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Finding All Shortest Distances in a Directed Network

Abstract: A new method is given for finding all shortest distances in a directed network. The amount of work (in performing additions,
subtractions, and comparisons) is slightly more than half of that required in the best of previous methods.

Introduction

Let D= (d;;) be a real square matrix of order n with 0
diagonal. We shall think of each of the numbers d, ;as
respresenting the “‘length” of a link from vertex i to ver-
tex j in a directed network. While we do not assume that
all d;; are nonnegative, we do assume that, if ¢ is any
permutation of N= {1, -, n}, then Eidml = 0. This
is equivalent to the customary assumption that the sum
of the lengths around any cycle is nonnegative, an as-
sumption generally made in shortest-distance problems.

Our problem is to calculate all “‘shortest distances”
from i to j for all i # j. More formally, define a path P
from i to j as an ordered sequence of distinct vertices
i=i, i, +, i=j, and define its length L(P) by
L(P)= Ef;&dir‘irﬂ . Our problem is to calculate a square
matrix E= (eij) of order n such that €= min, L(P),
where P ranges over all paths from i/ to j.

To our knowledge, the most efficient method in the
literature is due to Floyd [1] and Warshall [2], who
showed that E can be calculated in »° additions and #°
comparisons. (Here and elsewhere we suppress terms
of lower order unless they are needed in the course of an
argument.) The purpose of this paper is to announce an
improved method.

e Theorem
If D is the matrix of link lengths, E the matrix of shortest
distances of a directed network on n vertices, and if
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e > 0 is given, then E can be calculated from D in
(2+e)n5/2 addition-subtractions and »° comparisons.

Proof
The proof of the theorem will consist in producing an al-
gorithm and showing that it has the stated properties.
Our algorithm borrows much from Shimbel [3], as well
as from [1] and [2], but has two special features which
we now outline briefly.

Let 4 be a p X g matrix, B a ¢ X r matrix, and define
AB=C= (Cij) to be the p X r matrix given by

¢;; = min, (a, + bk].) .

A straightforward approach to calculating C would re-
quire pgr additions and pr(g-— 1) comparisons. Our
method, discussed in the following section, requires
pr(g — 1) comparisons also, but fewer than (g — 1/2)
V2pr(p + r) + pr addition-subtractions.

The second special feature is that we suitably partition
the vertices of our network into subsets of proper size
and proceed to calculate E by a sequence of operations
of the form A o B and solutions of shortest-distance prob-
lems on the subsets. This part is a direct generalization
of [1] and [2] in which the subsets consist of exactly one
vertex. Hu [4] has also described a partitioning of D to
take advantage of sparseness and geography, which is a
different matter. Presumably our method could be modi-
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fied to take similar advantages, but we do not pursue
this point.

Pseudomultiplication of matrices

o Lemma

Let A and B be matrices of dimension p X ¢ and ¢ X r
respectively. Define (4 ° B),; = min,(a,, + b,;) . Then
A » B can be calculated in pr(g — 1) comparisons and
fewer than (g — 1/2) V2pr(p + r) + pr additions.

Proof
Define, for any collection M', M*, - - -, M" of matrices
of the same dimension,

M=min(M', - -, M) = (m;) =min(M,, - - -, M}).

ij?

Partition the columns of A into nonempty subsets S,
<+, 8§, of size 4, - - -, d, respectively. Partition the
rows of B conformally. LetA4,;,i=1, - - -, k,bethe sub-
matrix of A consisting of the columns in S, . Let B} be the
corresponding submatrix of rows of B . Clearly

A°B=min(4, B, ,A,°B]).

Calculate 4,2 B;,i=1,-- -, k as follows: Form all
p d{d,— 1)/2 differences a; =y, t=1,---p, j,
k €8,,j<k. Similarly, form all r d,(d,— 1)/2 differ-
encesbku—bju,u= l,---,5, j.ke€S,,j<k.Inor
der to find the (t,u)th entry of 4, B], we observe that
a4+ by, = ay + by, if and only if a;—a, = b, —b,,.
Since we have already calculated these differences, it is
clear that (d, — 1) comparisons will yield, for each (t,u),
the index /such that a,, + b, = min, . (a, + b,,) . Next,
for each (r.u), we calculate a, + b, . Thus we have
found A, B] in [(p+ r/2]d(d,— 1) subtractions, pr
additions and pr(d, — 1) comparisons.

It follows that A4 o B = min,{ (A4, B])} can be calcu-
lated in

[(p+r)2] 3 d ~ [(p+r)/2]g + prk ("
addition-subtractions (here we have used E d;=gq),and
pr<2 (d—1)+k— 1) = pr(g — 1) comparisons.

Let us study (1) further. Define m to be the smallest

integer not less than V2pr/p + r. Thus
m=\Q_2pry/(p+r)+0, 0=6<1. 2)

Writeg=am+b, 0=b=m—1.
Case 1. b=0.Choosek=a,d =---=d. =m.
Then (1) becomes

Lp+r)2)gm — [(p+r)2lg+ praglm, 3)

which is easily seen to be less than the number specified
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in the lemma. Here we use in our estimates V2pr(p + r)
=m=V2pr(ptr)+1,and p+r=2pr for positive
integers p and r.

Case 2. b#0.Setk=a+1,d - --=d,=m,
d,,,=b.Then

2d?=m2a+b2=mq+b2—mb5mq+I—M,

since 1 = b = m — 1. Using this estimate, V2pr(p + r)
=Em=V2pr/(p+r)+1,k=g/lm+1, we obtain the
estimate given in the statement of the lemma.

Finding all shortest distances (description and
validation of algorithm)

Let N be partitioned into nonempty subsets §, U - -
U §, of respective sizes d,, - - -, d,,. We shall proceed
to modify the matrix D by successive steps so that the
resulting matrix is E. In our description, the letter D
will always stand for the current step of the modification
of D. D[S ,T] will mean the submatrix of D formed by
rows in S, columns in T, D[S]=D[S.S]. &D[S]
stands for the shortest distance matrix computed from
the submatrix D[S]. S means the complement of §.
The expression D[S ,T] < F means that in D, D[S ,T]
gets replaced by F . All other entries of D are unchanged.

a) Leti= |
b) D[S,] < &DIS,]

) D[S,.8,] < DI[S,.5,] - D[S,]
D[S,.8,]1 < D[S,]DI[S,.S,]
) D[S,] < min {D[S,], D[S,.5,] > D[S,,5,1}
e) Increase i by 1. If i = k, stop . Otherwise ,
gotob.

After steps a) through e) are completed the first time,
d;; equals the shortest distance from i toj in which we are
restricted to paths in which all intermediate vertices, if
any, belong to §,. This holds for all /, j. Manifestly, after
we have completed a) through e) ! times, d,; equals the
shortest distance from i to j in which we are restricted
to paths where all intermediate vertices, if any, belong to
S, U---US,. Thus, by induction, the algorithm is
easily seen to be valid.

We now show inductively that the number of compari-
sons f(n) required by this algorithm is at most »*. Ex-
amination of a) through e) shows that

fln) = Ef(dl.) + 22 (n—d)d(d;— 1)
+> (n—d)(n—d)(d,— 1)
+> (n—d)(n—d,).

Assuming inductively that f(d;) = a’f, and using 2 d, =
n, we get f(n) = r*. Note that this does not depend on
the magnitudes (d,) .
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Count of addition-subtractions in the algorithm
If now we let f(n) be the number of addition-subtractions
required, we find from a) through e) that

fn) < S fd) +2 3 d, V2(n—dnd,
+23 n—=d)*+23 d(n—d) Vn—d,. 4

(Here we have suppressed the factor “—1/2” in the
lemma.) In order to get an estimate of how n grows, let
us tentatively assume n = a, d, = a™", k=ua. Then
we have

f(at) < af(atfl) 4 2(1{(1‘71 [2(at . atfl )athl]l/Z

t—1+at—1(at—at—1)3/z}
- szyef1 117"
ot L syl A
=af(a )+2a-a {a[2(1 a)a]
T A :
+—<1——) }+0(a”)
a a
=af(a"™")

4 2a(5/2>/z [V1— (1/a) \/(2/a) +1— (l/E)]
+0(d"). )

+ (@ —d" a

Setting f(a") = Aa®™", we find
Aa(S/Z)t E 1/ (a:%/il) Aa(.’)/zn
+2[V1 = (1/a) V(2la) + 1 — (1/a)]a™"™"
4= 2V1— (1/a) \/(Z/a)‘ +1— (1/a)
1—1/(d")
where €(a) > 0 as a — .
But in order to establish this rigorously, we must pro-
ceed more carefully, without assuming that n = a'. Be-

cause the details are tedious, we shall confine ourselves
to an outline of the algorithm and proof.

=2+ €(a),
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First, an integer a is chosen. If n < «a, the problem
is solved by the method of [1] and [2]. If n = a,
write n=am+b, 0=hb<a. Then n=b(m+1)
+(@—bym. Let d,,---,dy=m+1, d, = =
d,= m . Partition n into subsets of size d,, - - -, d, and
apply the algorithm given in this section. To prove that
f(n), the number of additions required, is at most A’ +
terms of lower order in n , the strategy is to assume induc-
tively that f(n) =A™ + P(a)n®, where P is a certain
polynomial in a. Then using (4), replace m by m + 1
throughout. One finds that an auspicious choice of P(a)
makes f(n) = fla(m + 1)] = A(am)™”* + P(a)(am)® < An™”
+ P(a)n”. This choice of P(a) also makes the formula
valid if # = a and completes the proof.
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