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Finding All Shortest  Distances in a Directed Network 

Abstract: A new  method  is  given  for finding all shortest  distances in a directed  network.  The amount of work (in performing  additions, 
subtractions, and  comparisons)  is  slightly more than half of that required in the  best of previous  methods. 

Introduction 
Let D = ( d i j )  be  a real square matrix of order n with 0 
diagonal. We shall think of each of the  numbers di j  as 
respresenting the ‘‘length’’ of a link from  vertex i to ver- 
tex j in a directed network.  While we  do not assume  that 
all dij are nonnegative, we do  assume  that, if (T is any 
permutation of N = { 1 , . . . , n }  , then Cidir i l  2 0 . This 
is equivalent to  the  customary assumption that  the sum 
of the lengths around any  cycle is nonnegative, an  as- 
sumption  generally  made in shortest-distance problems. 

Our problem is to calculate all “shortest  distances” 
from i to j for all i # j . More formally, define a path P 
from i to j as  an  ordered  sequence of distinct vertices 
i = +, , + ,  . . . , i, = j ,  and define its length L ( P )  by 
L ( P )  = ~ ~ ~ ~ d i r , t r + l  . Our problem is to calculate  a square 
matrix E = ( e i j )  of order n such  that e i j  = min,L(P) , 
where P ranges over all paths  from i to j .  

To our knowledge, the most efficient method in the 
literature is due  to  Floyd [ 11 and  Warshall [2], who 
showed  that E can  be  calculated in na additions and n3 
comparisons. (Here and elsewhere we suppress  terms 
of lower order unless  they are needed in the  course of an 
argument.) The  purpose of this paper is to  announce an 
improved  method. 

. .  

Theorem 
If D is the matrix of link lengths, E the matrix of shortest 

41 2 distances of a directed  network  on n vertices, and if 

E > 0 is given,  then E can be calculated from D in 
(2 + ~ ) n ~ ’ ~  addition-subtractions and n3 comparisons. 

Prooj 
The proof of the  theorem will consist in producing an al- 
gorithm  and  showing that it has  the  stated  properties. 
Our algorithm borrows much from Shimbel [3], as well 
as  from [ 1 ] and [ 21, but has  two special features which 
we now outline briefly. 

Let A be  a p x q matrix, B a q X r matrix,  and define 
A 0 B = C = ( c i j )  to be the p X r matrix  given by 

ci j  = mink (ai, + b k j )  . 
A straightforward approach  to calculating C would re- 
quire pqr  additions and pr (q  - 1 )  comparisons. Our 
method, discussed in the following section, requires 
p r ( 4  - 1 )  comparisons  also, but  fewer than ( q  - 1/2)  
f l p r ( p  + r )  + p r  addition-subtractions. 

The second  special feature is that  we suitably  partition 
the  vertices of our  network  into  subsets of proper size 
and  proceed  to calculate E by a sequence of operations 
of the form A 0 B and solutions of shortest-distance prob- 
lems on  the  subsets.  This  part is a direct generalization 
of [ 1 ] and [2] in which the  subsets  consist of exactly one 
vertex. Hu [4] has  also described  a  partitioning of D to 
take  advantage of sparseness and  geography,  which is a 
different  matter. Presumably  our method  could be modi- 
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fied to  take similar advantages, but we do not pursue 
this  point. 

Pseudomultiplication of matrices 

Lemma 
Let A and B be  matrices of dimension p X q and 4 X r 
respectively.  Define ( A  0 B )  i j  = min,(a, + b k j )  . Then 
A 0 B can be  calculated in p r ( q  - 1 ) comparisons and 
fewer than ( q  - 1 / 2 )  \'2pr(p + r )  + pr additions. 

Prooj' 
Define, for any collection M' , M Z  , . . . , M k  of matrices 
of the  same dimension, 

M = min(M' ,  . . . , M,) = (m,) = min(M*\, . . . , M:).  

Partition the columns of A into  nonempty  subsets SI , 
. . . , S, of size dl , . . . , d, respectively.  Partition the 
rows of B conformally. Let A i  , i = 1 , . . . , k , be  the sub- 
matrix of A consisting of the columns in s,. Let Bi be  the 
corresponding submatrix of rows of B . Clearly 

A OB=min(A, o B ; ; . . , A , o B ; ) .  

Calculate A i  0 BI , i = 1 , . . . , k as  follows: Form all 
P di(di - 1)/2 differences atj  - a,,, t = I , . . . , p ,  j ,  
k E S i ,  j < k . Similarly,  form all r d i (d i  - 1 ) / 2  differ- 
ences b,, - bj, , N = 1 , . . . , s ,  j ,  k € S i ,  j < k .  In  or- 
der  to find the  (t,u)th entry of Ai  0 Bl! , we observe  that 
r r t j  + bjl, 5 u t ,  + b,,, if and only if ar j  - ntk 5 b,,, - bj,, . 
Since we have  already  calculated these  differences, it is 
clear  that (d t  - 1) comparisons will yield, for each ( t , ~ ) ,  
the index l such  that ut, + b,, = mink,,yi (a,, + bku) . Next, 
for  each ( t  , u )  , we calculate a,, + b,, . Thus  we  have 
found A i  0 Bi in [ ( p  + r ) /2 ]d i (d i  - 1) subtractions, p r  
additions  and pr (di - 1 ) comparisons. 

It follows that A 0 B = mini{ ( A i  0 B ; ) }  can be calcu- 
lated in 

[ ( P  + r ) / 2 1  d: - [ ( P  + r ) / 2 l q  + prk ( 1 )  

addition-subtractions  (here we have used d, = q)  , and 

p r ( x  (d, - 1 ) + k - 1 = p r ( q  - 1 ) comparisons. 

integer  not  less than d 2 p r / p  + r . Thus 

m = \ m m + 8 ,  0 5 8 < 1 .  ( 2 )  

W r i t e q = t r m + b ,  O Z b 5 m - 1 .  

Then ( 1 )  becomes 

[ ( P  + r ) / 2 l q m  - [ ( P  + r ) / 2 l q  + pr d m ,  ( 3 )  

which is easily seen  to be  less than  the  number specified 

1 
Let us study ( 1 )  further. Define m to be the smallest 

C u e  I. b = O . C h o o s e k = a , d , = . . . = d , = m .  
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in the lemma. Here we use in our  estimates d 2 p r ( p  + r )  
5 m 5 d 2 p r ( p  + r ) .  + 1 , and p + r 5 2pr for positive 
integers p and r. 

Case 2. b # O .  Set k = u + l ,  d ; . . = d , = m ,  
d,,, = b . Then 

~ d ~ = m ' a + b 2 = m q + b 2 - m b 5 m q + 1 - m m ,  . 

since 1 5 b 5 m - 1 . Using  this estimate, d 2 p r ( p  + r )  
5 m 5 d 2 p r /  ( p  + r )  + 1 , k 5 q/m + 1 , we obtain the 
estimate given in the  statement of the lemma. 

Finding all shortest distances (description and 
validation of algorithm) 
Let N be partitioned  into  nonempty subsets S ,  U . . . 
U S, of respective sizes dl , . . . , d, . We shall proceed 
to modify the matrix D by successive  steps so that  the 
resulting  matrix is E .  In  our  description,  the  letter D 
will always stand  for  the  current  step of the modification 
of D . D [ S  ,T ]  will mean the  submatrix of D formed by 
rows in S , columns in T , D [SI = D [ S  ,SI . S D [ S ]  
stands  for  the  shortest  distance matrix computed from 
the submatrix D [ S ]  . s means the complement of S. 
The  expression D [ S  ,TI + F means that in D ,  D [ S  ,TI 
gets replaced by F . All other  entries of D are unchanged. 

a) L e t i =  1 

b) D [ S i ]  + z?D [ S i ]  

c) D [si ,Si ]  +- D [si ,Si]  0 D [Si] 

4 D [ s i ]  +- min {D[s i ]  , D [ s i  ,Si] 0 D [ S ,  ,si]} 
D [ S i  ,si] +- D [Si] 0 D [Si ,si] 

e)  Increase i by 1 . If i = k , stop.  Otherwise, 
go  to b . 

After  steps a) through e) are completed the first time, 
di j  equals the  shortest  distance  from i to j in which we  are 
restricted  to  paths in which all intermediate vertices, if 
any, belong to S,. This holds for all i , j . Manifestly, after 
we have completed a) through e) l times, dij equals the 
shortest  distance  from i t o j  in which we  are restricted 
to paths where all intermediate  vertices, if any, belong to 
SI U . . . U S,. Thus, by induction, the algorithm is 
easily seen  to  be valid. 

We now show inductively that  the  number of compari- 
sons f ( n )  required by this algorithm is at most n 3 .  Ex- 
amination of a) through e)  shows  that 

f ( n )  = C f ( d , )  + 2 2  ( n  - d,)d,(d, - 1 )  

+ x ( n  - d,) ( n  - d i )  (di - 1 )  

+ ( n  - d i )  ( n  - d i )  . 

Assuming  inductively that f ( d i )  5 4, and using 2 di = 

n , we get f(n) 5 n 3 .  Note  that this does not depend  on 
the magnitudes ( d i )  . 41 3 
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Count of addition-subtractions in the algorithm 
If now we  letf'(n)  be  the number of addition-subtractions 
required,  we find from a) through e) that 

f ( n )  < C f ( d i )  + 2 di d 2 ( n  - d,)nd, 

+ 2 ( n  - d j ) 2  + 2 d, (n  - d,)  *--it. (4) 

(Here  we  have  suppressed  the  factor "-1/2" in the 
lemma.) In order  to  get  an  estimate of how n grows, let 
us tentatively assume n = a ' ,  d, = a'- ' ,  k = a .  Then 
we  have 

f ( a ' )  5 af(a")  + 2a{a"[2(a' - a f - l ) a " - y  

+ ( a t  - a'-l)a'-l + & I  - a t - 1 ) 3 / 2 )  

= af ( a'") 
+ 2a'S/"/' ~ [f- ( l / a )  V ( 2 / a )  + 1 - ( l / u ) ]  

+ O ( a 2 ' )  . ( 5 )  

~ 

Settingf(a') = Au'"'' , we find 
Aa(5/2It Aa(S/2il 

+ 2[V1 - ( I / ~ )  ~ + - l - - ( l l u j ~ ~ ' ~ / ' ) '  

2 f i T a 7  d ( 2 / a )  + 1 - ( l / a )  
1 - l/(a"'Z) 

A 5  = 2 + € ( a )  ~ 

where €(a)  + 0 as a + m .  

But in order  to establish  this  rigorously, we must pro- 
ceed more  carefully,  without  assuming that n = a ' .  Be- 
cause  the details are  tedious, we shall confine ourselves 
to an outline of the algorithm and proof. 

First, an integer a is chosen. If n < a ,  the problem 
is solved by the method of [ I  ] and [ 2 ] .  If n 1 a ,  
write n = a m + b ,  O S b < u .  Then n = b ( r n + l )  
+ ( a - b ) r n .  Let d , ; . . , d , = m + l ,  d b + l = . . . =  
d, = m . Partition n into subsets of size dl , ' ' . , d,L and 
apply the algorithm given in this  section. To  prove  that 
f ( n )  , the number of additions required, is at most An"' + 
terms of lower order in n , the  strategy is to  assume induc- 
tively that f ( n )  = + P(a)n' ,  where P is a certain 
polynomial in a .  Then using (4), replace m by rn + 1 
throughout. One finds that an auspicious  choice of P(a)  
makesf(n) 5 f [ a ( r n  + l ) ]  5 A(arn)"'+ P(a)(arn)' S An312 
+ P(a)n" This choice of P(a)  also  makes the  formula 
valid if n 5 a and  completes  the proof. 
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