
Combinatory Programming and Combinatorial Analysis

Abstract: The principal purpose of this paper is to illustrate by means of simple examples a technique for deriving programs and gener-
ating functions from set descriptions. The paper discusses certain interesting correspondences among types of trees, which follow from
the use of the technique, and it demonstrates close connections between programming techniques and some aspects of combinatorial
theory.

Introduction
This paper introduces methods of simplifying program-
ming, which, although not entirely new, have not been
used in practice to any great extent, perhaps because they
require certain features that many current programming
languages do not provide. Instead of the usual method
of producing programs by the step-by-step sequencing of
instructions, programs are produced by the application
of a general-purpose function to its arguments. Such pro-
grams are easier to understand and their properties are
more easily discovered and proved. The method involves
certain ways of omitting irrelevant details that encum-
ber programs, although the extra details that need to be
supplied are precisely specified. By omitting the unnec-
essary details, it is possible to reveal the essential struc-
ture of the algorithm so that is can be more easily com-
municated and analyzed. This abbreviation, together with
certain program constructions, facilitates the expression
of more complex algorithms than is presently feasible.

A program has to be studied throughout all the stages
of its preparation. In the beginning, it has to be examined
to see whether it appears to be correct. Further studies
might include a proof that it has a certain property or an
analysis of the number of times each part of the program
will be executed. These last two deeper studies of pro-
grams naturally should give the programmer a greater
conviction of their correctness. For the rather limited
types of programs considered in this paper, certain prop-
erties can be proved in an almost mechanical fashion, and
an analysis of the running time of a program can easily

be accomplished by constructing a generating function
that has the same structure as the program itself.

Under the technique for constructing a program de-
scribed in this paper, the first step is to write a general-
purpose program that is a mere skeleton. The second
step is to supply arguments that specify the actions to be
taken within the skeleton. The skeletal program can be
considered to typify the whole family of programs obtain-
ed in this way, and any properties or timing analyses of
the general-purpose program are then applicable to all
the members of this family.

The programs that have been chosen to illustrate the
technique in this paper all operate on rooted, ordered
trees. The general-purpose skeleton embodies the method
of scanning the structure, and the arguments supplied
specify the actions to be taken during the scanning.

The general-purpose programs can be produced in a
mechanical fashion from the description of the set of
trees being scanned. The set of trees considered have
components that are either atomic, meaning their inter-
nal structure is not examined by the general-purpose
program, or composite, and their internal structure is
examined. An enumerating generating function that
counts the number of different structures having n atomic
components can also be constructed automatically from
the description of the set of trees.

A programmer can describe a set of information struc-
tures without specifying the nature of its atomic com-
ponents. It is possible, for example, to define a set of

IBM J. RES. DEVELOP.

lists and to write functions on the lists without specify-
ing the nature of the list elements, which are treated as
atomic as far as the general-purpose list function is con-
cerned. A function that is concerned with the nature of
the list elements can be supplied as an argument to the
list function. An element of a list may itself have internal
structure; for example, it may be a tree, containing atomic
components of its own. It is therefore possible to create
a general-purpose function for a list of trees from the
corresponding functions for lists and for trees by supply-
ing one as an argument to the other. In a similar way, the
generating function for counting the number of lists of
trees with n atomic components can be obtained by sub-
stituting the generating function of the trees for the ap-
propriate variable in the generating function of the lists.

The generating function classifies the members of a
set of structures according to the number of atomic com-
ponents. Each set of structures with n atomic components
can itself be classified according to another criterion,
and this two-way classification is represented by a gen-
erating function in which the coefficients of powers of
one variable are generating functions in another variable.
One type of problem that often arises in the analysis of
algorithms is that of finding the sum of the distances from
the root of a tree to each atomic component. This sum is
often called the weight of the tree. The passage from one
level of the tree to the next stands for the performance of
some operation, and the weight of the tree divided by the
number of atomic components is the expected number
of operations needed to reach an atomic component of
the tree. This type of problem can be solved by using a
generating function that classifies the structures both by
number of nodes and by weight, and the method for de-
riving this generating function almost immediately from
the structure description of the set is given.

Data structures
The method for describing new sets of data structures
was introduced for use in programming languages by Mc-
Carthy [l] and has been used to specify the semantics
of programming languages (e.g., Algol 60 [2] and PL/1
[3]) and occurs as part of the Algol 68 programming
language [4]. The description of a set is often referred to
as its abstract syntax, and although there might be nota-
tional differences in the references above, the main ideas
are much the same.

We use the two functions Cartesian product and di-
rect union to produce a set from two or more sets, and
use a notation for naming the predicates, selectors, and
constructors for members of the sets produced.

The Cartesian product A X B of two sets A and B is
the set of ordered pairs (a,b) where a e A and b E B .
This product is extended to operate on any number of
sets. Instead of A X B X C , we use cp(A,B,C) to denote

a set of structures each member of which has three com-
ponents whose first is of type A , whose second is of type
B, and whose third is of type C. This change allows one-
component or zero-component structures to be defined,
and these will be written cp(A) and cp(), respectively.

Functions for selecting the components (selectors)
are needed and are assumed to be both created and
named by a definition or declaration. Such definitions
are preceded by the word def to emphasize that a defini-
tion follows. For example, the following defines the se-
lectors Jirst, second, and third, which are all applicable
to cp(A,B,C):

defJirst,second,third = selectors (cp (A,B,C)) .
Alternatively the set could first be named as follows:

- def 3-tuple = cp (A ,B,C)

defJirst,second,third = selectors 3-tuple .
The same information could have been conveyed by the
following English sentence [2]:

A 3-tuple has a first, which is an A ,
and a second, which is a B ,
and a third, which is a C ,

In Algol 68 style the same definition could be written:

mode 3-tuple = struct (AJirs t , B second, C third) .
In all cases the definition is assumed to create functions
of the following types

Jirst E (3-tuple + A)

second E (3-tuple += B)

third E (3-tuple + C) ,

in which A += B denotes the set of functions from A to B.
A program fragment that operates on a 3-tuple takes

the form

F(FA(firs t (x)) , FB(second (x)), FC(third (x))),

in which x is a 3-tuple, and the functions F A , FB, and
FC are applied to the components producing results
that are combined using a function F.

A function that is applicable to more than one argu-
ment may be changed to a single-argument function by
using a notational device of combinatory logic [SI in
which the expression (fx)y denotes the application of a
function f to x and y in two stages, so to speak. The func-
tionf is first applied to x producing a function that is then
applied to y . This implicit application operator is assumed
to associate to the left, so thatfx y means the same thing
as (fx)y . Note that parentheses are never needed to en-
close a sole identifier. All functions are assumed to have
one argument; in the case offin an expression likef(x,y) ,

" " - -

451

SEPTEMBER 1972 COMBINATORY PROGRAMMING

it is still treated as a function of one argument, which in
this case is an ordered pair.

Functions (called constructors) are also needed for
constructing structured objects from a list of their com-
ponents and are defined according to the following style:

def triple x y z = construct 3-tuple (x.y,z) .
The constructing and selecting functions are related as
follows:

triple (first u) (second u) (third u) = u

.first (triple x y z) = x

second (triple x y z) = y

third (triple x y z) = z
in which u is a 3-tuple and x , y, and z are members ofA,
B , and C , respectively.

The other function that is employed to create new sets
is the direct union, written du(A,B), and is used when
members of a set can have the two different formats A
or B. In order to write programs, it is necessary to be
able to test whether a member of du(A,B) is an A or a B .
These predicates and their names are defined in the fol-
lowing style:

defis-A, is-B, is-C = pred ica te s (du(A ,B ,C)) .

The associated axioms merely state that the predicates
are effective and take the form:

is-A (x) = true if x E A
false otherwise.

In practice this means that some additional informa-
tion has to be added to make it possible to recognize
members of A , B , and C when they appear as members
of du(A,B,C) .

The piece of program that naturally corresponds to
du(A,B,C) is

if is-A (x)
then FA (x)
else if is-B (x)

then F B (x)
else F C (x)

in which tests are first made for the alternative formats
and then a function of the correct type is applied.

arating and naming the alternatives:

purts (du(A,B,C,D)) = A , B , C , D ,

An inverse to du, called parts, is often useful for sep-

The number of members of cp(A,B) or du(A,B) is the
product or sum of the number of members of A and B .
It is possible to provide more information about these

452 sets as follows. Each object under consideration either

w. n. BURGE

has components or is atomic and has no internal struc-
ture. The members of each set can be classified by the
number of atomic components they contain. This classi-
fication can be expressed as an enumerating generating
function in which the coefficient of xn is the number of
members of the set having n atomic components. Suppose
that A(x) and B(x) are two generating functions of this
sort, thus:

m m

A (x) = 2 a,x” , B (x) = 2 b,xn,
n=n n=O

in which a, is the number of members of A having exactly
n atomic components, and 6, is the number of members of
B having n atomic components. Then the number of
members of cp(A,B) having exactly n atomic compo-
nents is the coefficient of x in the product of A(x) and
B(x) , i.e.:

m n

A (x) B (x) = 2 2 ‘ k b n _ k x n .
n=n k=n

In this sum the term uk b,-k is the number of members of
cp(A,B) in which the first of the pair has k atomic com-
ponents and the second has n - k .

The number of members of du(A,B) having n atomic
components is a, + 6,. The generating function for
du(A,B) is therefore found by adding the generating func-
tions for A and B ,

m

A (x) + B (x) = 2 (a, + b,)x.
n=n

The same correspondences hold between sets of trees
having more than one type of atomic component and
multivariable generating functions. The generating func-
tion of a Cartesian product is the product of the generat-
ing functions of the component sets, and the generating
function of a direct union is the sum of the generating
functions for the alternative sets.

The three-way correspondence among structure de-
scriptions, programs, and generating functions is sum-
marized in the table below.

Generating
Sets Program function

atomic A a function on x, a variable
atomic components

CP (A ,B 1 F(FA(firs t (x) , A b) . B (x)
F B (s e c o n d (x))))

du (A ,B 1 if is-A A (x) + B (x)
then FA (x)
else FB (x)

C P O a, a variable xo= 1

A = . . B . . B . FA(FB) = . . FB . . F B . A (B (x))

In the last line A = . . B . . B . means a set A is defined
in terms of a set B , FA(FB) means that the function FA

IBM J. RES. DEVELOP.

is defined in terms of the function FB, and A(B(x)) means
that B(x) is substituted for x in A(x) . A number of ex-
amples of these correspondences are given next.

Lists
Lists are the most commonly used data structure in pro-
gramming, and the definition of a list of elements of type
A is:

An A-list
is either null

or has a head, which is an A ,
and a tail, which is an A-list ,

or

deflist A = du(cp() , cp(A,list A)) .

The operations on lists may be defined as follows:

def null,nonnull= predicates (list A) ,
def nullc,nonnullc = parts (list A) ,
- def h,t = selectors nonnullc ,
- def prejix x y = construct nonnullc(x,y) ,
- def nullist = construct nullc (1 ,
in which head has been abbreviated to h, and tail to t .
The expression x : y is used as an abbreviation for pre-
fix x y , () denotes the null list, a,b,c,d,e is used as an al-
ternative to a : (b : (c : (d : (e : ())))), and u x denotes a list
with one element. The types of the list functions intro-
duced are:

null E (A-list -+ truth value) ,
head E (nonnull A-list + A) ,
tail E (nonnull A-list -+ A-list) ,
prejix E (A + (A-list + A-list)) ,
() E A-list .

These functions are closely interrelated as follows:

null() = true ,

null(x:y) =false,

h (x : y) = x ,

t (x : y) = y 7

(h z) : (t z) = z ,

in which x is an A , y is an A-list, and z is a nonnull A-list.
Each structure description is assumed to create func-
tions that conform to a number of axioms of this type.

Many functions that operate on lists have the same
basic structure, as can be seen from the following:

def sum x = -
if null x
then 0
else (h x) + sum (t x)

e.g., sum (1,2,3,4) = 10,

&f product x =

if null x
then 1
else (h x) X product (t x)

e.g., product (1,2,3,4) = 24 ,

- def append x y =
if null x
then y
else (h x) : (append (t x) y)

e.g., append (1,2)(3,4,5) = 1,2,3,4,5,

def concat x = -
if null x
then ()
else append (h x) (concat (t x))

e.g., concat((l,2), (3,4), 0) = 1,2,3,4,

- def map f x =
if null x
then ()
else (f (h x)) : (m a p f (t x))

e.g., map square (1,2,3,4) = 1,4,9,16.

It can be seen that these functions only differ in the
first arm of the conditional expression and in the function
that combines whatever is produced from the head of the
list (usually the head itself) with whatever is produced by
applying the same function to the tail of the list. The
common part of these functions may be expressed as a
function called listl, defined below, in which the parts
that are not common have. been made variables.

&f listl a g f x =
if null x
then a
else g(f (h x)) (listl a g f (t x))

The result of applying the function listl a g f to a list is a
if the list is empty; otherwise it is the result of applying g
to two arguments: 1) the result of applyingfto the head of
the list, and 2) the result of applying listl a g f to the tail
of the list. It is now possible to redefine the five functions
in terms of listl. It can be seen that this technique both
saves writing and is more likely to produce a correct
program because the complex programming (i.e., the
conditional expression and looping) has been written
once and for all in the function listl. The listl function is
similar to the reduction operator in APL [6]; thus +/ in
APL is similar to listl 0 plus 1. The following definitions
use postjix, which adds a new item to the end of a list,
defined as follows:

def postjix x y = append y (u x) . 453

SEPTEMBER 1972 COMBINATORY PROGRAMMING

Also I is the identity function and K x y = x

&f sum = listl 0 plus I ,

def product = listl I mult I ,

def append x y = listl y prefix I x ,

&f concat = listl () append I ,

&f map f = listl () prefix f .

Some other examples are:

def length = listl 0 plus (K 1) ,

- def sumsquares = list1 0 plus square,

def reverse = listl () postfix I ,

&f identity = list1 () prejix I .
The types of arguments of listl may be deduced from

their pattern of application as follows. The whole func-
tion listl a g f must operate on a list. Let us assume that it
is an A-list and that it produces a member of B , i.e.

(listl a g f) E (A-list + B) .
Then the argument a must be a B . The functionfoperates
on an A and let us assume it produces a C :

fE (A - C) .

Then g must operate on a C and the result of applying
listl a g f to an A-list, which is a B , must produce a B. The
type of g is therefore

g c (C - + (B j B)) .

The function listl has the property

listl a g f (append x y) = listl (listl a g f y) g f x

provided that the types of a , g, and f conform to the
scheme above for some sets A , B , and C , and that x and
y are both A-lists. This may be proved in a mechanical
fashion from the axioms for lists and from the definitions
of list1 and append. The property emphasizes the fact
that in all functions defined in terms of listl, the list is
first scanned to its end, and then the actions g are taken
on the way back. The same result may be obtained in
two ways: 1) by concatenating two lists x and y , and then
applying listl a g f to the result, and 2) by first applying
listl a g f to the second list (y) , and then using the result
as an initial value (the a argument) for the same function
when it is applied to the first list (x).

Two cases must be examined in order to prove the
following property of listl :

listl a g f (append x y) = listl (listl a g f y) g f x .

One is when x is the null list and the other when x is non-
454 null. The proof proceeds by reducing each side to the

W. H. BURGE

same expression. First substitute listl y prejix I x for
append x y , and then let:

LHS = listl a g f (Iistl y prefix I x)

RHS = listl (listl a g f y) g f x .

Then if x is the null list,

LHS = listl a g f (listl y prejix I ())

= Iistl a g f y ,

and

RHS = listl (listl a g f y) g f ()

=list1 a g f y .

Both steps are applications of listl a g f () = a . When x
is not null, it takes the form h x:t x , so that

LHS = listl a g f (listl y prejix I (h x : t x))
=list1 a g f (prejix (I (h x)) (listl y p r e j i x l (t x)))
= listl a g f (prefix (h x) (listl y prefix I (t x)))
= g (f (h x)) (listl a g f (listl y prejix I (t x)))
= g (f (h x)) (l ist1 (list1 a g f y) g f (1 x)) ,

and

RHS = listl (listl a g f y) gf (h x : t x)
= g (f (h x)) (listl (listl a g f y) g f (t x))
= LHS .

Each step is an application of

listl a g f (h x : t x) = g (f (h x)) (listl a g f (t x))

except the last in the reduction of the LHS, in which the
property is assumed to be true for the tail of the list. All
the other properties of functions that follow can be
proved in the same mechanical fashion.

The functions defined in terms of listl all scan the list
(i.e., accumulate the result) from right to left. There is a
second family of functions whose members scan lists
from left to right, which can be defined by using a func-
tion called list2.

- def list2 a g f x =
if null x
then a
else list2 (g (f (h x)) a) g f (t x)

The arguments a , g, f , and x must be the same types as
those for listl. The function list2 has a property analo-
gous to that of listl, namely:

list2 a g f (append x y) = list2 (list2 a g f x) g f y .
Thus we may either append two lists x and y and then
apply list2 a g f to the result, or first apply the function to
x and then use the result as an initial value for the same
function when it is applied to y . Note that the roles of x
and y are reversed in the properties of listl and list2. In

IBM J . RES. DEVELOP.

the case of functions defined using list2, the result is ac-
cumulated as the list is scanned from left to right.

The function list2 can be implemented by the "itera-
tive" program below; thus it may be more efficient to use
list2 than listl.

L: if null x
then a
else

a: = g (f (h x)) a

x : = t x

go to L

It is also possible to prove that

list] a g f x = list2 a g f (reverse x) .

This means that listl a gfproduces the same result when
applied to a list x as list2 a g fdoes when it is applied to
the reversal of list x. Since

append x y = listl y prejix x

= list2 x postfix y

and

reverse = listl () postj ix I

= list2 () prefix I ,

it is possible by substituting particular values for a, g, and
fin the relationship between listl and list2 to prove

reverse (reverse x) = x ,

append(append x y) z = append x(uppend y z) ,

reverse(append x y) = append(reverse y) (reverse x) .
The generating function (g.f.) for an A-list may be ob-

tained immediately from the structure description for
lists

list A = du(cp.(),cp(A,list A)) ;

l i s t (x) = 1 + x list(x) .
There is one list having no components (xo or 1) . A non-
null A-list has a head, which is an A, and a tail, which is
an A-list. In the corresponding g.f., an x appears cor-
responding to the head A and a list(x) appears cor-
responding to list A , and these are multiplied together in
the g.f. This may be solved, giving:

list(x) = 1/(1 - x)

= 1 + x + x 2 + x 3 + x 4 +

Another way to read the definition is: a list is either
empty, or is a 1-list, or is a 2-list, etc., and the generating
function for a list of length n is x".

Figure 1 Compositions of 4.

The generating functions for lists whose lengths are
restricted in some way can be written down immediately.
For example, the nonnull lists have the generating func-
tion:

n ~ i s f (x) = x / (l - x) = x + x ~ + x ~ + x ~ +
and the g.f. for all lists no longer than j is

(1 - X j ") / (1 - x) .
The method for creating new generating functions by

substitution may be illustrated as follows. The g.f. for a
nonempty list of nonempty lists is nlist (nlist (x)) , where
nlist = x / (1 - X) ; therefore it is x / (1 - 2x) , and there are
2"" configurations with n atomic components. The struc-
tures are usually called compositions, and the 8 composi-
tions of 4 are given in Fig. 1.

The associated function for scanning a nonempty list is:

- def nlist g f x =

if null (t x)
thenf (h x)
else g (f (h x)) (nlist g f (t x))

and the function for scanning compositions is nlist g,
(nlist g, f,). This can be extended to multipart composi-
tions as follows. An (A-list)-(B-list) pair, i.e., having a
first, which is an A-list, and a second, which is a B-list, has
the generating function

(111 - x) (1/1 - Y) ,

and if the pair (0, ()) is omitted, the generating function
becomes

(l / l - x) (U l - y) - 1

or

(x l l - x) + (y / l - Y) + (Xl l - x) (Y / l - Y) .
This corresponds to the structure

An A-B npair is
either an A-nlist
or a B-nlist
or an (A-nlist)-(B-nlist) pair .

The corresponding program could be written

def npair P f , g, f , g, (X ~ Y 1 =
if null x
then nlist f , g, y 455

SEPTEMBER 1912 COMBINATORY PROGRAMMING

(2 ,5)= (1,3) + (1 , l) + (0.1)

Figure 2 A two-part composition of (2.5).

else if null y
then nlist f , g, x
else p(n1ist f , g, x) (nlist f , g , y)

A nonempty list of such pairs therefore has the generating
function

nlist ((1 / 1 - x) (1 / 1 - y) - l) ,

in which the coefficient of xnym is the number of the two-
part compositions of the two-part number (n,m). An ex-
ample of a two-part composition of (2 , s) is given in Fig. 2.
The associated function for scanning two-part composi-
tions is nlist g3 (npair p f , g, f , g,) .

List structures
An A-liststructure is either atomic and is an A or is an
(A-liststructure)-list. Thus

&f liststructure A = du (A,list (liststructure A)) ,

&f atomic,nonatomic = predicates (liststructure A) .
The functions list1 and list2 can be extended to list struc-
tures as follows:

- defls l a g f x =
if atomic x
then f x
else listl a g (Is1 a g f) x

- defls2 a g f x =
if atomic x
then f x
else list2 a g (Is2 a g f) x

In both, the same function Is1 a g f or Is2 a g f is applied
to a component list structure as is applied to the list struc-
ture itself. In this case f and Is1 a g f must produce the
same type of object, and g E B + (B 4 B) . It follows
that some of the functions defined for lists, i.e., those with
g E B + (B + B) for some B , may be extended to be
applicable to list structures. For example

- def sumls = Is1 0 plus I

= Is2 0 plus I ,

- def productls = Is1 I mult I

456 = ls2 I mult I ,

W. H. BURGE

- def concatls = Is1 () append u ,

- def mapls f = Is1 () prejix f ,

def lengthls = Is1 0 plus (K I) ,

def sumsquaresls = Is1 0 plus square,

&f reversels = Is1 () postjix I ,

def identityls = Is1 () prejix I ,

The first two functions take the sum and product of the
atomic components of a list structure, concatls flattens
the list structure into a list, (m a p l s f) applies f to all the
atomic components and produces a list structure with the
same shape as the original containing the results, lengthls
counts the number of atomic components, and reversels
reverses all the lists in the structure. Examples of the
applications of these functions follow:

let Is = (1 , (2 , (3 , 4)) , 5) ,

sumls Is = 15 ,

productls Is = 1 2 0 ,

concatls Is = (1 ,2,3,4,5) ,

mapls 1s = (1 , (4 , (9 , 1 6)) , 2 5) ,

lengthls Is = 5,

sumsquares Is = 5 5 ,

reversels Is = (5,((4 , 3) , 2) , 1) ,

identityls Is = (1 , (2 , (3 , 4)) , 5)

The relation between listl and list2 is extended to

Is1 a g f x = Is2 a g f (reversels x) .
The generating function for a list structure is given by

1s (x) = x + list (Is x) .
The existence of 0-lists and 1 -lists implies that there is
an infinite number of list structures containing n atomic
elements. If 0-lists and 1 -lists are disallowed, the list g.f.
becomes x2/ (1 - x) , and the g.f. for list structures without
0- and I -lists is:

nIs(x) = x + n I s 2 (x) / (l - n l s (x)) ,

which may be solved to give

2n1s'(x) - (1 + x) n I s (x) + x = o
& (x) = 1/4(1 + x - d l - 6x + x ")

= x + + 3 2 + 1 l X 4 + 4sX5 +
This g.f. enumerates the ways of bracketing a sum of n

numbers, in which each bracket must include at least two
expressions, but the entire expression is unbracketed.
The first four instances are:

IBM J . RES. DEVELOP.

a ,

a + b ,

a + b + c , (a + b) + c , a + (b + c) ,

a + b + c + d , (a + b + c) + d , a + (b + c + d) ,
(a + b) + c + d , u + (b + c) + d , a + b + (c + d) ,
(a + b) + (c + d) , ((a + b) + c) + d ,
(a + (b + c)) + t , a + ((b + c) + d) ,
a + (b + (e + d l) .

Trees
List structures can be considered to be ordered, rooted
trees with components only at their leaves, or end points.
Another structure that is often useful is a tree that has
components at every node. If interior and end points are
to be treated in the same way, the most useful tree struc-
ture is defined as follows:

An A-tree has a root, which is an A ,
and a listing, which is an A-forest .

An A-forest is an (A-tree)-l ist .
The function used to construct a tree from an A and an
A-forest is called ctree. The following operations are de-
fined for trees and forests:

- def tree A = cp(A,forest A) ,

- def forest A = list(tree A) ,

&f root, listing = selectors(tree A)

def ctree = construct(tree A) .

Two families of functions can be defined using listl
and list2:

&f treel a g f x =f (root x) (forestl a gf (listing x)) ,

- def forest1 a g f x = listl a g (treel a g f) x,
&f tree2 a g f x =f (root x) (forest2 a g f (listing x)) ,

- def forest2 a gf = list2 a g (tree2 a g f) .
In this representation, an end point is a tree whose

listing is the null list. As in the case of list structures, the
same function is applied to both a component tree and the
whole tree, and the same function is applied to both a
component forest and the whole forest.

The expression below is used to describe the tree in
Fig. 3. The comma is used for lists and the semicolon is
used for ctree.

A;(B;(E;O,F;(G;O,H;O)),C;O,D;

(I ; (K O , L ; O J ; O)))

There are several ways of scanning the nodes of a tree.
They can be expressed as functions for listing all the

SEPTEMBER 1972

Figure 3 An example of a tree.

atomic components. The result of applying (tree1 (1
append prefix) to the tree in Fig. 3 is

A B E F G H C D I K L J ,

and (tree2 () append prefix) produces

A D J I L K C B F H G E ,

which is also the result of applying (treel () append
prejix) to the reversed tree.

A tree may be reversed, meaning that all its lists are
reversed, by using:

&f reversetree = tree2 () prefix ctree ,

and a forest may be reversed by

&f reverseforest = forest2 () prefix ctree .
It is easy to prove that

reversetree (reversetree x) = x

and

reverseforest(reversef0rest x) = x

Each function on a tree, defined in terms of treel or
tree2, may be applied to a forest by using the same
arguments and the functions forest1 and forest2, respec-
tively, and vice versa. The property above may be gen-
eralized to give the following relationships between
treel and tree2 and between forestl and forest2 :

tree1 a g f x = tree2 a g f (reversetree x) ,

forestl a g f x = forest2 a g f (reverseforest x) .
To determine the generating functions for trees and

forests consider that:

t ree(x) = x f o r e s t (x) ,

forest x = list(tree x) .
Therefore

tree (x) = x list (t r ee (x))

= x / (1 - t r e e (x)) 457

COMBINATORY PROGRAMMING

tree2(x) - t r ee (x) +x = o
tree(x) = + (I - d F G j

= 1 / n () x n .
2n - 2

n - 1
np1

= x + x2 + 2x3 + 5x4 + 14x5 + 42x6 + 1 32x7

+ . . .

Also since tree(x) = x forest(x) , then

xforest2(x) - forest(x) + 1 = 0 .

Forests with n nodes are in correspondence with the
trees with n + 1 nodes formed by adding a root.

Binary trees
Two more restricted types of trees are considered next.
Correspondences can be set up between both types of
trees and the trees just defined. The first type of tree is
called a binary tree, and can have 0 or 2 subtrees.

An A-binary tree
is either empty

or has a root, which is an A ,
and a left and a right, both A-binary

trees.

The following definitions apply to binary trees:

- def btree A = du (cp () ,cp (A,btree A,btree A)) ,

- def empty,nonempty = predicates (btree A) ,

&f emptycponemptyc =parts (btree A) ,

- def root,left,right = selectors nonemptyc ,
&f cbtree = construct nonemptyc ,

&f etree = construct emptyc () .

The function for constructing nonempty trees is called
cbtree, and etree is the name of the empty binary tree.

The family of functions that scans binary trees can be
produced by using:

- def btreel a g f x =
if empty x
then a
else g (f (root x))

(btreel a g f (left x))
(btreel a g f (right x))

in which if (btreel a g f) e A-binary tree + B , then
a e B , f e A + C , and g e C + (B + (B + B)) . It is
possible to define another function on binary trees, which
interchanges the roles of the left and right subtrees, as

458 follows:

w. n. BURGE

&f btree2 a g f x =

if empty x
then a
else g (f (root x))

(btree2 a g f (right x))
(btree2 a g f (left x))

The function for reversing a binary tree is therefore:

- def reversebtree = (btree2 etree cbtree I)
= (btreel etree (C ctree) I)

w h e r e C f x y = f y x .

There is a correspondence between a binary tree and
a forest, which can perhaps best be seen by unwinding,
so to speak, the structure definition of a forest.

An A-forest is an (A-tree)-list
i.e., is either null

or has a h, which is an A-tree,
and a t , which is an (A-tree)-list .

In other words,
An A-forest is either null

or has a (root.h), which is an A ,
and a (listing.h), which is an A-forest,
and a t , which is an A-forest.

This definition has the same structure as a binary tree,
and the correspondence can be expressed as the following
correspondence between the functions on binary trees
and forests:

binary tree - forest
empty null
etree 0
root root. h

left listing. h

right t

btree x y z (ctree x y) : z

Thus every function that either operates on or constructs
binary trees may be transformed into a function that
operates on or constructs forests. An example of this
correspondence between forests and binary trees is
shown in Fig. 4.

There is a transformation of forests that corresponds
to a reversal of the corresponding binary tree. It is clear
that the forestl function can be “unwound” in the same
way that the structure definition was to give:

forestl a g f x = list1 a g (tree a g f) x

= if null x
then a
else g(tree1 a g f (h x))

(list1 a g(tree1 a g f (t x)))

IBM J. RES. DEVELOP.

= if null x
then a
else g (f(root (h x))

(forestl a g f (l ist ing (h x))))
(forestl a g f (t x))

Another scanning function for forests called forest3
can be defined by interchanging the roles of the two
forests at positions 1isting.h and t in this definition,
giving:

forest3 a g f x =

if null x
then a
else g (f (r o o t (h x))

(forest3 a g f (t x)))
(forest3 a g f (listing(h x)))

The function for “rotating” a forest, i.e., producing the
forest corresponding to the reversal of the binary tree
underlying the original, is

&f rotate = forest3 () ctree prejix .

It follows that

forestl a g f x = forest3 a g f (rotate x) ,

rotate(rotate x) = x .

If forest2 is given the same treatment as forestl , then
the function forest4 is produced having the properties:

forest2 a g f x = forest4 a g f (rotate x) ,

forest1 a g f x = forest4 a g f (rotate (reverse x)) .

The rotate operation interchanges the two forests in
Fig. 5 . For a further discussion of this rotate operator
see Holt [7].

A forest may be transformed into a binary tree by the
function:

forestl etree g pair where g(x,y)z = cbtree x y z

and pair x y = x,y .
A binary tree can be transformed into a forest by

h e e l () g I where g x y z = (ctree x y) : z .
The generating function for binary trees is

btree(x) = 1 + x btree2(x) ,

and therefore is equal to forest(x) .

Combinations
Another correspondence can be set up between trees
and a structure called a combination. Combinations are
trees with components only at their end points, and each
tree can have either 0 or 2 subtrees.

/? /
‘iF G- H K - i L

c

J

Figure 4 A correspondence between a forest and a binary tree.

Figure 5 Rotating a forest.

SEPTEMBER 1972 COMBINATORY PROGRAMMING

Figure 6 A correspondence between trees and combinations.

An A-combination is
either atomic and is an A
or has a left and a right, both A-combinations.

The following operations are defined for combinations:

- def comb A = du(A,cp(comb A,comb A)) ,

- def atomic,nonatomic = predicates (comb A) ,

- def atorniccponatomicc = parts (comb A) ,

&f left,right = selectors nonatomicc,

- def combine = construct nonatomicc,

&f combl g f x =
if atomic x
then f x
else g(comb1 g f (left x))

(combl g f (right x))

and comb2 is defined similarly by interchanging left and
right.

The interior nodes of a combination with n nodes form
a binary tree with n - 1 nodes. Both combinations and
binary trees can be considered to be special cases of a
structure in which the interior and end points are treated
as two different types of atomic component.

An A-B tree structure is
either atomic, and is an A ,
or has a root, which is a B ,

and a left and a right,
both A-B tree structures.

The binary tree is formed by setting A empty, and the
combination is formed by setting B empty.

There is also a correspondence between trees and
combinations, and a function tree5 can be written that
scans the tree as if it were the corresponding combina-
tion. In this correspondence, a tree with a null listing
corresponds to an atomic combination; when nonnull
the tree at the head of the listing corresponds to the left
of the combination, and the tree formed from the root 460

w. n. BURGE

and the tail of the listing corresponds to the right of the
combination.

&f tree5 g f x =
if null(6ting x)
then f (root x)
else g(tree5 gf(h(list ing x)))

(tree5 g f (ctree (root x) (t (listing x)))) .
A tree can be transformed to a combination by using
(tree5 combine I) and a combination transformed to a
tree by using

combl g u

where g x y = ctree(root y) (x: listing y)

and u x = x : () .

An example of this correspondence is given in Fig. 6,
in which both trees have been reversed. The correspon-
dence may be interpreted as a translation from a func-
tional notation in which arguments are listed, i.e.,
A(B,C,D(E,F(G,H))) to one in which only application of
a function to a single argument is used, i.e., ((A B)C)
((D E)((F G)H)) .

The generating function for combinations is

combination(x) = x + cornbination2(x)

and so combination(x) has the same recurrence relation
as tree(x).

Weights of trees
The weight of a tree with respect to a certain type of
atomic component is the sum of the lengths of the paths
from each atomic component to the root. The generating
functions for the weights of trees can also be obtained
almost automatically from the structure definition.

Suppose that T(x,y) is a generating function for a set
of trees in which the coefficient of xnyW is the number of
trees with n nodes and weight w. If this set of trees is
moved down one level, then one must be added to the
weight for each atomic component in the tree, or for
each x in the generating function. The generating func-
tion for the set of trees moved down one level is there-
fore T(xy,y), assuming that x is the variable that corre-
sponds to the atomic components whose depths are to
be counted in the weight. Therefore the generating func-
tions for the weights of trees can be written down di-
rectly from their structure descriptions.

The weight generating functions for trees, binary
trees, and combinations are therefore:

wtree (x , y) = x/ (1 - wtree (x y , y)),

wbtree(x,y) = 1 + x wbtree2(xy,y),

wcombination (x , y) = x + wcombination2 (x y , y) .

IBM J . RES. DEVELOP.

To obtain the expected weight of a set of trees with n
nodes, first T(x,y) is differentiated with respect to y and
then y is set equal to one. This has the effect of multi-
plying the number of trees with weight w and n nodes by
the weight w.

If

The number of trees with n atomic components is the
coefficient of x in T(x, l) . If T (x , l) = 2 t,xn, then the
expected weight of trees with n nodes is wtnw/t , . If
wcombination is abbreviated to c, then the recurrence
relation for combinations can be differentiated with
respect to y to give

2C(XY,Y)(C,(XY,Y) + X C , (X Y , Y)) = C , (X , Y) .

Therefore c , (x , l) = 2 x c (x , l) c , (x , l) / l - 2 c (x , l)

= x (1 - C)/(1 - 4x1 .

Hence the sum of the weights of combinations with
n + 1 nodes is 4” - e,”). By a similar argument, the sum
of the weights of all the trees with n + 1 nodes or forests
with n nodes is (1/2)(4” - (’,”>), i.e., just half of that for
combinations. The sum of the weights of binary trees
with n nodes is 4 n - (3 n + l) / (n + l) (:) .

Summary
The four-way correspondence among 1) descriptions of
sets, 2) general-purpose functions for scanning a mem-
ber, 3) the generating functions for counting the number
of members with n atomic components, and 4) the
generating functions for the weights of trees is appli-
cable to any set that can be described in terms of du, cp,
and existing sets. The most general case is a number of
mutually recursive definitions of sets, which give rise to
a number of mutually recursive functions and a number
of mutually recursive generating functions, which all
have the same pattern of definition and describe trees
having certain restrictions.

Although it is a straightforward matter to obtain a
generating function from the structure description, it is
often difficult to obtain an explicit expression for the
coefficients. One general method that is applicable to

this situation is the method of Lagrange’s expansion, as
extended to the multivariable case by Good [8].

It seems likely that there are other close correspon-
dences between programming and combinatorial theory
in which the mathematical operations used to construct
generating functions correspond to the methods of piec-
ing together parts of programs, and the methods for ob-
taining the coefficients of variables of generating func-
tions correspond to the actions of the programs in con-
structing the different configurations that are enumerated
by the generating function. One example is the relation-
ship between labeled trees and “reluctant functions,” as
described by Mullin and Rota [9]. Another is the
relationship between the details of the performance of
differential operators that select coefficients of generating
functions and programs that construct the related con-
figurations, as described by MacMahon [l o] .

This paper contains some of the material from a
chapter of a forthcoming book entitled “Advanced Sys-
tems Programming Techniques” to be published by the
Addison-Wesley Publishing Co. as one volume in the
I B M Systems Programming Series of books.

References
1 . J. McCarthy, “A Basis for a Mathematical Theory of Com-

putation,” Computer Progrumming and Formal Systems,
edited by P. Braffort and D. Hirschberg, North-Holland
Publishing Co., Amsterdam (1963) 33 -70.

2. P. J. Landin, “A Correspondence between Algol 60 and
Church’s Lambda-Notation,’’ Comm. ACM 8, No. 2, 89-

3. P. Lucas and K. Walk, “On the Formal Description of
PL/l,” Annual Review in Automatic Progrumming 6, Part
3, 105- 181 Pergammon Press, New York (1969).

4. A. van Wijngaarden, “Report on the Algorithmic Language
Algol 68, Numerische Mathematik 14,79-218 (1969).

5 . H. B. Curry and R. Feys, Cornbinutory Logic, North-
Holland Publishing Co., Amsterdam (1958).

6 . K. E. Iverson, A Progrumming Lunguuge, John Wiley and
Sons, New York (1962).

7. A. W. Holt, “A Mathematical and Applied Investigation of
Tree Structures,” Ph.D. Thesis, University of Pennsyl-
vania (1963).

8. I. J. Good, “The Generalization of Lagrange’s Expansion
and the Enumeration of Trees,” Proc.Curnb.Phil.Soc. 61

9. R. Mullin and G-C. Rota, “On the Foundations of Combina-
torial Theory 111 of Binomial Enumeration.” in Graph
Theory and its Applications, edited by B. Harris, Academic
Press (1970) 167-213.

10. P. A. MacMahon, Combinatory Analysis, Cambridge Uni-
versity Press, Vol 1 (1915), vol 2 (1916).

101, 158-159 (1965).

(1965)499-517.

Received April 12, I972

The author is located at the IBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

SEPTEMBER 1972

461

COMBINATORY PROGRAMMING

