Philip Wolfe

On the Convergence of Gradient Methods under

Constraint

Abstract: The mathematical programming problem discussed is the convergence of a certain popular type of gradient procedure for
maximizing a function under inequality constraints. An example shows that convergence to a solution need not always occur, and a theo-
rem shows that under certain circumstances the gradient method does converge.

Introduction

A natural extension of Cauchy’s method of steepest de-
scent, presented in the next section, has often been used
to solve the mathematical programming problem,

Maximize f(x, , - - -, x,,) subject to: x;z0,

j=1,ym. (1)

See, for example, Refs. 1 and 2, which describe a pro-
cedure for reducing the general problem of maximizing
a function under linear inequalities to a problem of the
above form and solving that, which has worked very
well in practice. Because of the simplicity of the exten-
sion, we long thought that convergence to a solution of
the problem would be easy to prove under mild restric-
tions on the function f. This presumption turned out to
be false: we eventually constructed an example of the
form (1), given here in the third section, showing the
method to have a real flaw, i.e., it could yield an infinite
sequence of points converging to a point having nothing
to do with the solution of the problem.

Others also have been misled by the plausibility of the
method, and an erroneous proof of its effectiveness has
been published [3]. As far as we know, only Zoutendijk
anticipated the real difficulty, and he presented devices
for circumventing it, as discussed here in the section on
the counterexample. We find most of these devices un-
appealing, however, and further have not been able to
construct a troublesome example for which fhas bounded
second derivatives, for the reasons indicated in the fourth
section. We can thus hope that the procedure will be
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effective for problems in which f has suitable smoothness
properties. As a first step in this direction, we then show
that if fis quadratic, the difficulty cannot arise. This bare
fact has no computational interest because there are
much better ways of solving quadratic problems; but
often in gradient procedures the convergence properties
of the quadratic case can be shown to hold for the case of
bounded second derivatives. Unfortunately we have not
been able to do that, for, as demonstrated in the last sec-
tion, the proof used for the quadratic case does not ex-
tend even to cubic functions. Thus, there remains a large
gap in our knowledge of the behavior of the steepest de-
scent method for constrained problems.

Steepest ascent with nonnegative variables
Cauchy’s procedure for the unconstrained maximization
of f()=f(x,, -, x,) generates the sequence {x"}
as follows: Letting g"=Vf(")=[af)ox,, - -,
af(x)/éx,,] , the point x"""is chosen to maximize f along
the ray {x"+t¢", 1> 0}. The extension below is the
most natural we can think of when the constraints have
the form x = 0: Given x" = 0, we first modify the com-
ponents of the direction g" so that the ray x" + tg" does
not immediately leave the constraint set, and then choose
x™*! to maximize f on that part of the ray satisfying the
constraints. We define

0 ifx;=0 and af(x)/axjfo
8,(x) = 2

1 otherwise.
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Figure 1 Convergence to a nonstationary point.

Thus 8,(x) = 0 precisely when motion in the direction
of the gradient would cause x; to become negative.
Beginning with x’ = 0, the sequence x', x*, - - - is ob-
tained in this way:
Given x", define the vector g" by

g; = Sj(x") af(x)/axj. (3)
Let
L,=sup{r:x"+1g" =0}, 4)

t, be that value of ¢ which maximizes f(x" + tg") for

0=r=1L,, (&)
Ax"=1,g" and xX"'=x"+Ax". (6)
In the absence of constraints we would set Sj(x) =1,
hence g"=Vf(x") and L, =+, reducing the step to
Cauchy’s.

We do not seem to get any results without assuming
that Vf is continuous, which is done henceforth. Curry
[4] has shown that, in the absence of constraints, any
point of accumulation ¥ of the sequence {x"} is a station-
ary point of f, that is, that Vf(x) = 0. (Curry actually de-
fines t, as the smallest value of r for which f(x" + tg")
has a stationary point, but his theorem holds equally
well when definition (5) is used.) In this constrained case
we call x a stationary point when

8,(2) (of ()/x;) = 0

for precisely then do we have the necessary first-order
conditions that ¥ maximize f:

for all j,

VAlx) - Ax=0 for all Ax such that x + Ax = 0.

In order that some analogue of Curry’s result will be
valid in our case, we must at least know this: If x" — %
as n — «, then x is a stationary point. Given that, and
some global information about f, such as its concavity,
we could then show convergence to a global solution of
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the problem. See for example Ref. 2, Sect. 5. The exam-
ple of the next section shows that the desired analogue
does not hold.

Counterexample s
Let fx,y, ) =—4%0"—xy +y)" + 7. Letting s = x* —
xy + v* we have

Vi, y,2) = [—s H@2x—y),—s F(—x+2y), 1],

and since s behaves like ¥ = X"+ & = s =), Vf

is continuous everywhere, but the second derivatives
are not bounded in the neighborhood of x, y=0. The
function f is concave. Figure 1 sketches the level lines
of f on the z = 0 plane and shows a few steps of the pro-
cedure, starting from a point (0, «, z) such that a = 2%,
As we show below, each step from one of the faces x =0
or y=0 terminates on the other face; the successive
gradient directions tend toward that of the z-axis, but
the steps taken shorten so quickly that the sequence of
points tends to a limit point (0, 0, z) , which is not a con-
strained stationary point since the gradient there is
[0,0,1].

Let g’ denote the gradient at x°= (0, a, 7); ¢" = [a% ,
—Za%, 1}. The ray *+ tgo pierces the other face for
¢ =1a* in the point x' = (}a, 0, z + 1a?), where the gra-
dient is ¢' = [—(2a)%, (%a)%, 1]. Since the rate of change
of f along the ray at x' is positively proportional to
2’ gt=1— 2(2a)% the point x' will indeed be chosen by
the procedure. (Since f is concave, its rate of change is
monotone nonincreasing.) We see that

F=1[0,%a, b+ 3a® +3(3a)?],
P=ha, 0, b+ 1d+ 13t + 3 Ga)¥]

and so forth, so that x" — (0, 0, z), where

b=

=z+1Y QPwi=z+ (1 +2hdd.

J=t

f=

The example is not particularly “delicate.” The ex-
ponent in the definition of the function might be any
number between % and 1, and some freedom in the choice
of the function exponentiated is possible. As we shall
see in the next section, however, it is not possible to make
an example of this form having bounded second deriva-
tives.

Zoutendijk conjectured the existence of the behavior
exhibited by this example, calling it “‘zigzagging’ in his
study of a variety of procedures for nonlinear program-
ming problems [5]. The simplest one for the present
method (AZ1 of Zoutendijk) consists in altering defini-
tion (2) to

J

0 iijES and 8f(x)/8xj.<0,
8.(x) =

1 otherwise,
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and using this new §; in definition (3) of g". We can then
show that if x" — ¥ we have 8,(£)3f(x)/dx; = 0 for all j.
The price paid for thus weakening the notion of stationary
point to obtain satisfactory convergence properties is
this weakening of the first-order conditions that x maxi-
mize f; we can only assert that Vf(x) - Ax = 0 for all Ax
such that x; + Ax; = 6 for all j. Actually, for practical
computation this seems to be a completely satisfactory
result, especially since some such modification of the
definition of §; would in any case have to be made to avoid
ambiguities that are due to round-off error.

An interesting alternative not requiring the above
weakening has been proposed by McCormick [6], who
uses the modification he calls “bending”: the ray (x" +
tg" : t = 0) of the ordinary method is replaced by the
segment chain defined by

x; (1) =Max[0, x + taf(x")/axj] for eachj,

and x"*' is given as x"(¢*), where t* maximizes f[x"(¢)]
for + = 0. This appealing idea yields, for our example,
a sequence of two-segment chains: the first segment from
©,a, b)toFa,0, b+ %a%) as above, and the second
segment from that point to 3a,0, 5 + %a% + éa%) , which
is thus the successor of (0, «, b). The next point in the
sequence evidently has the form (0, a, b + - - -) again,
and the sequence moves out to infinity taking steps of
two different sizes. That is not a happy outcome for an
algorithm, of course, but nothing better can be expected
of one so closely connected with steepest descent.

Consequences of convergence

The convergence of the series >'¢, in the example of the
previous section plays an important part in a convergent
descent process, as the lemma indicates.

e Lemma
Let the operator H be bounded at zero; that is, |H(x)| =
K|x| for all sufficiently small x, and let the recursion

n+1
X

= x" 4+ ¢,H(x") be such that x" — 0 and S| <.

Then for some N, xy=x,,,=---=0.

Proof
M, = Max (|x,| : kK = n) exists for all » and is monotone
. . . P n p—1 k n
nonincreasing. Since x" —x — Y, _ Ax, x =Y,
Ax" for all n, and
k
Ix"| = S AT = K3 gl x| = KM |1,

k=n k=n kz=n

= KM |t

k=N

forn= N,

so that

M,=MKS |t,].

k=N

JULy 1972

Taking N so large that K . [7,| < 1, the conclusion
follows.

(If x" is a sequence of numbers and H (x") = — x", then

"= (1—1,)x", and the lemma is just the theorem that,
if Etn is absolutely convergent, then the sequence of
products szn (1 —1¢,) has the limit zero only if some
member vanishes.)

The lemma shows that trouble with second deriva-
tives was an essential feature of the example of the pre-
vious section, whose function f had the “separated” form
h(x,y)+r(z). If the second derivatives of h were
bounded and Etn converged, the lemma would apply to
the x, y steps alone, which would have to terminate. A
nonterminating example for which f has bounded second
derivatives cannot therefore have a ‘‘separated” form,
which may explain why we have not been able to find
such an example.

From now on we assume that the sequence x" is given
by the procedure (3) to (6) and converges to X, stationary
or not, but does not terminate.

For each component j there are three possibilities:

1) xj" = 0 for all sufficiently large »,

2) x;" =0 for infinitely many n and x;" > 0 for infinitely
many #n,

3) x;" > 0 for all sufficiently large .

Supposing the process to have begun sufficiently far
out, the variables of type 1) may be discarded.

For those of type 2), evidently ¥, =0, Ax;," = 1,8,(x")
af(x")/axj , and the partial derivative is never eventually
constant in sign. For those of type 3) it is always true that
8 (x") =1 and ij" =1, af(x")/axj. Let us call the var-
iables of type 2) y, and write z;" = x," — X, for all those of
type 3). Substituting for the appropriate components of x ,
the recursion may then be written

A'=TF(O", 7"

A =1 GG, 2", (8)
where T, is a diagonal matrix formed from tnSj (x™) for
appropriate j, and F and G are vector functions giving

the appropriate partial derivatives of f. We have the fol-
lowing information about these equations:

Each component of F is infinitely often positive and
negative,

y',Z"—>0asn— o,
y* =0, y" # 0 for infinitely many n .

Since F is continuous, F(0,0) =0, and that part
gives no trouble about stationary points. Stationarity
fails just when Gj(0,0) >0, or G].(0,0) < 0 while
x; > 0.
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In any case if, say Gj(O, 0) =p; * 0, then choosing
K so that |p; — GJ.(y'c .2 < $p,| forallk = K , we have
forn = K

n—1 n—1
Izj"—zjkl = thj(y'”,zk) =, Y1,
k=K k=K

so that Etn is convergent. Thus if x is not a stationary
point, then Y't, converges.

Quadratic case

If f is quadratic then F and G of the previous section are
linear. The theorem below shows that in this case non-
terminating convergence to a nonstationary point cannot
occur. Note that, in the absence of the terms 7", Az", the
theorem is a case of the lemma. The proof relies heavily
on the linearity of F and G . Some remarks on the dif-
ficulty of extending the proof follow it.

e Theorem
Lets, > 0,3 1, <, andlet the vector recursion
n=0

Y=y Ay = AL
be specified by

AY"'=T, (Uy"+RzZ"), &)
A =1, (p+ Sy "+ 07, (10

and T,, U, R, §, and Q are matrices of appropriate
size. If: |T | = 1, for all n; y*, z" — 0 as n ~> o« ; and no
component of Uy”" + Rz" is eventually constant in sign,
then for some N,y"=0foralln > N .

Proof

In outline, the proof is as follows. If p =0, the lemma
can be immediately applied to the system, giving the
result. If p + 0, then it appears that y" must be much
smaller than z", so that an approximation z" to z" can be
found by setting y" = 0 and solving the difference equa-
tion (10). The approximation " has a form similar to a
power series in the variable s, = Zkzn t, » which tends to
zero as n — « . If the recursion relations are rewritten
using the perturbation w" = 7" — 7", then the term p na-
turally drops from (10) and the coefficients of the “power
series” appear in (9); but, since Ay" is never constant in
sign, it can be argued one by one that the coefficients must
vanish, and the resulting equations in y and w yield at
once to the lemma,

The index N of the theorem is to be chosen large
enough to satisfy several independent conditions: first, so
that the classification 1) to 3) of the variables made in
the previous section holds, and then so that the conditions
(12), (14), (20), and (22) below will obtain. We suppose
henceforth N to have been so chosen, and understand
any formula involving the free subscript » to be asserted
forall n = N unless the contrary is stated.
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Lets, "' =3, 1,=s,foralln=0,and define recur-
sively

(i+1) __ )
Sa = 2 1Sk

k=n

fori=1.

Then s, — 0 as n — =, each sequence s,"’ is monotone
nonincreasing, and forany i > 1 > 0,

5, <) (an
Let N be such that

sdoll < 1. (12)
Let

. i (=1)! snm 0" p,

which is well-defined by virtue of (11) and (12). It is easy

to check that AZ" =1, (p + QZ") , so that, letting

=w"+7",

the relations (9) and (10) become

Ay" = Tn<Uy" +Rw' + > (—1)'s,” RO p)

i=1 (13)
Aw" = tn(Sy" + Ow").

The bulk of the proof consists in showing that RQ 'p=
0 for all i. Suppose that this is not the case, and that
I = 1is the first index i for which it is not.

Let Max | (RQ"'p);| = [(RQ""p), I =4q.
Owing to (11) and (12) we may choose N so that
5,."q>2 3 |(s,"RQ"'p),| (14)

i>1

for all j, whence

[2 —1)'s,” RO p],. <is,"4q (15)
i=1

for all j and

s, q < [[(above)],|. (16)

Let the constant K be such that
[(Uy +Rw),|, [(Sy + Qw);| < K Max (ly|, [w]) (17)
for all y and w, and define
M, = Max Max (ly,|, [w,]) .

M, exists for all n = 0, is monotone nonincreasing, and
approaches zero as n — =«

Now for any p, n = 0 we have y” —y" = S¥C! Ay*.
Letting p — o,
=3 A, (19)
kzZn

and similarly w" =—Y Aw* . Thus
k=n
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Iy" =3 |ay],

kZzn

[w"| = > |Aw"] .

kzZn
Using successively these estimates, equations (13), the
fact that [T,/ =< ¢,. and the bounds (17) and (15), we

n’

find
L ' = S g, [K Max(1y*] w¥)) + 35" g
kZn
= (KM, +35." q)
k=Zn

— . 3 (I+1)
=KsM,+ss, q.

Since the right-hand side is monotone nonincreasing in
n, for k = n we have

o)L (wh| = Ks,M, +%s:+”q,

)

whence M, = Ks M, + 35" q. Now suppose N is so
large that

Ks, <%. (20
Then M, = 35, """ ¢, so that
[(UY"+ Rw"),| = 3Ksy™"q. QN
If finally N is chosen so that
3Ks, Mg <isq, (22)

then (16) and (21) yield

HUy" +RW' + S (=)' sy 'RQ TP — 45, q],,

izl

<1 S"m q,

so that, for component J, the sign-changing property of
the hypothesis of the theorem is contradicted. Thus in
fact RQ''p =0 for all / = 1, and the relations (13) have
the form

A", w") =T,0", w") (23)

for a suitable matrix 7, such that |T,| = K1, for some
suitable K. The lemma applies immediately to (23), so
that y" = 0 for n sufficiently large. The theorem is proved.

Nonquadratic case
The argument used in the proof above cannot be applied
when the functions of (9) and (10) are not linear; we have
stated the theorem in such a way that a counter-example
can be given for the case in which (9) is quadratic. The
counter-example presented here does not, however,
actually show that the procedure (3) to (6) could not solve
such a problem, because the functions are not in fact ob-
tained from a gradient, nor do we know that the sequence
t, we use might arise from a gradient process.

Let y have one component and z two components, and
set F(y,2)=Rz+ Wz and G(y, 2)=p + Qz, with W

JULY 1972

and Q square and symmetric. Equations (9) and (10) are
then replaced by

AY' =1 (R + W2, A" =1,(p + Q") .

The system can be solved for z" and, as before for z",
= y (_l)is;i)Qi—lp.
<

Substituting and arranging by terms sif' of similar orders
of magnitude, we have

R+ "W"=—s,Rp + 5, ROp + 5,pWp + O(s)) .

An easy argument on orders of magnitude of s, yields
that Rp = 0 if the above expression changes sign infi-
nitely often, but the argument cannot be pursued through
the next two terms to show that they vanish, because they
have comparable magnitudes. This seems to be exactly
the typical difficulty encountered in attempting to extend
the result from the quadratic case. To see that the diffi-
culty is serious, let

()0 () 200).

Then RZ"+'Wz"=—1s5"" + §s2 + O(s)). Let the se-

quence f,, ¢, -bel,1,0.1,0.1,0.01,0.01,:--,
and let r,=—4s" +4s>. It is easy to calculate that
. _ 100 —m _ 487 “m

Fom = 891 (10) and Fomer = 7128 (10)

form=0,1, - -,showing that Rz" = ;"Wz" eventually
alternates in sign with increasing n. Thus this example
satisfies the hypotheses of the theorem, excepting that F
is quadratic rather than linear, but y" does not eventually
vanish.
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