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On the Convergence of Gradient  Methods  under 
Constraint 

Abstract: The mathematical programming problem discussed is the  convergence of a certain popular type of gradient procedure  for 
maximizing a function  under  inequality constraints. An  example shows  that  convergence  to a  solution  need  not  always occur, and  a  theo- 
rem shows  that  under certain circumstances  the gradient  method does converge. 

Introduction 
A natural  extension of Cauchy's  method of steepest de- 
scent,  presented in the  next  section,  has often  been  used 
to  solve  the mathematical programming problem, 

Maximizef(x, , . . . , x m )  subject to: xj 1 0 ,  

j = l ; . . , r n .  (1) 

See,  for example,  Refs. 1 and 2, which describe a  pro- 
cedure  for reducing the general  problem of maximizing 
a  function  under  linear  inequalities to a  problem of the 
above  form and solving that, which has  worked  very 
well in practice.  Because of the simplicity of the  exten- 
sion, we long thought  that  convergence  to a solution of 
the problem would be easy to  prove under mild restric- 
tions on the  function$  This presumption  turned out  to 
be false: we eventually constructed  an example of the 
form ( l ) ,  given here in the third section, showing the 
method to  have a real flaw, Le., it could yield an infinite 
sequence of points  converging to a  point having nothing 
to  do with the solution of the problem. 

Others  also  have been misled by the plausibility of the 
method,  and  an  erroneous proof of its  effectiveness has 
been  published [3]. As far as we know, only Zoutendijk 
anticipated the real difficulty, and he  presented  devices 
for circumventing  it, as  discussed  here in the  section on 
the  counterexample. We find most of these  devices un- 
appealing, however,  and  further  have  not been able  to 
construct a troublesome  example  for  whichfhas bounded 
second derivatives,  for  the  reasons indicated  in the  fourth 
section. We  can thus hope that  the  procedure will be 

effective for problems  in whichf'has suitable smoothness 
properties. As a first step in this  direction, we then  show 
that  iffis  quadratic,  the difficulty cannot arise. This  bare 
fact  has  no computational interest  because  there  are 
much better ways of solving quadratic  problems;  but 
often in gradient procedures  the  convergence  properties 
of the  quadratic  case can  be shown  to hold for  the  case of 
bounded second derivatives. Unfortunately we have  not 
been able  to  do  that,  for, as demonstrated in the  last sec- 
tion, the proof used for  the  quadratic  case  does not ex- 
tend even to  cubic functions. Thus,  there remains a large 
gap in our knowledge of the behavior of the  steepest de- 
scent method for  constrained problems. 

Steepest ascent with nonnegative  variables 
Cauchy's  procedure  for  the unconstrained  maximization 

as follows: Letting gn  = vf'(x") = [df'(x)/dx, , . . . , 
df'(x)/dx,] , the point .xn+' is chosen to maximizef' along 
the ray {x" + tg" ; t 2 0 ) .  The extension below is the 
most  natural we can think of when the  constraints  have 
the  form x 1 0: Given X" 1 0 ,  we first modify the com- 
ponents of the direction g" so that  the  ray xn + tg" does 
not immediately leave  the  constraint  set, and  then choose 
X"'' to maximize J' on  that  part of the  ray satisfying the 
constraints.  We define 

of f(x) =f'(x, , ' . . , xm) generates  the  sequence {x"} 

0 if xj = 0 and df'(x)/dxj 5 0 

1 otherwise. 
S j ( X )  f 
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I the problem. See  for  example Ref. 2 ,  Sect. 5. The exam- 
ple of the  next section shows  that  the desired  analogue 
does  not hold. 

J 

Figure 1 Convergence to a nonstationary point. 

Thus Sj(x) = 0 precisely  when  motion in the direction 
of the gradient would cause xj to  become negative. 

Beginning with x' 1 0 , the  sequence x' , x2 , . ' . is ob- 
tained in this  way: 

Given X", define the vector g" by 

gJ: = Sj(X") df(X)/dXj. (3) 

L" = sup { t  : X" + tg" 1 0) , (4) 

Let 

t ,  be that value of t which maximizes f(x" + rg") for 

0 5 t 5 L , ,  ( 5 )  

Axn = t,g" and X"" = x" + Ax". (6) 

In the  absence of constraints we would set aj(x) = 1 , 
hence g" = V f ( x " )  and Ln = +m, reducing the  step  to 
Cauchy's. 

We do not seem  to  get any results without  assuming 
that Of is continuous, which is done henceforth. Curry 
[4]  has  shown  that, in the  absence of constraints,  any 
point of accumulation X of the  sequence {x"} is a  station- 
ary point off;  that is, that V f ( X )  = 0 .  (Curry actually de- 
fines t ,  as  the smallest  value of t for which f(x" + tg") 
has a stationary point, but his theorem holds  equally 
well when definition (5) is used.) In this constrained  case 
we call X a stationary point  when 

Sj(X) (df (X) /dXj)  E= 0 for all j , 

for precisely  then do we have  the  necessary first-ord'er 
conditions that X maximize f :  

V f ( X )  . Ax 5 0 for all Ax such  that X + Ax 1 0 .  

In  order  that  some analogue of Curry's result will be 
valid in our  case, we must  at  least  know this: If xn + X 
as n + E ,  then X is a stationary point. Given  that, and 
some global information about f ,  such  as its concavity, 

408 we could then  show  convergence  to a global solution of 
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Counterexample 3 

Let f(x , y , z )  = -+(X' - xy + y2)" + z . Letting s = X' - 
x y  + y 2  we have 

V f ( x ,  y ,  2 )  = [-.74(2x - y )  , -s "-x + 2y) , 11 , -- 

and since s behaves like i2 = x 2  + 9 ($i2 5 s 5 IV'), V f  
is continuous  everywhere, but the second  derivatives 
are  not bounded in the neighborhood of x ,  y = 0 .  The 
function ,f is concave.  Figure 1 sketches  the level lines 
off  on  the z = 0 plane and  shows a few steps of the pro- 
cedure, starting from a  point (0 , a , z) such  that a 5 2-$. 
As  we show  below, each  step  from  one of the  faces x = 0 
or y = 0 terminates  on  the  other  face;  the  successive 
gradient directions  tend toward  that of the z-axis,  but 
the  steps  taken  shorten so quickly that  the  sequence of 
points tends  to a limit point (0 , 0 , 2 )  , which is not  a  con- 
strained  stationary point since  the gradient there is 

Let g" denote  the gradient at x' = (0 , a , z )  ; go = [ a i ,  
- 2 d ,  1 ] . The ray xo + tgo pierces the  other  face  for 
f = iaf in the point x' = (if, 0 , z + +ai) , where  the gra- 
dient is gl = [-(2a)i ,  ( i a ) z ,  11 . Since  the  rate of change 
of f along the  ray at x' is positively proportional to 
g" . g' = 1 - 2(2a)3 the point x' will indeed  be chosen by 
the procedure. (Since f is concave, its rate of change is 
monotone nonincreasing.)  We see  that 

X' = [0 , + a ,  b + $ai + +(+a)*] , 

[ O ,  0 ,  11. 

= [Qu , 0 , b + +a* + +($a)$ + $ (+a)$] 

Z = z + f Z  (2 - Ja )+=z+  (1  +f24)af .  

and so forth, so that X" + (0 , 0 , i), where 
cc 

j = o  

The  example is not  particularly "delicate." The ex- 
ponent in the definition of the function might be any 
number  between 4 and 1, and some  freedom in the choice 
of the function exponentiated is possible. As we shall 
see in the  next  section,  however, it is not possible to make 
an  example of this  form having bounded second deriva- 
tives. 

Zoutendijk  conjectured the  existence of the behavior 
exhibited by this example, calling it "zigzagging" in his 
study of a  variety of procedures  for nonlinear program- 
ming problems [5].  The simplest one  for  the  present 
method (AZ1 of Zoutendijk)  consists in altering defini- 
tion (2) to 

0 if xj 5 S and 8f(x)/dxj < 0 ,  

1 otherwise, 
Sj(X)  = 
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and using this new Sj in definition (3) of g" . We  can  then 
show  that if X" -+ X we have Sj(i)dj(x)/dxj = 0 for al l  j .  
The price paid for  thus weakening the notion of stationary 
point to obtain  satisfactory  convergence properties is 
this  weakening of the first-order  conditions that X maxi- 
mize f ;  we can only assert that Vf(x) . Ax 5 0 for all Ax 
such  that Xj + Axj 1 S for all j .  Actually, for practical 
computation  this seems  to be  a  completely satisfactory 
result, especially since some such modification of the 
definition of Sj would in any case  have  to be made to avoid 
ambiguities  that are  due  to round-off error. 

An interesting alternative  not requiring the  above 
weakening  has  been proposed by McCormick [6], who 
uses  the modification he calls "bending": the  ray (x" + 
tg" : t 1 0) of the ordinary  method is replaced by the 
segment  chain defined by 

x ; ( r )  = Max[O, xj" + rdf(x")/dx,] for  each j , 

and x"+' is given as xn( t*) ,  where t* maximizes j [ x " ( t ) ]  
for t 1 0 .  This appealing  idea  yields, for  our  example, 
a sequence of two-segment  chains: the first segment  from 
(0 ,  a ,  h) to ( ;a,  0 ,  b + fa;) as above, and the  second 
segment  from that point to (Sa, 0 ,  h + iuf + $u-$), which 
is thus  the  successor of (0 ,  u , b)  . The  next point in the 
sequence evidently has  the  form (0 ,  a ,  h + . . .) again, 
and  the  sequence moves out  to infinity taking steps of 
two different  sizes. That is not  a  happy outcome  for an 
algorithm, of course,  but nothing better  can be expected 
of one so closely connected with steepest  descent. 

Consequences of convergence 
The convergence of the series Etn in the example of the 
previous  section  plays an  important  part in a convergent 
descent  process, as the lemma  indicates. 

Lemmu 
Let  the  operator H be  bounded at  zero;  that is, IH(x)I 5 
K 1x1 for all sufficiently small x ,  and let the recursion 

x - X" + t ,H(x") be such  that X" + 0 and 2 It,, < m . 
Then  for  some N , xS = = . . . = O .  

Prooj 
M,, = Max ( 1 . ~ ~ 1  : k 3 n )  exists for all n and is monotone 
nonincreasing. Since x' - x" - 2::; AX', x" = -xk3, 
Ax' for all n , and 

b n l  5 b ' l  5 K C .  I t k l  /x lC/  5 K M J  It,I 

n + 1  - 

' 2 T 1  k271 k>n 

5 K M , Z  I t k l  for n 1 N ,  
k z v  

so that 

M , v  5 K v K 2  It,l . 
k2.V 
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Taking N so large that KCka,V It,l < 1 , the conclusion 
follows. 

(If X" is a sequence of numbers and H (x") = - x" , then 
x - (1  - t , ) x n ,  and the lemma is just  the theorem that, 
if Etll is absolutely convergent, then the  sequence of 
products nkan ( I  - t n )  has  the limit zero only if some 
member  vanishes.) 

The lemma shows  that  trouble with second deriva- 
tives was an essential feature of the  example of the pre- 
vious section, whose functionf had the "separated"  form 
h ( x  , y) + v ( z )  . If the  second derivatives of h were 
bounded and Etn converged, the lemma would apply to 
the x ,  y steps  alone, which would have  to  terminate. A 
nonterminating  example for which f has  bounded  second 
derivatives cannot  therefore  have a "separated" form, 
which may explain why we have not  been able  to find 
such  an example. 

From now on we assume  that  the  sequence X" is given 
by the  procedure (3) to (6) and  converges  to X ,  stationary 
or  not, but does not  terminate. 

n + l  - 

For  each  componentj  there  are  three possibilities: 

1 )  xj" = 0 for all sufficiently large n , 
2) xj" = 0 for infinitely many n and xj" > 0 for infinitely 

3 )  xj" > O for all sufficiently large n . 
many n , 

Supposing the  process  to  have begun sufficiently far 
out,  the variables of type 1) may be discarded. 

For  those of type 2 ) ,  evidently ij = 0 , Axj" = t,Sj(x") 
df(x")/dxj, and the partial  derivative is never eventually 
constant in sign. For  those of type 3) it is always true  that 
Sj(x") = 1 and Axj" = t ,  df(x")/dxj. Let us call the var- 
iables of type 2) y , and  write zj" = xj" - Xj for all those of 
type 3). Substituting for  the  appropriate  components of x ,  
the recursion may then  be  written 

Ay" = TnF (y" , z " )  
Az" = t,G (4." , z " )  , (8) 

where T n  is a diagonal matrix  formed  from t,Sj(x") for 
appropriate j ,  and F and G are  vector  functions giving 
the  appropriate partial derivatives o f f .  We have  the fol- 
lowing information about  these  equations: 

Each  component of F is infinitely often  positive and 
negative, 

y " , z " + O a s n + m ,  

y" 1 0 ,  y" # o for infinitely many n . 

Since F is continuous, F ( 0 ,   0 )  = 0 ,  and that part 
gives no trouble about  stationary points.  Stationarity 
fails just when Gj(O, 0) > 0 ,  or  Gj(O, 0 )  ZC 0 while 
xj > 0 .  409 
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In any case if, say Gj ( 0 ,   0 )  = pj # 0 ,  then  choosing 
K so that lpj - G j ( y k ,  z k )  I < &lpj  for all k 1 K , we have 
for n 1 K 

tkGj(Yh-,  z k )  1 +pj t , ,  
n-I n-I  

~ k=K 

so that Et, is convergent. Thus if X is not  a stationary 
point,  then  converges. 

Quadratic case 
Iff' is quadratic then F and G of the previous  section are 
linear. The  theorem below shows  that in this case non- 
terminating  convergence to a nonstationary point cannot 
occur.  Note  that, in the  absence of the  terms Z" , Az" , the 
theorem is a case of the lemma. The proof relies heavily 
on the linearity of F and G . Some remarks  on  the dif- 
ficulty of extending the proof follow it. 

8 Theorem 
Let t ,  > 0 ,x t ,  < m , and let the  vector  recursion 

n=O 

yn+' = y n  + Ay" , zn+' = zn + Az" 

be specified by 

Ay" = T , (  Uy" + Rz") , (9) 

Az" = t , (p  + S y n  + Qz")  , (10) 
and T ,  , U , R , S , and Q are matrices of appropriate 
size. I f  11T,11 5 t,i for all n ;  yn , Z" + 0 as n -+ 00 ; and  no 
component of U y n  + R z n  is eventually constant in sign, 
then for  some N , yn = 0 for all n > N . 

Prooj 
In outline, the proof is as  follows. If p = 0 , the lemma 
can  be  immediately applied to  the  system, giving the 
result. If p # 0 ,  then it appears  that yn must be much 
smaller than zn , so that an approximation Z" to z n  can be 
found by setting yn = 0  and solving the difference equa- 
tion  (10). The approximation 2" has a form similar to a 
power series in the variable s, = Ckpn t ,  , which tends  to 
zero  as n + w . I f  the recursion  relations are rewritten 
using the  perturbation w n  = z n  - Z" , then  the  term p na- 
turally drops from ( 1  0)  and  the coefficients of the "power 
series" appear in (9); but, since Ay" is never  constant in 
sign, it can  be  argued one by one  that  the coefficients must 
vanish, and  the resulting equations in y and IV yield at 
once  to  the lemma. 

The index N of the  theorem is to be  chosen large 
enough to satisfy  several independent conditions:  first, so 
that  the classification 1 )  to 3) of the variables made in 
the previous  section holds, and  then so that  the conditions 
(12), (14), (20), and (22) below will obtain.  We  suppose 
henceforth N to  have been so chosen, and understand 
any  formula involving the  free  subscript n to  be  asserted 

41 0 for all n 1 N unless the  contrary is stated. 
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Let s , ' ~ '  = Ek,, t ,  = s, for all n 1 0 ,  and define recur- 
sively 

s, - 2 t k . T k l i )  
! i + l )  - f o r i ?  1 .  

Then s , ' ~ )  "+ 0 as n + w , each  sequence snt i )  is monotone 
nonincreasing,  and for any i > I > 0 ,  

s n 

k a n  

! i )  < s n l I ) ( s , ) i - I .  (1 1 )  

Let N be  such that 

ssIIQII < 1 . ( 1  2 )  

Let 

z"= 2 (-1) ' s, Qi - 'p  , 
i-1 

which is well-defined by virtue of (1 1)  and (1 2). It is easy 
to  check  that ATn = t,(p + QZ") , so that, letting 

2" = w n  + z" , 
the relations (9) and (10) become 

AY, = T ,  uy" + ~ w n  +,x (-1 l i  s , ' i )  RQ" p )  i i Z l  
(13) 

Awn = t , (Syn + Q w n )  . 

The bulk of the proof consists in showing that RQ"p = 

0 for all i .  Suppose  that this is not  the  case, and that 
I 1 1 is the first index i for which it is not. 

Let MFX I (RQ" 'P)~I  = 1 (RQ"P),/  = 4 .  

Owing to ( 1  1 )  and (1 2) we may choose N so that 

S,c1)4 > 2 I ( s , " ) R Q ~ - ~ P ) ~ \  (14) 
i > l  

for all j , whence 

x (-1 l i  s , ( ~ )  RQ~-' p < 8 s,, 4 I 1  I [tal 

11) (15) 

for all j and 

i s ,  q < I[(above)l,I. ' I )  (16) 

Let  the  constant K be  such that 

I(Uy + R I V ) ~ ~ ,  I(Sy + Q w ) ~ ~  < K Max ( 1 ~ 1 ,  Iw l )  (17) 

for all y and IV , and define 

M , =  Max Max (Iy,i, 1 ~ ~ 1 ) .  
M ,  exists  for all n 1 0 ,  is monotone nonincreasing,  and 
approaches  zero  as n + 00. 

Now  for  any p , n P 0 we have y p  - y n  = ZEI:, A y k .  
Letting p + a, 

y ,  = - AY', (19) 

and similarly w n  = -x AIV" Thus 

h.:n 

h?n 

E n  
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and Q square  and symmetric.  Equations (9) and (10) are 
then  replaced by 

A y n  = t , (Rzn + znWzn) , Az"= t ,(p + Qz") . 
The system  can  be  solved for z" and,  as  before  for in, 
Z n =  ( - 1 ) y Q i - I  P .  

;?I 

Substituting  and  arranging by terms sr' of similar orders 
of magnitude, we have 

Rzn + znWzn = -.s,,Rp + s,,"'RQp + . ~ , , ~ p W p  + 0 ( s : )  . 
An easy  argument on orders of magnitude of s, yields 

that R p  = 0 if the  above  expression  changes sign infi- 
nitely often, but the argument cannot be pursued through 
the next two  terms  to  show  that they  vanish, because  they 
have  comparable magnitudes. This  seems  to be  exactly 
the typical difficulty encountered in attempting  to  extend 
the result  from the  quadratic  case. To  see  that  the diffi- 
culty is serious,  let 

IN)"/ 5 2 ~ A I ~ F I  

Using  successively these  estimates,  equations (13) ,  the 
fact  that IlT,ll 5 t,, , and  the  bounds (17)  and (1.51, we 
find 

ly"1,  / w n l  5 t ,   [K  Max(lyk;l, I w k l )  + $ s i ' q ]  

h 3 1  

h 3  

5 t , (KM,  + S s i ' q )  

= Ks,M,, + $ q . 
h?n 

Since  the right-hand side is monotone nonincreasing in 
n, for k 1 n we have 

I Y  1 ,  111' 15 Ks,M,, + ZS, q ,  

whence M,, 5 Ks,M, + 2 s:+" q . NOW  suppose N is SO 

large that 

Ks,, < + . (20) 

Then M,v 5 3.s,:+" q , so that 

I (Uy"  + Rbtln)Jl 5 3Ks.v+" q .  (21) 

If finally N is chosen so that 

3Ksi."" q < as:' q , ( 2 2 )  

then (16) and (21) yield 

k k  3 11+1) 

) I U ~ "  + Ril,n + (-1 S : ) ~ ~ i - l p  - t s,l') q],,l 
1 3  

< 1 . ' 1 '  
4 J ,1 4 3 

so that,  for  component J ,  the sign-changing property of 
the hypothesis of the theorem is contradicted.  Thus in 
fact RQ"'p = 0 for all i 1 1 , and  the relations ( I  3)  have 
the form 

A ( y" , M*") = T,, ( y" , M"') (23)  

for  a suitable  matrix T ,  such that 117,11 5 K t ,  for  some 
suitable K .  The lemma  applies  immediately to ( 2 3 ) ,  so 
that y" = 0 for n sufficiently large. The  theorem is proved. 

Nonquadratic case 
The argument  used in the proof above  cannot be  applied 
when the functions of (9) and (10) are not linear; we have 
stated  the  theorem in such  a way that  a counter-example 
can be given for  the  case in which (9) is quadratic.  The 
counter-example presented  here  does  not,  however, 
actually show  that  the  procedure ( 3 )  to (6) could not  solve 
such a problem, because  the  functions  are not in fact ob- 
tained  from a gradient, nor  do we know that  the  sequence 
t ,  we use might arise  from  a gradient process. 

Let y have  one  component  and z two  components, and 
set F ( y  , z )  = Rz + zWz and G ( y  , z )  = p + Q z ,  with W 

Then  Rz" + ZnWZn = -is:' + 3 Rh: .- + 0 ( s : ) .  Let  the se- 
quence t , ,   t , ,  . . . be 1 , 1 , 0.1 , 0.1 , 0.01 , 0.01 , . . . , 
and let rn =-is:' + #st. It is easy to calculate that 

I00 487 
r2,,, - -~ 891 ( and rZm+, = -__ 7128 

for m = 0 ,  1 , . . . , showing that Rz" = znWzn eventually 
alternates in sign with increasing n. Thus this example 
satisfies the  hypotheses of the  theorem, excepting that F 
is quadratic  rather than linear,  but y" does not  eventually 
vanish. 
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