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On the Davidenko-Branin Method for Solving 
Simultaneous  Nonlinear  Equations 

Abstract: It has been  conjectured that  the  Davidenko-Branin  method for solving  simultaneous  nonlinear  equations is globally  conver- 
gent, provided  that  the surfaces on which each  equation  vanishes  are  homeomorphic to hyperplanes. We give an example  to show that 
this conjecture is false. A more  complicated  example shows that the method may fail to  converge to a zero of the gradient of a scalar 
function, so the  associated  method  for  function  minimization  is not globally convergent. 

Introduction 
In  an  attempt  to  increase  the domain of convergence of 
iterative  methods  for solving systems of nonlinear  equa- 
tions, various  techniques involving the solution of an 
associated system of differential equations have  been 
proposed [ 1 -61. Particularly promising is Branin's 
modification [ 1,2] of a  method  proposed by Davidenko 
[3,4]. To solve  the  system 

f(x) = 0 (1) 

of n nonlinear equations in n unknowns, a parameter t is 
introduced, and the  system of differential equations 

is integrated  numerically, both  forward and  backward 
in t ,  from some starting  point x(0). Here S(x)  is the sign 
of the  determinant of the  Jacobian matrix 

J ( x )  = (c?f;/dXj). (3) 

(We assume  that  eachfi is continuously  differentiable  and 
that a continuous  trajectory x(?)  exists  such  that (2) 
holds except  on a set having no limit points.) At points 
where J ( x )  is nonsingular, (2) may be written as 

dx/dt = S ( x ) J " ( x ) f ( x j  , (4) 

which shows  the  connection with Newton's method. 
It is important  to  observe  that, with the  assumptions 

given above, 

434 f [x ( t ) l  = c ( t ) f ' [ x ( O ) l  > ( 5 )  

where c(t) is a positive  continuous scalar function of t. 
In fact, if J [ x ( t ) ]  is nonsingular for t E [t,) , t l )  , then 

c ( t )  = c(t,,)exp{S[x(t,)I ( t -  t o ) }  (6) 

on [ t o ,  f l l .  
The idea of the  Davidenko-Branin method is that, as 

t tends  to + cc or - m , c(t) may tend to  zero and x ( t )  may 
tend to a zero  off.  For this to  be  true if n 1 2 , a  condi- 
tion that might be imposed on J'is  that  the  "Davidenko 
surfaces" 

S i  = {x E R"lfi (x)  = O }  (7) 

are homeomorphic to  hyperplanes.  The  reason  for im- 
posing this  condition is that if all components  off[x(O)] 
are  nonzero, all components of f [ x ( t ) ]  are  nonzero  for 
all t [from Eq. ( 5 ) ] ,  so the  trajectory x ( t )  never  crosses 
any of the S i .  Thus, if some S i  includes the  surface of an 
n-sphere B containing x(O), then x ( t )  can never  leave B ,  
and a zero  outside B can  never be approached by x ( t ) .  

It  has been conjectured [ 1,2] that  the method is glo- 
bally convergent if the  Davidenko surfaces Si are homeo- 
morphic to hyperplanes. In  the  next section we give a 
simple  example to show that this conjecture is false: for 
certain  starting  values the method  fails to  converge,  even 
though J(x) has a unique, simple zero. The example is for 
n = 2 , but similar examples may easily  be constructed 
for n > 2 .  In  the final section we give an example in 
which f' is the gradient of a scalar function. This example 
is of interest  because it shows  that  the Davidenko-Branin 
method, when  applied to  the gradient of a function, may 
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fail to find a local (much  less a global) minimum or max- 
imum. 

Counterexample 
Let f ( x )  be the  vector function of two variables  de- 
fined by 

f, (X1J,) = 4(x, + x2) (8) 

and 

f,(x,,x,) = 4(x1 + x,) + (x, - x,) [(x, - 212 + i; - I ]  , 
(9) 

and let C be the circular  disc  described by (x, - 2)2 + 
x i 5  1 .  

Theorem I 
The  curves s ' i  = {x E R'Ifi(x) = O ) ,  i =  I ,  2, are ho- 
meomorphic to straight lines and intersect only  at x = 0 .  
If x ( t )  is any continuous trajectory satisfying Eq. ( 5 )  [for 
any scalar function c ( t ) ] ,  and x(0) E C ,  then x ( t )  E C 
for all t. 

The proof  follows  from  some simple lemmas. 

8 Lemma I 
f ( x )  = 0 has a  unique  solution x = 0 in R' . 

Proof 
If x = (x,,x,) is a solution, then (8) and (9) give x2 = -x, 
and x1 [ 2(x1 - 1), + I ] = 0 , and the unique real solution 
is thus x1 = x, = 0 .  

Lemma 2 
For all x E R2,  df,/dx, 2 1 . 

Proof 
From (9), 

dfJax, = (x, -x, - 2) ,  + 2(x1 - 1 1, + 1 2 1 . (10) 

Lemma 3 
The  curve S, = {x E R21f,(x) = 0} is homeomorphic to 
a  straight line. 

Proof 
Lemma 2 shows that  for each x2 E R , there is precisely 
one value of x1 , say x, = g(xJ , such that f2(xI,x2) = 0 .  
Also, it  is easy  to  see  that g(x,) is continuously differen- 
tiable. Hence S, = {(g(x,),x,)lx, E R )  is homeomorphic 
to a  straight line. 

Lemma 4 
If x, 2 Ix21 , then 

f,(x,,x,) 3 XI. ( 1  1 )  
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Proof 
By Lemma 2, it is sufficient to  prove ( 1  I )  for x, = Ix,I . 
If  x1 = x, 3 0 ,  then, from (9), f2(xl,x,) = 8.5 3 x l .  On 
the  other  hand, if x, = -x, > 0 , then 

&(x,,x,, = 2x1(2(x, - + 1)  1 X]. (12) 

Lemma 5 
Let S be the annulus 1 < (xl - 2), + < 2 .  Then 
f,(x) > f , ( x )  > 0 for x E S , and f,(x) 2 J 2 ( x )  > 0 for 
x E c .  

Proof 
This proof follows  easily  from (8), (9) and  Lemma 4. 

Theorem 1 now  follows  Lemma 5 ,  using Eq. ( 5 )  and 
the continuity of x ( t )  : The  trajectory x(r)  can  never  cross 
S and so must  remain in C. In particular, x( t )  can never 
approach  zero. 

Global minimization 
Since it has  been  proposed in Ref. 7 that  the Davidenko- 
Branin method  should  be used to find the global minimum 
and/or maximum of a function of several  variables, the 
following theorem is of interest.  It shows that  the method 
may fail to  converge  to  either a minimum or a maximum. 

Theorem 2 
Let 

~ ( x )  = (x, + 1 0 ) ~  + (x, + I O ) ,  + exp[-(if +is)] , 
f ( x )  = (Wax,) , 

and let x ( t )  be a continuous  trajectory satisfying Eq. ( 5 )  
[for some scalar function c(t)] with x(0) = + ( 1 ,  - I ) .  
Then  the  curves S i  = {x E R'IlfJx) = 0) are homeomor- 
phic to straight lines and the  vector equation f(x) = 0 
has a unique  solution x = y [near (-10, -lo)] , but x ( t )  
does  not  approach y . In fact, x ( t )  lies in a component T I  
of the  set T = {x E R'If,(x) >fi(x) > 0) , and y is not 
in the closure of T I  . 

Remarks 
The proof of Theorem 2 is similar to  that of Theorem 1 ,  
and  the details are omitted. The idea is that the  term 
exp[-(.x: + i;)] introduces a slight bump in the graph of 
F ( x ) .  The bump is not sufficient to  introduce  another 
stationary point or  to appreciably perturb  the  curves 
S i ,  but it is sufficient to  introduce  the  component TI of 
T ,  and Eq. ( 5 )  shows  that x([) E T ,  for all t .  

In  practice this kind of breakdown of the method seems 
quite likely to  occur when the objective  function F is 
not  convex. If F is twice  continuously  differentiable, 
strictly convex, and has  bounded level sets, then the 
method is probably globally convergent,  but so are many 
other methods. 435 
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