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Linear  Convergence of the Conjugate  Gradient Method 

Abstract: There  are  two  procedures  for applying the method of conjugate  gradients to  the problem of minimizing a  convex, nonlinear 
function:  the “continued” method,  and  the “restarted” method in which all the  data  except  the best  previous point are  discarded,  and  the 
procedure is begun anew from  that  point. It is demonstrated by example  that in the absence of the  standard initial starting  condition on a 
quadratic function,  the  continued  conjugate  gradient  method will converge  to the  solution no better than  linearly. Furthermore, it is 
shown that  for  a general  nonlinear function,  the  nonrestarted conjugate  gradient  method  converges no  worse than  linearly. 

Introduction 
The method of conjugate  gradients was originally intro- 
duced as an  alternative  to  Gaussian elimination for  the 
solution of large systems of linear equations  on a com- 
puter [ I ] .  Although elimination remains the preferred 
method for the standard linear equation problem, the 
conjugate  gradient method  does find application in such 
areas  as  the solution of certain  large, sparse  systems of 
linear equations, certain infinite-dimensional linear  prob- 
lems, and  the minimization of general  nonlinear  functions. 
The  latter point is the  topic of this  study. 

In particular, suppose we try to minimize some real- 
valued,  nonlinear functionf(x) , where x E E ” .  We  want 
f ( x )  to be  differentiable,  and  preferably convex. By ap- 
plying an algorithm which employs the conjugate  gradient 
method  (see the following section), a sequence is gener- 
ated  that converges  to  the minimum of f ( x )  [the mini- 
mum being defined as f ( x * )  such  that f ( x * )  5 f ( x )  for 
all x sufficiently close  to x * ;  if the  function  is  convex, 
then j ( x * )  5 f(x) for all x E E”]  . For a particular  sub- 
class of unconstrained minimization problems, the con- 
jugate  gradient method not only converges  to  the solution 
but also terminates  at  the solution in a finite number of 
steps. Specifically, letJ’(x)  be a quadratic function of the 
form f ( x )  = c + p’x + 3 x T Q x ,  where c is a scalar  con- 
stant, p is an nth order column vector,  and Q is an nth 
order symmetric and positive semidefinite matrix. Thus 
f ( x )  is convex. Then  the conjugate  gradient  method will 
terminate  at  the minimum in at most n steps, provided the 
standard initial starting  condition, which is defined in 
the  second  section, is used. 

It should be noted that this standard initial starting 
condition (or standard  start) is of primary importance, 

for if this initial condition is not applied to  the  quadratic 
problem  mentioned above, then the conjugate  gradient 
method will not terminate at the solution,  although the 
method will converge  to  the solution as it does when ap- 
plied to a nonquadratic  or general  nonlinear  function. 
We can  thus  conclude  that  the application of the conju- 
gate gradient  method to a quadratic function in the ab- 
sence of the  standard  start  behaves analogously to  the 
application of the method to a general  nonlinear  function 
with the  standard  start. 

There  are  two main ways which the conjugate  gradient 
method can be  applied to a general  nonlinear  function 
(or a quadratic function  without the  standard  start):  the 
continued method, in which the  same  recursive  procedure 
is used throughout; and the resturted method, in  which, 
after a certain  number of steps, most of the iterative data 
are discarded  and  the procedure is begun afresh  from the 
best solution thus  far obtained. In the  present  study,  we 
find that  the speed of convergence  to  the solution of the 
continued  conjugate  gradient  method is linear, as is the 
case in a geometric  series.  Since the  restarted conjugate 
method has  superlinear  convergence [2] for a wide class 
of problems, it is evident that  the continued  method 
should  not be used for general  nonlinear  functions. 

Method of conjugate  gradients 
Letf(x) be a quadratic function as defined in the previous 
section.  A statement of the conjugate gradient method 
for this  function is: 

Given xl), let dl, = -Vf(x,) . 
For k 1 0 ,  given xk and d, , let xk+ ,  = xk + t,d,, 431 
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The  formula (5) for s, is essentially formula (3:2b) of 
Hestenes  and Stiefel, rather  than  the  more commonly 
used formula  (3:le), which in our notation is s, = 

<+,/gk2 .  As  they subsequently show,  the  former gives 
better protection  against the accumulation of roundoff 
error.  More importantly, it  ensures  that dl+,Qd, = 0 for 
each k ,  independently of whether  the  other  steps  have 
been  carried  out  accurately, which the  latter  formula 
does  not. If all the  needed relations do hold accurately, 
it can be shown that  the  successive directions do , dl , . . . 
are all linearly independent and  conjugate (that is, 
dTQd, = 0 for j # k )  , and  that x, minimizes the function 
f on  the affine set passing  through x,, and spanned  by 
d o ,  dl , . . . , dk- ,  . Consequently  the  procedure must  ter- 
minate  with g,  = 0 for  some k 5 n .  

The problem 
It  is important to note  that  both  the starting  condition 
(1) and  the  determinations (3) and  (4) of the coefficients 
t ,  and s, must  be observed precisely in order  that  the 
above termination ensues; it cannot  be  shown  otherwise. 

432 Indeed, failure to  choose a standard  start-one in which 

d,, is parallel to go - makes it impossible to retain the con- 
jugacy  relation dTQdk = 0 for Ij - kl # 1 using formulas 
of the  type of (2). (We  have  seen this fact  overlooked in 
some  reports in the  literature, leading to  an  overestimate 
of the  convergence  rate of the  method.)  Since,  however, 
the  procedure  is  almost invariably  used under circum- 
stances in which the condition g ,  = 0 cannot  be precisely 
met- with the  quadratic problem in an  environment of 
roundoff error,  and, more significantly, in extensions of 
the  method  to  nonquadratic problems, such  as  that  due  to 
Fletcher  and  Reeves  [3] -provision for continuing after 
the  nth  step must be made. I t  has generally  been recog- 
nized as good practice  to  restart  the  procedure  after n 
(or possibly n + 1 or n + 2) iterations;  that  is,  to begin 
all over again, using the  latest point x, found  as  the new 
x,, and  thus rebuild a new set of conjugate  directions. 

The  purpose of the  present  study was to  determine 
whether restarting was, in fact,  necessary,  or  whether 
the  procedure could be  continued indefinitely without 
restarting and  not suffer. We  have concluded that re- 
starting is  necessary  for quick  convergence. Indeed, we 
have  an  example (for n = 3) of a quadratic problem which 
shows  that  convergence  can  be  no  better  than linear  when 
a nonstandard  start  is used. A standard  start  or  restart 
would, of course,  cause termination in at most three 
iterations. 

Example:  Convergence is at  best  linear 
We have run about 50 steps of the  continued conjugate 
gradient method as defined by Eqs. (2) to (4) on  each of 
some 100 quadratic, three-variable  problems, examining 
graphically the  ratios f (x ,+,) / f (x , )  of successive values 
of the  functionf(x) = + x T Q x .  In  about half  of the trials, 
Q was  the diagonal  matrix, the eigenvalues of which are 
(0.1 , 1 , 1) ; the starting vectors g,, and' do were  chosen 
randomly. In  every  case  the  ratios, which at first seemed 
randomly scattered  between 0 and 1, were found to lie 
in a rather definitely marked  interval [ a$ ]  with 0 < a < 
b < 1 . In many cases it appeared  that something  very 
much like a  sine curve having a  period between  three and 
five steps could be fitted to  the  set of successive ratios. 
After considerable experimentation with the starting 
data, we found an example in which the  ratios were 
constant.  The  other  data of the  procedure  then exhibited 
a remarkable periodicity, and  the discovery of simple 
relationships among  these led to  the following example: 

let e =  [ o 1 o j  
0.1 0 0 

0 0 1  

g, = (1 , - m, O ) W 3  

d,,= (-lo@, 1 4 ,   - 3 V ? $ T / 4 f i .  

One  step of the method  given by Eqs. (2) to (4) is 
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= g k  + tkedk 

' k + I  = -gk+l + skdk. 
In  our  case t, = 8 / 5 ,  and sk = 9/25  for all k. Further- 
more, the relations g k + ,  = rRg, and dk+l = rRdk hold 
for all k where r = 315 and R is the orthogonal  matrix 

R = [o "115 -(2V%)/5 . 

Thus g k  = (rR)'g, and dk = (rR)kd,  for all k .  Each suc- 
cessive  application of the matrix rR rotates  the gradient 
and the direction  through an angle arccos (-115) around 
the long axis of the three-dimensional ellipsoid x'Qx = 1 , 
and diminishes  both of these  vectors in magnitude by the 
factor r = 3 / 5 .  Thus  the ratio f(xk+,)/f(xk) is 9/25  for 
all k. 

Theorem:  Convergence is at worst linear 
To bound the  rate of convergence of the  nonrestarted 
conjugate  gradient  method from both  sides, we will show 
that its convergence is at worst  linear. 

Let f ( x )  = 4 x T Q x .  We can always  transform  the orig- 
inal problem so that  it  has this form.  Since g = V f ( x )  = 
Q x ,  f ( x )  = 4 gTQ"g.  The minimal o f f  along any line 
x + td is given  by t = i = -gTd/dTQd (compare with 
formula (3), suppressing k) .  Setting x ,  = x + td and g+ = 
V f ( x + ) ,  we have 

2f(x+) = gTQg+ = (I: + iQd)TQ"(g + i Q d )  

1 0 

0 ( 2 \ 6 ) / 5  -1/5 O 1  

= gQ"g - (gTd)2/dTQd.  

We consider two cases: 
1 )  d = -g ; that is, the  step is an  ordinary  steepest de- 
scent  step. 
Then 

2f(x+ 1 gTQ-'g - ( g T g )  'Ig'Qg . 
2) The point x was obtained by minimizingfalong  some 
line having the direction e,  whence gTc = 0 ,  and  then  the 
direction d was obtained  as in formulas (2) and (4), so 
that d = -g + sc and dTQc = 0 .  
Then gTd = 0 - gTg and 

dTQd=  -gTQd= -gT(-Qg + S Q C )  = g'Qg - s g ' Q ~  

= gTeg - ( ~ ' Q C ) ' / C ' Q ~ .  

We see  that d'Qd 5 g T Q g .  
Since in case  2) 2f(x+) = gTQ"g - (gTg)'/dTQd, the 

resulting value offis  no higher  in case 2) than in case 1); 

the  fact  that  the direction d was  obtained  by  conjugating 
-g with respect  to  the previous  direction, rather  than 
taking it to  be -g itself, has  not  hurt.  Thus  each  step of 
the continued  conjugate  gradient  method decreases  the 
function at  least  as much as would one  step of steepest 
descent taken at  the  same point. The inequality 

f(x,+,)/f(x,) 5 [ ( A  - 1 ) / ( A  + 111' 

is known to hold for  steepest  descent,  where A is the con- 
dition  number of the matrix Q ,  namely, the ratio of the 
largest to smallest  eigenvalue. It follows that  the in- 
equality  also  holds for  the conjugate  gradient method, SO 

that its  convergence is at  worst linear. 

Conclusion 
We have used  a  small, rather simple quadratic function 
to  show  that, in the  absence of the  standard initial  starting 
condition for  the conjugate  gradient method,  the conver- 
gence of the  generated  sequence will be no  better  than 
linear. We  have  also  shown  that if the conjugate  gradient 
method is applied to a general nonlinear function,  and if 
the  procedure is not restarted  every n or so steps, then 
the  convergence  rate  to  the solution is  no  worse than 
linear. This  characterization of the  rate of convergence 
of the conjugate  gradient procedure should  be  used  when 
considering whether  or  not  to apply the method to a 
specific nonlinear  optimization  problem. In addition, our 
result should benefit anyone attempting to  understand 
the fundamental aspects of the conjugate gradient 
method. 
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