462

J. C. HERZ

J. C. Herz

Recursive Computational Procedure for
Two-dimensional Stock Cutting

Abstract: A recursive algorithm is implemented to give high computational speeds in the solution of a cutting-stock problem. Optimal
edge-to-edge cutting is shown to be achieved more easily by recursive programming than by conventional methods. The technique fea-
tures preliminary discretization, which lowers the memory requirements in the computational procedure. A comparison is made be-
tween this recursive algorithm and two iterative algorithms previously given by Gilmore-Gomory. The limitations of the algorithms are

discussed and some numerical results given.

Introduction: basic algorithm

The process of cutting a given rectangle into smaller
rectangles of various sizes is often a recursive one. That
is, one draws a line orthogonally from one edge to the
opposite one and then proceeds the same way with the
two resulting rectangles as indicated in Fig. 1. Excep-
tions are certain applications such as the dissection of a
rectangle into squares of different sizes (‘‘perfect rec-
tangles™) [1] as shown in Fig. 2.

We consider the following problem, which has been
already discussed at length by P. C. Gilmore and R. E.
Gomory in Ref. 2: Given a ‘“‘large” rectangle R and a
finite set S of “small” rectangles, find a dissection of the
large rectangle (by the process mentioned above) which
minimizes the “loss,” i.e., the total area of those resulting
rectangles which do not belong to the set S. Obviously,
this is equivalent to maximizing the total area of “usable”
rectangles. More generally, as discussed in Ref. 2, one
has to maximize the total “value’ of usable rectangles,
each member of the set S having been given such a value.

Any optimal solution has the following recursive prop-
erty: Either the large rectangle is in S, or the first dissec-
tion line yields two rectangles, each of which is optimally
dissected. Now a simple algorithm consists in trying
every possible first dissection line (requiring only a finite
number of trials as indicated in Theorem 1) and retaining
the one which gives the maximal total value for the two
partial dissections.

It should be noted that this algorithm is valid only un-
der the assumption that there is no bound for the number
of occurrences of a small rectangle in the solution. Other-
wise, some optimal solutions might correspond to non-
optimal partial solutions.

(a)

(b) E F
Figure 1 Recursive cutting. The graph of Figure 1(b) shows

the order in which the large rectangle must be cut. Each small
rectangle is obtained by the sequence of cuts about it.

IBM J. RES. DEVELOP.

The assumption of no bounds for the number of these
occurrences makes it possible also to get rid of “‘aniso-
tropy”’ considerations. Suppose some rectangles may be
placed only “horizontally,” while the others may have
either orientation. Then each of the latter type will be
represented by two members of S, by exchanging its
dimensions, and the whole will be handled ‘‘horizontally.”
Rectangles having either orientation could not be repre-
sented in this way if the numbers were bounded.

In the following sections, we present some refinements
of this algorithm and discuss the convenience of using a
programming language such as PL/1 that features recur-
siveness.

Discretization

Let a and b be the dimensions (“‘horizontal” and “ver-
tical”’) of the given large rectangle R, p; and g, those of
the ith member of S, and v, its value (1 =i=n). Let
p and g be the column vectors of coordinates p,, q,,
respectively.

Denote by z a line vector with n nonnegative integer
coordinates. A finite number of such vectors satisfies
zp = a and the same is true for zg = b. Let P and Q be
the corresponding finite sets of values of zp and zq .

& Theorem 1

For any dissection of R, there exists a dissection of
equal or higher value with all abscissae in P and all ordi-
nates in Q.

Here we designate the distance of a vertical dissection
line to the left edge of R as the abscissa and the distance
of a horizontal dissection line to the lower edge as the
ordinate.

Proof

We use induction on g and b. If a is less than every p,,
then any dissection gives no usable rectangle and hence
is of same value as the “‘empty” dissection (i.e., the rec-
tangle with no dissection lines). The same is true if b is
less than every g;.

Suppose the theorem is true for every rectangle R’ of
dimensions a’, b’ such that a’ < a and ' =< b (but a +
a’ < b+ b'). Consider a dissection D of R.

We may assume that the first dissection line L is ver-
tical, the other case being quite similar. By the induction
hypothesis, there exists a dissection D, of the left rec-
tangle R, of equal or higher value than the left part of D
and with all abscissae in P and all ordinates in Q; there
exists a dissection D, of the right rectangle R, of equal or
higher value than the right part of D and with all ab-
scissae (counted from L) in P and all ordinates in Q.

If the abscissa of L is in P, the union of D, and D, is a
dissection satisfying the conclusion, as P is additive.
More precisely, x € P, x' € P and x + x’' = a implies
x+x €P.

SEPTEMBER 1972

45

60

26

12

44

28 33

Figure 2 Nonrecursive cutting. This figure is taken from Ref. 1.
The numbers inside the squares are the edge lengths.

Figure 3 Getting a canonical dissection. Nonusable rectangles
are shaded. Each of the two main parts is canonically dissected.
P and Q are represented along the edges.

11,

I I TJ7 1 J

If the abscissa of L is not in P, then every rectangle of
D, with its right edge on L is nonusable; the rightmost
abscissa of the corresponding left edges is in P. Now we
obtain the sought-for dissection of R by drawing the
vertical line L’ at that abscissa, suppressing the lines of
D, on the right of L’ and translating R, with D, from L to
L', as shown in Fig. 3. Q.E.D.

Although we did not assume the data to be integral, nor
even rational, the inductive process is clearly finite, The

463

RECURSIVE COMPUTATIONAL PROCEDURE

Figure 4 A homogeneous canonical dissection

Figure 5 Symmetrization: first case.

Figure 6 Symmetrization: second case.

464

J. C. HERZ

procedure consists of forcing the usable rectangles to the
left and the bottom.

Theorem 1 reduces the trials involved in the above
algorithm to the finite process of scanning P and Q. A
dissection with all coordinates in P and Q will be called a
canonical dissection.

Homogeneous dissections

We call a dissection that involves only one type of small

rectangles a homogeneous dissection. In a canonical

homogeneous dissection, the abscissae are p,, 2p;, 3p;,
- and the ordinates are ¢,, 2q,, 3q,, - - for some i.

See Fig. 4.

Symmetrization

% Theorem 2

For every canonical nonhomogeneous dissection of R
there exists a canonical dissection of equal value, the co-
ordinate of the first line of which is at most equal to half
of the corresponding dimension of R.

Proof

Suppose the first vertical line of abscissa c is greater than
af2 . If the second line is vertical at an abscissa less than
or equal to a/2 , we can consider it as the first line (Fig. 5).
If the second line is vertical also at an abscissa greater
than a/2, the rectangle between both lines can be ex-
changed with the left rectangle (Fig. 6).

If the second line is horizontal, consider the rightmost
abscissa ¢’ of usable rectangles; if ¢/ > ¢, one has only
to draw the vertical line at ¢’ (as much as ¢’ < a) and to
exchange the two left vertical parts (Fig. 7).

If ¢’ = ¢, one can extend the second line to the right
edge of R and consider it as the first dissection line, which
gives rise to the same situation as above, in which co-
ordinates are exchanged.

Finally, only one case cannot be handled, i.e., when
there is only one small rectangle in the dissection as
illustrated in Fig. 8. But this is not a nonhomogeneous
dissection. Q.E.D.

Theorem 2 reduces the scanning of P and Q by half. It
applies, of course, to every subrectangle.

Exclusion

We have implicitly assumed that for everyi, p,= aand
g, = b. Otherwise some small rectangles could never be
cut. This assumption, however does not necessarily hold
for the partial rectangles involved in the recursive al-
gorithm. For such a rectangle, which is of dimensions
a X B, we have to scan

Ps=1{wl{q;> B> z,=0) and (zp = af2)}

and

IBM J. RES. DEVELOP.

N\

NN

N\

[

(a)c<e

(b) c=c’

Figure 7 (a) Symmetrization: third case. (b) Symmetrization: fourth case.

0,5=1{2q|(p,> «a= z,=0) and (zq = §/2)}.

A more practical computation of P is the following:
Associate with every z the quantity

f(z) =sup {g;lz; > 0}
and to every x in P the quantity
F (x) =inf {f(2)]zp = x}
Then
P,= {x|x=a/2,F(x) = B8}.
Similarly, @, is

ry€Q,y=82,G(y) = a},

where

G (y) =inf {g(2) |zg =y}

and
g(z) = sup {p, |z, > 0}.

Because F and G do not depend on « and 8, they can
be computed at the outset.

In order to speed up the main computation, P and Q
are generated by increasing mappings ¢ and ¢ from [1, A]
and [1, n] into R, so that F and G are expressed through
mappings F,=F ¢, G, =G i, as now developed.
(A and p are the cardinals of P and Q.)

s Computation of F, and G,

¢ and ¢ are constructed by the following recursive pro-
cess, which we give only for ¢. Initially, A is zero. The
current step consists in checking, for every i and every j
such that ¢(j) + p, = a/2, to see whether ¢(j) + p, be-
longs to ¢([1, A]); if not, A is increased by 1 and the

SEPTEMBER 1972

Figure 8 Symmetrization: fifth case.

values of ¢ are shifted in order that ¢ keep increasing.
The process terminates when A is not changed in the cur-
rent step.

F, (and similarly G) is computed at the same time; if
¢ (j) +p, is ¢ (k) , then F (k) is replaced by the mini-
mum of F, (k) and the maximumof F, () and g,. If 6(j) +
p;isnotin ¢([1,\]), F takes at the inserted index & the
value of the maximum of F,(j) and ¢, (and indices fol-
lowing k are shifted).

Main recursion
We are now ready to describe the search for an optimal
dissection of R. The possible dissections of R are

1. The homogeneous dissections.

465

RECURSIVE COMPUTATIONAL PROCEDURE

466

J. C. HERZ

2. Any dissection, the first line of which is vertical at
some abscissa in P, , the remaining dissection lines
being those in any dissection of each of the two partial
rectangles, The value is the sum of the values of these
two dissections.

3. Any similar dissection in which the first line is hori-
zontal.

The optimal dissection is chosen by comparing the
values of all these dissections.
Clearly, recursion occurs in 2) and 3).

Memorization

In the course of the computation, the same partial rec-
tangle happens to be considered many times. It is ob-
viously useful to store its value rather than recompute it
each time. Moreover, if we define «, as the maximum
element of P that is less than or equal to ., and B, as the
maximum element of Q that is less than or equal to 8,
then « X 8 and «, X 3, have the same dissection value,
so we have to memorize only the values of elements of
P X Q. The first step in the algorithm will be to compute
a, from «, and 8, from 8 (or more exactly, the indices of
@, in P and of B,in Q).

Use of bounds

When an upper bound u{a, 8) of the dissection value of
every rectangle « X 8 is known, one has a means of
speeding up the computation. This happens in particular
when the value is simply equal to the area; u(a , 8) is then

apf.

% Full dissection

When searching for an optimal dissection of @ X 8, we
can stop as soon a value has been found that is equal to
u(a, B) . If the value equals the area, this corresponds to
a solution without loss.

o Unattainable value

Suppose that, at some moment in the computation, the
best dissection value already found for a X 8 is v, and
that, after a cut is made at abscissa vy, the optimal dis-
section value of the left rectangle ¥ X 8 is w and has been
computed. If

v=w+ula—vy, B), n

it is useless to investigate the dissections of the right
rectangle (e — y) X 8, and one can proceed to the next
step of the algorithm.

Hence we shall add a third parameter to « and 8 in the
recursive routine, i.e., the value v, which must be reached
(v—w in the above example); if v, is not less than
u(a, B) , then the whole routine will be skipped.

. Indirect bound

Suppose again that v is the best dissection value already
found for a X 3, but also that v is less than v, . Then con-
dition (1) must be replaced by

v, Zwtula—y,B), 2)
so that, for the dissection of (e — y) X B, the goal will be
v, — W

As a consequence, if v, = u(y, 8) + ula—y, B),itis
useless even to investigate the dissections of y X 8.

* Heuristic search

The method developed so far yields an optimal solution.
In some cases, the computation time may be excessive.
Use of arbitrary bounds makes it possible to obtain
suboptimal solutions more rapidly. For instance, one can
reduce the actual bound « by a fixed factor, i.e., one may
accept a fixed percentage of loss. The remainder of the
process then remains unchanged.

PL/1 program

The recursion features of pL/1 permit the use of a very
concise and elegant program, a flowchart of which is
given in Fig. 9. Recursion occurs also in the final tracing,
which is achieved by a simple recursive routine ¢ with
parameters a, b, giving in all cases a, b and the dissection
value; if the dissection is homogeneous, it gives also the
index i of the used rectangle. If the first line is vertical at
abscissa ¢, it prints “VERTICAL” and c¢ and calls t(¢,b)
and f(a — ¢,b) . If the first line is horizontal, at ordinate ¢,
it prints “HORIZONTAL” and ¢ and calls t(a,c) and
tlah—c).

Roundoff errors

The use of floating point computation has been justified
by the above discretization theory. In practical situations,
fixed-point computation would be quicker. Moreover,
because of roundoff errors, the equality of integers may
be overlooked. Such errors can be prevented by intro-
ducing small quantities in comparison operations.

Comparison with Gilmore-Gomory’s algorithms
Gilmore and Gomory give two algorithms [2] for the
two-dimensional edge-to-edge cutting problem—a basic
algorithm and a refinement of it.

There are a number of differences between these al-
gorithms and the present procedure. A minor one is that
the former operate on integers rather than on real num-
bers. Also, they do not use bounds; they have a larger
memory requirement; they do not introduce homoge-
neous dissections. The main difference is that they are
iterative rather than recursive. In addition, the improved
algorithm does not lead to a correct solution, as will be
seen.

Before discussing these two algorithms in more detail,
let us consider another simple iterative algorithm. Sup-

IBM J. RES. DEVELOP.

Recursive algorithm

Reada, b, n,
Ppgpv; (1£i=n)

l

Construct
Pand Q

l

Apply recursive
routine to parameters
a, b0

l

Trace the
optimal dissection

Recursive routine r
(parameters a, b, vy)

Yes m NO

a0=sup§ xixfa,xePf

Exit with
result 0 b0=SUP’)’U‘5b’Y‘QE

ayX by already dissected?

Compute homogeneous dissections; Ef(m with
if full, exit with found result; if not, & nown

store best dissection value v issection
value

I

For each ¢ € Py, compute w=r{c, b, max (v, vq) —u (a—c, b))
and v =w+r (a—c, b, max (v, vor—w); if full,

exit with found value v if not, store best dissection value v

l

Exit with best
dissection value

Same with @,

Figure 9 Recursive algorithm.

pose a and b, as well as the p;’s and g,’s are integers. We
can compute the best dissection value H (x, y) of every
subrectangle x Xy (1 = x=a, 1= y= b) by increasing
values of y, and for a given value of y by increasing
values of x. For a fixed pair (x, y) we compute all sums
H(x,, y) + H(x—x,, y) with 1 =x, = x/2, then all
sums H(x, y)+H(x, y—y) with 1 =y = /2, and
retain the maximum sum. It is easily seen that the number
of inner loops is about ab(a + b)/8.

Gilmore-Gomory’s basic algorithm differs from this
scheme only in the order of the computation, the outer
loops being on values of y —y, and x — x,. The inner
loops are entered the same number of times as above.
With the example displayed in Appendix A and Fig. 10,

SEPTEMBER 1972

301 T3 T 9T T T I

JJJ [0 [0 [JF= JJ= JRRS N [S [50 [[[S G [[[[[[R L O [0 o

-—

Figure 10 Numerical example. See Table 1. Discretization
sets P and Q are represented along the edges.

this number is about 350,000. (It can be reduced to about
70,000 by taking into account the fact that all lengths p,
are multiples of 3.)

Tracing is achieved by Gilmore and Gomory in a very
similar way to that mentioned earlier: /(x, y) is defined
as the smallest positive x, suchthat H (x , y) = H(x, ,y) +
H(x —x , y) if it exists, otherwise as x; w(x, y) is de-
fined as the smallest positive y, such that H(x ,y) = H (x,
y)+Hx, y—y,) if it exists, otherwise defined as y.

The improvement to Gilmore-Gomory’s basic algo-
rithm consists in skipping for some values of x, = x — x,
and y, =y — y, some or all values of x, and/or y, in the
basic process, according to the following rules. A new
definition of functions [/ and w is used: /(x, y) =0 if
Hx,y)=Hx—1,y),wlx,y)=0if H(x,y) = H(x,
y—1).Now

1. the loop on x, is skipped if /(x,,y,) = 0;

2. theloop on y, is skipped if w(x, , y,} = 0;

3. the value of x, is limited to /(x,, y,) and skipped if
wix,, y,)=0;

4. the value of y, is limited to w(x,, y,) and skipped if
I(x,,y)=0.

This “improved” algorithm does not work with the
following example: n=2, a=b=3, p,=1, q,=
2, p,=2, q,=3, v,=6 (see Fig. 11). We have
H(1,3)=H(1,2),hence w(1,3)=0.WhenH(3,3)
is being computed, the correct optimal dissection
H@B,3)=H(1,3)+ H(2, 3) is overlooked by virtue
of (3). The same example can be used for invalidating
Theorem 7 (p. 1072 of [2]).

Comparison with an iterative algorithm.
We are interested in comparing two algorithms that are
as similar as possible, one being recursive and the other

467

RECURSIVE COMPUTATIONAL PROCEDURE

468

J. C. HERZ

Figure 11 A counterexample to the Gilmore-Gomory theorem.

iterative. Actually, very little is required for transforming
our recursive procedure into an iterative one (see Fig.
12). We use the simple algorithm above combined
with discretization, use of homogeneous dissections,
symmetrization and exclusion. We use also the *“‘full dis-
section” feature, but neither the ‘“unattainable value”,
nor the “indirect bound,” which are of little interest,
since the partial dissection values have already been
computed. That was not the case in the recursive pro-
cedure.

Computation times show a difference of about 20% in
favor of the recursive procedure, as shown in Appendices
A and B. On the other hand, the iterative procedure gives
the optimal dissection of every subrectangle; Table 1,
Examples A and C, shows that only 462 subrectangles
out of 1865 have been actually dissected by the recursive
procedure.

Extensions

e Higher dimension

Our algorithm applies obviously to any dimensionality,
provided that the cut-in-two condition holds. If the space
is r-dimensional, the r functions F,, G, - - - are (r — 1)-
vector functions, and the r sets Paﬂ, Qaﬂ , -+ are de-
fined by conditions similar to the two-dimensional ones.
The program presents r recursive loops.

e Handling flaws
The important practical case where the large rectangle
has nonusable spots cannot be easily discretized; never-

Iterative algorithm

Read a, b, n,
ppapv; (1=i=n)

l

Construct
Pand Q

l

Apply iterative
routine

l

Trace the
optimal dissection

Iterative routine
(v (x, y) is the best dissection value of x X y)

For each ce P

Foreach d eQ such thatd = F (¢)

Compute homogeneous dissections; if full,
store u (¢, d) and continue d-loop; if not,
store best dissection value

l

For each e ¢ P4, compute f=sup% x[(x=<c-ex eP}
and v, =v (e, d) +v (f,d); if full, store v, and
continue d-loop; if not, store best dissection value

l

Same with Q _,

l

Exit with v (a, bO)

Figure 12 Iterative algorithm.

theless, it can be, in principle, handled by a recursive
procedure, the parameters of which would be, in addition
to dimensions «, 8, coordinates x, y of the lower left
vertex.

Conclusion

We have shown that recursive procedures for solving the
stock cutting problem are not only simpler than con-
ventional techniques but are also more efficient. Pro-
gramming language theorists will be interested by the
new example shown, which is of a more practical nature
than classical examples of recursive operations like fac-
torial function and greatest common divisor.

Acknowledgment
The author is indebted to Mlle. Héléne Valabrégue for
recursively improving the style of his paper.

IBM J. RES. DEVELOP.

Table 1 Three examples of processing: A, with bounds; B, without bounds; and C, with iterative procedure. Parameters: n =35,

a=127,b=98.
Discretization set
1 p; 4q; Y;
1 18 65 1170
2 24 27 648
3 2] 13 273
4 36 17 612
b) 54 20 1080
Dimensions Level Value Line At Type
127 X 98 1 12348 Horizontal 13
127 x 13 2 1638 3
127 X 85 2 10710 Vertical 36
36 X 85 3 3060 4
91 x 85 3 7650 Vertical 36
36 X 85 4 3060 4
55 % 85 4 4590 Horizontal 20
55 %20 S 1080 5
55X 65 S 3510 1

Example A: LAM =33 MU=60 NB=4861 NBO =462
NB1=12643 NB2=138 NB3=4 NB4=4

Example B: LAM =33 MU=60 NB=29859 NBO =698

Example C: LAM =33 MU=60 NB=1865 NBO=8420
NBI1 =12221 NB2=86 NB3=21 NB4=23.

Appendix A. An example NB: number of entries in outer loops.

The same example was processed with and without use NBO: number of entries in loop on x, .

of bounds (see Table 1, Examples A and B, and Fig. 10). NB1: number of entries in loop on y, .

The value equals the area. The NB, have the following NB2, NB3, NR4: as in Appendix A.

meanings:

NB: number of calls of routine Dis. References

NBO: number of calls with value not found in memory. 1. W.T. Tutte, “The Quest of the Perfect Square,” The Amer-

ican Mathematical Monthly, 72, No. 2, part I1,29-35 (1965).

NB1: number of calls with attalnable' Value'. 2. P. C. Gilmore and R. E. Gomory, “The Theory and Compu-
NB2: number of full homogeneous dissections. tation of Knapsack Functions,” Operations Research, 14,
NB3: number of dissections with first line vertical. 1045 -1074 (1966).

3. D. W. Barron, Recursive Techniques in Programming,

NB4: number of dissections with first line horizontal. Macdonald Computer Monographs No. 3, 1968.

The “level” is the depth of recursion, as in Fig. 1(b).

Appendix B. Resuits of the iterative program Received November 3, 1971

The example of Appendix A was processed with the itera-

tive routine (see Table 1, Example C, and Fig. 10). The

value equals the area. The numbers NB, have the follow- The author is located at the IBM Paris S cientific Center,
ing meanings: 21 Avenue Gambetta, 92 Courbevoie, France.

469

SEPTEMBER 1972 RECURSIVE COMPUTATIONAL PROCEDURE

