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Problem 

Abstract: An enumerative  scheme is presented for  the (0,l) knapsack  problem as a  specialization of the  state enumeration  method. 
Techniques  are explored for rendering  search procedures  more efficient by systematic use of information generated during execution of 
the  algorithm. The inequalities of Benders  and Gomory-Johnson  are exploited  to yield implicit enumeration  tests in the special case of 
the  knapsack  problem. In a  comparative  study of eight  algorithms and of the utility of certain  approximations  and  inequalities,  computa- 
tional results are given for twelve  knapsack  problems, each having ten (0,l) variables. The effectiveness of these  enumerative al- 
gorithms are thus tested in a  relatively  simple  framework. 

Introduction 
The  knapsack problem is concerned with filling some al- 
located space, e.g., a knapsack, of volume r with various 
items k (taken  once only, or not at all) of volume b, and 
having associated “profit” p,, selected  from  a set of p 
items, so as  to maximize the overall profit: 

The optimal  solution will not, in general,  completely fill 
the  space r but will leave a “slack” portion s unfilled. 

We shall assume  that all b, and p,, are positive and  that 
the  ratios pk/bk are in decreasing order  from left to right: 

P k l b k ~ P k + l / b k + l ,  k = p - - l ,  p - 2 ; . . , 1 .  ( 2 )  

The  knapsack problem is an  important zero-one in- 
teger  or mixed-integer  problem,  both in its  own right and 
as a possible  aid in the solution of general mixed zero- 
one problems. We give in this paper an enumeration pro- 
cedure which may  be viewed as a  specialization of the 
state  enumeration method [ 1 , 21. However,  the particu- 
lar nature of the problem  suggests  a number of devia- 
tions  and modifications of the  enumerative  scheme, e.g., 
the  use of three  states  derived  from easily obtained ap- 
proximating  solutions,  and the  incorporation of inequali- 
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Our primary  objective is to  demonstrate how well 
suited is the  state  enumeration  technique,  or a variant of 
it,  for a  problem of special structure.  We believe that 
elements of the  method could be incorporated advan- 
tageously in other algorithms for  the knapsack  problem 
(see, e.g., Refs. 3 and 4). We  suggest also  that  other 
special  problems which can  be  solved readily as linear 
programs  and can  be altered easily to give  integer- 
feasible solutions, may be particularly  amenable to solu- 
tion by techniques  such as  those  advocated here. The 
set covering  problem  and the plant  location  problem are 
two examples [ 5  , 61. 

A secondary  objective is to  explore  methods  for ren- 
dering search  procedures more efficient by the  systematic 
use of information generated during execution of the al- 
gorithm. In particular  we  have exploited to this end the 
inequalities of Benders  and the  asymptotic problem of 
Gomory. For the all-integer (0,I) knapsack  problem, 
the  Gomory-Johnson inequalities [7 , 81, which are in 
general over all variables, including the  slacks,  can be 
transformed  to inequalities over  the zero-one  variables 
only  and  can then  be  used in exactly  the  same  manner  as 
the  Benders inequalities. Hence,  we  were  able  to  test  the 
effectiveness of these new ideas within a  relatively sim- 
ple  framework. 

We can thus use the  zero-one inequalities to yield ef- 
ficient implicit enumeration tests, leading to  the fixing of 
variables or  to  the  establishment of infeasibility [ 1 , 2  ,9]. 
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For  the mixed (0,l) knapsack  problem  and for general 
mixed (0,l) problems, one would have  to  use  somewhat 
more complicated devices, e.g., linear programming over 
the inequalities. For  such methods see Ref. 8. The actual 
computational  results of this paper  are  for  the  pure (0,l) 
case. 

This  paper first points  out  some of the differences be- 
tween  branch-and-bound  and enumerative programming 
and then  shows how modifications of the  state enumera- 
tion method  can be applied to  the solution of the given 
knapsack problem. Various  forms of heuristic devices are 
next  discussed, including the  use of the linear  pro- 
gramming solution, of three different integer  solutions, 
and of Benders and  Gomory-Johnson inequalities. Nu- 
merical results  for  these various  algorithms are then com- 
pared with branch-and-bound techniques  for  the solution 
of twelve  knapsack  problems. 

Branch-and-bound and enumeration  procedures 
There is a good deal of confusion in the literature as to 
the difference between (implicit) enumeration  and branch- 
and-bound (BB) programming,  especially  “single branch” 
BB programming, in which one branch of the  search 
tree is pursued to  the  end, with backtracking,  before an- 
other is taken up. The  reader may wish to consult Ref. 9 
on such  matters, e.g., on the terminology (afairly obvious 
one) of single-branch and multibranch trees. Reference 9 
should also be consulted for  further references to  the 
basic p-apers on BB and enumerative programming. 

The e‘ssential difference lies in the  nature of the prob- 
lems that  are actually  solved: relaxed  problems (Le., 
problems in which the  constraints t ,  E {0 , I }  are re- 
laxed to 0 5 t, 5 1 in the  case of BB programming) and 
constrained  problems, in which specific integer  values 
are  substituted  for all or a part of the t,, in the  case of 
enumeration. 

This distinction can become somewhat blurred  by the 
fact  that  an  enumeration algorithm may also  employ re- 
laxed  auxiliary  problems  intermittently. In  the enumera- 
tion scheme of this paper, relaxed  auxiliary  problems are 
always used, even when all t ,  are (0 ,  1) variables. In 
strict  enumeration  one could  avoid all linear  programs 
but usually only at  the  expense of losing valuable in- 
formation. 

In the  state  enumeration algorithm [ 1 , 21, an auxiliary 
linear program may suggest  (e.g., by rounding) a “state”, 
which is a  determination as to which of the  “free” vari- 
ables (kEF)-the  set of variables t, which have not 
been explicitly fixed at 0 or 1 - are  to be set  to 1 ( k  E F 1) , 
O(k E F 2 )  , or be left free ( k E F 3 )  in the solution of cer- 
tain basic  constrained “state problems.” 

The  manner in which F is partitioned into F 1 , F 2  , F 3  , 
determines the order in which the  enumeration  proceeds 
and the inequalities that  are  generated.  The  arbitrariness 

available in the choice of the  state furnishes the essential 
flexibility of the  state enumeration  method. Of course, it 
may not be easy  to assign a state  (to partition) intelli- 
gently. See Refs. 1 and 2 for details. The usefulness of a 
flexible procedure  was, we believe, sufficiently demon- 
strated by the computational  results of Ref. 5. 

It ought to  be emphasized that, in general,  linear pro- 
gramming need  not  necessarily  be  used. Linear program- 
ming can  be  used  intermittently  only, e.g., only at  the 
start.  The  state can be defined by means of some other 
method. Moreover,  even  the  state problems  need not be 
solved at all nodes, but  only at  the “terminal”  nodes at 
which all zero-one variables have been fixed. In  contrast 
to  this, BB programming is intrinsically based on  the 
resolution of two  linear  programs (or,  more generally, 
two  relaxed  programs)  at each node of the  search  tree. 

For  the knapsack  problem the situation is quite special, 
in that any  linear programming solution of ( I ) ,  with some 
variables possibly fixed at O ( k E Z )  and  some  at I ( k  
E E )  , can  be made  to  have  the  property  that  no more 
than  one  component in the  solution, say t J ,  has a frac- 
tional value. 

A BB algorithm,  then, will always  round  variable tfto 0 
for  one  branch and to I for  the  other. It will then pro- 
ceed from  one of the pending  nodes in the  same fashion. 
The computational results in this paper will always  refer 
to this true “multibranch” BB method  with, in general, 
many pending nodes,  as  opposed  to  the single-branch 
approach. 

The more  interesting approach  for us, however, is that 
of state  enumeration, modified so as  to  take  into  account 
the special nature of the problem. For  such an enumera- 
tion algorithm the inequalities  become the motive  force. 
Since  the inequalities are almost solely responsible for 
the curtailment of the  search  process,  the  manner in 
which they are  generated (e.g., by correct choices of 
state) becomes  a factor of overriding  importance. 

State enumeration for the knapsack  problem 
Consider problem (1) as given initially, i.e., with all 
variables  free: 

F = K ,  E = @ ,  Z = @ .  ( 3 )  

All variables are  free, i.e.,  none are fixed at 0 or 1. No 
distinction has  yet been made among the  free variables. 
In general, the  state  enumeration algorithm has the fol- 
lowing raw structure: 

I )  Define I ,  the  “level”,  to  be (in a sense)  the  distance 
from the origin of the  search, i.e.,  let it be the  number 
of variables that  have been fixed explicitly in the  last 
sequence of “forward steps” from the origin (level 0). 
Initially, the level is set  to 0. It is increased in for- 
ward steps,  decreased in “backups”. 425 
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If there  are  free variables  left, go  to 3 ) .  Otherwise, 
solve  a  terminal state problem, i.e., solve  the original 
problem  with the integer  variables fixed as specified 
by E and Z .  Go to 4). 

Forward step 
a)  Determine a state, i.e., partition F into  the  three 
sets F 1 ,   F 2 ,   F 3 .  In  other  words partition K :  

K = E + Z + F l + F 2 + F 3 .  (4) 

This  state  can  be  determined trivially, from  the pre- 
vious state,  or by means of auxiliary  computations. 
Pick  a branch variable k* in F .  
b) Increase 1 by one. 
Set t,, = 1 if k*  is in F2 or F3,  t, = 0 if k* is in F 1 ;  
i.e., adjoin k*  to E if it was in F2 or F3 and adjoin k* 
to 2 if it was in F1.  Of course, modify F 1 ,  F2,   F3  
correspondingly. Store k* for  later  use in backups. 
Go  to 2). 

Backup 
Retrieve  the  value of k* which led to  the  current node 
(level). 
Complement  the variable, Le., if t,, is currently l(0) fix 
it now at O( 1). 
Reduce 1 by  one. If 1 = “I, terminate. Otherwise,  go 
to 2). 

This  description, of course, lacks  motivation and all 
those details and additional features which are neces- 
sary  to make the  procedure effective, such as: 

In 3a) one must decide  on a  method of determining th,e 
state.  Frequently,  one may decide to  solve a non- 
terminal-state  problem, obtained  from  the original 
problem by  substitution oft, = 1 fork in F 1 and t, = 0 
for k in F 2 , t, being left to vary between 0 and 1 for 
k in F 3 . In  the initial phases of the computation one 
would, of course, like to  get a  solution to  the original 
problem. In  general,  however, computational evidence 
indicates that,  wherever possible, it is desirable  to 
choose  the  state close to a  hypothesized good solu- 
tion [ 51. 
When a state problem or  an auxiliary  problem has  been 
solved,  one  can always  obtain a Benders inequality 
[9 , 101 over  the integer  variables. From  the auxiliary 
problem one usually is  able  to obtain Gomory-Johnson 
inequalities [7 , 81. All of those  are  necessary condi- 
tions for obtaining  integer  solutions. The  Benders in- 
equalities may involve z* (a given or already computed 
bound  on  the objective  function) in which case  they 
are conditions for obtaining  integer  solutions  with  ob- 
jective functions  better  than,  or equal to, z*. 

These inequalities  can be utilized systematically  in 
a search  for  the possibility of fixing (“cancelling”)  var- 
iables at  the  current level 1. On a  backup to a  previous 426 
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level, all cancellations at  the  current level must be 
rescinded. 
In  the general case,  the inequalities may afford the 
best way of choosing k * .  One will choose k*  such  that 
the  forward  step  alters  the  state so that  the new state 
problem at  the  successor  state differs from  the pre- 
vious one. 

For  details,  the  reader is referred to Ref. 2 or 8, al- 
though we realize that  those descriptions may be too 
concise  to be sufficiently clear. It is in fact difficult to 
define any general  rules for selecting effective computa- 
tional features.  It is up  to  the  analyst  to  decide  on  such 
matters in relationship to  the particular  problem at hand. 
In this paper we have  tried  to  do this to some extent  for 
the  knapsack problem. 

Approaches to solving the knapsack  problem 
The linear programming solution for ( 1 )  is obtained 
rather easily. We therefore  made  the natural  decision to 
solve  it,  as  an auxiliary  problem, in every iteration. From 
the linear  programming  solution we  then  construct heuris- 
tically three different solutions, if possible, to  the original 
problem. With each  such integer  solution we may, if we 
wish, associate a state  and  also a  corresponding  linear 
programming solution and tableau.  We shall give  details 
presently, including examples. 

From  each linear programming (LP) tableau we may, 
by inspection, deduce a linear  inequality after Benders. 
(The Benders  inequalities  derived from  the integer solu- 
tions are only  integral multiples of the original constraints 
and  are of no interest here). Also, we can in general  de- 
rive  an  asymptotic problem after  Gomory  and  construct 
a Gomory-Johnson inequality over  the r, and s. Compu- 
tationally  this will generally require  the  construction of 
a row in an  updated LP tableau and a table look-up  with 
interpolation. 

I t  so happens  that s can be eliminated between ( 1 )  
and  the  Gomory-Johnson inequality, so that  one again 
arrives  at a final inequality involving the tk alone. 

There  are,  then, actually three  states  at level 1. Each 
yields, from  the associated  linear programming tableau, 
one  or more  inequalities. The  branch variable k * ,  then, 
could  be chosen with reference  to any of these  three 
different states  and is in fact  chosen from the first state. 

In  our  computational work we have,  because of time 
limitations,  refrained from  some of these options. For 
example, we construct  Gomory-Johnson inequalities 
only from  the first LP tableau at level I ,  i.e., from  the 
tableau  determining the first state.  See  the  next  two sec- 
tions  for a description of the  three LP solutions. The 
associated LP tableaux can be visualized easily. 

We  choose  the  branch variable,  trivially, as  the first 
fractional  variable, characterized by the  index f. This 
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makes the algorithm  somewhat similar to a single-branch 
BB algorithm. But the  other  options  do  exist  and may 
very well be worth exploring further. 

Linear  programming  solution 
At a  particular  node of the  search, let the  state be given 
by ( E ,  Z , F )  . For  the time  being, F is  not  yet parti- 
tioned further, nor does the further partitioning play a 
determining role as in the general case of state enumera- 
tion. We may assume  that  the problem is feasible  and 
nonintegral. (If the program is not  feasible a backup in 
the  search is indicated.) The solution is then uniquely 
determined by the index J' E F of the  one variable that 
becomes  fractional. 

As  a  matter of fact, F is partitioned  into the  sets L 
(consisting of  all indices in F that  are  to  the left off '),  
{ f }  , and R (all indices of F to the right off): 

F = L + { f } + R .  ( 5 )  

In the LP solution, the variables t, , k E L , have value 
one and those with k E R have  value  zero. 

Example (Note  that  the p,/h, are ordered): 

p =  ( 1 5 , 2 7 ,  10, 1 5 ,  1 8 ,  10,41 , 3 2 , 6 2 , 7 0 ) ,  

b =  ( 1 1 ,  2 5 ,  10, 1 5 , 2 0 ,   1 2 ,  5 0 , 4 0 ,  8 0 ,  l o o ) ,  
r =   7 4  

E = Z = 0 ,  F = K .  

LP solution : f =  5 , L = { 1 , 2 ,  3 , 4) , 
R = { 6 , 7 , 8 , 9 ,  I O } ,  

t =  ( 1 ,  1 ,  I ,  1 ,  1 3 / 2 0 , 0 , 0 , 0 , 0 , 0 ) .  

Three  integer  solution  upproximations 
Not all solutions need exist, in general. The solution of 
i)  may be good, and ii) and iii) may occasionally  not  give 
an improvement. But usually the simple heuristics of ii) 
and iii)  will be found effective. 

i)  A trivial solution is obtained by rounding down t f .  

ii) Round 5 to zero. Then scan right and try to refill the 
knapsack  at unit levels from variables in R .  

iii) Round tf to  one.  This  renders  the solution infeasible. 
1. S e t j = f ,  J = L .  
2. If J is void, abandon  the  search without  solution. 

Otherwise,  scan left (from j )  and set,  consecu- 
tively, all t, , k E J , one  at a  time, to zero. If there 
are feasible  solutions, take  the best one and stop. 

3. If there  are  no feasible  solutions, set t ,  to 0 for  the 
rightmost  index in J .  Drop this  rightmost  index 
from J and set j to the new rightmost  index of J 
(if possible). Go to 2. 

With each of the three integer  solution  approximations 
one can associate a  linear programming solution by giv- 

ing the first variable  from the left in F a fractional  value, 
which ensures  that  the knapsack is full. 

Example: In the  case of the example given above,  one 
has  three LP solutions, zA being the objective  function 
for an LP solution and that for an integer  solution): 

t l =  ( 1 ,  1 ,  1 , 1 ,  1 3 / 2 0 , 0 , 0 , 0 , 0 , 0 ) ,  
j" = 5 , zlA = 78.7 , 

? =  ( 1 ,  1 ,  1 ,  1 , 0 ,  1 ,  1 / 5 0 , 0 , 0 , 0 ) ,  
f' = 7 ,  z', = 77.82 ,  

? =  ( 1 ,  I , 3 / 1 0 ,  I ,  1 , 0 . 0 , 0 , 0 , 0 ) ,  
f:' = 3 , z:jh = 78 . 

The  three integer  approximations are  the  same with t5 = 0 
for t1 , t ,  = 0 for t2 , and t:, = 0 for t:' . The integer  objec- 
tive functions  are z ' =  6 7 ,  22 = 7 7 ,  z:'= 7 5 .  The 
second solution  happens to be optimal. 

what  more elaborate heuristic rules. 
It would probably not be  very difficult to devise  some- 

Benders  inequalitie.~ 
Instead of giving a  general  discussion of Benders in- 
equalities  and their  use in enumerative programming 
we refer the  reader  to Refs. 9 or 10. It should suffice to 
note  that,  for  any optimal LP tableau, one may look at 
the  top row which expresses z as a  linear  combination 
of the nonbasic  variables ( k € N )  . Among these vari- 
ables are, in general, some integer  variables y ,  , 

z = z z , - ~ h , y , - - . .  . ( 6 )  

The summation is over  the nonbasic  variables only. The 
h, are essentially the reduced  costs. At optimality, all 
A, are nonnegative for k E F ,  but not necessarily for 
k E E or k E Z . The j ,  stand  for y,(k E R + Z )  and 
for j ,  = 1 - y ,  ( k  E L + E )  . I f  z* is the  best-known value 
for  an integer  solution,  then an improvement  can be found 
only for values of the j k  such that 

x -  

N n K  

Therefore, rewriting ( 7 )  in terms of the original variables 
y k ,  or  rather t, for  the knapsack  problem, one has  a 
linear inequality over  the t, . Fortunately,  the knapsack 
problem affords the  rare  opportunity of writing the in- 
equality in the closed  form: 

The summation is over all nonbasic  variables that  are 
either fixed at one,  or  are  at  one in the first LP solution, 
i.e., are  to  the left of the index F that  determines the first 
LP solution. 427 
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In general, one  obtains  such  an inequality for each of 
the three  linear programming  tableaus. For  the knapsack 
problem one always has a  value for z*.  In a certain sense, 
L and R and { f } play the role of F 1 , F 2 , and F 3 of the 
general state enumeration  algorithm. 

Gomory-Johnson inequalities 
The knapsack  problem is also a good vehicle for testing 
some of the  important new  ideas of Gomory and Johnson 
[7], to whom we  are grateful for making this  material 
available  before  its  general  dissemination. We also wish 
to acknowledge the  generous advice of Ellis Johnson, 
given freely in many discussions. We shall give  only a 
brief description and suggest Ref. 8 for a rather detailed 
exposition of the basic  ideas. 

Starting with a  linear programming solution with frac- 
tional  index f ,  and  corresponding  index sets E ,  2 ,  L , R , 
{f} , one may write the well-known group problem, the 
asymptotic problem of Gomory,  as follows: 

L e t K I = ( L + E )  f l  N , K 2 = ( R . + Z )  n N . T h e n  

t ,  E (0 ,  l } ,  k E ( L + R )  N ,  s z o ,  

in which the complementary  variables 7, = 1 - t, have 
been  introduced for k E L + E ,  and u is a correspond- 
ingly modified right-hand  side of the  constraint. We have 
chosen  to  treat  the original problem ( 1 )  as a minimization 
problem, min c,t , where c, is identified with -p, . 

Gomory and Johnson  show in Ref. 7 how one may ob- 
tain valid and relatively strong inequalities of the form 

%-Jk + T,t, + %-%s 1 1 , (10) 
K1 K2 

by  taking the  faces of tabulated corner  polyhedra  for 
cyclic groups,  (see  Gomory [ 1 I ] )  and by “interpolating” 
in various  ways  (see [8] for details). The numerical  re- 
sults below were  obtained for  the simplest  possible case 
involving the  two  faces of a  cyclic  group of order two. 
One may well expect  that  the utilization of higher-order 
groups, not in principle  very much more  complicated, 
could  lead to substantially superior results. 

After  the nk and niT) have been obtained,  one may in 
the  case of the knapsack  problem  eliminate the slack 
variable s between ( 1 )  and ( 1  0)  to  arrive  at  an inequality 
over  the t only.  We  also use  the obvious  inequality, the 
ceiling test, 

P k t ,  ’ z* 1 

K 

420 which is of the  same  form  as  the  Benders inequalities. 
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Numerical results for eight methods 

Algorithms 
In  order  to  study  the  comparative merit of algorithms 
and  the utility of approximations and inequalities, we 
implemented eight algorithms within a  modular system 
of subroutines: 

1 )  A branch-and-bound algorithm of multibranch type, 
Le., having as many pending  nodes  as are  generated, 
stored, and  retrieved  according to largest  objective 
function value. The integer  solution  approximation 
i) is used. No “penalty” computation is made of the 
type customary in branch-bound codes. 

2) The  same  as in 1 )  plus “group penalties”,  computed 
from  a  cyclic  group of order  seven at the suggestion 
of Ellis john son.^ Customary penalties could be ex- 
pected to be  weaker. This  relates  to only one pivot 
step in the rounding up or rounding down of a basic 
variable, whereas  the group  penalties  give  a good 
measure of the total  cost of rendering that basic vari- 
able integral. 

3)  The  state enumeration algorithm with approximation 
i) and  corresponding Benders inequalities. 

4) State  enumeration with approximation i) and Gomory- 
Johnson inequalities  (computed  from the cyclic  group 
of order two) as  described earlier. 

5 )  State  enumeration with approximation i) and Benders 
as well as  Gomory-Johnson inequalities. 

6), 7), 8)  Same  as 3), 4), 5 )  except  that all approxima- 
tions i), ii), and iii) are  used. 

Numerical results 
In Table 1 we give, for  each  method,  results  for 12 
knapsack  problems of small size (10 zero-one variables 
only). A  number of 75- and  100-variable  problems  were 
also  run  and did not cause any  particular difficulties. The 
12 problems consist of three different sets of constraint 
data, each of which was run with the  four right-hand sides 
74 , 8 0 ,  139  and 250. 

When there is one  entry in a table column  location, it 
denotes  the  number of linear  programs that  were exe- 
cuted during the solution process. A second entry situ- 
ated  just below the first gives the  number of inequalities 
generated and utilized. Where  two  numbers  are located 
below the first entry, they  give the  number of distinct 
Benders inequalities and  the  number of Gomory-Johnson 
inequalities,  respectively. 

Rows 1  and 2 in the  table  are a measure of the basic 
effectiveness of BB programming, primarily for compari- 
son  purposes.  Results in rows  3, 4 and 5 are  representa- 
tive of state enumeration. We believe that this  compari- 
son is fair. Methods 3 to 5 use inequalities, whereas 1 and 
2 do not. However,  the  use of inequalities is an essential 
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Table 1 Twelve knapsack  problems,  resolved by methods 1 to 8 (See  text  for explanation  and  interpretation of column  entries). 
~ 

Problem I I 2 3 4 i 5  6 7  10 I 1  I 2  
~~ ~~~ 

0hjecfivefitnc.tion 1 77 80  127 215 1 79.654  84.015  147.42 

t METHOD 
1. Branch-and-bound 

~. 

I 2. Branch-and-bound + 
group penalties 

3.  State  enumeration, (i) 
Benders 

E 4. State enumeration, (i) 
Gomory-Johnson 

5.  State  enumeration, (i) 
Benders,  Gomory- 
Johnson 

6. State  enumeration, 
(i) (ii) (iii) 
Benders 

7. State  enumeration, 
(i) (ii) (iii) 
Gomory-Johnson 

8. State  enumeration, 
(i) (ii) (iii) 
Benders,  Gomory- 
Johnson 

26 40 54 30  32 30 96 

6 14 18 10 

I t  27 34 14 
3 5 5 5 

13 16 20 16 
20 22 26 22 

10 14 1 1  8 
5,16 5.19 5.18 5,13 

~2 d 5 3 
4 4 5 3 

7  9 9  4 
8 1 1  1 1  7 

2 6 4 2 
4,3 5,10 5,6 3,4 

14 32 30 78 

10 1 1  12 62 
3 3 2 6 

7 6 12 26 
7 9 1 3  40 

5 4 7 21 
4,7 4 6  3.8 5,35 

2 10 7  43 
4 4 4 1 1  

4  4 8 23 
5 5 7 37 

1 3 3 16 
4 2  6,6 4,6 13,32 

18 18 18 16 

16 18 14 16 

15 24 8 10 
2 2 2 2 

2 2 I 2 
3 3 3 3 

2 2 1 2 
2,2 2,2 2,2 2,2 

6 13 8 18 
3 3 2 3 

1 1 1 1 
3 3 3 3 

1 I 1 I 
3,2 3,2 2,2 3,2 

feature of state  enumeration,  just  as  the  use of a tree with 
pending nodes stored in a table and  the selection of a best 
pending node  for  further processing is characteristic of 
branch-and-bound programming. 

The relative expenditure of computational effort is 
difficult to  assess, depending on  the weight that  one 
wishes to give to  storage requirement versus purely 
computational  requirement. Row 2 represents a rather 
good BB scheme. The results of Ref. 8 seem  to suggest 
that inequalities,  especially of the  Benders  type,  are only 
modestly useful in BB programming if used as they are 
in state enumeration. (Used differently, in auxiliary  linear 
programs over a set of inequalities,  they can be  quite 
effective). As a consequence we believe that  the  results 
of the table are not  biased and  that  the good performance 
exhibited in row 5 is indicative of a considerable  poten- 

est additional  computational cost.  The lesson is (and this 
is reinforced by similar experiences with special struc- 
tures in other  areas)  that it is essential to  take problem 
structure  into  account  as much as is at all possible. Ex- 
amples of these  experiences may be  found in studies of 
set covering and plant  location [9], where additional 
references may be found. 

Problem structure  can, of course, be accounted  for in 
many ways,  and much expertise  can be  brought to  bear 
upon it.  Within the  enumerative framework presented 
here, very  simple devices  were  employed, and effectively 
so, as  the  last  entries of the  table indicate. In  our opinion, 
the  state  enumeration  approach with inequalities, once 
established in a program, makes  the exploitation of spe- 
cial structures  easier  than might otherwise be the  case. 

tial for  state enumeration. 
The  rows 6 to 8 represent what  can be  done when one 

exploits the specific structure of a  problem. In  the  present 1. M. M. Guignard  and K. Spielberg,  “Search Techniques with 
Adaptive  Features for Certain  Integer  and Mixed Integer 

case, this  exploitation is effected by construction of ap- Programming  Problems,” Proc. IFIPs Congress, 1968. 
proximating  integer  solutions. The effect is  drastic,  even 2. M. M. Guignard  and K. Spielberg, “The  State  Enumeration 
though no particular ingenuity was expended  on this. Method for Mixed Zero-One Programming,” IBM  Tech- 

nical Report  No. 320-3000, Philadelphia  Scientific Center, 
Better approximations  can  undoubtedly  be  found at mod- Feb. 1971. 429 
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