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Maintaining a Sparse Inverse in the Simplex Method 

Abstract:  Improved  methods  are  discussed for handling sparse matrices in practical  linear programming. An  analytical  comparison is 
made of four methods for updating  the  inverse in the  iterations following a reinversion. Of these,  one  technique using the elimination 
form of inverse is selected for  some computational experiments and  its advantages in terms of speed  and  sparseness  demonstrated. 

introduction 
Sparse matrix methods  have been important in practical 
linear  programming from  the very  earliest  implementa- 
tions of the revised simplex  method. These methods have 
become even  more  important  as  the size of problems 
presented  for solution has continued to grow until, at 
present, linear  programs with a  few thousand  constraints 
are quite  commonplace. Fortunately, and  not sur- 
prisingly, the densities of the  constraint matrices  decline 
with the  increase in dimension, thus keeping within 
manageable proportions  the  amount of data  storage and 
arithmetic. 

Techniques  for handling sparse matrices are  important 
in two major areas in linear programming: 

1. Storage and retrieval of the problem data.  There  are 
several  techniques for storing sparse matrices in use 
at  present [ 1 1 ,  [2]. 

stitute  inverse. 
2. Maintaining  and applying the basis inverse  or sub- 

This  paper is concerned with the  second  area.  Readers 
will be  assumed to be familiar with the simplex  method 
using the product  form of inverse [ 3 ]  and the  Gaussian 
elimination for solving systems of equations [4]. 

In  recent years it has been  realized that  the sparsity of 
the inverse  representation  produced by the linear  pro- 
gramming inversion routine  can be  drastically  improved 

by using the  Gaussian  or “elimination” form of inverse 
(E.F.I.)  rather  than using the  Gauss-Jordan  or  product 
form of inverse (P.F.I.).  This  scheme was first advocated 
by Markowitz [5] and subsequently,  for  the special case 
of staircase matrices, by Dantzig [6]. Later still Dantzig, 
Harvey, McKnight and Smith [7] experimentally  demon- 
strated  the superiority of the  E.F.I.  over  the  P.F.I.  for a 
number of linear programming problems and  Brayton, 
Gustavson and Willoughby [8] were  able to  prove this 
superiority for general sparse matrices. 

The elimination form of inverse is now known to be 
implemented in at least two commerical  linear  pro- 
gramming codes;  Standard Oil’s M5  code [7] and 
Scientific Control Systems’ UMPIRE code  (see Beale 
[9]). Other  codes  are in the  course of being modified and 
may have been  already altered.  Some  aspects of the P.F.I. 
and  E.F.I. inversion techniques will be  examined in the 
next  section. 

The  success of the  Gaussian  or elimination form of . 
inverse naturally  leads one  to ask whether  the resulting 
triangular factors can  be  used to  advantage in updating 
the  inverse in the  iterations following a  reinversion. The 
answer would certainly appear  to  be yes. Dantzig [6] 
advocated updating the triangular factors of the basis for 
his staircase algorithm, since this preserves  the  staircase 
form of the  factors.  It  seems extremely likely that in this 41 5 
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special case updating the  factors,  rather  than using the 
ordinary product form of updating, would lead to in- 
creased efficiency. Bennett and Green [ 101 pursued this 
technique for general sparse matrices and Bartels [ 111 
and Bartels  and Golub [ 121 have  advocated a form of 
Dantzig's method on  the  grounds of numerical  stability 
without, however, commenting on the sparsity implica- 
tions.  Brayton et al. [8] have  proposed  two  other up- 
dating techniques, although their  concern is not pri- 
marily with efficiency in terms of the simplex  method. 

The  three new proposals will be reviewed and com- 
pared in the third  section together with their implica- 
tions for  the simplex  method. One of these  methods is 
then  selected for  some computational experiments and 
results  are given. A discussion  follows subsequently on 
how  this  method might be  incorporated efficiently into a 
production code. 

I . . .  
1 

T ,  = 

1 

I I 

= I + ( t ,  - e,)e,' , 

where e, is the kth unit rn vector, e,' its transpose, and 

t ,  = T,-, . . . T,"T,~ 'b , ,  - I  

Product and  elimination forms of inverse where b, is the kth column of B. 
Note,  however,  that  two transformations are  made  for 

P.F.I.  each column in the "bump"; hence  the elements of the 
A popular  method of carrying out reinversion [ 131 is to T ,  for  such columns are  zero  on  the  rows corresponding 
order  the rows (implicitly) and  the columns (explicitly) of to A, and in addition  a  second  transformation is also 
B and  then to partition as follows:  made, with a unit pivot and  the kth column of E on  the 

rows of A,. Note also that Tk-' = I - t,, ( t k  - e,)ek' 

B=;" B 1, and  that it is essentially necessary  to keep only the  vector 
t ,  to  store T,, and t ,  and t k k - l  to  store T,". (See [SI). 

-1 

D E A, 

where A, and A, are lower  triangular. The  submatrix B is 
sometimes  referred to  as  the "bump" and those  vectors 
with elements in A, are "above the bump", those in A, 
being "below the bump". It  seems  to be characteristic of 
most  linear  programs that  the  submatrices A, and, par- 
ticularly, A, are quite  substantial  portions of B. 

The  above partitioned form of B may be  factorized 
thus: 

Since A, and A, are triangular, the calculation of the  prod- 
uct form of inverse is nontrivial only for  the submatrix 
B .  Various "merit" schemes have been proposed for 
selecting the  order of pivots in B (see, e.g., Tewarson 
[ 141) but  they will not be discussed  here. 

Using the notation of Ref. 8 we may then express B as 
a product of elementary transformations 

B = T,T , .  . . T , ,  

or equivalently 

B-' = TI" . . . T,-'T1-' , 

E.F.I .  
The P.F.I. partitioning scheme may be used with only 
a slight modification in the elimination form of inverse. 
By rearranging the  rows  and columns of the  submatrices 
A, , E and D , we may repartition B to give [9] 

B =  D x, E ,  B] 
where A, is now upper triangular. This  procedure ob- 
viously facilitates  factorization into triangular factors 
by Gaussian elimination,  since again only the factoriza- 
tion of E is nontrivial. 

Suppose B is now factorized into L U ,  where L is lower 
and U is upper  triangular. Let 1, and N, be the kth columns 
of L and U ;  then defining 

L, = I + ( I ,  - e,) ek' ; 

U ,  = I + (u ,  - e,)e,' , 

we may factorize 

L = L,L, . . . Lm,  

u = U1,,U,-, ' . . u, . 
Hence 

41 6 where T ,  is of the form  assuming B is rn X rn , B" - - I/ . . . u,-lL,-l . . . , 
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There is some  latitude in the choice of values of diag- 
onal elements of L and U .  The most efficient choice 
would appear  to be  setting uklC to 1 fork in partitions A, , 
B and I,, to 1 in partition A , .  If this is done  the number 
of transformations  (disregarding  unit  transformations) 
is exactly  the  same  as  for  the P.F.I., since two transfor- 
mations are calculated  only for  the columns in B .  

The  order of choice of pivot elements in B may be de- 
cided here, as for  the P.F.I., by merit schemes.  These 
are exhaustively  discussed by Dantzig et al. [7]. 

Methods of updating inverse 
In this section we briefly review,  without  rigorous  proof, 
and compare  four methods of updating the  inverse. All 
except  the first assume  the elimination form of inverse 
discussed in the  previous section. With the  exception of 
Method I1  all are described at  greater length by Brayton 
et al. [8]. 

Method I [ 3 ]  
Method I is the  standard  procedure used in the  product 
form of the simplex  method. 

Suppose column h, of the basis is to be  replaced by 6,. 
Let B be the original basis (factorized,in  either E.F.I. or 
P.F.I. form)  and let B be  the  new basis. 

Let t,,, = ~ " b , ,  
then B - l  = T I + , - ' B - ' ,  

where TI+,  = I + ( t ,+,  - ek)e,' . 
Hence if B-'  = TI" . . . T,"Tl" , 

then E-' = Tl+,-ITI-I . . . T," . 

Further changes are  made by repeating the  above pro- 
cess. 

Method I1 [ l  I ]  
This is Bartels's  version of Dantzig's algorithm [6]. Sup- 
pose we have B = LU , i.e., B" = U"Lm-l . . . L," , 
and we again change h, to b, . Then L"B will be identical 
to U except in column k .  Permute columns k + I , . . . , rn 

one place to the left and place column k in position rn to 
give a Hessenberg matrix, 

H =  

The  elements below the diagonal in columns k to rn - 1 
of H must  now be eliminated by a set of elementary  trans- 
formations. An important  feature of Bartels'  method is 
that, in carrying out  the elimination,  rows may be  inter- 
changed or  permuted  to place the maximum of the ele- 
ments h,, , h,,,,, on the diagonal (Wilkinson's "partial 
pivoting" strategy [ 151) to  ensure numerical  stability. 

The result is a new upper triangular  matrix 

where  the P ,  are  either unit  matrices or  the permutation 
matrices  exchanging rows I and I + 1 , and G, are  the 
elementary  transformation  matrices eliminating the ele- 
ment below the diagonal in column 1. Hence 

B" = QU"Gnt_,P,n-I . . . GkPkL-' 

Dantzig [6] and  Bennett  and Green [ lo]  have shown 
that  the "near  commutativity" of the  matrices G, may 
be  used to calculate a new lower triangular  matrix L such 
that 

thus maintaining a true triangular  decomposition. This 
is not,  however, an essential feature of the method. 

Of course  the permutation  matrices P ,  , Q need not 
appear explicitly. All that is necessary is to  record  the 
order of pivoting. The  process is repeated for  the next 
iteration using the new u and (implicitly) the new L. 

Method 111 [ 8 ]  
Neither this  method nor  the  next maintain a true tri- 
angular  decomposition. However, both require initially 
the elimination form of inverse. 

Suppose we have B = LU or, equivalently, 

B" = u - I  . . . u -'L . . . L," 
m n t  

and again change column b, to b, and B to B .  

The method proceeds  as follows: Let 

ut = L b , .  

Then L"B is identical to U except  for column k which 
is now u, instead of u, . 

To reduce L"8 back to  upper triangular form  the first 
step carried out is to  reduce row k to  zero in columns 
k + l ; . .  , m .  

- 1  - 

L 

where Q is a  permutation matrix. 
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To accomplish  this we form  a row transformation us- 
ing the  row  vector 

w,' = (0 9 . . . 3 0 3 w,,,+, 9 . . . 3 W k m )  

- - ( 0 ;  . ' . , o  1 U,,,,' 9 ' . . , U k m )  u-' . 
The row  transformation is then the elementary  matrix 

W ,  = I + ekwk' and the desired elimination is performed 
by forming W,"L"B , since  the columns k + 1 , . . . , rn 
of L"B are identical to U , W,"U = ( I  - e,w,')U , and 
w,' U is simply the  row (0 .  . . . , 0 ,  u,,,+' , . ' . , u,J .  
Furthermore  the first k columns of W ,  are unit vectors 
and  hence  the first k columns of L"B are unchanged. 

Now let t, = W,"L"b, and  form the  elementary col- 
umn transformation 

T ,  = I + ( t ,  - e,) e,' . 
Then forming T,"Wk-'L-lB clearly reduces column k 
to  the unit vector e, and columns k + 1 , . . . , rn are un- 
changed since  they  have a zero  on  the pivot row. The 
result  then is a new upper triangular  matrix,  say Uik'  , 
obtained  from U by replacing the kth row and column 
by the unit vector e, , 

Le., 

u'"' = Tk-lWR-lL-lB , 

or 
B-1 = uik1-1 T,-' w,-'L-' . 

Using  product form notation, if we let U l i k )  denote  the 
elementary matrix U ,  with u,, set  to  zero  we may rewrite 
B" as 

B-' = u," . . . u,-, -1 ( , I -1  
U k + l  

. . . Umik)-lT,-lW,-lLm-I . . . L1-' . 

Note  that  the row  transformation W ,  can be repre- 
sented, if desired, by a product of two-element  elemen- 
tary column  transformations. Also  note  that, although 
we  have  introduce  two new transformations, if U was 
previously in product  form, U = U m  . . . U , ,  the new 
form U',' is obtained simply by  deleting U ,  and a single 
element at most  from each U,,, . . . Urn for a net gain 
of one transformation in general,  unless U ,  happens  to 
be  the unit  matrix. 

To  carry  on  the  process,  one simply treats T,-'W,-' 
L" as  the  lower triangular factor  as  before, although in 
fact if multiplied out  the resulting  matrix would not, in 
general, be triangular. 

Method IV [ 8 ]  
Method  IV, which also assumes  the elimination form of 
inverse,  proceeds by  inserting  matrices T ,  into  the  list 

41 8 Urn . . . U ,  and sometimes deleting a U ,  . 
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To change 6 ,  to h, we  form  the  vector 
- 1  

t ,  = U,+I . . . um-lLm-l . . . L,- 'b ,  

and replace U ,  by the transformation 

T ,  = I + ( t ,  - e,)e,' . 

Then 

B - '  = #rJ - l  . . . 
1 U k _ l - l T k - l U k + l - l  . . . U,,-'Lm-' 

. . . L , - l .  

Continuation of this process is rather more  complicated 
than in the preceding  methods. Suppose now we  have 
changed 6 ,  to 6, and wish to  change 6,  to 6,. There  are 
two  cases: 

1 .  If 15 k , then  let t ,  = U,, ,  . . . U , ~ , ~ l T , - l U k + l  "I - 1  

. . . u "L . . . ~ , " h ,  form T ,  = I + ( t ,  - el)e , '  
and  replace U ,  by T ,  as before. 

2.  If 1 > k form t ,  = T,-'U,+,-' . . . U,,-'Lm-' . . . L," 
b, and  the transformation T ,  as above. However, U ,  
is not replaced and Tl-' is placed directly  before T,-' 
in the  inverse transformation  list,  i.e., 

m m  

B" = u1" . . . u,-, -1 T,- 'Tk-lU,+l- l  . . . Um-'Ln,-' 

. . . L l - l ,  

Continuing further, if columns k ,  , . ' . , k ,  have been 
changed and column 1 is to  be  altered, let k = min ( k ,  
. . . k p )  and  carry out  the  above  procedure. 

Having completed our summary of methods  for up- 
dating a basis inverse  or  substitute  inverse,  we  must con- 
sider  their relative  merits in the  context of the simplex 
method in terms of preserving sparsity, work required  per 
iteration,  and  storage  and  data handling considerations. 

The  great  advantages of Method I are, of course, its 
simplicity and  the minimum of computational steps and 
housekeeping  involved. The essential steps in changing 
the basis in the simplex method, given the  constraints 
A x  = 6 and the new  column aj to  enter  the  basis,  are  the 
calculation of the  updated column a = B-'aj and  the 
ratio  test with the  updated right-hand side, /3 = B"6,  to 
find, assuming p 1 0 ,  the pivot row k from 

O=min-. 
oli>O 

Pi  

i ai 

The  vector a ,  which we cannot avoid  calculating, is pre- 
cisely the  vector t,+, used in Method I to  update  the basis 
inverse  (and  the right-hand  side). 

Methods I1  through IV all suffer from  the  disadvantage 
that  they  require  not only the  vector a for determining 
the pivot row  but  also  another  vector t ,  , which is only  a 
partially updated  form of u j .  Methods  I1  and I11 can 
more  or  less  overcome this disadvantage by  putting the 
vector L-'uj in temporary  storage in the  course of cal- 
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culating a ,  at the  expense  either of using more of the 
computer’s core  storage,  thus effectively limiting the 
number of vectors which can be  saved  for multiple pric- 
ing, or of using backing store.  This  burden is, however, 
comparatively light compared  to  the immediate  and acute 
difficulty encountered in Method  IV,  where  the  vector 
t ,  to be  calculated for updating purposes  cannot in general 
be  known until after the ratio test  operation  to  determine 
the pivot row. This implies that t, must  be  calculated 
from  scratch  or obtained by backward transformations 
on  the  vector a .  

Now let us consider  the implications of Methods I I  to 
IV in terms of work per iteration expended in updating 
the basis  inverse  and of the  necessary  data manipulation. 
Current packing methods of storing sparse  data, particu- 
larly strings of transformations [ I ] ,  [2] make it rather 
difficult to modify an existing product form of L and U .  
Replacement of U ,  by a T ,  with more  nonzeros in Meth- 
od IV,  for example, necessitates  either a  wholesale shift- 
ing of elements of U ,  maintenance of a second transfor- 
mation file to be interwoven  with the first,  copying out a 
complete new basis file, or initial and wasteful leaving 
of space  for such  eventualities.  A  similar, in fact worse, 
situation occurs in Method 11 where on the average 
half of the U ,  transformations  must  be modified at  each 
iteration, increasing the number of nonzeros  to be stored. 
Explicit storage of U can be an answer only for very small 
problems. Some kind of two-file system, each taking the 
new inverse in turn, would appear in general to be neces- 
sary, involving a great deal of read/write activity. Method 
111 on  the  other hand  requires only the elimination of 
previously nonzero  elements in U - a  comparatively easy 
task.  This point will be returned  to in the section “Imple- 
mentation of Method 111.” 

The  amount of arithmetic  work per iteration would 
appear  to be greatest in Methods I1 and 111. The bulk of 
the work in Method I I  comes  from applying the G, trans- 
formations to H to  reduce it to triangular  form. On  the 
average we expect  to  have  to deal with m/2 columns on 
the right-hand side of the matrix. This is a  considerable 
amount of computation  and  becomes  progressively worse 
as U fills in with each iteration. For  Method I l l  the 
main effort is in computing the row vector M’,’ . I t  will 
be shown  later  that this calculation may be performed 
concurrently with the backward-transformation phase 
of the  next simplex  iteration. The  most’important point, 
however, is that I/ becomes  progressively  less dense in 
this  method and  the calculation  progressively easier. 
There is admittedly the  extra complication in Method 
I l l  that row  transformations are called for, but  this is 
more of an inconvenience  than  a  problem and,  as already 
pointed out, could be  circumvented. 

Finally we consider the most important  point-preser- 
vation of sparsity. In  their discussion  Brayton et al. [8] 

concluded that  Method 111 was superior  to  Method  IV 
in this respect since  both  a row and  column of U are 
eliminated in exchange  for a vector w,‘ , which only has 
elements in positions k + I , . . . , m , and a  transforma- 
tion vector t, , which is the incoming column multiplied 
only by L“ . On  the  other hand if in Method IV some 
columns with very small pivot  row  index k are introduced, 
then virtually every  change  thereafter will be of type 2 
and we cannot  expect much improvement over  the or- 
dinary  product  form method. 

In comparing Methods 11 and I11 it again seems  almost 
certain that  Method I11 will win out.  The  number of new 
elements added in the new transformations would appear 
to be much the  same,  but  as already  mentioned in Method 
11, U becomes  more  and  more  dense while in Method 
I11 the density of U declines. In this connection it should 
be  pointed out  that  the columns of U most  frequently 
operated upon are  the right-most. These columns, how- 
ever,  are  just  those columns which will be initially the 
most dense  after inversion, since inversion schemes gen- 
erally postpone operating on  the most dense columns 
until last. 

In  the light of these considerations it appears  that 
Method 111 is the most promising for incorporation  into 
the simplex method, both on  the grounds of work per 
updating iteration and preservation of sparsity.  However, 
there is certainly  some increase in updating work per 
iteration over  the  standard  product form (Method I) and 
a significant improvement in growth of nonzeros in the 
basis representation is required to justify  its  use. Some 
experimental  results are  presented in the  next section. 

Although we have  chosen  Method 111 as  the  best  for 
our  purposes, this is not to say that  the  others may not 
be superior in other circumstances.  Bartels’s  method 
(11) is of considerable importance in achieving highly 
accurate solutions to small, dense problems (see Bartels 
and  Golub [ 121) while  Dantzig’s original version [6] of 
Method I1 for specially structured matrices is as yet un- 
tried. 

Computational results 
Some computational experiments  have been  carried out 
to  determine  whether  Method I11 gives a sufficient im- 
provement over  Method I ,  in terms of growth of non- 
zeros,  to  warrant  further investigation. 

To  carry  out  these  experiments  two linear program- 
ming codes were  written  and  run on the  IBM 360167 at 
Stanford University. Both are all-in-core FORTRAN codes 
using the elimination form of inverse. Neither employs 
multiple pricing. The first code  updates  the  inverse in 
standard product  form  fashion (Method 1); the second 
is a modified version using Method I11 to  update  the in- 
verse.  No  attempt  has been made  to  evaluate timings, 
dependent as  they are on the machine  used  and the pro- 41 9 
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Table 1 Problem statistics. (See text). 

1 2 3 4 S 
Problem  number 

Name SHARE 2B SHARE 1B BRANDY  BANDM MAR 

R o " S  99 118  221 306 325 

Columns 
(structural) 79 225 249 472  452 

% Density 
(of structural 
columns) 10.25 4.4s 3.91 1.59 1.77 

____ 

gramming technique.  Only the number of nonzero ele- 
ments in the inverse representation is considered. 

Five problems ranging from small to  moderate  have 
been used. These problems are two of the well-known 
SHARE standard  test  problems, 2B and 1B [ 161 and 
three  other  test problems  supplied by J.  Cord of IBM. 
The  relevant  statistics on these problems are given in 
Table 1 .  

Only the smallest  problem  was  run to optimality, the 
remainder being cut off after 200,  250,  300  and  350 
iterations. To  compare  the  two  methods  the  set of prob- 
lems  was run on  both  codes with a fixed inversion  fre- 
quency: 40 iterations  for  the SHARE problems  and  50 
for  the  others.  The initial comparison is arrived at by 
counting, at intervals of 10 iterations,  the  number of new 
nonzeros  added  to  the  inverse since the  last reinversion. 
To further  remove  constant  factors only  nonpivot ele- 
ments are  counted. (Both  methods  give a net addition of 
one pivot  element per iteration in general.) All problems 
were started from  a  slack  basis and  hence  the  iterations 
up to  the first reinversion are ignored. The number of 
new nonpivot nonzero  elements  after multiples of 10 
iterations from reinversion is then  averaged for  the re- 
mainder of the run. These figures are given in Table 2. 

Table 2 Growth of new nonzeros in basis. 

The raw data  appear in more  digestible form in Table 
3,  where  Method I has been  used as a base  and  the  frac- 
tion of new elements produced by Method 111 is given. 
The improvement is obviously  very satisfactory, with the 
possible  exception of problem 2. As might be  expected 
the  improvement tails off as  the  number of iterations in- 
creases, particularly for  the smaller, denser problems. 

To  obtain  a better  estimate of the effect of Method 111 
on  the simplex algorithm we should also  consider  the 
total number of nonpivot nonzeros in the  inverse. To 
this end we list the inversion statistics in Table 4 and 
compute  the fraction of total  nonpivot nonzeros  produced 
by Method 111, again using Method I as a base.  The in- 
version statistics  do not  include the original all-slack 
basis  and are of some  interest in themselves. The pivot- 
choosing procedure in decomposing B (see the  second 
section) is essentially algorithm 7 in Dantzig  et al. [ 7 ] .  

The modified data  for  Method III appear in Table 5. 
Although the problems are comparatively small and 

the sample is also  small, the  results in Table 5 are quite 
encouraging. It  appears  that  for reasonably sparse prob- 
lems with  200 to 300 constraints a reduction of 20 to 30 
percent in the  number of nonzeros in the  substitute in- 
verse may be  expected with Method 111, thus consider- 
ably  reducing the time spent in forward and backward 
transformation in the simplex  method. The  results  for 
problem 4 show that  the reduction may be dramatic. 

Implementation of Method Ill 
The  results of the preceding  section  suggest that  further 
experiments using a modified production or commercial 
code would be  worthwhile. I t  would also appear  that  the 
modifications could be  made and the  extra updating  work 
per iteration  accomplished at comparatively  little  cost. 

The first essential is clearly to  have a code  that employs 
the elimination form of inverse. Given such  a code it 
should  be a simple matter  to  adjust  the storage  and buffer- 
ing activities  such that  the Tk"Wk" transforms can  be 
adjoined to  the left of the  product form L,-l . . . Ll" 
of L" . 

The reduction of the kth row and column of U to  the 
unit vector ek can  probably  be  accomplished  satisfac- 

Problem 1 2 3 4 S 

Method I 111 I 111 I 111 I 111 I 111 

420 
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torily  by simply setting  indicator  bits.  Usually we will 
have U-l represented as U,-'U," . . . Urn-' , or  rather 
the packed vectors u, corresponding to  these  elementary 
matrices. The reduction may then be  accomplished by 
tagging U,-' with a bit to indicate that it is to be  skipped. 
Furthermore by using, say,  the blocked  index scheme 
[ 1 ] for storing the  vectors u 1  , the  row index k , if it ap- 
pears, may be tagged to indicate that  the element is  zero 
for 1 = k + 1 , . . . , rn . Failing  this the ukl elements could 
be  physically  replaced by zeros if necessary. 

This  scheme  is of course inefficient  in the  sense  that 
in an out-of-core  system progressively  more  and  more 
valueless data must  be buffered in and out of core.  On 
the  other hand if the  system is already  compute-bound 
rather than I/O-bound this is no restriction,  and even if 
this is not the  case  the very frequent reinversions  carried 
out  for large  problems  should prevent this inefficiency 
from reaching really noticeable  proportions. 

Finally let us consider the process of computing wk' . 
For simplicity let us assume we are carrying out  the first 
iteration after a  reinversion.  We  then have 

B-' x u . . . urn-'L,-' . . . L,-'. 

Now  the calculation of 

= (0 9 . . . > 0 1 uk.k+l > . . . 1  urrn )U- l ,  

and  also the modification of U to U ' k ' ,  may be  carried 
out in a single pass from left to right  through the trans- 
formations U1-'  . . . Urn-' . To see this,  note that in com- 
puting, say, 

(0 3 . ' ' 9 0 ,  i l k + ' ,  ' . . , Zm)u/-' for 1 > k . 

only the  elements , . . . , z,  play any  part in the arith- 
metic,  since U and U ,  are  upper triangular. The  elements 
zl+, , . . , z ,  are unchanged. We  therefore  arrange  the 
computation of wk'  and  the modification of U to U'"' 
as follows. 

Initial  step 
Create a zero row vector and skip transformations u,-' 
. . . uk-l . Tag U k - l .  Let 1 = k + 1 . 

General  step 
For transformation U,-' , if ukl is nonzero,  extract it and 
add it in position I of the row vector, marking the ele- 
ment as now being zero in U L - ' .  Postmultiply the row 
vector by U , - ' .  Proceed for 1 = k + 1 , . . . , rn . 

A very advantageous result of this procedure is that 
the updating of the  inverse can be carried out  concurrent- 
ly with the backward  transformation of the following 
simplex  iteration. In calculating the pricing vector  for 
the next  iteration we must compute 

- 1  

* I  = C I U ( k ) - - l  T,-'w,-'L-' 
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Table 3 Fraction of new nonzeros produced by Method 111. 

Iterations  Problem  number 
since 
invert 1 2 3 4 5 

Table 4 Inversion  statistics (averages). 

Problem  number 

1 2 3 4 5 

Original 
basic 488  498  735 755 822 
nonzeros 

Nonpivot, 
nonzero 
transformation 
elements 

417 398 595 608 561 

Number of 
transformations 76 107 133 126 172 

Table 5 Fraction of total nonzeros produced by Method 111. 

Iterations  Problem number 
since 
invert 1 2 3 4 5 

for some  row vector c' . Now  the first k - 1 columns of 
U',' are identical  with those of U .  The modification of the 
remaining columns of U may be carried out in the same 
pass through the transformation file as  that  for  the calcu- 
lation of d and furthermore only one unpacking of the 
nonzeros  from  each ul is necessary. Having  obtained 
wk' the new transformations Tk-' , Wk-' may be attached 
to L-' and the remainder of the calculation of n" can pro- 
ceed. Looking to  the  future, we observe  that this  pro- 
cedure is admirably  suited to parallel processing  fa- 
cilities. 421 
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Conclusion 
Linear programming inversion routines have now 
reached a very high level of sophistication  and efficiency, 
in terms of both speed  and  sparseness of the resulting 
inverse.  Although there is doubtless still some room for 
improvement it seems likely that  further  improvements 
in efficiency must be sought in other  areas.  The  attempt 
to maintain a sparse  inverse is one such area and our 
computational  results  give  considerable grounds  for op- 
timism. What is needed  now is full-scale  experimentation 
with some of the  methods reviewed here  on large prob- 
lems of 1000 and more constraints  to confirm and extend 
these results. 
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Postscript 
Since the work  described in this paper  was  completed, 
J .   J .  H. Forrest and the  author  have devised and imple- 
mented an improved  algorithm,  based on those of Bartels 
and Golub,  and Brayton et al. In principle  this  new al- 
gorithm could be regarded as carrying out  the first step 
of Method 11, i.e., the formation of the  upper  Hessenberg 
matrix H ,  and then applying a row transformation, as in 
Method I l l ,  to  reduce H back to  permuted triangular 
form by eliminating the  elements hkjG = /c , . . . , rn - 1 )  
without  row  interchanges. This  procedure  has  the  great 
advantage  that column transformations Tk-’ are not  ad- 
joined  to  the left of L-’ , but  instead  become  part of the 
product  form of the new upper triangular factor.  Hence 
the “partially  updated vector” uk of Method 111 is now 
updated only  by L” and  the row transformations  are 
produced once  per iteration. Since a  row  transformation 
can  introduce at most one new nonzero element to a 
vector, in contrast  to a column  transformation Tk-’ the 
rate of growth of nonzero  elements is drastically reduced. 

The new algorithm is fully described in Refs. 17 and 
19, together with computational  experience. The basic 
computational  restul is  that  the growth rate of new  non- 
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tent  90  percent,  rather  than  the 40 to 50 percent obtained 
with Method 111, and the overall  reduction in number of 
nonzeros by 60 to  70 percent rather than 20 to  30  percent 
on  average.  At  present we find that this  reduction  results 
in an improvement of about 40 percent in terms of the 
number of simplex  iterations per unit time. 

Some  experiments with Method I1  are  also given in 
Ref. 19, which indicate that  the Bartels  and Golub method 
also  gives  considerable improvement in sparsity terms 
over  the  standard  product  form  method, provided that 
the 1/0 problem  discussed in the third  section can be 
overcome. 

The new triangular  updating scheme given in Refs. 
17 and 19, combined with the extremely efficient new 
inversion technique recently advocated by  Hellerman 
and  Rarick [ 181, have greatly  increased the power of the 
simplex  method. 
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