J. A. Tomlin

Maintaining a Sparse Inverse in the Simplex Method

Abstract: Improved methods are discussed for handling sparse matrices in practical linear programming. An analytical comparison is
made of four methods for updating the inverse in the iterations following a reinversion. Of these, one technique using the elimination
form of inverse is selected for some computational experiments and its advantages in terms of speed and sparseness demonstrated.

Introduction
Sparse matrix methods have been important in practical
linear programming from the very earliest implementa-
tions of the revised simplex method. These methods have
become even more important as the size of problems
presented for solution has continued to grow until, at
present, linear programs with a few thousand constraints
are quite commonplace. Fortunately, and not sur-
prisingly, the densities of the constraint matrices decline
with the increase in dimension, thus keeping within
manageable proportions the amount of data storage and
arithmetic.

Techniques for handling sparse matrices are important
in two major areas in linear programming:

1. Storage and retrieval of the problem data. There are
several techniques for storing sparse matrices in use
at present [1], [2].

2. Maintaining and applying the basis inverse or sub-
stitute inverse.

This paper is concerned with the second area. Readers
will be assumed to be familiar with the simplex method
using the product form of inverse [3] and the Gaussian
elimination for solving systems of equations [4].

In recent years it has been realized that the sparsity of
the inverse representation produced by the linear pro-
gramming inversion routine can be drastically improved

JULy 1972

by using the Gaussian or “elimination” form of inverse
(E.F.1.) rather than using the Gauss-Jordan or product
form of inverse (P.F.1.). This scheme was first advocated
by Markowitz [5] and subsequently, for the special case
of staircase matrices, by Dantzig [6]. Later still Dantzig,
Harvey, McKnight and Smith [7] experimentally demon-
strated the superiority of the E.F.I1. over the P.F.I. for a
number of linear programming problems and Brayton,
Gustavson and Willoughby [8] were able to prove this
superiority for general sparse matrices.

The elimination form of inverse is now known to be
implemented in at least two commerical linear pro-
gramming codes; Standard Oil’s M5 code [7] and
Scientific Control Systems’ UMPIRE code (see Beale
[9]). Other codes are in the course of being modified and
may have been already altered. Some aspects of the P.F.I.
and E.F.I. inversion techniques will be examined in the
next section.

The success of the Gaussian or elimination form of
inverse naturally leads one to ask whether the resulting
triangular factors can be used to advantage in updating
the inverse in the iterations following a reinversion. The
answer would certainly appear to be yes. Dantzig [6]
advocated updating the triangular factors of the basis for
his staircase algorithm, since this preserves the staircase
form of the factors. It seems extremely likely that in this

415

SPARSE INVERSE IN SIMPLEX METHOD

416

J. A, TOMLIN

special case updating the factors, rather than using the
ordinary product form of updating, would lead to in-
creased efficiency. Bennett and Green [10] pursued this
technique for general sparse matrices and Bartels [11]
and Bartels and Golub [12] have advocated a form of
Dantzig’s method on the grounds of numerical stability
without, however, commenting on the sparsity implica-
tions. Brayton et al. [8] have proposed two other up-
dating techniques, although their concern is not pri-
marily with efficiency in terms of the simplex method.

The three new proposals will be reviewed and com-
pared in the third section together with their implica-
tions for the simplex method. One of these methods is
then selected for some computational experiments and
results are given. A discussion follows subsequently on
how this method might be incorporated efficiently into a
production code.

Product and elimination forms of inverse

e PF.I

A popular method of carrying out reinversion [13] is to
order the rows (implicitly) and the columns (explicitly) of
B and then to partition as follows:

Al
B=|A4A B ,
D E A,

where A, and A, are lower triangular. The submatrix B is
sometimes referred to as the “bump” and those vectors
with elements in A, are ““above the bump”, those in A,
being “below the bump’’. It seems to be characteristic of
most linear programs that the submatrices A, and, par-
ticularly, A, are quite substantial portions of B.

The above partitioned form of B may be factorized
thus:

A, I I I
A 1 B I I
D I I

B =
E I A

2-
Since A, and A, are triangular, the calculation of the prod-
uct form of inverse is nontrivial only for the submatrix
B. Various “merit” schemes have been proposed for
selecting the order of pivots in B (see, e.g., Tewarson
[14]) but they will not be discussed here.

Using the notation of Ref. 8 we may then express B as
a product of elementary transformations
B=1T,---T

l k]
or equivalently
B—\ — T[fl . Tz—lTl—l ,

where T, is of the form assuming B is m X m,

—l
~
1

kk

= tmk 1
=1+ (t,—ee,,
where e, is the kth unit m vector, ¢’ its transpose, and

t,=T,_,

—t “tp -1
k T, T by

where b, is the kth column of B.

Note, however, that two transformations are made for
each column in the “bump”; hence the elements of the
T, for such columns are zero on the rows corresponding
to A, and in addition a second transformation is also
made, with a unit pivot and the kth column of E on the
rows of A,. Note also that Tk‘1 =]— tk,;l(tk —e, e,
and that it is essentially necessary to keep only the vector
t, tostore T,,and 7, and tkkf1 to store Tk_l. (See [8]).

o EF.I

The P.F.I. partitioning scheme may be used with only
a slight modification in the elimination form of inverse.
By rearranging the rows and columns of the submatrices
A, , E and D, we may repartition B to give [9]

A
B=|D A
A

2

o e

where A, is now upper triangular. This procedure ob-
viously facilitates factorization into triangular factors
by Gaussian elimination, since again only the factoriza-
tion of B is nontrivial.

Suppose B is now factorized into LU, where L is lower
and U is upper triangular. Let /, and u, be the kth columns
of L and U; then defining

L=1+(,—¢)e ;
U.=1+ (u,—e¢e/,
we may factorize
L=LL, L,
v=u,U,_ , - U,.
Hence

B ' = U;‘ R Um‘le*‘ NN

1

IBM J. RES. DEVELOP.

-

There is some latitude in the choice of values of diag-
onal elements of L and U. The most efficient choice
would appear to be setting u,, to 1 for k in partitions A,
B and [, to 1 in partition A, . If this is done the number
of transformations (disregarding unit transformations)
is exactly the same as for the P.F.I., since two transfor-
mations are calculated only for the columns in B.

The order of choice of pivot elements in B may be de-
cided here, as for the P.F.l., by merit schemes. These
are exhaustively discussed by Dantzig et al. [7].

Methods of updating inverse

In this section we briefly review, without rigorous proof,
and compare four methods of updating the inverse. All
except the first assume the elimination form of inverse
discussed in the previous section. With the exception of
Method I1 all are described at greater length by Brayton
et al. [8].

s Method I (3]
Method I is the standard procedure used in the product
form of the simplex method.

Suppose column b, of the basis is to be replaced by Ek .
Let B be the original basis (factorized in either E.F.1. or
P.F.I. form) and let B be the new basis.

7
Let r,, =B b,,

5— —1p5-1
then B'=T,, 'B ",
where T, =1+ (1, —eJe, .
Henceif B '=71," - -1,7'T,",
then B'=71, "' " -T".

Further changes are made by repeating the above pro-
cess.

s Method I1 [11]
This is Bartels’s version of Dantzig’s algorithm [6]. Sup-

pose we have B=LU, ie., B™'= U"L”f1 B Llfl,
and we again change b, to Ek . Then L™'B will be identical
to U except in column k. Permute columns k + |, -« -, m

one place to the left and place column & in position m to
give a Hessenberg matrix,

where Q is a permutation matrix.

JuLy 1972

The elements below the diagonal in columns & to m — 1
of H must now be eliminated by a set of elementary trans-
formations. An important feature of Bartels’ method is
that, in carrying out the elimination, rows may be inter-
changed or permuted to place the maximum of the ele-
ments h,, h, ,, on the diagonal (Wilkinson’s “partial
pivoting” strategy [15]) to ensure numerical stability.

The result is a new upper triangular matrix

U=gG, P -+ G,,P..GPH,

m—1" m-—1 k+1" k+1

where the P, are either unit matrices or the permutation
matrices exchanging rows [and I+ 1, and G, are the
elementary transformation matrices eliminating the ele-
ment below the diagonal in column /. Hence

B'=0U'G, P, - GPL".

Dantzig [6] and Bennett and Green [10] have shown
that the “‘near commutativity”” of the matrices &, may
be used to calculate a new lower triangular matrix L such
that

L'=G__P

m—-1" m—1 o GkPkLAl ’
thus maintaining a true triangular decomposition. This
is not, however, an essential feature of the method.

Of course the permutation matrices P,, O need not
appear explicitly. All that is necessary is to record the
order of pivoting. The process is repeated for the next
iteration using the new U and (implicitly) the new L.

~ Method 111 [8]
Neither this method nor the next maintain a true tri-
angular decomposition. However, both require initially
the elimination form of inverse.

Suppose we have B = LU or, equivalently,

371 = ljl_l T U1n71L11171 o L171
and again change column b, to b, and B to B.

The method proceeds as follows: Let
v,=L""b,.

Then L™'B is identical to U except for column & which
is now v, instead of u, .

To reduce L™'B back to upper triangular form the first
step carried out is to reduce row k to zero in columns
k+1,---,m.

417

SPARSE INVERSE IN SIMPLEX METHOD

418

J. A. TOMLIN

To accomplish this we form a row transformation us-
ing the row vector

wk’=(0"”’0’wk,k+1"” w,)

> Vkm
=0, --,0,u e, U

k1

The row transformation is then the elementary matrix
W,=1+ e,w,’ and the desired elimination is performed
by forming W, 'L™'B , since the columns k + 1, - -, m
of L™'B are identical to U, W,”'U = (I — ¢,w,/)U , and
w,” U is simply the row (0, - - -, 0, 4, .\ s iy,).
Furthermore the first & columns of W, are unit vectors
and hence the first k columns of L™'B are unchanged.

Now let £, = W,”'L™'b, and form the elementary col-
umn transformation

T,=1+ (t,—e)e, .

Then forming T,”'W,”'L™'B clearly reduces column k
to the unit vector ¢, and columns k + 1, - - -, m are un-
changed since they have a zero on the pivot row. The
result then is a new upper triangular matrix, say U w
obtained from U by replacing the kth row and column

by the unit vector ¢, ,
ie.,

k) _ o~y ~ly~1p
v¥=1"'w LB,
or
p-1__ k)—-1 -1 —1y-1
B =Uu™T'r,'w, 7L

Using product form notation, if we let U, denote the
elementary matrix U, with u,, set to zero we may rewrite
B™' as

-1 ky—1
U ¢

k-1 k+1

B'=U""--U
<L,

L. Um(lc)~1Tk—1Wk—1Lm—1 .)

Note that the row transformation W, can be repre-
sented, if desired, by a product of two-element elemen-
tary column transformations. Also note that, although
we have introduce two new transformations, if U was
previously in product form, U=U, - - - U,, the new
form U® is obtained simply by deleting U, and a single
element at most from each U, , - - - U, for a net gain
of one transformation in general, unless U, happens to
be the unit matrix.

To carry on the process, one simply treats Tk_lW,;1
L™ as the lower triangular factor as before, although in
fact if multiplied out the resulting matrix would not, in
general, be triangular.

* Method IV [8]
Method IV, which also assumes the elimination form of
inverse, proceeds by inserting matrices T, into the list

U, - U, and sometimes deleting a U, .

To change b, to [;k we form the vector

t,=U oL Um_leﬁl . Ll_lBk

k+1
and replace U, by the transformation
T.=1+ (t,—e.)e, .

Then
B'=U""--U
N

1

“lp i 1 U 'L

k-1 Tk k+1 T Vm by

Continuation of this process is rather more complicated

than in the preceding methods. Suppose now we have

changed b, to b, and wish to change b, to b,. There are

two cases:

1. If I<k, then let t,=U, "' - - U, 'T,”'U,, "

UL, LT, form Ty=1+ (1,— e))e/

and replace U, by T, as before.

2. IfI>kformey,=71"'U,, " -- UL~ - L™
b, and the transformation T, as above. However, U,
is not replaced and T,”' is placed directly before T,
in the inverse transformation list, i.e.,

I S

k+1 m m

B'=v"--vU, '17'T, U
“L7h.

1

Continuing further, if columns &, , - - -, k, have been
changed and column !/ is to be altered, let £ = min (&,
s k) and carry out the above procedure.

Having completed our summary of methods for up-
dating a basis inverse or substitute inverse, we must con-
sider their relative merits in the context of the simplex
method in terms of preserving sparsity, work required per
iteration, and storage and data handling considerations.

The great advantages of Method 1 are, of course, its
simplicity and the minimum of computational steps and
housekeeping involved. The essential steps in changing
the basis in the simplex method, given the constraints
Ax = b and the new column a; to enter the basis, are the
calculation of the updated column a=B'1a]. and the
ratio test with the updated right-hand side, 3= B 'b, to
find, assuming 8 = 0, the pivot row k& from
0 = min &

i (28

i
;>0

The vector o, which we cannot avoid calculating, is pre-
cisely the vector ¢, used in Method I to update the basis
inverse (and the right-hand side).

Methods II through 1V all suffer from the disadvantage
that they require not only the vector « for determining
the pivot row but also another vector ¢, , which is only a
partially updated form of a;. Methods II and III can
more or less overcome this disadvantage by putting the
vector Lflaj in temporary storage in the course of cal-

IBM J. RES. DEVELOP.

3

culating «, at the expense either of using more of the
computer’s core storage, thus effectively limiting the
number of vectors which can be saved for multiple pric-
ing, or of using backing store. This burden is, however,
comparatively light compared to the immediate and acute
difficulty encountered in Method 1V, where the vector
1, to be calculated for updating purposes cannot in general
be known until after the ratio test operation to determine
the pivot row. This implies that f, must be calculated
from scratch or obtained by backward transformations
on the vector «.

Now let us consider the implications of Methods 11 to
1V in terms of work per iteration expended in updating
the basis inverse and of the necessary data manipulation.
Current packing methods of storing sparse data, particu-
larly strings of transformations [1], [2] make it rather
difficult to modify an existing product form of L and U.
Replacement of U, by a T, with more nonzeros in Meth-
od IV, for example, necessitates either a wholesale shift-
ing of elements of U, maintenance of a second transfor-
mation file to be interwoven with the first, copying out a
complete new basis file, or initial and wasteful leaving
of space for such eventualities. A similar, in fact worse,
situation occurs in Method Il where on the average
half of the U, transformations must be modified at each
iteration, increasing the number of nonzeros to be stored.
Explicit storage of U can be an answer only for very small
problems. Some kind of two-file system, each taking the
new inverse in turn, would appear in general to be neces-
sary, involving a great deal of read/write activity. Method
IIT on the other hand requires only the elimination of
previously nonzero elements in U —a comparatively easy
task. This point will be returned to in the section ‘““‘Imple-
mentation of Method IT1.”

The amount of arithmetic work per iteration would
appear to be greatest in Methods II and 111. The bulk of
the work in Method 11 comes from applying the G, trans-
formations to H to reduce it to triangular form, On the
average we expect to have to deal with m/2 columns on
the right-hand side of the matrix. This is a considerable
amount of computation and becomes progressively worse
as U fills in with each iteration. For Method III the
main effort is in computing the row vector w,'. It will
be shown later that this calculation may be performed
concurrently with the backward-transformation phase
of the next simplex iteration. The most important point,
however, is that U becomes progressively less dense in
this method and the calculation progressively easier.
There is admittedly the extra complication in Method
ITI that row transformations are called for, but this is
more of an inconvenience than a problem and, as already
pointed out, could be circumvented.

Finally we consider the most important point — preser-
vation of sparsity. In their discussion Brayton et al. [8]

JuLy 1972

concluded that Method 111 was superior to Method IV
in this respect since both a row and column of U are
eliminated in exchange for a vector w,’, which only has
elements in positions k+ 1, - - -, m, and a transforma-
tion vector ¢, , which is the incoming column multiplied
only by L™'. On the other hand if in Method 1V some
columns with very small pivot row index & are introduced,
then virtually every change thereafter will be of type 2
and we cannot expect much improvement over the or-
dinary product form method.

In comparing Methods 11 and III it again seems almost
certain that Method III will win out. The number of new
elements added in the new transformations would appear
to be much the same, but as already mentioned in Method
11, U becomes more and more dense while in Method
11 the density of U declines. In this connection it should
be pointed out that the columns of U most frequently
operated upon are the right-most. These columns, how-
ever, are just those columns which will be initially the
most dense after inversion, since inversion schemes gen-
erally postpone operating on the most dense columns
until last.

In the light of these considerations it appears that
Method 111 is the most promising for incorporation into
the simplex method, both on the grounds of work per
updating iteration and preservation of sparsity. However,
there is certainly some increase in updating work per
iteration over the standard product form (Method I) and
a significant improvement in growth of nonzeros in the
basis representation is required to justify its use. Some
experimental results are presented in the next section.

Although we have chosen Method 111 as the best for
our purposes, this is not to say that the others may not
be superior in other circumstances. Bartels’s method
(II) is of considerable importance in achieving highly
accurate solutions to small, dense problems (see Bartels
and Golub [12]) while Dantzig’s original version [6] of
Method 1I for specially structured matrices is as yet un-
tried.

Computational results

Some computational experiments have been carried out
to determine whether Method III gives a sufficient im-
provement over Method I, in terms of growth of non-
zeros, to warrant further investigation.

To carry out these experiments two linear program-
ming codes were written and run on the IBM 360/67 at
Stanford Unijversity. Both are all-in-core FORTRAN codes
using the elimination form of inverse. Neither employs
multiple pricing. The first code updates the inverse in
standard product form fashion (Method 1); the second
is a modified version using Method 111 to update the in-
verse. No attempt has been made to evaluate timings,
dependent as they are on the machine used and the pro-

419

SPARSE INVERSE IN SIMPLEX METHOD

420

J. A. TOMLIN

Table 1 Problem statistics. (See text).

Problem number

1 2 3 4 5
Name SHARE 2B SHARE 1B BRANDY BANDM MAR
Rows 99 118 221 306 325
Columns
(structural) 79 225 249 472 452
% Density
(of structural
columns) 10.25 4.45 3.91 1.59 1.77

gramming technique. Only the number of nonzero ele-
ments in the inverse representation is considered.

Five problems ranging from small to moderate have
been used. These problems are two of the well-known
SHARE standard test problems, 2B and 1B [16] and
three other test problems supplied by J. Cord of IBM.
The relevant statistics on these problems are given in
Table 1.

Only the smallest problem was run to optimality, the
remainder being cut off after 200, 250, 300 and 350
iterations. To compare the two methods the set of prob-
lems was run on both codes with a fixed inversion fre-
quency: 40 iterations for the SHARE problems and 50
for the others. The initial comparison is arrived at by
counting, at intervals of 10 iterations, the number of new
nonzeros added to the inverse since the last reinversion.
To further remove constant factors only nonpivot ele-
ments are counted. (Both methods give a net addition of
one pivot element per iteration in general,) All problems
were started from a slack basis and hence the iterations
up to the first reinversion are ignored. The number of
new nonpivot nonzero elements after multiples of 10
iterations from reinversion is then averaged for the re-
mainder of the run. These figures are given in Table 2.

Table 2 Growth of new nonzeros in basis.

The raw data appear in more digestible form in Table
3, where Method I has been used as a base and the frac-
tion of new elements produced by Method III is given.
The improvement is obviously very satisfactory, with the
possible exception of problem 2. As might be expected
the improvement tails off as the number of iterations in-
creases, particularly for the smaller, denser problems.

To obtain a better estimate of the effect of Method 111
on the simplex algorithm we should also consider the
total number of nonpivot nonzeros in the inverse. To
this end we list the inversion statistics in Table 4 and
compute the fraction of total nonpivot nonzeros produced
by Method 111, again using Method I as a base. The in-
version statistics do not include the original all-slack
basis and are of some interest in themselves. The pivot-
choosing procedure in decomposing B (see the second
section) is essentially algorithm 7 in Dantzig et al. [7].

The modified data for Method III appear in Table 5.

Although the problems are comparatively small and
the sample is also small, the results in Table S are quite
encouraging. It appears that for reasonably sparse prob-
lems with 200 to 300 constraints a reduction of 20 to 30
percent in the number of nonzeros in the substitute in-
verse may be expected with Method 111, thus consider-
ably reducing the time spent in forward and backward
transformation in the simplex method. The results for
problem 4 show that the reduction may be dramatic.

Implementation of Method Il
The results of the preceding section suggest that further
experiments using a modified production or commercial
code would be worthwhile. It would also appear that the
modifications could be made and the extra updating work
per iteration accomplished at comparatively little cost.

The first essential is clearly to have a code that employs
the elimjnation form of inverse. Given such a code it
should be a simple matter to adjust the storage and buffer-
ing activities such that the kaka_' transforms can be
adjoined to the left of the product form L, ™' --- L™
of L7,

The reduction of the kth row and column of U to the
unit vector e, can probably be accomplished satisfac-

Problem 1 2 3 4 5

Method 1 111 1 111 I IT1 I 111 1 111

2 E 10 391 176 298 206 717 332 863 252 304 118
S$:2 20 891 492 638 497 1589 901 1866 693 628 354

§ 530 1112 847 993 830 2405 1545 2779 1238 1147 729
S § 40 1602 1515 1458 1272 3417 2342 3649 1882 1796 1135
~E 50 — — - - 4254 3062 4646 2642 2261 1441

IBM J. RES. DEVELOP.

torily by simply setting indicator bits. Usually we will
have U™' represented as U,~'U, ' - - - U, ™", or rather
the packed vectors «, corresponding to these elementary
matrices. The reduction may then be accomplished by
tagging qu with a bit to indicate that it is to be skipped.
Furthermore by using, say, the blocked index scheme
[1] for storing the vectors u,, the row index k , if it ap-
pears, may be tagged to indicate that the element is zero
for/=4k+ 1, - -, m. Failing this the 4,, elements could
be physically replaced by zeros if necessary.

This scheme is of course inefficient in the sense that
in an out-of-core system progressively more and more
valueless data must be buffered in and out of core. On
the other hand if the system is already compute-bound
rather than I/O-bound this is no restriction, and even if
this is not the case the very frequent reinversions carried
out for large problems should prevent this inefficiency
from reaching really noticeable proportions.

Finally let us consider the process of computing w,’ .
For simplicity let us assume we are carrying out the first
iteration after a reinversion. We then have
g'=vu," UL LT

1

Now the calculation of

w YU,

kk+1? T Hem

W= (0, ,0,u

and also the modification of U to U"™', may be carried
out in a single pass from left to right through the trans-

formations U, ™' - - - U, ™. To see this, note that in com-
puting, say,
O, -0,z .z U for { > k.

only the elements z,_, , - - -, z, play any part in the arith-
metic, since U and U, are upper triangular. The elements
%00 " * s 2, are unchanged. We therefore arrange the
computation of w,’ and the modification of U to U™
as follows.

* Initial step

Create a zero row vector and skip transformations U !
U, 7. TagU, ™" Leti=k+1.

s General step

For transformation U, , if u,, is nonzero, extract it and
add it in position [of the row vector, marking the ele-
ment as now being zero in U [1. Postmultiply the row
vector by U,”". Proceed for [=k+ 1, -, m.

A very advantageous result of this procedure is that
the updating of the inverse can be carried out concurrent-
ly with the backward transformation of the following
simplex iteration. In calculating the pricing vector for
the next iteration we must compute

kYy—1 -1 =1y -1
' =cU"'T WL

Jury 1972

Table 3 Fraction of new nonzeros produced by Method ITI.

Iterations Problem number

since

invert 1 2 3 4 5
10 0.45 0.69 0.46 0.34 0.39
20 0.55 0.78 0.57 0.37 0.56
30 0.76 0.84 0.64 0.45 0.63
40 0.95 0.87 0.69 0.53 0.63
50 — - 0.72 0.58 0.64

Table 4 Inversion statistics (averages).

Problem number

1 2 3 4 5

Original
basic 488 498 735 755 822
nonzeros

Nonpivot,
nonzero
transformation
elements

417 398 595 608 561

Number of

transformations 76 107 133 126 172

Table 5 Fraction of total nonzeros produced by Method III.

Iterations Problem number

since

invert 1 2 3 4 5
10 0.73 0.87 0.71 0.58 0.78
20 0.70 0.86 0.68 0.53 0.77
30 0.83 0.88 0.71 0.54 0.75
40 0.96 0.90 0.73 0.59 0.72
50 - — 0.76 0.62 0.71

for some row vector ¢’ . Now the first £ — 1 columns of
U™ are identical with those of U. The modification of the
remaining columns of U may be carried out in the same
pass through the transformation file as that for the calcu-
lation of 7' and furthermore only one unpacking of the
nonzeros from each u, is necessary. Having obtained
w,’ the new transformations 7,~' , W,~' may be attached
to L™" and the remainder of the calculation of #' can pro-
ceed. Looking to the future, we observe that this pro-
cedure is admirably suited to parallel processing fa-
cilities.

421

SPARSE INVERSE IN SIMPLEX METHOD

422

Conclusion

Linear programming inversion routines have now
reached a very high level of sophistication and efficiency,
in terms of both speed and sparseness of the resulting
inverse. Although there is doubtless still some room for
improvement it seems likely that further improvements
in efficiency must be sought in other areas. The attempt
to maintain a sparse inverse is one such area and our
computational results give considerable grounds for op-
timism. What is needed now is full-scale experimentation
with some of the methods reviewed here on large prob-
lems of 1000 and more constraints to confirm and extend
these results.

Acknowledgments

This research was carried out under an IBM Post-Doc-
toral Fellowship at Stanford University. The author
thanks IBM for their support. He is also greatly indebted
to G. B. Dantzig, G. H. Golub and S. Maier for many
helpful discussions, and to R. Harvey, A. Colville and
J. Cord for supplying data for the computational exper-
iments.

The work was partially supported by the office of Naval
Research, Contract N-00014-67-A0112-0011; the U.S.
Atomic Energy Commission, Contract AT[04-3]326
PA #18; and National Science Foundation Grant GP
9329,

This paper is based on Stanford Operations Research
Technical Report 70-15.

Postscript
Since the work described in this paper was completed,
J. J. H. Forrest and the author have devised and imple-
mented an improved algorithm, based on those of Bartels
and Golub, and Brayton et al. In principle this new al-
gorithm could be regarded as carrying out the first step
of Method 11, i.e., the formation of the upper Hessenberg
matrix H, and then applying a row transformation, as in
Method 111, to reduce H back to permuted triangular
form by eliminating the elements &, (j =k, - - -, m—1)
without row interchanges. This procedure has the great
advantage that column transformations T k_l are not ad-
joined to the left of L™', but instead become part of the
product form of the new upper triangular factor. Hence
the “‘partially updated vector” v, of Method Ill is now
updated only by L™ and the row transformations are
produced once per iteration. Since a row transformation
can introduce at most one new nonzero element to a
vector, in contrast to a column transformation 7, the
rate of growth of nonzero elements is drastically reduced.
The new algorithm is fully described in Refs. 17 and
19, together with computational experience. The basic
computational restul is that the growth rate of new non-
zeros in the transformation files is reduced by a consis-

J. A. TOMLIN

tent 90 percent, rather than the 40 to 50 percent obtained
with Method 111, and the overall reduction in number of
nonzeros by 60 to 70 percent rather than 20 to 30 percent
on average. At present we find that this reduction results
in an improvement of about 40 percent in terms of the
number of simplex iterations per unit time.

Some experiments with Method Il are also given in
Ref. 19, which indicate that the Bartels and Golub method
also gives considerable improvement in sparsity terms
over the standard product form method, provided that
the 1/O problem discussed in the third section can be
overcome.

The new triangular updating scheme given in Refs.
17 and 19, combined with the extremely efficient new
inversion technique recently advocated by Hellerman
and Rarick [18], have greatly increased the power of the
simplex method.

References

[. D. M. Smith, “Data Logistics for Matrix Inversion”, in
Sparse Matrix Proceedings, R. Willoughby, Ed., RA-1,
IBM Thomas J. Watson Research Center, Yorktown
Heights, N.Y., 1969, pp. 127-138.

2. J. de Buchet, “How to Take Into Account the Low Density
of Matrices to Design a Mathematical Programming Pack-
age —Relevant Effects on Optimization and Inversion Al-
gorithms,” Paper presented to the Oxford Symposium on
Sparse Systems of Linear Equations, April, 1970.

3. G. B. Dantzig, Linear Programming and Extensions,
Princeton University Press, Princeton, 1963.

4. G. Forsythe and C. B. Moler, Computer Solution of Linear
Algebraic Equations, Prentice-Hall, Englewood Cliffs,
N.J., 1967,

5. H. M. Markowitz, “The Elimination Form of Inverse and
its Application to Linear Programming”, Management Sci.
3, 255-269 (1957).

6. G. B. Dantzig, “Compact Basis Triangularization for the
Simplex Method,” in Recent Advances in Mathematical
Programming, R. L. Graves and P. Wolfe, Eds., McGraw-
Hill Book Co., Inc., New York, 1963, pp. 125-132.

7. G. B. Dantzig, R. P. Harvey, R. D. McKnight, and S. S.
Smith, “‘Sparse Matrix Techniques in Two Mathematical
Programming Codes,” in Sparse Matrix Proceedings (R.
Willoughby, Ed.), RA-1, IBM Thomas J. Watson Research
Center, Yorktown Heights, N.Y., 1969, pp. 85-99.

8. R. K. Brayton, F. G. Gustavson, and R. A. Willoughby,
“Some Results on Sparse Matrices”, Report RC-2332,
IBM Thomas J. Watson Research Center, Yorktown
Heights, N.Y., February 14, 1969.

9. E. M. L. Beale, “Sparseness in Linear Programming,”
Paper presented to the Oxford Symposium on Sparse Sys-
tems of Linear Equations, April, 1970.

10. J. M. Bennett and D. R. Green, “Updating the Inverse or
the Triangular Factors of a Modified Matrix,” Basser Com-
puting Department, University of Sydney, Technical Re-
port No. 42, April, 1966.

11. R. H. Bartels, “A Numerical Investigation of the Simplex
Method,” Computer Science Department, Stanford Uni-
versity, Technical Report No. CS-104, July 31, 1968.

12. R. H. Bartels and G. H. Golub, “The Simplex Method of
Linear Programming Using LU Decomposition,” Comm.
ACM, 12, 266-268, 275-278 (1969).

13. W. Orchard-Hays, Advanced Linear Programming Com-
puting Techniques, McGraw-Hill Book Co., Inc., New
York, 1968.

IBM J. RES. DEVELOP.

14.

15.

17.

R. P. Tewarson. “On the Product Form of Inverses of
Sparse Matrices”, SIAM Rev. 8, 336-342 (1966).

J. H. Wilkinson, Rounding Errors in Algebraic Processes,
Prentice-Hall, Englewood Cliffs, N.J., 1963.

. D. M. Smith and W. Orchard-Hays, ‘“Computational Effi-

ciency in Product Form LP Codes”, in Recent Advances in
Mathematical Programming, R. L. Graves and P, Wolfe,
Eds., McGraw-Hill Book Co., Inc., New York, 1963, pp.
211-218.

J. J. H. Forrest and J. A. Tomlin, “Updating Triangular
Factors of the Basis to Maintain Sparsity in the Product
Form Simplex Method,” paper presented to the NATO
Conference on Large Scale Mathematical Programming,
Elsinore, Denmark, July 1971, To appear in Mathematical
Programming.

JULY 1972

18. E. Hellerman and D. Rarick, “Reinversion with the Pre-
assigned Pivot Procedure”, Math. Prog. 1, 195-216
1971).

19. J. A. Tomlin, “Modifying Triangular Factors of the Basis
of the Simplex Method”, to appear in Sparse Matrices and
Their Application, Rose & Willoughby, Eds., Plenum Press,
New York, 1972.

Received November 23, 1971
The author is located at the Operations Research De-

partment, Stanford University, Stanford, California
94305.

423

SPARSE INVERSE IN SIMPLEX METHOD

