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Linear Convergence of the Conjugate Gradient Method

Abstract: There are two procedures for applying the method of conjugate gradients to the problem of minimizing a convex, nonlinear
function: the “continued’” method, and the “restarted” method in which all the data except the best previous point are discarded, and the
procedure is begun anew from that point. It is demonstrated by example that in the absence of the standard initial starting condition on a
quadratic function, the continued conjugate gradient method will converge to the solution no better than linearly. Furthermore, it is
shown that for a general nonlinear function, the nonrestarted conjugate gradient method converges no worse than linearly.

Introduction

The method of conjugate gradients was originally intro-
duced as an alternative to Gaussian elimination for the
solution of large systems of linear equations on a com-
puter [1]. Although elimination remains the preferred
method for the standard linear equation problem, the
conjugate gradient method does find application in such
areas as the solution of certain large, sparse systems of
linear equations, certain infinite-dimensional linear prob-
lems, and the minimization of general nonlinear functions.
The latter point is the topic of this study.

In particular, suppose we try to minimize some real-
valued, nonlinear function f(x), where x € E". We want
f(x) to be differentiable, and preferably convex. By ap-
plying an algorithm which employs the conjugate gradient
method (see the following section), a sequence is gener-
ated that converges to the minimum of f(x) [the mini-
mum being defined as f(x*) such that f(x*) = f(x) for
all x sufficiently close to x*; if the function is convex,
then f(x*) = f(x) for all x € E"] . For a particular sub-
class of unconstrained minimization problems, the con-
jugate gradient method not only converges to the solution
but also terminates at the solution in a finite number of
steps. Specifically, let f(x) be a quadratic function of the
form f(x)=c¢ + p'x + 3 x"Ox, where c is a scalar con-
stant, p is an nth order column vector, and Q is an nth
order symmetric and positive semidefinite matrix. Thus
f(x) is convex. Then the conjugate gradient method will
terminate at the minimum in at most x steps, provided the
standard initial starting condition, which is defined in
the second section, is used.

It should be noted that this standard initial starting
condition (or standard start) is of primary importance,
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for if this initial condition is not applied to the quadratic
problem mentioned above, then the conjugate gradient
method will not terminate at the solution, although the
method will converge to the solution as it does when ap-
plied to a nonquadratic or general nonlinear function.
We can thus conclude that the application of the conju-
gate gradient method to a quadratic function in the ab-
sence of the standard start behaves analogously to the
application of the method to a general nonlinear function
with the standard start.

There are two main ways which the conjugate gradient
method can be applied to a general nonlinear function
(or a quadratic function without the standard start): the
continued method, in which the same recursive procedure
is used throughout; and the restarted method, in which,
after a certain number of steps, most of the iterative data
are discarded and the procedure is begun afresh from the
best solution thus far obtained. In the present study, we
find that the speed of convergence to the solution of the
continued conjugate gradient method is linear, as is the
case in a geometric series. Since the restarted conjugate
method has superlinear convergence [2] for a wide class
of problems, it is evident that the continued method
should not be used for general nonlinear functions.

Method of conjugate gradients

Let f(x) be a quadratic function as defined in the previous
section. A statement of the conjugate gradient method
for this function is:

Given x, let d, = —Vf(x,) .

0

Fork =0, givenx, and 4, , letx, , =x, + 1, d,,
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where ¢, is the value of ¢ minimizing f(x, + ¢d,).
It Vftx,, ) =0, stop. Otherwise, let
dp,,=—Vflx,,,) +s,d,,
where s, is chosen so that d;,,Qd, =0.
Let g, = Vf(x,) for all k. Noting that
iy = Vi (xpy)
=p"+Q(x, + td,)
= pT + QOx, +1,0d,
=g, +10d,,
we can write the recursion as
dy='—g,; (N
Fork=0, .

8i = & T 1,04,

A I A 2
where

1, =—g.d,/d,Qd, 3)
and

Sk = 8.0,/ 4,0d, )
or

8= o1 (8rin — & (g, — &) - )

The formula (5) for s, is essentially formula (3:2b) of
Hestenes and Stiefel, rather than the more commonly
used formula (3:1e), which in our notation is s, =
gi ! gkz. As they subsequently show, the former gives
better protection against the accumulation of roundoff
error. More importantly, it ensures that d}, ,Qd, = 0 for
each k, independently of whether the other steps have
been carried out accurately, which the latter formula
does not. If all the needed relations do hold accurately,
it can be shown that the successive directions d,,, d, , - -
are all linearly independent and conjugate (that is,
djTQdk =0 for j # k), and that x, minimizes the function
f on the affine set passing through x, and spanned by
d,,d, ,---,d,_, .Consequently the procedure must ter-
minate with g, = 0 for some k = n.

The problem

It is important to note that both the starting condition
(1) and the determinations (3) and (4) of the coeflicients
t, and s, must be observed precisely in order that the
above termination ensues; it cannot be shown otherwise.
Indeed, failure to choose a standard start—one in which
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d, is parallel to g,— makes it impossible to retain the con-
jugacy relation djTQdk = 0 for |j — k| # 1 using formulas
of the type of (2). (We have seen this fact overlooked in
some reports in the literature, leading to an overestimate
of the convergence rate of the method.) Since, however,
the procedure is almost invariably used under circum-
stances in which the condition g, = 0 cannot be precisely
met —with the quadratic problem in an environment of
roundoff error, and, more significantly, in extensions of
the method to nonquadratic problems, such as that due to
Fletcher and Reeves [3]—provision for continuing after
the nth step must be made. It has generally been recog-
nized as good practice to restart the procedure after n
(or possibly n+ 1 or n + 2) iterations; that is, to begin
all over again, using the latest point x, found as the new
x, and thus rebuild a new set of conjugate directions.

The purpose of the present study was to determine
whether restarting was, in fact, necessary, or whether
the procedure could be continued indefinitely without
restarting and not suffer. We have concluded that re-
starting is necessary for quick convergence. Indeed, we
have an example (for n = 3) of a quadratic problem which
shows that convergence can be no better than linear when
a nonstandard start is used. A standard start or restart
would, of course, cause termination in at most three
iterations.

Example: Convergence is at best linear

We have run about 50 steps of the continued conjugate
gradient method as defined by Eqgs. (2) to (4) on each of
some 100 quadratic, three-variable problems, examining
graphically the ratios f(x,,,)/f(x,) of successive values
of the function f(x) = % x’Qx. In about half of the trials,
Q was the diagonal matrix, the eigenvalues of which are
(0.1, 1, 1); the starting vectors g, and d, were chosen
randomly. In every case the ratios, which at first seemed
randomly scattered between 0 and 1, were found to lie
in a rather definitely marked interval [a,b] with 0 < g <
b < 1. In many cases it appeared that something very
much like a sine curve having a period between three and
five steps could be fitted to the set of successive ratios.
After considerable experimentation with the starting
data, we found an example in which the ratios were
constant. The other data of the procedure then exhibited
a remarkable periodicity, and the discovery of simple
relationships among these led to the following example:

0.1 0 0
letQ=[0 1 0}
0 0 1

gy = (1 [ \/57’0)7‘/\/g
d,= (—10V5,14,-3V6)"/4V30.
One step of the method given by Egs. (2) to (4) is
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8w = & T 1,04,
dp =8y T 5,4,

In our case 1, = 8/5, and s, = 9/25 for all k. Further-
more, the relations g, , =rRg, and d,,, = rRd, hold

for all k¥ where r=3/5 and R is the orthogonal matrix

1 0 0
R=l:0 —1/5 —=(2Ve6)/5|.
0 (2V6)/s —1/5

Thus g, = (rR)"g, and d, = (rR)*d, for all k. Each suc-
cessive application of the matrix rR rotates the gradient
and the direction through an angle arccos (—1/5) around
the long axis of the three-dimensional ellipsoid X0x=1,
and diminishes both of these vectors in magnitude by the
factor r=3/5. Thus the ratio f(x,, )/ f(x,) is 9/25 for
all k.

Theorem: Convergence is at worst linear

To bound the rate of convergence of the nonrestarted
conjugate gradient method from both sides, we will show
that its convergence is at worst linear.

Let f(x) =% x"Qx. We can always transform the orig-
inal problem so that it has this form. Since g = Vf(x) =
Ox, f(xX)=4%¢"Q"'g. The minimal of f along any line
x+td is given by r=1=—g"d/d"Qd (compare with
formula (3), suppressing k). Setting x, = x + td and g, =
Vf(x,), we have

2f(x,) = g'Qg, = (g +10d)'Q 7" (g + 1Qd)
=207 'g— (¢'d)"|d"0d.
We consider two cases:
1) d =—g; that is, the step is an ordinary steepest de-

scent step.
Then

2f(x,)=¢"0""¢g — (¢'8)"Ig"0g .

2) The point x was obtained by minimizing f along some
line having the direction ¢, whence ch =0, and then the
direction d was obtained as in formulas (2) and (4), so
that d = —g + sc and d'Qc=0.

Then g'd =0 — ¢"¢ and

d'Qd=—g"Qd=—¢"(—Qg + sQc) = g'Qg — sg"Qc
=g"0g — (g"Qc)%Ic"Qc.
We see that d'Qd = ¢"Qg.

Since in case 2) 2f(x,) = 07" — (&) d"0d, the
resulting value of fis no higher in case 2) than in case 1);
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the fact that the direction d was obtained by conjugating
—g with respect to the previous direction, rather than
taking it to be —g itself, has not hurt. Thus each step of
the continued conjugate gradient method decreases the
function at least as much as would one step of steepest
descent taken at the same point. The inequality

f )If) = [(A- DA+ DT

is known to hold for steepest descent, where A4 is the con-
dition number of the matrix 0, namely, the ratio of the
largest to smallest eigenvalue. It follows that the in-
equality also holds for the conjugate gradient method, so
that its convergence is at worst linear.

Conclusion

We have used a small, rather simple quadratic function
to show that, in the absence of the standard initial starting
condition for the conjugate gradient method, the conver-
gence of the generated sequence will be no better than
linear. We have also shown that if the conjugate gradient
method is applied to a general nonlinear function, and if
the procedure is not restarted every n or so steps, then
the convergence rate to the solution is no worse than
linear. This characterization of the rate of convergence
of the conjugate gradient procedure should be used when
considering whether or not to apply the method to a
specific nonlinear optimization problem. In addition, our
result should benefit anyone attempting to understand
the fundamental aspects of the conjugate gradient
method.
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