
Combinatory  Programming and Combinatorial  Analysis 

Abstract: The principal purpose of this paper is to illustrate  by means of simple examples a technique for deriving programs  and  gener- 
ating functions from set descriptions. The paper discusses certain interesting correspondences among types of trees, which follow from 
the use of the technique, and  it demonstrates close connections between programming techniques and some aspects of combinatorial 
theory. 

Introduction 
This  paper  introduces  methods of simplifying program- 
ming, which,  although  not  entirely new,  have  not been 
used in practice  to any great  extent,  perhaps  because  they 
require certain features  that many current programming 
languages do  not provide. Instead of the usual  method 
of producing  programs by the  step-by-step sequencing of 
instructions, programs are  produced by the application 
of a  general-purpose  function to its  arguments. Such pro- 
grams are  easier  to  understand and their  properties  are 
more easily  discovered and proved. The method  involves 
certain ways of omitting  irrelevant details  that encum- 
ber programs,  although the  extra  details  that need to be 
supplied are precisely specified. By omitting the unnec- 
essary details, it is possible to reveal the essential struc- 
ture of the algorithm so that is can be more  easily  com- 
municated and analyzed. This  abbreviation,  together with 
certain program constructions, facilitates the  expression 
of more  complex  algorithms  than is presently feasible. 

A program has  to  be studied throughout all the  stages 
of its preparation.  In  the beginning, it  has  to be  examined 
to  see  whether it appears  to  be  correct.  Further  studies 
might include  a proof that it has a  certain property or an 
analysis of the  number of times each part of the program 
will be executed.  These last two  deeper  studies of pro- 
grams  naturally  should  give the programmer  a greater 
conviction of their  correctness.  For  the  rather limited 
types of programs  considered in this paper,  certain prop- 
erties can be proved in an almost  mechanical  fashion, and 
an analysis of the running  time of a  program  can  easily 

be accomplished by constructing a generating  function 
that  has  the  same  structure  as  the program itself. 

Under  the  technique  for  constructing a  program  de- 
scribed in this paper,  the first step is to write a general- 
purpose program that is a mere skeleton. The second 
step is to supply  arguments that specify the  actions to be 
taken within the skeleton. The skeletal  program can  be 
considered to typify the whole family of programs  obtain- 
ed in this  way,  and any  properties  or timing analyses of 
the  general-purpose program are  then applicable to all 
the members of this family. 

The programs that  have been chosen  to illustrate the 
technique in this paper all operate  on  rooted,  ordered 
trees.  The general-purpose  skeleton  embodies the method 
of scanning the  structure,  and  the arguments  supplied 
specify the  actions  to be taken during the scanning. 

The general-purpose  programs  can  be produced in a 
mechanical  fashion  from the description of the  set of 
trees being scanned.  The  set of trees considered have 
components  that  are  either atomic, meaning their inter- 
nal structure is not examined by the  general-purpose 
program, or composite, and  their internal structure  is 
examined. An enumerating  generating  function that 
counts  the  number of different structures having n atomic 
components can also  be  constructed automatically from 
the description of the  set of trees. 

A programmer can  describe a set of information  struc- 
tures without specifying the  nature of its  atomic com- 
ponents. It is possible, for  example,  to define a set of 

IBM J. RES. DEVELOP. 



lists and  to write functions  on  the lists  without  specify- 
ing the  nature of the list elements, which are  treated  as 
atomic as far  as  the  general-purpose list function is con- 
cerned.  A  function that is concerned with the  nature of 
the list elements can  be  supplied as  an argument to  the 
list function. An element of a  list may itself have internal 
structure;  for example, it may be a tree, containing atomic 
components of its  own. It is therefore possible to  create 
a  general-purpose  function  for  a list of trees  from  the 
corresponding  functions for lists and  for  trees by  supply- 
ing one  as  an argument to  the  other.  In a similar way,  the 
generating  function for counting the  number of lists of 
trees with n atomic components can be obtained  by  sub- 
stituting the generating  function of the  trees  for  the ap- 
propriate variable in the generating  function of the lists. 

The generating  function classifies the members of a 
set of structures according to  the  number of atomic com- 
ponents. Each  set of structures with n atomic  components 
can itself be classified according to  another  criterion, 
and  this  two-way classification is  represented by a gen- 
erating  function in which the coefficients of powers of 
one variable are generating functions in another variable. 
One  type of problem that often arises in the analysis of 
algorithms is that of finding the  sum of the  distances from 
the  root of a tree  to  each  atomic component. This  sum is 
often called the weight of the tree. The passage  from one 
level of the  tree  to  the  next  stands  for  the performance of 
some  operation, and the weight of the  tree divided by the 
number of atomic components is the  expected  number 
of operations needed to reach an atomic component of 
the  tree.  This  type of problem  can  be  solved  by using a 
generating  function that classifies the  structures  both by 
number of nodes  and  by weight, and the method for de- 
riving this  generating  function  almost  immediately from 
the  structure description of the  set is given. 

Data structures 
The method for describing new sets of data  structures 
was  introduced for  use in programming  languages by Mc- 
Carthy [ l ]  and has been  used to specify the  semantics 
of programming  languages (e.g., Algol 60 [2] and PL/1 
[3]) and occurs  as  part of the Algol 68 programming 
language [4]. The description of a set is often  referred to 
as  its abstract  syntax, and although there might be  nota- 
tional  differences in the  references  above,  the main ideas 
are much the  same. 

We  use  the  two functions Cartesian  product and di- 
rect union to  produce a set from two  or  more  sets, and 
use a  notation for naming the  predicates,  selectors,  and 
constructors  for  members of the  sets  produced. 

The  Cartesian  product A X B of two  sets A and B is 
the  set of ordered pairs (a,b) where a e A and b E B . 
This  product is extended  to  operate  on  any  number of 
sets.  Instead of A X B X C , we use cp(A,B,C) to  denote 

a set of structures  each member of which has  three com- 
ponents whose first is of type A ,  whose second  is of type 
B,  and  whose third is of type C. This  change allows  one- 
component  or  zero-component  structures  to  be defined, 
and  these will be  written cp(A) and  cp(), respectively. 

Functions  for selecting the  components (selectors) 
are needed and  are  assumed  to be both  created  and 
named by a definition or declaration.  Such definitions 
are preceded  by the word def to  emphasize  that a defini- 
tion follows. For  example,  the following defines the  se- 
lectors Jirst,  second, and third, which are all applicable 
to cp(A,B,C): 

defJirst,second,third = selectors (cp  (A,B,C) ) . 
Alternatively  the  set could  first be named as follows: 

- def 3-tuple = cp ( A  ,B,C) 

defJirst,second,third = selectors  3-tuple . 
The  same information  could have been conveyed by the 
following English sentence [2]: 

A  3-tuple has a  first,  which is an A , 
and a second, which is a  B , 
and a  third, which is a C , 

In Algol 68 style  the  same definition could be written: 

mode  3-tuple = struct (AJirs t ,  B second, C third) . 
In all cases  the definition is assumed to  create functions 
of the following types 

Jirst E (3-tuple + A )  

second E (3-tuple += B) 

third E (3-tuple + C )  , 

in which A += B denotes  the  set of functions  from A to B. 
A  program  fragment that  operates on a 3-tuple takes 

the form 

F(FA(firs t  (x) ) ,  FB(second (x)), FC(third (x))),  

in which x is a  3-tuple, and  the functions F A ,  FB,  and 
FC are applied to  the  components producing results 
that  are combined  using  a  function F. 

A  function that is applicable to more than one argu- 
ment may be  changed to a  single-argument  function by 
using a  notational device of combinatory logic [SI in 
which the  expression  (fx)y  denotes  the application of a 
function f to x and y in two  stages, so to  speak.  The func- 
tionf is first applied to x producing  a  function that is then 
applied to y .  This implicit application operator is assumed 
to  associate  to  the left, so thatfx y  means the  same thing 
as (fx)y . Note  that  parentheses  are  never needed to en- 
close a sole identifier. All functions  are  assumed  to  have 
one  argument; in the  case  offin  an  expression likef(x,y) , 
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it is still treated  as a  function of one  argument, which in 
this case is an  ordered pair. 

Functions (called constructors) are  also needed for 
constructing  structured  objects from  a  list of their  com- 
ponents  and  are defined according to  the following style: 

def triple x y z = construct  3-tuple (x.y,z) . 
The  constructing  and selecting functions  are related as 
follows: 

triple  (first u )  (second u )  (third u )  = u 

.first (triple x y z )  = x 

second  (triple x y z )  = y 

third  (triple x y z )  = z 
in which u is a 3-tuple  and x ,  y, and z are members ofA, 
B ,  and C ,  respectively. 

The  other function that is employed to  create new sets 
is the  direct union,  written du(A,B), and is used when 
members of a set  can  have  the  two different formats A 
or B.  In  order  to write  programs, it is necessary  to  be 
able  to  test  whether a member of du(A,B) is  an A or a B .  
These  predicates  and  their  names  are defined in the fol- 
lowing style: 

defis-A,   is-B,   is-C = pred ica te s (du(A ,B ,C) )  . 

The  associated  axioms merely state  that  the  predicates 
are effective and  take  the  form: 

is-A ( x )  = true if x E A 
false otherwise. 

In  practice this means  that  some additional  informa- 
tion has  to be added  to  make it possible to recognize 
members of A ,  B ,  and C when they appear  as  members 
of du(A,B,C) . 

The  piece of program that naturally corresponds  to 
du(A,B,C) is 

if is-A ( x )  
then FA ( x )  
else if is-B ( x )  

then F B ( x )  
else F C ( x )  

in which tests  are first made  for  the  alternative  formats 
and  then a function of the  correct  type is applied. 

arating  and naming the alternatives: 

purts (du(A,B,C,D))  = A , B , C , D ,  

An  inverse  to  du, called parts,  is often  useful for sep- 

The number of members of cp(A,B) or du(A,B) is the 
product  or  sum of the number of members of A and B .  
It is possible to  provide  more information about  these 
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has  components  or is atomic  and  has  no internal struc- 
ture.  The  members of each  set  can be classified by the 
number of atomic  components  they contain. This classi- 
fication can be expressed  as  an enumerating  generating 
function in which the coefficient of xn is the  number of 
members of the set having n atomic  components.  Suppose 
that A(x)  and B(x)  are  two generating functions of this 
sort, thus: 

m m 

A ( x )  = 2 a,x” , B ( x )  = 2 b,xn, 
n=n n=O 

in  which a, is the  number of members of A having exactly 
n atomic  components,  and 6, is the  number of members of 
B having n atomic  components.  Then  the  number of 
members of cp(A,B) having  exactly n atomic compo- 
nents is the coefficient of x in the  product of A(x)  and 
B(x)  , i.e.: 

m n  

A ( x ) B ( x )  = 2 2 ‘ k b n _ k x n .  
n=n k=n 

In this  sum the  term uk b,-k is the number of members of 
cp(A,B) in which the first of the pair  has k atomic com- 
ponents  and  the  second has n - k . 

The  number of members of du(A,B) having n atomic 
components is a, + 6,. The generating  function for 
du(A,B) is therefore found by adding the generating  func- 
tions  for A and B ,  

m 

A ( x )  + B ( x )  = 2 (a, + b,)x. 
n=n 

The  same  correspondences hold between sets of trees 
having more  than  one  type of atomic component  and 
multivariable  generating functions.  The generating func- 
tion of a Cartesian  product is the  product of the generat- 
ing functions of the  component  sets,  and  the generating 
function of a direct union is  the  sum of the generating 
functions  for  the  alternative  sets. 

The  three-way  correspondence among structure de- 
scriptions, programs, and generating functions is sum- 
marized in the  table below. 

Generating 
Sets Program function 

atomic A a function on x, a  variable 
atomic components 

CP (A ,B 1 F(FA(firs t (x) ,  A b )  . B ( x )  
F B ( s e c o n d ( x ) ) ) )  

du ( A  ,B 1 if is-A A ( x )  + B ( x )  
then FA (x) 
else FB (x) 

C P O  a, a variable xo= 1 

A = .  . B . . B .  FA(FB) = .  . FB . . F B .  A ( B ( x ) )  

In  the last line A = . . B . . B . means a set A is defined 
in terms of a set B ,  FA(FB) means  that  the function FA 
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is defined in terms of the  function FB,  and A(B(x)) means 
that B(x) is substituted  for x in A(x )  . A number of ex- 
amples of these  correspondences  are given  next. 

Lists 
Lists  are  the most  commonly  used data  structure in pro- 
gramming, and  the definition of a list of elements of type 
A is: 

An A-list 
is either null 

or  has a head, which is an A , 
and a tail,  which is an A-list , 

or 

deflist  A = du(cp() , cp(A,list A ) ) .  

The  operations  on lists may be defined as follows: 

def null,nonnull=  predicates (list A )  , 
def nullc,nonnullc = parts  (list A )  , 
- def h,t = selectors  nonnullc , 
- def prejix x y = construct nonnullc(x,y) , 
- def nullist = construct nullc ( 1  , 
in  which head has been  abbreviated to h, and tail to t .  
The  expression x : y  is used as  an  abbreviation  for  pre- 
fix x y ,  () denotes  the null list, a,b,c,d,e is used  as  an al- 
ternative  to a : (b  : ( c  : ( d :  ( e  : ())))), and u  x denotes a list 
with one element. The  types of the list functions intro- 
duced are: 

null E (A-list -+ truth  value) , 
head E (nonnull  A-list + A )  , 
tail E (nonnull  A-list -+ A-list) , 
prejix E ( A  + (A-list + A-list)) , 
()  E A-list . 

These functions are closely interrelated  as follows: 

null() = true , 

null(x:y) =false,  

h ( x : y )   = x ,  

t ( x : y )  = y 7 

( h z )  : ( t z ) = z ,  

in which x is an A ,  y is an A-list, and z is a nonnull A-list. 
Each  structure description is assumed  to  create func- 
tions that conform to a  number of axioms of this type. 

Many functions that  operate  on lists have  the  same 
basic structure,  as  can be seen  from  the following: 

def sum x = - 
if null x 
then 0 
else ( h   x )  + sum ( t   x )  

e.g., sum  (1,2,3,4) = 10, 

&f product x = 

if null x 
then 1 
else ( h   x )  X product ( t   x )  

e.g., product ( 1,2,3,4) = 24 , 

- def append x y = 
if null x 
then y 
else ( h   x )  : (append ( t   x ) y )  

e.g., append (1,2)(3,4,5) = 1,2,3,4,5, 

def concat  x = - 
if null x 
then ( )  
else append ( h   x )  (concat ( t   x ) )  

e.g., concat((l,2),  (3,4), 0) = 1,2,3,4, 

- def map f x = 
if null x 
then ( )  
else ( f ( h  x ) )  : ( m a p f ( t   x ) )  

e.g., map square (1,2,3,4) = 1,4,9,16. 

It can be  seen  that  these functions only differ in the 
first arm of the conditional expression  and in the function 
that combines whatever is produced from  the head of the 
list (usually the head itself) with whatever is produced by 
applying the  same function to  the tail of the list. The 
common part of these  functions may be  expressed  as a 
function called listl, defined below, in which the  parts 
that  are  not common have. been made  variables. 

&f listl  a g f x =  
if null x 
then a 
else g(  f ( h   x ) )  (listl  a g f ( t   x ) )  

The result of applying the function listl  a g f to a  list is a 
if the list is  empty;  otherwise  it is the result of applying g 
to two arguments: 1) the result of applyingfto  the head of 
the list, and 2) the result of applying listl  a g f to  the tail 
of the list. It is now  possible to redefine the five functions 
in terms of listl. It  can be seen  that  this  technique  both 
saves writing and  is  more likely to  produce a correct 
program because  the complex  programming (i.e., the 
conditional expression  and looping) has  been  written 
once and for all in the function listl. The listl function is 
similar to  the reduction operator in APL [6]; thus +/ in 
APL is similar to listl 0 plus 1. The following definitions 
use postjix, which adds a new item to  the  end of a  list, 
defined as follows: 

def postjix x y = append y ( u   x )  . 453 
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Also I is the identity  function and K x y = x 

&f sum = listl 0 plus I ,  

def product = listl I mult I ,  

def append  x y = listl y prefix I x ,  

&f concat = listl ( )  append I ,  

&f map f = listl () prefix f .  

Some other examples are: 

def length = listl 0 plus ( K  1) , 

- def sumsquares = list1 0 plus  square, 

def reverse = listl () postfix I , 

&f identity = list1 ( )  prejix I . 
The  types of arguments of listl may be  deduced  from 

their  pattern of application as follows. The whole func- 
tion listl a g f must operate  on a list. Let  us  assume  that  it 
is an A-list and that it produces a member of B ,  i.e. 

(listl a g f )  E (A-list + B )  . 
Then the  argument a must be a B .  The  functionfoperates 
on an A and  let  us assume it produces  a C :  

fE ( A - C ) .  

Then g must operate  on a C and  the result of applying 
listl a g f to  an A-list, which is a B ,  must produce a B.  The 
type of g is therefore 

g c  ( C - +  ( B j B ) ) .  

The function listl has the property 

listl a g f (append x y )  = listl  (listl a g f y )  g f x  

provided that  the  types of a ,  g, and f conform to  the 
scheme above for  some sets A ,  B ,  and C ,  and that x and 
y are both A-lists. This may be proved in a mechanical 
fashion  from the axioms for lists and from the definitions 
of list1 and append. The  property emphasizes the fact 
that in all functions defined in terms of listl, the list is 
first scanned to its end, and  then the actions g are  taken 
on the way back. The  same result may be obtained in 
two ways: 1) by concatenating two lists x and y ,  and then 
applying listl a g f to  the result,  and  2) by first applying 
listl a g f to the second list ( y ) ,  and then using the result 
as an initial value  (the a argument) for  the  same function 
when it is applied to  the first list (x). 

Two  cases must be examined in order  to prove the 
following property of listl : 

listl a g f (append x y )  = listl  (listl a g f y)  g f x .  

One is  when x is the null list  and the  other when x is non- 
454 null. The proof proceeds by reducing each side to  the 
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same expression. First  substitute listl y prejix I x for 
append  x y ,  and  then  let: 

LHS = listl a g f (Iistl y prefix I x )  

RHS = listl (listl a g f y )  g f x .  

Then if x is the null list, 

LHS = listl a g f (listl y prejix I ( ) )  

= Iistl a g f y  , 

and 

RHS = listl (listl a g f y )  g f  ( )  

=list1 a g f y .  

Both steps  are applications of listl a g f () = a . When x 
is not null, it takes  the form h x:t x ,  so that 

LHS = listl a g f (listl y prejix I ( h  x : t   x ) )  
=list1 a g f  (prejix ( I ( h x ) )  (listl y p r e j i x l   ( t x ) ) )  
= listl a g f (prefix ( h  x )  (listl y prefix I ( t  x) )  ) 
= g ( f  ( h  x ) )  (listl a g f (listl y prejix I ( t  x ) ) )  
= g ( f ( h  x ) )  (l ist1 (list1 a g f  y )  g f  ( 1  x ) )  , 

and 

RHS = listl  (listl a g f y )  gf ( h  x : t   x )  
= g ( f  ( h  x ) )  (listl  (listl a g f y )  g f ( t  x ) )  
= LHS . 

Each  step is an application of 

listl a g f ( h  x : t  x) = g (f ( h  x ) )  (listl a g f ( t  x ) )  

except  the last in the reduction of the LHS, in which the 
property is assumed to be true for  the tail of the list. All 
the  other  properties of functions that follow can  be 
proved in the  same mechanical fashion. 

The functions defined in terms of listl all scan  the list 
(i.e., accumulate the result) from right to left. There is a 
second family of functions whose members scan lists 
from left to right, which can be defined by using a func- 
tion called list2. 

- def list2 a g f x  = 
if null x 
then a 
else list2 ( g ( f ( h  x ) ) a )  g f ( t  x) 

The arguments a ,  g, f ,  and x must be the  same  types  as 
those  for listl.  The function list2 has a property analo- 
gous to  that of listl,  namely: 

list2 a g f  (append  x y )  = list2 (list2 a g f x )  g f y . 
Thus we may either append two lists x and y and  then 
apply list2 a g f to the  result, or first apply  the  function to 
x and  then use  the result as an initial value for  the  same 
function when it is applied to y .  Note  that  the roles of x 
and y are reversed in the properties of listl and list2. In 
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the  case of functions defined using list2, the result is ac- 
cumulated as  the list is scanned  from left to right. 

The function list2 can be  implemented by the "itera- 
tive" program below;  thus  it may be  more efficient to  use 
list2  than listl. 

L: if null x 
then a 
else 

a: = g  ( f  ( h  x)) a 

x :   = t x  

go  to L 

It is also possible to prove  that 

list]  a g f x  = list2 a g f (reverse x )  . 

This  means  that  listl a gfproduces  the  same result when 
applied to a list x as list2 a g fdoes  when it is applied to 
the reversal of list x. Since 

append x y = listl y prejix x 

= list2 x postfix y 

and 

reverse = listl ( )  postj ix I 

= list2 () prefix I , 

it is possible by substituting particular values for a,  g, and 
fin  the relationship  between listl  and list2 to  prove 

reverse (reverse x )  = x ,  

append(append x y )  z = append  x(uppend y z )  , 

reverse(append x y )  = append(reverse y )  (reverse x )  . 
The generating  function (g.f.) for  an A-list may be ob- 

tained  immediately from  the  structure  description  for 
lists 

list A = du(cp.(),cp(A,list A ) )  ; 

l i s t ( x )  = 1 + x list(x) . 
There is one list having no  components (xo or 1 ) .  A non- 
null A-list has a head, which is an  A,  and a tail,  which is 
an A-list. In  the corresponding g.f., an x appears  cor- 
responding to  the head A and a list(x) appears  cor- 
responding to  list A ,  and  these  are multiplied together in 
the g.f. This may be solved, giving: 

list(x) = 1/( 1 - x )  

= 1 + x + x 2 + x 3 + x 4 + . . .  . 

Another way to read  the definition is: a list is either 
empty, or is a  1-list, or is a  2-list, etc., and the generating 
function  for a list of length n is x". 

Figure 1 Compositions of 4. 

The generating functions for lists  whose  lengths are 
restricted in some way can be  written down immediately. 
For  example,  the nonnull  lists have  the generating func- 
tion: 

n ~ i s f ( x ) = x / ( l - x ) = x + x ~ + x ~ + x ~ + . . .  . 
and  the g.f. for all lists no longer  than j is 

( 1  - X j " ) / (  1 - x) . 
The method for creating  new  generating functions by 

substitution may be illustrated as follows. The g.f. for a 
nonempty list of nonempty lists is nlist (nlist (x) ) ,  where 
nlist = x / (  1 - X )  ; therefore it is x / (  1 - 2x)  , and there  are 
2"" configurations with n atomic components.  The  struc- 
tures  are usually called compositions, and the 8 composi- 
tions of 4 are given in Fig. 1. 

The  associated function for scanning a nonempty list  is: 

- def nlist g f x = 

if null ( t  x )  
thenf ( h  x)  
else g ( f ( h  x ) )  (nlist g f ( t  x ) )  

and the function for scanning  compositions is nlist g, 
(nlist g, f,). This  can  be  extended  to multipart  composi- 
tions as  follows. An (A-list)-(B-list) pair, i.e., having a 
first,  which is an A-list, and a second, which is a B-list,  has 
the generating  function 

(111 - x )  (1/1 - Y )  , 

and if the pair (0, ()) is omitted,  the generating  function 
becomes 

( l / l - x )   ( U l - y ) - 1  

or 

( x l l   - x )  + ( y / l  - Y )  + (Xl l  - x )   ( Y / l  - Y )  . 
This  corresponds to the  structure 

An A-B npair is 
either  an A-nlist 
or a  B-nlist 
or an  (A-nlist)-(B-nlist) pair .  

The  corresponding program could be  written 

def npair P f ,  g, f ,  g, ( X ~ Y  1 = 
if null x 
then nlist f ,  g,  y 455 
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(2 ,5 )=  (1,3) + ( 1 , l )  + (0.1) 

Figure 2 A two-part composition of (2.5). 

else if null y 
then nlist f ,  g, x 
else p(n1ist f ,  g, x )  (nlist f ,  g ,  y )  

A nonempty list of such pairs  therefore  has the generating 
function 

nlist ( ( 1 / 1  - x )  ( 1 / 1  - y )  - l ) ,  

in which  the coefficient of xnym is the  number of the two- 
part  compositions of the two-part  number (n,m). An ex- 
ample of a two-part  composition of ( 2 , s )  is given in Fig. 2.  
The associated  function for scanning two-part  composi- 
tions is nlist g3 (npair  p f ,  g, f ,  g,) . 

List  structures 
An A-liststructure is either atomic  and is an A or is  an 
(A-liststructure)-list. Thus 

&f liststructure  A = du (A,list  (liststructure A )  ) , 

&f atomic,nonatomic = predicates  (liststructure A )  . 
The  functions list1 and list2 can be  extended  to list  struc- 
tures  as follows: 

- defls l  a g f x =  
if atomic  x 
then f x 
else listl a g (Is1 a g f )  x 

- defls2 a g f x =  
if atomic  x 
then f x 
else list2 a g (Is2 a g f )  x 

In  both,  the  same  function Is1 a g f or Is2 a g f is  applied 
to a component  list structure  as is applied to  the list struc- 
ture itself. In this case f and Is1 a g f must produce  the 
same type of object,  and g E B + (B 4 B )  . It follows 
that  some of the functions defined for lists, i.e., those with 
g E B + (B  + B )  for some B ,  may be extended to be 
applicable to list structures.  For example 

- def sumls = Is1 0 plus I 

= Is2 0 plus I ,  

- def productls = Is1 I mult I 

456 = ls2 I mult I ,  
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- def concatls = Is1 ( )  append u , 

- def mapls f = Is1 ( )  prejix f ,  

def lengthls = Is1 0 plus ( K  I )  , 

def sumsquaresls = Is1 0 plus  square, 

&f reversels = Is1 ( )  postjix I ,  

def identityls = Is1 ( )  prejix I , 

The first two functions take  the sum  and product of the 
atomic  components of a list structure, concatls flattens 
the list structure into a list, ( m a p l s f )  applies f to all the 
atomic  components  and  produces a list structure with the 
same  shape  as  the original containing the results, lengthls 
counts  the  number of atomic  components,  and reversels 
reverses all the  lists in the structure. Examples of the 
applications of these functions follow: 

let Is = ( 1 , ( 2 , ( 3 , 4 ) ) , 5 ) ,  

sumls Is = 15 , 

productls Is = 1 2 0 ,  

concatls Is = (1 ,2,3,4,5)  , 

mapls 1s = ( 1 , ( 4 , ( 9 , 1 6 ) ) , 2 5 ) ,  

lengthls Is = 5, 

sumsquares Is = 5 5 ,  

reversels Is = (5,( ( 4 , 3 ) , 2 ) , 1 )  , 

identityls Is = ( 1 , ( 2 , ( 3 , 4 ) ) , 5 )  

The relation between listl and list2 is extended  to 

Is1 a g f x = Is2 a g f  (reversels x )  . 
The generating  function  for a list structure is given by 

1s ( x )  = x  + list (Is x )  . 
The  existence of 0-lists and 1 -lists implies that  there is 
an infinite number of list structures containing n atomic 
elements. If 0-lists and 1 -lists are disallowed, the list g.f. 
becomes x2/ (  1 - x )  , and  the g.f. for list structures without 
0- and I -lists is: 

nIs(x) = x  + n I s 2 ( x ) / ( l  - n l s ( x ) )  , 

which may be solved to give 

2n1s'(x) - ( 1  + x ) n I s ( x )  + x  = o 
& ( x )  = 1/4(  1 + x  - d l  - 6x + x " )  

= x  + + 3 2  + 1 l X 4  + 4sX5 + . . . . 
This g.f. enumerates  the ways of bracketing a sum of n 

numbers, in which each  bracket must  include at least  two 
expressions,  but the entire  expression is unbracketed. 
The first four  instances are: 
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a ,  

a + b ,  

a + b + c ,  ( a + b ) + c , a + ( b + c ) ,  

a + b + c + d ,  ( a + b + c ) + d , a + ( b + c + d ) ,  
( a + b ) + c + d , u + ( b + c ) + d , a + b + ( c + d ) ,  
( a + b )  + ( c + d ) ,  ( ( a + b )  + c )  + d ,  
( a + ( b + c ) ) + t , a + ( ( b + c ) + d ) ,  
a + (b  + ( e  + d l ) .  

Trees 
List  structures  can be considered  to  be  ordered,  rooted 
trees with components only at  their  leaves,  or  end points. 
Another  structure  that is often  useful is a tree  that  has 
components  at  every  node. If interior and end points are 
to  be  treated in the  same way, the  most useful tree struc- 
ture is defined as follows: 

An A-tree has a root, which is an A , 
and a listing, which is an A-forest . 

An A-forest is an (A-tree)-l ist  . 
The function  used to  construct a tree from an A and  an 
A-forest is called ctree. The following operations  are de- 
fined for  trees  and  forests: 

- def tree  A = cp(A,forest  A )  , 

- def forest  A = list(tree A )  , 

&f root,  listing = selectors(tree A )  

def ctree = construct(tree A )  . 

Two families of functions  can  be defined using listl 
and list2: 

&f treel a g f x  =f (root x )  (forestl  a gf (listing x ) ) ,  

- def forest1 a g f x = listl a g (treel  a g f) x, 
&f tree2 a g f x  =f (root x) (forest2 a g f  (listing x ) )  , 

- def forest2 a gf = list2 a g (tree2 a g f ) . 
In this representation,  an  end point is a tree whose 

listing is the null list. As in the  case of list structures,  the 
same function is applied to  both a component  tree  and  the 
whole tree, and the  same  function is applied to  both a 
component  forest  and  the whole forest. 

The  expression below is used  to  describe  the  tree in 
Fig. 3. The  comma is used for lists and  the semicolon is 
used  for ctree. 

A;(B;(E;O,F;(G;O,H;O)),C;O,D; 

( I ; ( K O , L ; O J ; O ) ) )  

There  are several  ways of scanning the  nodes of a tree. 
They  can be expressed as functions  for listing all the 
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Figure 3 An example  of a tree. 

atomic  components.  The  result of applying (tree1 ( 1  
append  prefix) to  the  tree in Fig. 3 is 

A B E F G H C D I K L J ,  

and (tree2 ( ) append  prefix) produces 

A D J I L K C B F H G E ,  

which is also  the result of applying (treel  ( )  append 
prejix) to  the  reversed  tree. 

A tree may be reversed, meaning that all its lists are 
reversed, by using: 

&f reversetree = tree2 ( ) prefix  ctree , 

and a forest may be  reversed by 

&f reverseforest = forest2 ( ) prefix ctree . 
It  is easy  to  prove  that 

reversetree  (reversetree x) = x 

and 

reverseforest(reversef0rest x )  = x 

Each function on a tree, defined in terms of treel or 
tree2, may be applied to a forest by using the  same 
arguments  and the  functions forest1 and forest2,  respec- 
tively, and vice versa.  The  property  above may be gen- 
eralized to give the following relationships between 
treel and tree2 and  between forestl  and forest2 : 

tree1 a g f x = tree2 a g f  (reversetree x )  , 

forestl  a g f x = forest2 a g f (reverseforest x )  . 
To determine  the generating  functions for  trees and 

forests  consider  that: 

t ree(x)  = x f o r e s t ( x )  , 

forest x = list(  tree x) . 
Therefore 

tree (x) = x list ( t r ee   (x )  ) 

= x / (  1 - t r e e ( x ) )  457 
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tree2(x) - t r ee (x )   +x  = o 
tree(x) = + ( I  - d F G j  

= 1 / n  ( ) x n .  
2n - 2 

n -  1 
np1 

= x + x2 + 2x3 + 5x4 + 14x5 + 42x6 + 1 32x7 

+ .  . . 

Also since tree(x) = x  forest(x) , then 

xforest2(x)  - forest(x) + 1 = 0 .  

Forests with n nodes are in correspondence with the 
trees with n + 1 nodes  formed by adding a root. 

Binary trees 
Two more  restricted  types of trees  are considered  next. 
Correspondences  can  be  set up between both  types of 
trees and the  trees  just defined. The first type of tree is 
called a binary tree,  and  can  have 0 or 2 subtrees. 

An A-binary  tree 
is either empty 

or has a root, which is an A , 
and a left  and  a right, both A-binary 

trees. 

The following definitions apply to binary  trees: 

- def btree  A = du (cp ( ) ,cp (A,btree  A,btree A )  ) , 

- def empty,nonempty = predicates  (btree A )  , 

&f emptycponemptyc  =parts  (btree A )  , 

- def root,left,right = selectors nonemptyc , 
&f cbtree = construct  nonemptyc , 

&f etree = construct  emptyc ( )  . 

The function for constructing  nonempty trees is called 
cbtree, and etree is the name of the empty  binary  tree. 

The family of functions that  scans binary trees  can  be 
produced by using: 

- def btreel  a g f x = 
if empty x 
then a 
else g (f (root x ) )  

(btreel  a g f (left x ) )  
(btreel  a g f (right x ) )  

in which if (btreel  a g f) e A-binary  tree + B , then 
a e B ,   f e A + C ,  and g e C + ( B + ( B + B ) ) .  It is 
possible to define another function on binary trees, which 
interchanges the roles of the left  and right subtrees,  as 

458 follows: 
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&f btree2 a g f x = 

if empty x 
then a 
else g (f ( root   x)  ) 

(btree2  a g f (right x ) )  
(btree2  a g f (left x ) )  

The function for reversing a binary tree is therefore: 

- def reversebtree = (btree2 etree cbtree I )  
= (btreel etree (C ctree) I )  

w h e r e C f x y = f y x .  

There is a correspondence between  a  binary tree and 
a forest, which can  perhaps  best  be  seen by unwinding, 
so to  speak,  the  structure definition of a forest. 

An A-forest is an (A-tree)-list 
i.e., is either null 

or  has a h, which is  an A-tree, 
and a t ,  which is an (A-tree)-list . 

In  other words, 
An A-forest is either null 

or  has a (root.h), which is  an A ,  
and a (listing.h), which is an A-forest, 
and  a t ,  which is an A-forest. 

This definition has  the  same  structure as a binary tree, 
and the  correspondence  can  be  expressed  as  the following 
correspondence between the functions on binary trees 
and forests: 

binary tree - forest 
empty null 
etree 0 
root root.  h 

left listing.  h 

right t 

btree  x  y z (ctree  x y )  : z 

Thus  every function that  either  operates  on  or  constructs 
binary trees may be transformed into a function that 
operates  on  or  constructs forests. An example of this 
correspondence between forests and  binary trees is 
shown in Fig. 4. 

There is a transformation of forests that corresponds 
to a reversal of the corresponding  binary  tree. It is clear 
that  the forestl function  can be “unwound” in the same 
way that  the  structure definition was to give: 

forestl  a g f x = list1  a g (tree  a g f ) x  

= if null x 
then a 
else g(tree1  a g f ( h  x ) )  

(list1  a  g(tree1  a g f ( t  x ) ) )  
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= if null x 
then a 
else g (f( root ( h  x )  ) 

(forestl  a g f ( l ist ing  (h  x) ) ) ) 
(forestl  a g f ( t  x ) )  

Another scanning  function for  forests called forest3 
can  be defined by interchanging the roles of the two 
forests  at positions 1isting.h and t in this definition, 
giving: 

forest3  a g f x = 

if null x 
then a 
else g ( f ( r o o t ( h   x ) )  

(forest3 a g f ( t  x ) ) )  
(forest3 a g f (listing(h x ) ) )  

The function for “rotating” a forest, i.e., producing the 
forest corresponding to  the reversal of the binary tree 
underlying the original, is 

&f rotate = forest3 ( )  ctree prejix . 

It follows that 

forestl  a g f x = forest3  a g f (rotate x ) ,  

rotate(rotate x )  = x .  

If forest2 is given the  same  treatment  as forestl , then 
the function forest4 is produced having the properties: 

forest2  a g f x = forest4  a g f (rotate x ) ,  

forest1  a g f x = forest4  a g f (rotate  (reverse x ) )  . 

The  rotate operation  interchanges the two forests in 
Fig. 5 .  For a further discussion of this rotate  operator 
see  Holt [7]. 

A forest may be transformed  into a binary tree by the 
function: 

forestl etree g pair where g(x,y)z = cbtree x  y z 

and pair  x  y = x,y . 
A  binary tree  can  be transformed  into a forest by 

h e e l  ( )  g I where g x  y z = (ctree  x y )  : z . 
The generating  function  for  binary trees is 

btree(x) = 1 + x  btree2(x) , 

and  therefore is equal to forest(x) . 

Combinations 
Another  correspondence can be set up between trees 
and  a structure called a combination. Combinations are 
trees with components only at  their end  points,  and  each 
tree  can  have  either 0 or 2 subtrees. 

/? / 
‘iF G- H K -  i L 

c 

J 

Figure 4 A correspondence  between  a  forest and a binary tree. 

Figure 5 Rotating  a forest. 
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Figure 6 A correspondence between trees and combinations. 

An A-combination is 
either  atomic  and is an A 
or has a left  and a right, both A-combinations. 

The following operations are defined for combinations: 

- def comb A = du(A,cp(comb A,comb A ) ) ,  

- def atomic,nonatomic = predicates  (comb A ) ,  

- def atorniccponatomicc = parts  (comb A ) ,  

&f left,right = selectors  nonatomicc, 

- def combine = construct nonatomicc, 

&f combl g f x = 
if atomic x 
then f x 
else g(comb1 g f (left x) )  

(combl g f (right x) )  

and comb2 is defined similarly by interchanging left and 
right. 

The interior  nodes of a  combination with n nodes form 
a binary tree with n - 1 nodes. Both combinations  and 
binary trees  can  be considered to be special cases of a 
structure in which the interior and end  points are treated 
as  two different types of atomic  component. 

An A-B tree  structure is 
either  atomic,  and is an A ,  
or has  a root, which is a B ,  

and a left and a right, 
both A-B tree structures. 

The binary tree is formed by setting A empty,  and the 
combination is formed by setting B empty. 

There is also a correspondence between trees and 
combinations,  and a function tree5 can be written that 
scans the tree  as if it were the corresponding  combina- 
tion. In this correspondence, a tree with a null listing 
corresponds  to  an atomic  combination;  when nonnull 
the  tree  at  the head of the listing corresponds to  the left 
of the combination,  and the  tree formed  from the root 460 
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and the tail of the listing corresponds  to the right of the 
combination. 

&f tree5 g f x  = 
if null(6ting x )  
then f (root x )  
else g(tree5 gf(h(list ing x ) ) )  

(tree5 g f (ctree  (root x)  ( t  (listing x) ) ) ) . 
A tree  can be transformed to a  combination by using 
(tree5 combine I )  and a combination  transformed to a 
tree by using 

combl g u 

where g x y = ctree(root y )  (x: listing y )  

and u x = x : ( ) .  

An example of this correspondence is given in Fig. 6, 
in which  both trees  have been reversed.  The correspon- 
dence may be interpreted as a  translation  from a func- 
tional  notation in which arguments are listed, i.e., 
A(B,C,D(E,F(G,H))) to  one in which only application of 
a function to a single argument is used, i.e., ((A B)C)  
( (D  E)((F G)H)) .  

The generating  function  for  combinations is 

combination(x) = x + cornbination2(x) 

and so combination(x) has the  same  recurrence relation 
as tree(x). 

Weights of trees 
The weight of a tree with respect  to a  certain  type of 
atomic  component  is the sum of the lengths of the  paths 
from  each  atomic component  to  the root. The generating 
functions for  the weights of trees  can also be obtained 
almost  automatically from the structure definition. 

Suppose  that T(x,y) is a generating  function  for a set 
of trees in which the coefficient of xnyW is the number of 
trees with n nodes and weight w. If this set of trees is 
moved down one level,  then one must be added to  the 
weight for each  atomic  component in the  tree,  or  for 
each x in the generating  function. The generating  func- 
tion for  the  set of trees moved down one level is there- 
fore T(xy,y), assuming that x is the variable that  corre- 
sponds  to  the atomic components whose depths  are  to 
be  counted in the weight. Therefore  the generating  func- 
tions for  the weights of trees  can be written down di- 
rectly from their structure descriptions. 

The weight generating  functions for  trees, binary 
trees,  and combinations are therefore: 

wtree ( x , y )  = x/ ( 1 - wtree ( x y , y )  ), 

wbtree(x,y) = 1 + x wbtree2(xy,y), 

wcombination ( x , y )  = x + wcombination2 ( x y , y )  . 
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To obtain  the  expected weight of a set of trees with n 
nodes, first T(x,y) is differentiated  with respect to y and 
then y is set equal to one. This  has  the effect of multi- 
plying the number of trees with weight w and n nodes by 
the weight w. 

If 

The  number of trees with n atomic  components is the 
coefficient of x in T(x, l ) .  If T ( x , l )  = 2 t,xn, then  the 
expected weight of trees with n nodes is wtnw/t , .  If 
wcombination is abbreviated  to c,  then  the  recurrence 
relation for combinations can be  differentiated  with 
respect  to y to give 

2C(XY,Y)(C,(XY,Y) + X C , ( X Y , Y ) )  = C , ( X , Y ) .  

Therefore c , ( x , l )  = 2 x c ( x , l ) c , ( x , l ) / l  - 2 c ( x , l )  

= x (  1 - C)/( 1 - 4x1 . 

Hence  the  sum of the weights of combinations with 
n + 1 nodes is 4” - e,”). By a  similar argument,  the  sum 
of the weights of all the  trees with n + 1 nodes or forests 
with n nodes is (1/2)(4” - (’,”>), i.e., just half of that  for 
combinations. The  sum of the weights of binary trees 
with n nodes is 4 n -  ( 3 n  + l ) / ( n  + l ) ( : ) .  

Summary 
The four-way correspondence  among 1 )  descriptions of 
sets, 2)  general-purpose functions for scanning  a mem- 
ber, 3) the generating functions  for counting the number 
of members with n atomic components,  and 4 )  the 
generating  functions for  the weights of trees is appli- 
cable  to  any  set  that  can be described in terms of du,  cp, 
and existing sets.  The most  general case is a number of 
mutually recursive definitions of sets, which give  rise to 
a number of mutually recursive functions and a  number 
of mutually recursive generating functions, which all 
have  the  same  pattern of definition and  describe  trees 
having certain restrictions. 

Although it is a  straightforward matter  to obtain  a 
generating  function from  the  structure  description, it is 
often difficult to  obtain  an explicit expression  for  the 
coefficients. One general  method that is applicable to 

this  situation is the method of Lagrange’s expansion,  as 
extended  to  the multivariable case by Good [8]. 

It  seems likely that  there  are  other  close  correspon- 
dences  between programming and combinatorial theory 
in which the mathematical operations  used to construct 
generating functions  correspond  to  the  methods of piec- 
ing together  parts of programs, and  the  methods  for ob- 
taining the coefficients of variables of generating  func- 
tions correspond  to  the  actions of the programs in con- 
structing the different  configurations that  are  enumerated 
by the generating  function. One example is  the relation- 
ship between labeled trees  and  “reluctant  functions,”  as 
described by Mullin and  Rota [9]. Another is the 
relationship between  the details of the  performance of 
differential operators  that  select coefficients of generating 
functions  and  programs that  construct  the related  con- 
figurations, as described  by MacMahon [ l o ] .  

This  paper  contains some of the material from a 
chapter of a forthcoming  book  entitled “Advanced Sys- 
tems Programming Techniques”  to  be published  by the 
Addison-Wesley Publishing Co. as  one volume in the 
I B M  Systems  Programming  Series of books. 
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