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Recursive  Computational  Procedure for 
Two-dimensional  Stock  Cutting 

Abstract: A recursive algorithm is implemented to give high computational speeds in the solution of a  cutting-stock  problem.  Optimal 
edge-to-edge  cutting is shown  to  be achieved more easily by recursive programming  than by conventional methods.  The  technique fea- 
tures preliminary discretization, which lowers the memory  requirements in the computational procedure. A comparison is made  be- 
tween  this recursive algorithm and two iterative  algorithms  previously given by Gilmore-Gomory.  The limitations of the algorithms are 
discussed  and  some numerical results given. 

Introduction: basic algorithm 
The  process of cutting  a  given  rectangle into smaller 
rectangles of various  sizes is often  a recursive one. That 
is,  one  draws a line orthogonally from  one edge to  the 
opposite  one and  then proceeds  the  same way with the 
two resulting  rectangles as indicated in Fig. 1 .  Excep- 
tions are  certain applications such  as  the dissection of a 
rectangle into  squares of different  sizes (“perfect rec- 
tangles”) [ 1 ] as shown in Fig. 2 .  

We consider  the following problem, which has  been 
already discussed  at length by P. C. Gilmore and R.  E. 
Gomory in Ref. 2 :  Given a  “large”  rectangle R and a 
finite set S of “small”  rectangles, find a dissection of the 
large  rectangle (by the  process mentioned  above) which 
minimizes the ‘‘loss,’’ i.e., the total area of those resulting 
rectangles which do not belong to  the  set S. Obviously, 
this is equivalent to maximizing the total area of “usable” 
rectangles. More generally, as  discussed in Ref. 2 ,  one 
has  to maximize the total  “value” of usable  rectangles, 
each  member of the  set S having been  given such a value. 

Any optimal  solution has  the following recursive prop- 
erty:  Either  the large  rectangle is in S, or  the first dissec- 
tion line yields  two  rectangles, each of which is optimally 
dissected.  Now a simple algorithm consists in trying 
every possible first dissection  line  (requiring  only  a finite 
number of trials as indicated in Theorem I )  and retaining 
the  one which gives the maximal total  value for  the  two 
partial  dissections. 

It should  be  noted that this algorithm is valid only un- 
der  the assumption that  there is no bound for  the number 
of occurrences of a small rectangle in the solution. Other- 
wise,  some  optimal  solutions might correspond  to non- 
optimal  partial  solutions. 462 
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Figure 1 Recursive  cutting. The graph of Figure  l(b)  shows 
the  order in which the large rectangle must  be  cut.  Each small 
rectangle is obtained by the  sequence of cuts  about it. 
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The assumption of no bounds for  the  number of these 
occurrences makes it possible also  to get rid of “aniso- 
tropy” considerations. Suppose  some rectangles may be 
placed only  “horizontally,” while the  others may have 
either orientation. Then  each of the  latter  type will be 
represented by two members of S, by exchanging its 
dimensions,  and the whole will be  handled  “horizontally.” 
Rectangles having either orientation could not  be  repre- 
sented in this way if the  numbers were  bounded. 

In  the following sections, we present  some refinements 
of this algorithm and discuss  the  convenience of using a 
programming  language such  as pL/l that  features recur- 
siveness. 

Discretization 
Let a and b be the dimensions  (“horizontal”  and “ver- 
tical”) of the given  large  rectangle R , pi and qi those of 
the ith member of S, and vi its  value ( 1  5 i 5 n) . Let 
p and q be  the column vectors of coordinates p i ,  qi, 
respectively. 

Denote by z a line vector with n nonnegative  integer 
coordinates. A finite number of such  vectors satisfies 
zp  5 a and the  same is true  for zq  5 b . Let P and Q be 
the  corresponding finite sets of values of zp  and z q  . 

Theorem I 
For  any dissection of R ,  there  exists a dissection of 
equal or higher value with all abscissae in P and all ordi- 
nates in Q. 

Here we designate the  distance of a  vertical  dissection 
line to  the left edge of R as  the  abscissa  and  the  distance 
of a  horizontal  dissection line to  the lower edge  as  the 
ordinate. 

Proof 
We  use induction on a and 6 .  If a is less  than every p i ,  
then any  dissection gives no usable  rectangle and  hence 
is of same value as  the  “empty” dissection (i.e., the rec- 
tangle with no  dissection lines). The  same is true if b is 
less  than  every qi . 

Suppose  the  theorem is true  for  every rectangle R‘ of 
dimensions a‘ , b’ such  that a‘ I a and b’ 5 b (but a + 
a’ < b + b ’ )  . Consider a dissection D of R .  

We may assume  that  the first  dissection line L is ver- 
tical, the  other  case being quite similar. By the induction 
hypothesis,  there  exists a dissection D ,  of the left  rec- 
tangle R ,  of equal or higher value  than  the left part of D 
and with all abscissae in P and all ordinates in Q; there 
exists a dissection D, of the right rectangle R ,  of equal  or 
higher value  than the right part of D and with all ab- 
scissae (counted from L)  in P and all ordinates in Q. 

If the  abscissa of L is  in P ,  the union of D,  and D ,  is a 
dissection satisfying the conclusion, as P is additive. 
More precisely, x E P ,  x’ E P and x + x’ 5 a implies 
x + x ’  E P .  
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Figure 2 Nonrecursive  cutting. This figure is taken from Ref. 1 .  
The numbers inside the squares are the edge  lengths. 

Figure 3 Getting a canonical  dissection. Nonusable rectangles 
are shaded. Each of the two main parts is  canonically  dissected. 
P and Q are represented along the edges. 

If the  abscissa of L is not in P , then every rectangle of 
D ,  with its right edge on L is nonusable; the rightmost 
abscissa of the corresponding  left  edges is in P.  Now we 
obtain the sought-for  dissection of R by drawing the 
vertical line L’ at  that  abscissa,  suppressing  the lines of 
D,  on  the right of L’ and translating R ,  with D,  from L to 
L‘ , a s  shown in Fig. 3. Q.E.D. 

Although we did not assume  the  data  to be  integral, nor 
even rational, the  inductive  process is clearly finite. The 463 
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Figure 4 A homogeneous  canonical  dissection 

Figure 5 Symmetrization: first case. 

5 

Figure 6 Symmetrization:  second  case. 

L 

procedure  consists of forcing the usable  rectangles to  the 
left and  the bottom. 

Theorem 1 reduces  the trials  involved in the  above 
algorithm to  the finite process of scanning P and Q . A 
dissection with all coordinates in P and Q will be called a 
canonical dissection. 

Homogeneous dissections 
We call a  dissection that involves  only one  type of small 
rectangles  a homogeneous dissection. In a canonical 
homogeneous dissection,  the  abscissae  are p i ,  2 p i ,  3 p i ,  
. . . and  the  ordinates  are q i ,  2 q , ,  3qi ,  . * . for  some i. 
See Fig. 4. 

Symmetrization 

Theorem 2 
For  every canonical nonhomogeneous dissection of R 
there  exists a  canonical dissection of equal  value, the co- 
ordinate of the first line of which is at most equal  to half 
of the  corresponding dimension of R .  

Proof 
Suppose  the first vertical line of abscissa c is greater than 
a12 . If the second line is vertical at  an  abscissa  less  than 
or  equal  to a/2 , we  can consider it as  the first line (Fig. 5). 
If the  second line is vertical also  at  an  abscissa  greater 
than a / 2 ,  the rectangle between both lines can be  ex- 
changed with the left rectangle  (Fig. 6). 

If the  second line is horizontal, consider  the rightmost 
abscissa c' of usable  rectangles; if c' > c , one  has only 
to  draw  the vertical line at c' (as  much as c' < a)  and  to 
exchange  the  two left  vertical parts (Fig. 7). 

If c' = c ,  one  can  extend  the  second line to  the right 
edge of R and consider it as  the first dissection  line, which 
gives  rise to  the  same situation  as above, in which  CO- 
ordinates  are exchanged. 

Finally,  only one  case  cannot be  handled, i.e., when 
there is only one small rectangle in the  dissection  as 
illustrated in Fig. 8. But this is not  a  nonhomogeneous 
dissection. Q.E.D. 

Theorem 2 reduces  the scanning of P and Q by half. It 
applies, of course,  to  every subrectangle. 

Exclusion 
We  have impiicitly assumed  that  for  every i , pi 5 a and 
qi 5 b . Otherwise  some small rectangles could never be 
cut. This  assumption,  however  does  not necessarily hold 
for  the partial  rectangles  involved in the  recursive al- 
gorithm. For  such a rectangle, which is of dimensions 
(Y X p , we have  to  scan 

and 
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( a )  C < C ,  
(b) c=c’  

Figure 7 (a) Symmetrization: third case. (b) Symmetrization: fourth case. 

Q ,  = { z q  I (p i  > a 3 zi = 0)  and ( z q  5 P / 2 ) ) .  

A  more  practical  computation of P ,  is the following: 
Associate with every z the quantity 

f ( z )  = SUP {qiIzi ’ 0) 

and to  every x in P the quantity 

F (x)  = inf { f ( z )  I Z P  = x> 

Then 

Pa, = {x [x 5 a / 2 ,  F (x) 5 /3} . 
Similarly, Q,, is 

{ Y  I Y  E Q ,  Y 5 P / 2 ,  G ( Y )  5 a> 

where 

G ( y )  = inf k ( z )  Izq = Y >  

and 

g ( z )  = SUP {Pi  l Z i  > 01. 

Because F and G do not depend  on a and P, they can 
be computed  at  the  outset. 

In  order  to  speed  up  the main computation, P and Q 
are  generated by increasing mappings (b and 9 from [ 1 , A]  
and [ 1 , p] into R, so that F and G are  expressed through 
mappings F ,  = F 0 (b , G, = G 0 II, , as now  developed. 
(A and p are  the cardinals of P and Q . )  

Computation of F ,  and G, 
+ and IC, are  constructed by the following recursive pro- 
cess, which we give only for +. Initially, A is zero.  The 
current  step  consists in checking, for  every i and  every j 
such  that (b ( j )  + p i  I a/2  , to  see  whether + ( j )  + pi  be- 
longs to +( [ 1 , A ] )  ; if not, A is increased by l and the 

Figure 8 Symmetrization: fifth case. 

values of + are shifted in order  that + keep increasing. 
The  process  terminates when A is not changed in the cur- 
rent  step. 

F ,  (and similarly GI) is computed  at  the  same  time; if 
( b ( j )  + p i  is + ( k )  , then F ,  ( k )  is replaced by the mini- 
mum of F ,  ( k )  and the maximum of F ,  ( j )  and qi . If (b ( j )  + 
pi is not in + ( [ I , A]  ) , F ,  takes  at  the inserted  index k the 
value of the maximum of F , G )  and qi (and indices fol- 
lowing k are shifted). 

Main recursion 
We are now  ready to  describe  the  search  for an optimal 
dissection of R.  The possible  dissections ofR  are 

1. The homogeneous  dissections. 465 
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2 .  Any  dissection,  the first line of which is vertical at 
some abscissa in Pa,, the remaining dissection lines 
being those in any  dissection of each of the two partial 
rectangles. The value is the sum of the values of these 
two  dissections. 

3. Any similar dissection in which the first line is hori- 
zontal. 

The optimal  dissection is chosen by comparing the 

Clearly, recursion occurs in 2) and 3). 
values of all these dissections. 

Memorization 
In  the  course of the  computation,  the  same partial  rec- 
tangle happens  to be  considered  many  times. It is ob- 
viously useful to  store  its value rather than recompute it 
each time. Moreover, if we define a,, as  the maximum 
element of P that is less  than or equal to a,  and Po as the 
maximum  element of Q that is less  than or equal to p, 
then a X /3 and a,, X p,, have  the  same dissection  value, 
so we have  to memorize  only the values of elements of 
P X Q . The first step in the algorithm will be  to  compute 
a,, from a, and p,, from p (or  more  exactly,  the indices of 
a,, in P and of p,, in Q).  

Use of bounds 
When an  upper bound u ( a  , p )  of the dissection  value of 
every rectangle a X p is known,  one  has a means of 
speeding  up the computation. This  happens in particular 
when the value is simply equal  to  the  area; u ( a  , p )  is then 
4 .  

Full dissection 
When  searching for an optimal  dissection of a X p , we 
can stop  as  soon a  value  has  been  found that is equal to 
u ( a  , p )  . If the value  equals the  area, this corresponds  to 
a solution  without loss. 

Unattainable value 
Suppose  that,  at some  moment in the  computation,  the 
best  dissection  value  already  found for a X p is u, and 
that,  after a cut is made at  abscissa y ,  the optimal  dis- 
section  value of the left rectangle y X p is w and  has  been 
computed. If 

u l w + u ( a ” Y , p ) ,  ( 1 )  

it is useless  to investigate the  dissections of the right 
rectangle ( a  - y )  x /3 , and one can proceed to  the next 
step of the algorithm. 

Hence we shall add  a  third parameter  to a and p in the 
recursive  routine, i.e., the value uo which must be reached 
( u  - w in the  above  example) ; if vu is not less  than 

466 u ( a  , p )  , then the whole routine will be  skipped. 

Indirect  bound 
Suppose again that u is the  best dissection  value  already 
found for a X p , but  also  that u is less  than u,, . Then con- 
dition ( 1 )  must be replaced  by 

u , , l w + u ( a - Y , p ) ,  (2) 
so that,  for  the dissection of (a - y )  X p , the goal will be 
v u -  w .  

As a consequence, if uo 3 u ( y  , p )  + u ( a  - y , p )  , it is 
useless even  to investigate the  dissections of y x /3 . 

8 Heuristic  search 
The method  developed so far yields an optimal  solution. 
In  some  cases,  the computation  time may be  excessive. 
Use of arbitrary  bounds  makes it possible to obtain 
suboptimal  solutions  more  rapidly. For  instance,  one can 
reduce  the actual  bound u by a fixed factor, i.e., one may 
accept a fixed percentage of loss. The  remainder of the 
process then  remains  unchanged. 

PL/1 program 
The recursion features of PL/l permit the  use of a  very 
concise  and elegant  program, a flowchart of which is 
given in Fig. 9. Recursion occurs  also in the final tracing, 
which is achieved by a  simple recursive  routine t with 
parameters a, b, giving in  all cases a, b and the dissection 
value; if the dissection is homogeneous, it gives  also the 
index i of the used  rectangle. If the first line is vertical at 
abscissa c, it prints “VERTICAL” and c and  calls t ( c ,b )  
and t ( a  - c,b) . If the first line is horizontal, at  ordinate c ,  
it prints “HORIZONTAL” and c and calls t ( u , c )  and 
r(a,b - c )  . 

Roundoff errors 
The use of floating point  computation has been  justified 
by the  above discretization theory.  In practical  situations, 
fixed-point  computation would be  quicker. Moreover, 
because of roundoff errors,  the equality of integers may 
be overlooked.  Such errors  can be  prevented by intro- 
ducing small quantities in comparison operations. 

Comparison with Gilmore-Gomory’s algorithms 
Gilmore  and  Gomory give two algorithms [2] for  the 
two-dimensional  edge-to-edge  cutting  problem- a basic 
algorithm and a  refinement of it. 

There  are a  number of differences  between these al- 
gorithms  and the  present procedure. A minor one is that 
the  former  operate  on integers rather than on real num- 
bers. Also, they do not  use bounds; they have a larger 
memory requirement; they do not introduce homoge- 
neous dissections. The main difference is that  they  are 
iterative  rather than  recursive. In addition, the improved 
algorithm does not  lead to a correct solution, as will be 
seen. 

Before  discussing these  two algorithms in more detail, 
let us consider another simple  iterative  algorithm. Sup- 
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1 
Recursive algorithm 

pi.%,vi  ( I s i s n )  
Read a, b, n, 

routine to parameters 
Apply recursive 

a,  b,  0 

I 
Trace  the 

optimal dissection 

Recursive routine r 
(parametersa, 6, y o )  

No 

1 
Exit with 
result 0 

Compute homogeneous dissections; 
if full, exit with found result; if not, 

store best dissection value v 

Exit with 

dissection 

ForeachccP,b,  computew=r(c, b,  max (v. y o )  -u (a-c, b ) )  
andv ,=w+r (a -c ,b ,max(v ,v0 )”w) ; i f fu l l ,  

exit with found value v , ;  if not, store best dissection value Y 

t 
Same with Qab Exit with best 

dissection value 

Figure 9 Recursive algorithm. 

pose a and b, as well as  the pi’s  and qi ’s  are integers.  We 
can compute  the  best dissection  value H ( x ,  y )  of every 
subrectangle x X y ( 1  5 x 5 a ,  1 5 y 5 b )  by increasing 
values of y ,  and  for a given  value of y by increasing 
values of X .  For a fixed pair ( x ,  y )  we compute all sums 
H ( x , ,  y )  + H ( x - x ,  , y )  with 1 5 x, 5 x / 2 ,  then all 
sums H ( x ,  y , )  + H ( x ,  y - y , )  with 1 5 y ,  5 y / 2 ,  and 
retain the maximum sum. It is easily seen  that  the  number 
of inner loops is about ab ( a  + b ) / 8  . 

Gilmore-Gomory’s basic  algorithm differs from this 
scheme only in the  order of the  computation,  the  outer 
loops being on values of y - y, and x - x,. The  inner 
loops are  entered  the  same  number of times as  above. 
With the example  displayed in Appendix A  and  Fig. 10, 

Figure 10 Numerical example. See  Table 1. Discretization 
sets P and Q are  represented along the edges. 

this number is about 350,000. (It can  be reduced  to  about 
70,000 by taking into  account  the  fact  that all lengths p i  
are multiples of 3 .) 

Tracing  is achieved by Gilmore and Gomory in a very 
similar way to  that mentioned  earlier: / ( x ,  y )  is defined 
as  the smallest  positive x, such  that H ( x ,  y )  = H (x, , y )  + 
H ( x  - x, , y )  if it exists,  otherwise  as x ; w(x , y )  is,de- 
fined as  the smallest  positive y ,  such  that H ( x  , y )  = H ( x ,  
y,) + H ( x ,  y - y,) if it exists,  otherwise defined as y. 

The improvement to  Gilmore-Gomory’s basic algo- 
rithm consists in skipping for  some values of x, = x - x, 
and y, = y - y, some or all values of x, and/or y ,  in the 
basic process, according to  the following rules.  A  new 
definition of functions 1 and w is used: / ( x ,  y )  = 0 if 
H ( x , y ) = H ( x - l , y ) , w ( x , y ) = O i f H ( x , y ) = H ( x ,  
y - 1 ) .  NOW 

1 .  the loop on x, is skipped if / (x ,  , y,) = 0 ; 
2. the loop on yl is skipped if w (x, , y,) = 0; 
3. the value of x, is limited to l ( x , ,  y,) and skipped if 

4. the value of y ,  is limited to w(x, , y,) and skipped if 
w(x ,  > Y , )  = 0 ; 

!(x, 9 Y , )  = 0 .  

This “improved” algorithm does  not work with the 
following example: n = 2 ,  a = b = 3 , p1 = 1 , q1 = 

2 ,  p ,  = 2 ,  q2 = 3 ,  up = 6 (see Fig. 11). We have 
H(l,3)=H(l,2),hencew(l,3)=O.WhenH(3,3) 
is being computed,  the  correct optimal dissection 
H(3 , 3 )  = H ( l  , 3)  + H ( 2 ,  3) is overlooked by virtue 
of (3). The  same  example  can be  used for invalidating 
Theorem 7 (p. 1072 of [ 2 ] ) .  

Comparison with an iterative algorithm. 
We are  interested in comparing  two  algorithms that  are 
as similar as possible, one being recursive  and  the  other 467 
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Figure 11 A counterexample to the Chore-Gomory theorem. 

iterative. Actually, very  little is required for transforming 
our recursive  procedure into an iterative one  (see Fig. 
12). We use  the simple  algorithm above combined 
with  discretization, use of homogeneous dissections, 
symmetrization  and  exclusion. We  use  also  the “full dis- 
section”  feature, but  neither the  “unattainable  value”, 
nor  the “indirect  bound,”  which are of little interest, 
since  the partial dissection values have already  been 
computed.  That  was not the  case in the  recursive pro- 
cedure. 

Computation times show a difference of about 20% in 
favor of the  recursive  procedure,  as  shown in Appendices 
A and B. On  the  other  hand,  the  iterative  procedure gives 
the optimal  dissection of every  subrectangle;  Table 1 ,  
Examples A and  C,  shows  that only 462 subrectangles 
out of 1865 have been  actually dissected by the  recursive 
procedure. 

Extensions 

Higher dimension 
Our algorithm  applies  obviously to  any dimensionality, 
provided that  the cut-in-two  condition  holds. If the  space 
is r-dimensional, the r functions F ,  , G, , . . . are ( r  - 1 ) -  
vector  functions,  and  the r sets Pa,, Q,, . . * are  de- 
fined by conditions similar to  the two-dimensional ones. 
The program presents r recursive loops. 

Handling flaws 
The  important practical case where the large  rectangle 

460 has  nonusable  spots  cannot  be easily discretized; never- 

Iterative algorithm 

Read a, b, n, 

Apply iterative 
routine 

optimal dissection 

( v  (x. y ) is the best dissection value of x X y j 
Iterative routine 

I For each cc P 

For each d e Q  such that d 2 F (c) 

Compute homogeneous dissections; if full, 
store u (c. d )  and continue d-loop; if not, 

store best dissection value 

F o r e a c h e r P , d , c o m p u t e f = s u p ~ x I x 4 c - e , x € P ~  
a n d v , = v ( e , d ) + v ( f , d j ; i f f u l l , s t o r e v , a n d  

ri Exit with v (ao, bo) 

Figure 12 Iterative algorithm. 

theless, it can  be, in principle,  handled by a recursive 
procedure,  the  parameters of which would be, in addition 
to dimensions a ,  p ,  coordinates x ,  y of the  lower left 
vertex. 

Conclusion 
We have  shown  that  recursive  procedures  for solving the 
stock cutting  problem are  not only  simpler than con- 
ventional techniques but are also more efficient. Pro- 
gramming language theorists will be  interested by the 
new example  shown, which is of a more practical nature 
than  classical examples of recursive  operations like fac- 
torial  function and  greatest common  divisor. 
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Table 1 Three examples of processing: A, with bounds; B, without bounds;  and  C, with iterative  procedure. Parameters: n = 5 ,  
a = 127, b = 98. 

I 

1 18 65  1170 
2  24 27 648 
3 21 13 273 
4 36 17 612 
5 54 20  1080 

Dimensions  Level  Value  Line At  Type 
127 X 98 1 12348 Horizontal 13 
127 X 13 2  1638  3 
127 X 85 2  10710 Vertical 36 
36 X 85 3 3060 4 
91 X 85 3 7650 Vertical 36 
36 X 85 4 3060 4 
55 x 85 4 4590 Horizontal 20 
55 x 20 5 1080 5 
55 X 65 5 3510 1 

Discretization  set 
Pi qi 

ExumpleA:  LAM=33   MU=60   NB=4861   NBO=462  
N B I   = 2 6 4 3   N B 2 = 3 8   N B 3 = 4   N B 4 = 4 .  

Example B :  LAM = 33 MU = 60 NB = 9859 NBO = 698 

Exumple C: LAM = 33 MU = 60  NB = 1865 NBO = 8420 
NBI = 12221 NB2 = 86  NB3 = 21 N B 4 =  23. 

Appendix A.  An example 
The  same example  was  processed with and  without use 
of bounds  (see  Table 1 ,  Examples A and B,  and  Fig. 10). 
The value  equals the  area.  The NB, have  the following 
meanings: 
NB: number of calls of routine DIS. 

NBO: number of calls  with  value  not  found  in  memory. 
NB 1 : number of calls with attainable  value. 
NB2: number of full homogeneous dissections. 
NB3: number of dissections with first line vertical. 
NB4: number of dissections with first line horizontal. 

The “level” is the  depth of recursion, as in Fig. l(b). 

Appendix 6. Results of the iterative  program 
The  example of Appendix A was processed with the  itera- 
tive routine  (see  Table 1 ,  Example C, and Fig. 10). The 
value equals  the  area.  The  numbers NB, have  the follow- 
ing meanings: 

SEPTEMBER 1972 

WB: number of entries in outer loops. 
NBO: number of entries in loop  on . x 1 .  

NB1: number of entries in  loop on y1 . 
NB2,  NB3,  NB4: as in Appendix A. 
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