
M. M. Guignard
K. Spielberg

Mixed-integer Algorithms for the (0,l) Knapsack
Problem

Abstract: An enumerative scheme is presented for the (0,l) knapsack problem as a specialization of the state enumeration method.
Techniques are explored for rendering search procedures more efficient by systematic use of information generated during execution of
the algorithm. The inequalities of Benders and Gomory-Johnson are exploited to yield implicit enumeration tests in the special case of
the knapsack problem. In a comparative study of eight algorithms and of the utility of certain approximations and inequalities, computa-
tional results are given for twelve knapsack problems, each having ten (0,l) variables. The effectiveness of these enumerative al-
gorithms are thus tested in a relatively simple framework.

Introduction
The knapsack problem is concerned with filling some al-
located space, e.g., a knapsack, of volume r with various
items k (taken once only, or not at all) of volume b, and
having associated “profit” p,, selected from a set of p
items, so as to maximize the overall profit:

The optimal solution will not, in general, completely fill
the space r but will leave a “slack” portion s unfilled.

We shall assume that all b, and p,, are positive and that
the ratios pk/bk are in decreasing order from left to right:

P k l b k ~ P k + l / b k + l , k = p - - l , p - 2 ; . . , 1 . (2)

The knapsack problem is an important zero-one in-
teger or mixed-integer problem, both in its own right and
as a possible aid in the solution of general mixed zero-
one problems. We give in this paper an enumeration pro-
cedure which may be viewed as a specialization of the
state enumeration method [1 , 21. However, the particu-
lar nature of the problem suggests a number of devia-
tions and modifications of the enumerative scheme, e.g.,
the use of three states derived from easily obtained ap-
proximating solutions, and the incorporation of inequali-

424 ties from the Gomory asymptotic problem.

M. M. GUIGNARD AND K. SPIELBERG

Our primary objective is to demonstrate how well
suited is the state enumeration technique, or a variant of
it, for a problem of special structure. We believe that
elements of the method could be incorporated advan-
tageously in other algorithms for the knapsack problem
(see, e.g., Refs. 3 and 4). We suggest also that other
special problems which can be solved readily as linear
programs and can be altered easily to give integer-
feasible solutions, may be particularly amenable to solu-
tion by techniques such as those advocated here. The
set covering problem and the plant location problem are
two examples [5 , 61.

A secondary objective is to explore methods for ren-
dering search procedures more efficient by the systematic
use of information generated during execution of the al-
gorithm. In particular we have exploited to this end the
inequalities of Benders and the asymptotic problem of
Gomory. For the all-integer (0,I) knapsack problem,
the Gomory-Johnson inequalities [7 , 81, which are in
general over all variables, including the slacks, can be
transformed to inequalities over the zero-one variables
only and can then be used in exactly the same manner as
the Benders inequalities. Hence, we were able to test the
effectiveness of these new ideas within a relatively sim-
ple framework.

We can thus use the zero-one inequalities to yield ef-
ficient implicit enumeration tests, leading to the fixing of
variables or to the establishment of infeasibility [1 , 2 ,9].

IBM J . RES. DEVELOP.

For the mixed (0,l) knapsack problem and for general
mixed (0,l) problems, one would have to use somewhat
more complicated devices, e.g., linear programming over
the inequalities. For such methods see Ref. 8. The actual
computational results of this paper are for the pure (0,l)
case.

This paper first points out some of the differences be-
tween branch-and-bound and enumerative programming
and then shows how modifications of the state enumera-
tion method can be applied to the solution of the given
knapsack problem. Various forms of heuristic devices are
next discussed, including the use of the linear pro-
gramming solution, of three different integer solutions,
and of Benders and Gomory-Johnson inequalities. Nu-
merical results for these various algorithms are then com-
pared with branch-and-bound techniques for the solution
of twelve knapsack problems.

Branch-and-bound and enumeration procedures
There is a good deal of confusion in the literature as to
the difference between (implicit) enumeration and branch-
and-bound (BB) programming, especially “single branch”
BB programming, in which one branch of the search
tree is pursued to the end, with backtracking, before an-
other is taken up. The reader may wish to consult Ref. 9
on such matters, e.g., on the terminology (afairly obvious
one) of single-branch and multibranch trees. Reference 9
should also be consulted for further references to the
basic p-apers on BB and enumerative programming.

The e‘ssential difference lies in the nature of the prob-
lems that are actually solved: relaxed problems (Le.,
problems in which the constraints t , E {0 , I } are re-
laxed to 0 5 t, 5 1 in the case of BB programming) and
constrained problems, in which specific integer values
are substituted for all or a part of the t,, in the case of
enumeration.

This distinction can become somewhat blurred by the
fact that an enumeration algorithm may also employ re-
laxed auxiliary problems intermittently. In the enumera-
tion scheme of this paper, relaxed auxiliary problems are
always used, even when all t , are (0 , 1) variables. In
strict enumeration one could avoid all linear programs
but usually only at the expense of losing valuable in-
formation.

In the state enumeration algorithm [1 , 21, an auxiliary
linear program may suggest (e.g., by rounding) a “state”,
which is a determination as to which of the “free” vari-
ables (kEF)-the set of variables t, which have not
been explicitly fixed at 0 or 1 - are to be set to 1 (k E F 1) ,
O(k E F 2) , or be left free (k E F 3) in the solution of cer-
tain basic constrained “state problems.”

The manner in which F is partitioned into F 1 , F 2 , F 3 ,
determines the order in which the enumeration proceeds
and the inequalities that are generated. The arbitrariness

available in the choice of the state furnishes the essential
flexibility of the state enumeration method. Of course, it
may not be easy to assign a state (to partition) intelli-
gently. See Refs. 1 and 2 for details. The usefulness of a
flexible procedure was, we believe, sufficiently demon-
strated by the computational results of Ref. 5.

It ought to be emphasized that, in general, linear pro-
gramming need not necessarily be used. Linear program-
ming can be used intermittently only, e.g., only at the
start. The state can be defined by means of some other
method. Moreover, even the state problems need not be
solved at all nodes, but only at the “terminal” nodes at
which all zero-one variables have been fixed. In contrast
to this, BB programming is intrinsically based on the
resolution of two linear programs (or, more generally,
two relaxed programs) at each node of the search tree.

For the knapsack problem the situation is quite special,
in that any linear programming solution of (I) , with some
variables possibly fixed at O (k E Z) and some at I (k
E E) , can be made to have the property that no more
than one component in the solution, say t J , has a frac-
tional value.

A BB algorithm, then, will always round variable tfto 0
for one branch and to I for the other. It will then pro-
ceed from one of the pending nodes in the same fashion.
The computational results in this paper will always refer
to this true “multibranch” BB method with, in general,
many pending nodes, as opposed to the single-branch
approach.

The more interesting approach for us, however, is that
of state enumeration, modified so as to take into account
the special nature of the problem. For such an enumera-
tion algorithm the inequalities become the motive force.
Since the inequalities are almost solely responsible for
the curtailment of the search process, the manner in
which they are generated (e.g., by correct choices of
state) becomes a factor of overriding importance.

State enumeration for the knapsack problem
Consider problem (1) as given initially, i.e., with all
variables free:

F = K , E = @ , Z = @ . (3)

All variables are free, i.e., none are fixed at 0 or 1. No
distinction has yet been made among the free variables.
In general, the state enumeration algorithm has the fol-
lowing raw structure:

I) Define I , the “level”, to be (in a sense) the distance
from the origin of the search, i.e., let it be the number
of variables that have been fixed explicitly in the last
sequence of “forward steps” from the origin (level 0).
Initially, the level is set to 0. It is increased in for-
ward steps, decreased in “backups”. 425

J U L Y 1972 ALGORITHMS FOR T H E KNAPSACK PROBLEM

If there are free variables left, go to 3) . Otherwise,
solve a terminal state problem, i.e., solve the original
problem with the integer variables fixed as specified
by E and Z . Go to 4).

Forward step
a) Determine a state, i.e., partition F into the three
sets F 1 , F 2 , F 3 . In other words partition K :

K = E + Z + F l + F 2 + F 3 . (4)

This state can be determined trivially, from the pre-
vious state, or by means of auxiliary computations.
Pick a branch variable k* in F .
b) Increase 1 by one.
Set t,, = 1 if k* is in F2 or F3, t, = 0 if k* is in F 1 ;
i.e., adjoin k* to E if it was in F2 or F3 and adjoin k*
to 2 if it was in F1. Of course, modify F 1 , F2, F3
correspondingly. Store k* for later use in backups.
Go to 2).

Backup
Retrieve the value of k* which led to the current node
(level).
Complement the variable, Le., if t,, is currently l(0) fix
it now at O(1).
Reduce 1 by one. If 1 = “I, terminate. Otherwise, go
to 2).

This description, of course, lacks motivation and all
those details and additional features which are neces-
sary to make the procedure effective, such as:

In 3a) one must decide on a method of determining th,e
state. Frequently, one may decide to solve a non-
terminal-state problem, obtained from the original
problem by substitution oft, = 1 fork in F 1 and t, = 0
for k in F 2 , t, being left to vary between 0 and 1 for
k in F 3 . In the initial phases of the computation one
would, of course, like to get a solution to the original
problem. In general, however, computational evidence
indicates that, wherever possible, it is desirable to
choose the state close to a hypothesized good solu-
tion [51.
When a state problem or an auxiliary problem has been
solved, one can always obtain a Benders inequality
[9 , 101 over the integer variables. From the auxiliary
problem one usually is able to obtain Gomory-Johnson
inequalities [7 , 81. All of those are necessary condi-
tions for obtaining integer solutions. The Benders in-
equalities may involve z* (a given or already computed
bound on the objective function) in which case they
are conditions for obtaining integer solutions with ob-
jective functions better than, or equal to, z*.

These inequalities can be utilized systematically in
a search for the possibility of fixing (“cancelling”) var-
iables at the current level 1. On a backup to a previous 426

M. M. GUIGNARD P

level, all cancellations at the current level must be
rescinded.
In the general case, the inequalities may afford the
best way of choosing k * . One will choose k* such that
the forward step alters the state so that the new state
problem at the successor state differs from the pre-
vious one.

For details, the reader is referred to Ref. 2 or 8, al-
though we realize that those descriptions may be too
concise to be sufficiently clear. It is in fact difficult to
define any general rules for selecting effective computa-
tional features. It is up to the analyst to decide on such
matters in relationship to the particular problem at hand.
In this paper we have tried to do this to some extent for
the knapsack problem.

Approaches to solving the knapsack problem
The linear programming solution for (1) is obtained
rather easily. We therefore made the natural decision to
solve it, as an auxiliary problem, in every iteration. From
the linear programming solution we then construct heuris-
tically three different solutions, if possible, to the original
problem. With each such integer solution we may, if we
wish, associate a state and also a corresponding linear
programming solution and tableau. We shall give details
presently, including examples.

From each linear programming (LP) tableau we may,
by inspection, deduce a linear inequality after Benders.
(The Benders inequalities derived from the integer solu-
tions are only integral multiples of the original constraints
and are of no interest here). Also, we can in general de-
rive an asymptotic problem after Gomory and construct
a Gomory-Johnson inequality over the r, and s. Compu-
tationally this will generally require the construction of
a row in an updated LP tableau and a table look-up with
interpolation.

I t so happens that s can be eliminated between (1)
and the Gomory-Johnson inequality, so that one again
arrives at a final inequality involving the tk alone.

There are, then, actually three states at level 1. Each
yields, from the associated linear programming tableau,
one or more inequalities. The branch variable k * , then,
could be chosen with reference to any of these three
different states and is in fact chosen from the first state.

In our computational work we have, because of time
limitations, refrained from some of these options. For
example, we construct Gomory-Johnson inequalities
only from the first LP tableau at level I , i.e., from the
tableau determining the first state. See the next two sec-
tions for a description of the three LP solutions. The
associated LP tableaux can be visualized easily.

We choose the branch variable, trivially, as the first
fractional variable, characterized by the index f. This

rND K. SPIELBERG IBM J . RES. DEVELOP.

makes the algorithm somewhat similar to a single-branch
BB algorithm. But the other options do exist and may
very well be worth exploring further.

Linear programming solution
At a particular node of the search, let the state be given
by (E , Z , F) . For the time being, F is not yet parti-
tioned further, nor does the further partitioning play a
determining role as in the general case of state enumera-
tion. We may assume that the problem is feasible and
nonintegral. (If the program is not feasible a backup in
the search is indicated.) The solution is then uniquely
determined by the index J' E F of the one variable that
becomes fractional.

As a matter of fact, F is partitioned into the sets L
(consisting of all indices in F that are to the left off '),
{ f } , and R (all indices of F to the right off):

F = L + { f } + R . (5)

In the LP solution, the variables t, , k E L , have value
one and those with k E R have value zero.

Example (Note that the p,/h, are ordered):

p = (1 5 , 2 7 , 10, 1 5 , 1 8 , 10,41 , 3 2 , 6 2 , 7 0) ,

b = (1 1 , 2 5 , 10, 1 5 , 2 0 , 1 2 , 5 0 , 4 0 , 8 0 , l o o) ,
r = 7 4

E = Z = 0 , F = K .

LP solution : f = 5 , L = { 1 , 2 , 3 , 4) ,
R = { 6 , 7 , 8 , 9 , I O } ,

t = (1 , 1 , I , 1 , 1 3 / 2 0 , 0 , 0 , 0 , 0 , 0) .

Three integer solution upproximations
Not all solutions need exist, in general. The solution of
i) may be good, and ii) and iii) may occasionally not give
an improvement. But usually the simple heuristics of ii)
and iii) will be found effective.

i) A trivial solution is obtained by rounding down t f .

ii) Round 5 to zero. Then scan right and try to refill the
knapsack at unit levels from variables in R .

iii) Round tf to one. This renders the solution infeasible.
1. S e t j = f , J = L .
2. If J is void, abandon the search without solution.

Otherwise, scan left (from j) and set, consecu-
tively, all t, , k E J , one at a time, to zero. If there
are feasible solutions, take the best one and stop.

3. If there are no feasible solutions, set t , to 0 for the
rightmost index in J . Drop this rightmost index
from J and set j to the new rightmost index of J
(if possible). Go to 2.

With each of the three integer solution approximations
one can associate a linear programming solution by giv-

ing the first variable from the left in F a fractional value,
which ensures that the knapsack is full.

Example: In the case of the example given above, one
has three LP solutions, zA being the objective function
for an LP solution and that for an integer solution):

t l = (1 , 1 , 1 , 1 , 1 3 / 2 0 , 0 , 0 , 0 , 0 , 0) ,
j" = 5 , zlA = 78.7 ,

? = (1 , 1 , 1 , 1 , 0 , 1 , 1 / 5 0 , 0 , 0 , 0) ,
f' = 7 , z', = 77.82 ,

? = (1 , I , 3 / 1 0 , I , 1 , 0 . 0 , 0 , 0 , 0) ,
f:' = 3 , z:jh = 78 .

The three integer approximations are the same with t5 = 0
for t1 , t , = 0 for t2 , and t:, = 0 for t:' . The integer objec-
tive functions are z ' = 6 7 , 22 = 7 7 , z:'= 7 5 . The
second solution happens to be optimal.

what more elaborate heuristic rules.
It would probably not be very difficult to devise some-

Benders inequalitie.~
Instead of giving a general discussion of Benders in-
equalities and their use in enumerative programming
we refer the reader to Refs. 9 or 10. It should suffice to
note that, for any optimal LP tableau, one may look at
the top row which expresses z as a linear combination
of the nonbasic variables (k € N) . Among these vari-
ables are, in general, some integer variables y , ,

z = z z , - ~ h , y , - - . . . (6)

The summation is over the nonbasic variables only. The
h, are essentially the reduced costs. At optimality, all
A, are nonnegative for k E F , but not necessarily for
k E E or k E Z . The j , stand for y,(k E R + Z) and
for j , = 1 - y , (k E L + E) . I f z* is the best-known value
for an integer solution, then an improvement can be found
only for values of the j k such that

x -

N n K

Therefore, rewriting (7) in terms of the original variables
y k , or rather t, for the knapsack problem, one has a
linear inequality over the t, . Fortunately, the knapsack
problem affords the rare opportunity of writing the in-
equality in the closed form:

The summation is over all nonbasic variables that are
either fixed at one, or are at one in the first LP solution,
i.e., are to the left of the index F that determines the first
LP solution. 427

JULY 1972 ALGORITHMS FOR T H E KNAPSACK PROBLEM

In general, one obtains such an inequality for each of
the three linear programming tableaus. For the knapsack
problem one always has a value for z*. In a certain sense,
L and R and { f } play the role of F 1 , F 2 , and F 3 of the
general state enumeration algorithm.

Gomory-Johnson inequalities
The knapsack problem is also a good vehicle for testing
some of the important new ideas of Gomory and Johnson
[7], to whom we are grateful for making this material
available before its general dissemination. We also wish
to acknowledge the generous advice of Ellis Johnson,
given freely in many discussions. We shall give only a
brief description and suggest Ref. 8 for a rather detailed
exposition of the basic ideas.

Starting with a linear programming solution with frac-
tional index f , and corresponding index sets E , 2 , L , R ,
{f} , one may write the well-known group problem, the
asymptotic problem of Gomory, as follows:

L e t K I = (L + E) f l N , K 2 = (R . + Z) n N . T h e n

t , E (0 , l } , k E (L + R) N , s z o ,

in which the complementary variables 7, = 1 - t, have
been introduced for k E L + E , and u is a correspond-
ingly modified right-hand side of the constraint. We have
chosen to treat the original problem (1) as a minimization
problem, min c,t , where c, is identified with -p, .

Gomory and Johnson show in Ref. 7 how one may ob-
tain valid and relatively strong inequalities of the form

%-Jk + T,t, + %-%s 1 1 , (10)
K1 K2

by taking the faces of tabulated corner polyhedra for
cyclic groups, (see Gomory [1 I]) and by “interpolating”
in various ways (see [8] for details). The numerical re-
sults below were obtained for the simplest possible case
involving the two faces of a cyclic group of order two.
One may well expect that the utilization of higher-order
groups, not in principle very much more complicated,
could lead to substantially superior results.

After the nk and niT) have been obtained, one may in
the case of the knapsack problem eliminate the slack
variable s between (1) and (1 0) to arrive at an inequality
over the t only. We also use the obvious inequality, the
ceiling test,

P k t , ’ z* 1

K

420 which is of the same form as the Benders inequalities.

M. M. GUIGNARD AND K. SPIELBERG

Numerical results for eight methods

Algorithms
In order to study the comparative merit of algorithms
and the utility of approximations and inequalities, we
implemented eight algorithms within a modular system
of subroutines:

1) A branch-and-bound algorithm of multibranch type,
Le., having as many pending nodes as are generated,
stored, and retrieved according to largest objective
function value. The integer solution approximation
i) is used. No “penalty” computation is made of the
type customary in branch-bound codes.

2) The same as in 1) plus “group penalties”, computed
from a cyclic group of order seven at the suggestion
of Ellis john son.^ Customary penalties could be ex-
pected to be weaker. This relates to only one pivot
step in the rounding up or rounding down of a basic
variable, whereas the group penalties give a good
measure of the total cost of rendering that basic vari-
able integral.

3) The state enumeration algorithm with approximation
i) and corresponding Benders inequalities.

4) State enumeration with approximation i) and Gomory-
Johnson inequalities (computed from the cyclic group
of order two) as described earlier.

5) State enumeration with approximation i) and Benders
as well as Gomory-Johnson inequalities.

6), 7), 8) Same as 3), 4), 5) except that all approxima-
tions i), ii), and iii) are used.

Numerical results
In Table 1 we give, for each method, results for 12
knapsack problems of small size (10 zero-one variables
only). A number of 75- and 100-variable problems were
also run and did not cause any particular difficulties. The
12 problems consist of three different sets of constraint
data, each of which was run with the four right-hand sides
74 , 8 0 , 139 and 250.

When there is one entry in a table column location, it
denotes the number of linear programs that were exe-
cuted during the solution process. A second entry situ-
ated just below the first gives the number of inequalities
generated and utilized. Where two numbers are located
below the first entry, they give the number of distinct
Benders inequalities and the number of Gomory-Johnson
inequalities, respectively.

Rows 1 and 2 in the table are a measure of the basic
effectiveness of BB programming, primarily for compari-
son purposes. Results in rows 3, 4 and 5 are representa-
tive of state enumeration. We believe that this compari-
son is fair. Methods 3 to 5 use inequalities, whereas 1 and
2 do not. However, the use of inequalities is an essential

IBM J. RES. DEVELOP.

Table 1 Twelve knapsack problems, resolved by methods 1 to 8 (See text for explanation and interpretation of column entries).
~

Problem I I 2 3 4 i 5 6 7 10 I 1 I 2
~~ ~~~

0hjecfivefitnc.tion 1 77 80 127 215 1 79.654 84.015 147.42

t METHOD
1. Branch-and-bound

~.

I 2. Branch-and-bound +
group penalties

3. State enumeration, (i)
Benders

E 4. State enumeration, (i)
Gomory-Johnson

5. State enumeration, (i)
Benders, Gomory-
Johnson

6. State enumeration,
(i) (ii) (iii)
Benders

7. State enumeration,
(i) (ii) (iii)
Gomory-Johnson

8. State enumeration,
(i) (ii) (iii)
Benders, Gomory-
Johnson

26 40 54 30 32 30 96

6 14 18 10

I t 27 34 14
3 5 5 5

13 16 20 16
20 22 26 22

10 14 1 1 8
5,16 5.19 5.18 5,13

~2 d 5 3
4 4 5 3

7 9 9 4
8 1 1 1 1 7

2 6 4 2
4,3 5,10 5,6 3,4

14 32 30 78

10 1 1 12 62
3 3 2 6

7 6 12 26
7 9 1 3 40

5 4 7 21
4,7 4 6 3.8 5,35

2 10 7 43
4 4 4 1 1

4 4 8 23
5 5 7 37

1 3 3 16
4 2 6,6 4,6 13,32

18 18 18 16

16 18 14 16

15 24 8 10
2 2 2 2

2 2 I 2
3 3 3 3

2 2 1 2
2,2 2,2 2,2 2,2

6 13 8 18
3 3 2 3

1 1 1 1
3 3 3 3

1 I 1 I
3,2 3,2 2,2 3,2

feature of state enumeration, just as the use of a tree with
pending nodes stored in a table and the selection of a best
pending node for further processing is characteristic of
branch-and-bound programming.

The relative expenditure of computational effort is
difficult to assess, depending on the weight that one
wishes to give to storage requirement versus purely
computational requirement. Row 2 represents a rather
good BB scheme. The results of Ref. 8 seem to suggest
that inequalities, especially of the Benders type, are only
modestly useful in BB programming if used as they are
in state enumeration. (Used differently, in auxiliary linear
programs over a set of inequalities, they can be quite
effective). As a consequence we believe that the results
of the table are not biased and that the good performance
exhibited in row 5 is indicative of a considerable poten-

est additional computational cost. The lesson is (and this
is reinforced by similar experiences with special struc-
tures in other areas) that it is essential to take problem
structure into account as much as is at all possible. Ex-
amples of these experiences may be found in studies of
set covering and plant location [9], where additional
references may be found.

Problem structure can, of course, be accounted for in
many ways, and much expertise can be brought to bear
upon it. Within the enumerative framework presented
here, very simple devices were employed, and effectively
so, as the last entries of the table indicate. In our opinion,
the state enumeration approach with inequalities, once
established in a program, makes the exploitation of spe-
cial structures easier than might otherwise be the case.

tial for state enumeration.
The rows 6 to 8 represent what can be done when one

exploits the specific structure of a problem. In the present 1. M. M. Guignard and K. Spielberg, “Search Techniques with
Adaptive Features for Certain Integer and Mixed Integer

case, this exploitation is effected by construction of ap- Programming Problems,” Proc. IFIPs Congress, 1968.
proximating integer solutions. The effect is drastic, even 2. M. M. Guignard and K. Spielberg, “The State Enumeration
though no particular ingenuity was expended on this. Method for Mixed Zero-One Programming,” IBM Tech-

nical Report No. 320-3000, Philadelphia Scientific Center,
Better approximations can undoubtedly be found at mod- Feb. 1971. 429

References

JULY 1972 ALGORITHMS FOR THE KNAPSACK PROBLEM

3. P. C. Gilmore, and R. E. Gomory, “The Theory and Com-
putation of Knapsack Functions,” Operutions Rtseul-ch
14, 1045 (1966).

4. D. Fayard and G. Plateau, “Une MBthode Enumerative
pour les Problemes de Knapsack ii Variables Bivalentes,”
Publication 30, Lab. de Calcul, Univ. de France in Lille,
March 1971.

5 . K. Spielberg, “Plant Location with Generalized Search
Origin,” Munagement Science, 16, 165 (1969).

6. C. E. Lemke, H. M. Salkin, K. Spielberg, “Set Covering
by Single-Branch Enumeration with Linear Programming
Subproblems,” Operutions Reseurch 19,998 (1971).

7 . R. E. Gomory and E. L. Johnson, “Some Continuous Func-
tions Related to Corner Polyhedra,” IBM Research Re-
port RC3311, Feb. 23, 1971.

8. E. L. Johnson and K. Spielberg, “Inequalities in Branch and
Bound Programming,” NATO conference, Helsingor, 197 I .
See IBM Research Report RC-3649, December 1971.

9. M. L. Balinski and K. Spielberg, “Methods for Integer Pro-
gramming: Algebraic, Combinatorial and Enumerative,”
Progress in Operutions Reseurch, Vol. 3, Editor, J. Aronof-
sky, John Wiley & Sons, Inc., New York 1969.

430

M. M. GUIGNARD A N D K . SPIELBERG

10. J. F. Benders, “Partitioning Procedures for Solving Mixed-
Variables Programming Problems,” Numerische Muthe-
mutik 4, 238 (I 962).

11. R. E. Gomory, “Some Polyhedra Related to Combinatorial
Problems,” Lineur Algebru und its Applicutions 2, 451
(1969).

Received November 22, 1971

K . Spielberg is located at the IBM Datu Processing Di-
vision Scient$c Center, 3401 Market Street, Philadel-
phia, Pennsylvuniu 19104. M. M . Guignard is Muitre
Assistante, Computing Laboratory, Depurtment
puter Science, Electronics, Electrotechnics and Auto-
rnatll, University o j Lille. Dr. Glrignard also served US

cylnsultant to the I B M Data Processing Division Scien-
tific Center.

IBM J . RES. DEVELOP.

