, herein all such denominators per-
taining to the same unit are assumed to be flow rates in
the same stream from that unit, and that stream is referred
to as a “‘base stream.” For definiteness the bottom stream
from a unit is arbitrarily chosen as the base stream for
that unit. Recall that during any particular iteration in
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Figure 1 Configuration of a distillation train.

the computation the product ratios are known positive
constants fixed by the choice of the base stream for each
unit.

An “external” feed stream is one that originates out-
side of the system, and in all cases the complete state
(i.e., the flow rates of each component in the stream)
of each external feed is assumed to be known. Further,
the total flow rate of every feed stream is assumed to be
specified. As shown previously [1], if other specifica-
tions are used, a positive solution to the Holland equa-
tions may not exist.

The term ‘“recycle loop” denotes a succession of
streams from one unit to another and through which some
portion of a product stream from a particular unit might
eventually return as feed to that unit without leaving the
system. When a set of recycle loops is considered, the
individual recycle loops are independent if and only if
each contains at least one stream not in any other recycle
loop of the set.

It is, of course, necessary to employ a set of indepen-
dent stream flow specifications to determine the Holland
correction factors. These independent specifications are
further restricted in value by the condition that all de-
pendent specifications must be positive (i.e., the specifi-
cations must be mutually consistent).

It is convenient to employ the convention that for any
pair of matrices or vectors a and 8 the expressions a > 8,
a= B,a=p,a= Band a < 8 denote that the particular
relation is true for corresponding elements of a and B.
The symbol “0”” denotes a scalar zero or a vector or ma-
trix, each element of which is zero.

Holland equations

The formulation given by Nartker, et al. [11,12] em-
ploys two sets of correction factors, one for the individual
units and the other for the system as a whole. The former
set is the same as that used by Holland [2] in solving
single units. It is possible to express all the Holland equa-
tions for a multicolumn system in terms of the Holland
factors for the individual units and so avoid the intro-
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(known)
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Figure 2 Distillation system with feedback.

duction of a set of redundant variables. For a system of
of N units and S + N product streams (S = N), the feed-
rate vector of the ith component is defined by

fi= GO ful s DT (1a)

where f, ’ is the specified feed rate of component i into
unit 7.
The vector of total flow rates of bottom streams is

bi = (bi1 ’ biz" T b o biN)T’ (1b)

in?
where b,, is the flow rate of component / in the bottom
stream from unit ».

The total flow rate of all components in the bottom
stream is defined by the vector

CBE(BI’BZ""?B""7BN)T7 (lc)

n

and / denotes the total number of components.
The vector of Holland correction factors is denoted by

0=1(6,,6,,- ,0,,--,0)", 6,=0). (1d)

The superscript T in the above equations and throughout
the paper denotes a transpose.

The material balances for the ith component in a sys-
tem can be expressed by the matrix-vector equation

Vb, =, #)

where ¥, is an N by N matrix expressing the dependence
of the component material balances upon the system con-
figuration and the correction factors.

For the system configuration given by Fig. 2, one

defines
d (4
(b)n b, +1 (b)iz 9,

-1 (4)i2 6,+ 11, (3)
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where d,, is the flow rate of component i in the distillate
from unit n. From Eqgs. (2) and (3) the material balances
for Fig. 2 are

d _
(Z)il 0,b; +b; — (%)iz 0,b; —filo >

—b;, + <%>i2 0,0, + by, =fi20 . 4

Since in this case the specifications of B, and B, are
independent it is convenient to use them for evaluating
the §’s. The Holland equations for the base streams are

represented by the vector gz = (I',, T, - - -, FS)T and

are expressed by the matrix-vector equation

== b=c—>¥ f=0. 5
i i

Equation (5) strongly resembles the set of Holland
equations for a single complex column [1,2] except for
the fact that the individual equations cannot be written
separately, since the explicit expression for \Ifi_l is not
usually available. One notes, however, that W, is diagonal-
ly dominant (by columns) and is an M-matrix. Conse-
quently \Ifi_1 > ( as shown by Varga [16]. Equation (5)
is solved by Newton-Raphson iteration.

Existence and uniqueness

The following proofs will be carried out in the non-nega-
tive orthant of the space spanned by the set of Holland
correction factors (67, 0 +1)T. Note that the vector O as
defined in Eq. (1) lies in an S-dimensional hyperplane of
this space. A familiarity with the corresponding proofs
by induction for the case of a single complex column as
given in Ref. 1 is presumed. The proof here will be de-
veloped by induction and be restricted to a system of an
arbitrary number N of units comprising exactly one feed-
back loop; that is, each unit supplies exactly one feed
stream to another unit and each unit receives exactly
one such feed. Figure 1 would depict such a system for
N =3 if product 4 therein were fed back to unit 1. The
units are numbered so that unit » feeds unit n + 1 and
unit N feeds unit 1. The number and arrangement of ex-
ternal feeds and of product streams leaving the system are
unrestricted. The latter are numbered consecutively
starting with unit 1 and with all such product streams
from unit » numbered ‘prior to any in unit n + 1. The
specified total flow rate of the sth such stream is denoted
by W, the flow rate of component i in this stream by
w,,, and the total number of such streams is § + 1. N of
the product specifications are not independent, and all
specifications must be mutually consistent. The base
stream from a unit is that stream which feeds another
unit in the system. For notational convenience only the
bottom stream from each unit is taken as the base stream.
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One now defines

cw =W, W, W, -0, WS)T,the Holland vec-

tor of specified flow rates in all non-base product

streams;

® = the diagonal matrix having 6, as its sth diagonal
element;

A, =(\,); as a rectangular constant matrix having §

rows and N columns with exactly one nonzero
element in each row such that

A, = {(Ws/b)in if stream s is supplied by unit n
0 otherwise;
V. = (,,); as an N by N square matrix with
—lifn=m+1lorif m=1landn=N
Yo = L+ D (wi/b),, 0 if m=n
P

0 otherwise ,

where the subscript * denotes a valie of s for which
stream s leaves unit n. With the foregoing definitions
Eq. (5) remains unaltered, and one verifies that the mate-
rial balance relations must constitute a positive solution
to Eq. (6) together with one component of Eq. (5). That is,

gw=cw— DS Ab=cy—® T AV f,=0, (6)
i i
I, =0 for some n. (7)

The reader is reminded that all work is restricted to the
first orthant. Existence and uniqueness of the solution to
Eq. (6) together with one component of Eq. (5) will be
proven by showing the following:

A. gg =0 only in a bounded region, and dgg/36, > 0
and dgg/90 > 0

B. If gw = 0 in the region where gg = 0, then gyw = 0 on
a continuous curve which passes into the region
where gz = 0, and the tangent to which has positive
direction cosines;

C. gw = 0 does occur in the region where gz = 0.

Existence and uniqueness will then follow from condi-
tions A, B, C and the continuity of all functions.

e Condition A

The above definitions for the ¢, , show that for the class
of configuration being considered the graph of ¥, is
strongly connected. Varga [16] shows that this property,
in addition to those that W, has already been shown to
possess, insures that ¥,”' > 0 rather than merely = 0.
Thus, in the present case Eq. (2) yields

by=Y""£>0, ®)

and since the only nonzero element of ¥,/46, is positive,
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ab, o,
oyt gy
603 2 808 J f;
-1 a\yl
=—V, w0 b, <0, )

Equations (5) and (9) show that

agpla6, > 0. (10
Equation (10) shows immediately that

%, = M <0. an
3,1y,  r,/06,

On the 6-axis, 6, is the only nonzero 6, and hence all
material fed to the unit must leave via stream s if Eq. (4)
is to be satisfied. Consequently, if stream s leaves unit

(w,b),, 6, by =u'f;, (12)
where
W'=(1,1,---,1).

Equations (5) and (12) then show that on the 6,-axis
Fn = Bn - E bin = Fno(os)

1

Bn—%;%) Wf, (13)

in
Since Eq. (13) always has a positive root 0; the surface
I', = 0 must intersect the §-axis when stream s leaves
unit n. Further, in view of Eq. (10), only one such inter-
section is possible. In general no single surface I', =0
intersects each axis, although every 6 -axis is intersected
at a finite point §, = 6,” by some surface I', = 0. Equa-
tions (11) and (13) show these surfaces to have the gen-
eral shape depicted in Fig. 3. One sees that any solution
to Eqs. (5) must lie in the region R for which

0=6=49", (s=1,2,-+,8+1).

~ Condition B

Some knowledge of the surfaces defined by gy =0 in
Eq. (6) is now required. If G denotes an arbitrary ele-
ment of gy, then Eq. (6) shows

W,
Gs = Ws - 05‘ E <.b_s> bin ’ (14)

where stream s leaves unit #n. Equation (6) does not in-

volve G,  or W and for this specification,

S+1 S+1°

_ Wsi1 b 15
Gorr = Wsi — by, 2 b ), w (15)

Then, in view of Eq. (9) and since 6, > 0,

G, (W) ab,
=9, (=) S, <. 16
26 205 %, P 1o

» i in
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Figure 3 Section of possible level surface of r,=0.

The overall component material balance is

S (5) obu=u a”

] i*
where the subscript * denotes the number of the unit sup-
plying stream s. Differentiating Eq. (17) with respect to
0, yields

w, ) ws> o b, 0 (18)
—=) b+ =0.
(b >* " ? (b * 80,

i i*

Then Egs. (14),.(16), and (18) produce

G w w ab,
p_ _p _ _pr)y _i
a9, p) (b ) b= 6, 2 (b )m 39,

1 mnm

G
-y —%«) (19)

8, p¥8 ¥4
except on the 6 -axis, where 3G /06, = 0. Equation (17)
shows b, is not defined at the origin. The physical ex-
planation is, of course, that for all 6’s equal to zero, ma-
terial is being fed to the system but none is being with-
drawn.

The induction assumption will subsequently be used to
show that the S surfaces gy = 0 intersect in a continuous
curve in the first orthant of the S + 1 dimensional space
spanned by (0", 6 H)T. Denote this curve by

0% (0) = [6,*(0),6,*(8),- - -, 0,5(8), 01",
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2

G,=0

03 01=0

Figure 4 Path exhibiting point of 6* (6, ,) .

where 6 denotes 6,, , , the subscript S + 1 being suppres-
sed for notational convenience.

The behavior of ©*(6) is now to be investigated. Let
7, be proportional to the cosine of the angle between the
tangent to ©*(8) and the 6 -axis. Now at any point ©*(6)
must be orthogonal to the normal to each surface given
by gw = 0. This is expressed by

S n, 9G,l06,=0, p=1,2,---,8).

The number of unknowns 7, is § + 1; consequently,
one sets n,,, =1 so that the above relations become

ag g
—Tg=——, (20)
90 9.,
where
_ T
7)=(7’1’7'2’""775)-

Equation (19) shows that dgw/90© is diagonally dominant
by columns; in fact the sum of all elements in column p
is precisely —aG s+1/30p [1]. Furthermore, Eqgs. (16) and
(19) show that all off-diagonal elements of this matrix
are positive. Varga [16] shows that these conditions
are sufficient to insure that (3gy/90) " exists and contains
only negative elements, since the graph of dgw/00O is
strongly connected. Thus, in view of Eq. (16),

dgw\ " g
w w
=—(—= > 0. 21
K (ae) ) @1

S+1
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Hence, as one proceeds along ©*(0) in the direction of
increasing 6 the distance from the origin steadily in-
creases. In particular, within the finite region R™ each
element of gw is a continuous function of each 6, , and
hence for each s, 7,/ \/W exceeds some finite positive
minimum 7, [17]. Consequently, two points on O*(6)
and further apart than 93+/"’ls_ cannot both be in R'. It
would be sufficient if 5, existed for only one s. One ob-
serves that ©*(0) cannot intersect any coordinate hyper-
plane except perhaps that of 6,,, = 0, since for 6, =0,
G,=W,_>0.

e Condition C

The induction assumption is invoked at this point to show
the existence of ©*() and that gz[©*(0)] < 0. Proof in
the case of N = 1, as required for induction, is deferred
to a subsequent paragraph. The assumed solution for the
case of N — 1 units will be the solution for the present
system of N units when each 6 corresponding to a stream
from unit N is zero, hence all material entering unit N
leaves through the base (bottom) stream and is thus fed
to unit 1. This is the same as if unit N were absent, unit
N — 1 fed unit 1 and all external feeds to unit N were ex-
ternal feeds to unit 1 entering on the same stage as the
feed from unit N — 1. The specification for the bottom
stream from unit #n willbe B, + 1 + Eifmo , n#N.Al
remaining specifications will be the same as in the case
of N units except for the stream denoted by s = 1. The
specification for this stream will be

w'=w,+Ww,,,. (22)

At least one specification of the type given by Eq. (22)
is necessary for the total specified output to equal the
total feed (mutual consistency). To avoid confusion re-
garding the dimension of the space under consideration
it is assumed that stream S + 1 is the only non-base
stream leaving unit N. This restriction is removed sub-
sequently.

In the absence of a recycle loop the existence of O*(6)
follows trivally from the induction assumption [1]. Here,
because of the necessity for Eq. (22), the solution for

N — 1 units does not lie on ©*(#) but rather on 6, , =0
and the intersection of the surfaces given by
— W - o_
Gl—Wl—ol 2 (7) bil_Wl_Wl —_W.Hl <0,
i i
G,=0,  (s=2,3,---,5). 23)

Thus the curve represented by Egs. (23) exists. It is con-
tinuous since the implicit function theorem [18] holds
except at the origin. Hence it intersects the hyperplane
8,,, = ¢ for sufficiently small values of £ > 0. Denote
this intersection by 9’(011) , Where

0'(8,) =[6,,6,%(8,), - -, 0,56, ,£]".
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The procedure to exhibit a point on ©*(6) is depicted
in Fig. 4 for the case N =3 = 8§ + 1. Roughly, one pro-
ceeds from the point ©'(6,") along the curve 6'(6,) de-
fined by

G,=0,  (s=2,3,---,5), (242)

0 e, (24b)

S+1

until this curve intersects the surface G, = 0 [point ©*(e)
on Fig. 4]. In this way the path is always on the surface
given by Egs. (24a). What must be shown is that the last
intersection actually exists; certainly no corresponding
intersection exists in the hyperplane for 6, , = 0. To
this end select an € small enough so that gB[Gl(OIO)] <0
for the original specifications for N units. This is always
possible since from the solution for N — 1 units

Fn=Bn—2bin=Bn—(Bn+1+2fin°) <0,

(h=1,2,-"
FN_':BN_Ebi(N—l):BN— By, +1 +2fi1v0) <0.

1

.’N_l)’

In the hyperplane defined by 6, ., =€ one verifies

S+1

a. 61(01) exists because 61(011) is a point on it and re-
mains in the hyperplane by definition;

b. the origin does not lie in the hyperplane; hence all
functions are continuous [19] there and the implicit
function theorem holds [181;

c. GS[G'(GI)] =0 by definition, and G =W, > 0 for
6,=0, (s=1,2, --,S), in view of b); hence
8’(01) intersects no coordinate hyperplane except pos-
sibly that of 8, =0 ;

d. 91(61) is subject to the analysis and results of sub-
section B but in one less dimension and with 6, taking

the role of 6 ,, and the region 0 < (0, &) =< ©'(4,")
replacing R" ;

e. 0'(0) exists as the intersection of 91(01) and the coor-
dinate hyperplane 6, = 0, due to d);

f. GI[GI(O)] =W,>0 in view of c) and e) while
G,[e‘(all)] =—W,,, <0 by construction; hence, in
view of b), G [0'(6,*)] = 0 exists for 0 < 6,* < 6,
and is unique by virtue of d);

g. ©*(0) exists since 61(01*) = O*(g) is a point on it;
O*(0) intersects 6., =¢& at no other point since
GI[OI(G,*)] = 0 is unique.

With the existence of ©*(8) now established one ob-
serves that Egs. (10) and (21) together with item d) and
the construction of 91(011) show

gs[0*(e)] < £5[0'(6,")] <0

so that ©*(¢) lies within R* . As shown in subsection B,
O*(0) must leave this region, but since » > 0 it cannot

SEPTEMBER 1972

F—

Figure 5 Single unit with feed loop.

intersect any coordinate hyperplane. Consequently ©*(6)
intersects at least one of the hyperplanes 6, = 0; , (s=
l,---,8+1). Letg,= (91)+ denote the first such inter-
section, and suppose unit n supplies stream p. Then

gW=09
r,=0 25)

comprises the set of § + 1 independent Holland equa-
tions for the system of N units. Since at §,=6,",T, >0
while I',[0*(e)] < 0 and I', is continuous, ©*(0) inter-
sects the surface I', = 0. Since n > 0, Eq. (10) shows
that only one such intersection is possible. Thus Eqgs.
(25) possess exactly one positive solution ©6*(6,, ,*) > 0.
Because of requirement that all specifications be mu-
tually consistent, there is also

gB[e*(05+1*)] =0 s

w
Gs+1[e)k (os+1*)] =W, —0," 2 ( ZH)' b,=0,
(26)

and G, is now to be included in gw .

The existence and uniqueness of the positive solution
to the Holland equations when unit N has an arbitrary
number of side draws is now shown by further induction
from a system of N units and S + N product streams to a
system of N units and § + N + 1 product streams, where
the N units are arranged in exactly one recycle loop as
before, and thus § + 1 product streams leave the system.
The argument is the same as that just presented with
minor simplifications due to the fact that no additional
units are considered.

Single unit recycle loop

Proof by induction requires the desired result to be estab-
lished when only one unit is present. Physically this
corresponds to a “feedaround” such as is often present in
crude distillation units. It will suffice to carry out the
proof for a unit with one side draw as depicted in Fig. 5.
The base stream constitutes the feedaround and for nota-
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f2

Figure 6 Solution for a single unit.

tional convenience and consistency is arbitrarily taken
as the bottom stream. The Holland equations for this
system are

I f;
L =B = by 6.+ wb). 6,
o (w,/b), 1,
G, =W, =4 2 (dlb), 8, + (w/b), 8,° 27)
In the second of Eqs. (27) set 8,/6, = B and obtain
Ab). f;
(wilb), f; (28)

G =W, = X150, B+ (wb),”

showing G, to be constant on radial lines from the origin,
as depicted in Fig. 6. The origin itself is excluded from
consideration since the functions are undefined there, As
before, 8, = 6, = 0 corresponds to feed entering the unit
without any product being withdrawn. Define

B" = max [(w,/b),/(dIb);] (FIW,) .
Then Eq. (28) shows G,(0) =W, —F <0, G,(8") >0

and G, is a continuous function of B. Thus G(8,) =0
has a solution [19]. Since dG /dB > 0 this solution is

D. S. BILLINGSLEY

unique. The required result is then available from the
first of Egs. (27) as

_1 f
"B E (dlb) B, + (w,lb),

01

Summary

For the special case of exactly one recycle loop with an
arbitrary number of columns the existence of a unique
positive solution to the Holland equations has been
proven. One sees that the only point at which the limita-
tion to exactly one recycle loop was crucial was in ob-
taining Inequality (9).
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