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On the Davidenko-Branin Method for Solving
Simultaneous Nonlinear Equations

Abstract: It has been conjectured that the Davidenko-Branin method for solving simultaneous nonlinear equations is globally conver-
gent, provided that the surfaces on which each equation vanishes are homeomorphic to hyperplanes. We give an example to show that
this conjecture is false. A more complicated example shows that the method may fail to converge to a zero of the gradient of a scalar
function, so the associated method for function minimization is not globally convergent.

Introduction

In an attempt to increase the domain of convergence of
iterative methods for solving systems of nonlinear equa-
tions, various techniques involving the solution of an
associated system of differential equations have been
proposed [1-6]. Particularly promising is Branin’s
modification [1,2] of a method proposed by Davidenko
[3.4]. To solve the system

fx) =0 ' (1)

of n nonlinear equations in # unknowns, a parameter ¢ is
introduced, and the system of differential equations

L flx(0] = STr() 1 Lx () @)

is integrated numerically, both forward and backward
in ¢, from some starting point x(0). Here S(x) is the sign
of the determinant of the Jacobian matrix

J(x) = (8fi/6xj) . 3)

(We assume that each f; is continuously differentiable and
that a continuous trajectory x(¢) exists such that (2)
holds except on a set having no limit points.) At points
where J(x) is nonsingular, (2) may be written as

dxldt = S (x)J ™ (x) f(x), “4)

which shows the connection with Newton’s method.
It is important to observe that, with the assumptions
given above,

flx@)]=c@)fx(0)], &)

where c(#) is a positive continuous scalar function of ¢.
In fact, if J[x(r)] is nonsingular for ¢ € [¢,, ¢t,), then

C([) = C(t())exp{s [x(tﬂ)] (t - to)} (6)

on [t,, 1]

The idea of the Davidenko-Branin method is that, as
t tends to + o or — %, ¢(¢f) may tend to zero and x(¢) may
tend to a zero of f. For this to be true if = 2, a condi-
tion that might be imposed on fis that the “‘Davidenko
surfaces”

S,={x € R"|f,(x) =0} (7

are homeomorphic to hyperplanes. The reason for im-
posing this condition is that if all components of f[x(0)]
are nonzero, all components of f[x(¢)] are nonzero for
all ¢ [from Eq. (5)], so the trajectory x() never crosses
any of the §,. Thus, if some S, includes the surface of an
n-sphere B containing x(0), then x(¢) can never leave B,
and a zero outside B can never be approached by x(¢).

It has been conjectured [1,2] that the method is glo-
bally convergent if the Davidenko surfaces S, are homeo-
morphic to hyperplanes. In the next section we give a
simple example to show that this conjecture is false: for
certain starting values the method fails to converge, even
though f(x) has a unique, simple zero. The example is for
n =72, but similar examples may easily be constructed
for n > 2. In the final section we give an example in
which fis the gradient of a scalar function. This example
is of interest because it shows that the Davidenko-Branin
method, when applied to the gradient of a function, may
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fail to find a local (much less a global) minimum or max-
imum,

Counterexample
Let f(x) be the vector function of two variables de-
fined by

filxox,) =4(x, + x,) (8)
and

L) =40 +x,) + (x, —x,) [(x, —2)* +x; — 1],
9)

and let C be the circular disc described by (x, — 2 +

2«
x,=1.

% Theorem |
The curves §,={x € R*|f(x)=0}, i=1, 2, are ho-
meomorphic to straight lines and intersect only at x= 0.
If x(1) is any continuous trajectory satisfying Eq. (5) [for
any scalar function c(#)], and x(0) € C, then x(r) € C
for all ¢.

The proof follows from some simple lemmas.

o Lemma |
f(x) = 0 has a unique solution x = 0 in R”.

Proof

If x = (x,,x,) is a solution, then (8) and (9) give x, = —x,
and x,[2(x, — 1)+ 1] =0, and the unique real solution
is thus x, = x,= 0.

~ Lemma 2
For all x € R?, ofyfox, = 1.

Proof
From (9),

o Jox, = (x, —x,—2)" +2(x, — D+ 1= 1. (10)

% Lemma 3
The curve S, = {x € R*|f,(x) =0} is homeomorphic to
a straight line.

Proof

Lemma 2 shows that for each x, € R, there is precisely
one value of x,, say x, = g(x,), such that f,(x x,) = 0.
Also, it is easy to see that g(x,) is continuously differen-
tiable. Hence §, = {(g(x,).x,)|x, € R} is homeomorphic
to a straight line.

% Lemma 4
If x, = |x,|, then

F{xax,) = x . (11)

JuLy 1972

Proof
By Lemma 2, it is sufficient to prove (11) for x, = |x2| .

If x,=x, Z 0, then, from (9), f,(x,,x,) = 8X1 Zx, . On
the other hand, if x, = —x, > 0, then
flex,) =2x, 20, — 1D’ + 1) = x,. (12)

% Lemma s

Let § be the annulus 1 < (x, —2)°+x} < 2. Then
L) > fix) >0 for x € S, and f(x) = f,(x) > 0 for
xeC.

Proof

This proof follows easily from (8), (9) and Lemma 4.
Theorem 1 now follows Lemma 5, using Eq. (5) and

the continuity of x(z) : The trajectory x(r) can never cross

S and so must remain in C. In particular, x(¢) can never

approach zero.

Global minimization

Since it has been proposed in Ref. 7 that the Davidenko-
Branin method should be used to find the global minimum
and/or maximum of a function of several variables, the
following theorem is of interest. It shows that the method
may fail to converge to either a minimum or a maximum.

% Theorem 2
Let

F(x)= (x, + 10)* + (x, + 10)* + exp[—({ + xD 1,
Sflx) = (oF/ax,) ,

and let x(r) be a continuous trajectory satisfying Eq. (5)
[for some scalar function c(r)] with x(0)=4(1, —1I).
Then the curves §,= {x € R’|f,(x) = 0} are homeomor-
phic to straight lines and the vector equation f(x) =0
has a unique solution x =y [near (—10,—10)], but x()
does not approach y. In fact, x(¢) lies in a component T,
of the set T={x € Rzlfz(x) > f,(x) > 0}, and y is not
in the closure of T, .

Remarks

The proof of Theorem 2 is similar to that of Theorem 1,
and the details are omitted. The idea is that the term
exp [—(xf + xi)] introduces a slight bump in the graph of
F(x). The bump is not sufficient to introduce another
stationary point or to appreciably perturb the curves
S, but it is sufficient to introduce the component T, of
T, and Eq. (5) shows that x(1) € T, for all ¢.

In practice this kind of breakdown of the method seems
quite likely to occur when the objective function F is
not convex. If F is twice continuously differentiable,
strictly convex, and has bounded level sets, then the
method is probably globally convergent, but so are many
other methods.
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