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Recursive  Evaluation of Pade Approximants for 
Matrix  Sequences 

Abstract: An algorithm  is  described  for  calculating  the  existing  Pade  approximants to any sequence A,, , A ,  , . . . of s X t-matrices.  As 
an application the algorithm gives a new way for finding the  minimal  polynomial  of  any square matrix A and the inverse of the  charac- 
teristic matrix x1 - A  . 

Introduction 
The classical Pad6 approximation  problem [ I  ] is to find 
two polynomials of prescribed degree, P ( x )  = p i  x i  
and Q(x) = x:=(, qi x i ,  with y,, = I , such  that  for a given 
function f ( x )  = X:=(, ai x i  , 

f ( x ) Q ( x )  - P ( x )  = A X  + B x ~ ~ + ~ + ~  + . . . . (1) 

The rational  form P ( x ) / Q ( x )  is called the [ n  ,m] Padh 
approximant to f ( x )  . 

Recently studies  have been made  to  generate  the  Pad6 
approximants  recursively; several  algorithms are de- 
scribed in [2] and an improved  recursion scheme is 
given in [3].  In  both of these  studies it is assumed  that 
the function f ( x )  is such  that all the Pad6 approximants 
not only exist but also  are in their reduced form; i.e., 
there  are  no common factors in P ( x )  and Q(x)  . This  as- 
sumption seems  to be  a severe  restriction  because it  is 
not easy  to tell when  a  function has  that  property,  and 
moreover,  the algorithms fail if just  one of the intermedi- 
ately  calculated approximants  either is not in its reduced 
form or,  worse  yet,  does not  exist. 

In [4] the Pad6  problem  was  generalized for  the  case 
where  the coefficients of the  power  series expansion of 
f ( x )  are s X t-matrices. An  approximant was then taken 
of the form P(x)Q"(x) , where P ( x )  is an s X t and Q ( x )  
a t X t matrix polynomial. In  addition, recurrence equa- 
tions for evaluating the  approximants were  derived for 
certain  special cases. 

We shall study  another generalization of the  Pad6 
problem that differs from  the preceding one in that Q ( x )  

1lt+11+1 

is taken to be  a scalar polynomial. We also  relax the re- 
quirement that all the  approximants  exist. 

Our version of the problem,  although no  less general 
than the previous one,  has its  most  natural  applications in 
certain  special cases.  One  such is the problem of finding 
the  inverse of the  characteristic matrix x1 - A  in the 
form P ( x ) / q ( x )  , where q(x )  is the minimal polynomial of 
A .  Other applications appear in the  area of systems iden- 
tification, where  the so-called transfer function of the 
system  has precisely the form P(x) /q (x )  . In this context a 
criterion for  the  existence of the  approximants was  given 
in [ 5 ] .  Our algorithm is an outgrowth of one studied 
in [6]. 

Generalized  Pade  approximants 
Let P ( x )  = C:(, Pi  xi and Q ( x )  = Qi xi be s X t- and 
s X s-matrix polynomials,  respectively, where  the ma- 
trices Pi and Qi  have real-valued  elements. If the  deter- 
minant q(x )  = 1Q(x)I does not vanish for all values of x, 
the rational form 

C ( x )  = Q " ( x ) P ( x )  = T ( x ) / q ( x )  = Ci xi (2) 

may be defined. Here, T ( x )  is a matrix polynomial de- 
termined by P(x)  and Q(x)  . 

We define the Pad6-approximants in the following way: 

If a subset A,, , A ,  , . . . , A ,  of an infinite set of s X t- 
matrices A,,  , A ,  , . . . determines  two polynomials 

rn 

i=O 
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p,,,,(x) = x;,) Pi(n,m)xi and q,,,(x) = x:=,, qi(n,m) 
X I ,  q, ( n  ,m) = 1 , of prescribed degree m and n,  re- 
spectively; i.e., Pm(n,m) # 0 and q,(n,m) # 0 ,  such 
that in the  expansion of the rational form, 

p , , , , ( x ) /q , ,m(x )  = 5 CiXi 9 

i=n 

1) C i = A i f o r i = O , l ; . . , N a n d  (3 a) 
2 )  there is no common factor  other than  (3b) 

2 1  in q,,,(x) and all the  elements of 
P,,,(x) > 

then  the pair (P , , , ,Jx) ,  q n , , ( x ) ) ,  also  denoted  [n,m] , 
is said to  be a fade‘ approximant to the series A , ,  
A , ,  . . . .  

Requirement (3b) implies that [n,m] is unique. Fur- 
ther,  the  approximants  do not depend  on N;  hence N 
need  not appear in the polynomials  nor in the approxi- 
mant [n,m] . 

The  present definition extends  those in [ 1 to 31 in that 
all the  approximants need not exist. Moreover, if one 
exists it is unique; in other  words,  the rational form in 
question is in its  reduced  form. 

Conditions for approximants 
Consider  the equation 

B , = q, A . 

Define Pi = 0 for i > m , qi = 0 for i > n , and Ai  = 0 
for i < 0 .  Then  the coefficients of XI‘ in (4) yield 

x qp.-,  - p r  = 0 f o r r = O , l ; . . , N .  ( 5 )  
i=n  

Equations (5) are  equivalent  to  the pair of systems 
m 

x q , A r - i = P r  f o r r = O , l ; . . , m  (6) 

and 

i=n  

n 

q,A,-, = 0 f o r r = m + l ; . . , N .  (7) 
i=n 

Since any  solution (qn , . . . , 4,) of (7) defines  through 
(6) a solution (q,, , . . . , q, , P ,  , . . . , P,) of ( 9 ,  the ex- 
istence of a unique  solution for (7) is equivalent to  the 

402 existence of a  unique  solution for (5) .  

For  each i ,  i 5 N ,  write A i  = [ajk(i)] , 1 5 j 5 s ,  
1 5 k 5 t , as  the 1 X st  vector, 

Further, define the 1 X (N - m)st vector 

Finally, for k = n - m define H(k,n,N)  as  the (n  + 1) 
X (N - m)st matrix  whose j th row for j = 0 ,  1 , . . . , n 
is given by hj . 

Then  the  system (7) can  be written  as 

For this  equation  a  unique  solution with q, = 1 exists 
if and only if the  rows h,, . . . , hrL-, are linearly inde- 
pendent and h, is linearly dependent on them. 

Suppose  that (10) has a  unique  solution and  suppose 
further  that P ,  with m = n - k from (6) and q, turn out 
to be  nonzero. Then P(x)  = E:, Pixi  and q(x )  = x:=, 
qixi define the  approximant [n  ,m] for  the  sequence 
A , ,  A , ,  . . . . Conversely,  suppose  there is an  approx- 
imant [ n  ,m] = [P,,,(x) , q,,,(x)] for  the  same  sequence. 
Then by (3a), Eqs. (6)-(7) with qi(n ,m) = qi and P,(n ,m) 
= Pi  hold. Also,  both P ,  and q, are nonzero. The exis- 
tence of [ n  ,m] implies that h, is linearly dependent  on 
h,, . . . , h,-, , and  the  requirement (3b) further implies 
that h, , . . . , h,-, forms a linearly independent set. 

It is clear by (3b) that  the  existence of an approximant 
[ n  , n - k] satisfying (3a) for  some N implies that no 
approximant of the  type [n’  , n’ - k]  for n’ < n and  satis- 
fying (3a) for  the  same N  can  exist. Another line of rea- 
soning  leads to  the  same result: each of the first n’ + l 
rows of H(k,n,N)  appears  as a subrow in the  correspond- 
ing row of H(k,n’,N) . Since  this  makes all the  rows of 
H(k,n‘,N) linearly independent,  the result  follows. 

In general cases  where  the matrices Ai have  no special 
properties it is necessary  for  an  approximant  to  exist so 
that n = (N - m)st . This  means  that  the  degree of q ( x )  
grows rapidly when s and t are large, which makes these 
kinds of approximants less attractive than those of the 
type P(x)Q-’(x) . In special cases, however, such  as  those 
studied in the last section and in systems identification 
problems, where q ( x )  has a  special meaning, our  types 
of approximants  are  the only ones of interest. 

A factoring problem 
Suppose k,  n, and N are  such  that  the first n rows of 
H(k,n,N)  are linearly independent. Consider  the fol- 
lowing factorization of H(k,n,N) (and although we illus- 
trate  the  case k > 0 ,  the given rules  apply to  the  case 
k 5 0 as well): 
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H ( k , n , N  1 

i' I ' l l 1  1 

r 

'Ill1 

I 

The  elements of R ( n )  and Q ( k , n , N )  are uniquely de- 
termined by the following rules, which allow their  cal- 
culation  recursively  one-by-one. At  the  same time we 
also  calculate the  inverse D ( n )  = R (n ) - '  which is lower- 
triangular. Observe,  that  for each pair n' and n such  that 
n ' 5 n , D ( n ' ) i s a s u b m a t r i x o f D ( n ) .  

S tep  1 .  Set  the first row of Q ( k  ,n , N )  equal to  the first 
row of H ( k  ,n , N )  . Set R ( 0 )  = D ( 0 )  = ( I ) .  
S tep  2. Proceeding  recursively we shall have determined 
at the ith row all the rhj's and qhj's for h = 0 ,  I , . . . , 
i as well as R ( i )  and D ( i )  . Let s ( i )  be the least  integer 
such  that qiJ( iJ  # 0 .  For i < n + 1 , s ( i )  exists.  Set 
qh,s(i) = 0 for all h > i . Equation ( 1  1) leads to a set of 
i + 1 equations,  one  for  each column s ( j )  , j  = 0 , . . . , i . 
From  these  equations  the unknowns . ' . , Y ~ + , , ~  can 
be found  recursively  one-by-one, which gives R (i + 1 ) 
and D ( i  + 1 )  . The  latter  further  determines  the q i + I , j ' s  , 
which terminates  the cycle. 

If now, in addition, the last  row of H ( k  ,n , N )  is linearly 
dependent  on  the first n , the  last row of Q ( k  ,n N )  is 
zero  and is the only such row. But then the  last  row of 
D(n)  , namely (d,," , d,,' , . . . , dn,n-, , 1) , spans  the 
space of solutions to  the  equation 

x ' H ( k  ,n , N )  = 0 .  (12) 

In that  case we define 
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where q,(n , m )  = dn,,-, and the P,(n ,m)'s are determined 
by (6) with qi = q i ( n  ,m)  . 

We  conclude that  the  approximant [ n  ,m] = [ P n , v l ( x )  , 
q , l , , n ( x ) ]  obtained  from ( 1  3 )  exists if and only if q,(n ,m)  
and Pm(n ,m) both  turn out  to be nonzero. 

The preceeding  factoring  algorithm is clearly  related to 
a  Gauss-elimination scheme with a  particular  choice of 
the pivoting elements [7]. This choice is so made  that  the 
following is true:  For any n1 and N '  , n' 5 n and N'  5 N , 
the last row of the  corresponding submatrix H ( k  ,n' , N ' )  
of H ( k  ,n , N )  is in the linear span of the  other rows if and 
only if the last row of Q ( k  ,n' , N ' )  is a row of zeros. Then 
as above  the last  row of D ( n ' )  satisfies the equation 
x'H ( k  ,n' , N ' )  = 0 .  This means that  the  one and the  same 
factorization will also give us theapproximant [n' ,n' - k ]  
if it exists.  Hence, we can continue  the factorization in- 
definitely and  obtain all the existing approximants with 
n - m = k as fixed just by picking out  certain  rows of 
D ( n )  . The details of the resulting algorithm are described 
in the  next section. 

Observe  that we need not -and  to get  recursion we 
must not-perform any  apriori reshuffling of rows  and 
columns of H ( k  ,n , N )  in order  to  guarantee  that  the 
principal minors be nonzero,  as must  be done by applying 
the  other versions of the Gauss-elimination scheme. 
Then, naturally, we cannot get Q ( k , n , N )  as  upper- 
triangular in general,  but that is no  disadvantage whatso- 
ever.  However,  our fixed rules may cause difficulties due 
to round-off errors in inverting R ( n )  if H ( k  ,n , N )  is  ill- 
conditioned. As a  safeguard to this, one should check  that 
any picked last  row of D ( n )  indeed produces a  zero-row 
in Q ( k  ,n , N )  . If that  does not happen,  one may recalcu- 
late that particular row by refactoring H ( k  ,n , N )  by a dif- 
ferent choice of the pivotal points. For  instance,  change 
the rules above by letting s ( i )  be the integer for which 
lqt,s(i)l is maximum. After  the  correct row of D ( n )  is 
found,  the original factorization  routine will be continued. 
It is possible to  devise  other variations of the rules to 
preserve recursion while handling various types of nu- 
merical difficulties. See, e.g., the analysis in the last 
section. 

Algorithm 
In order  for  the desired  conditions to be maintained, the 
main algorithm need only take  care of how H ( k  ,n , N )  is 
to be  grown.  We  illustrate the algorithm described by the 
flow chart in Fig. 1 by calculating the  approximants of 
several sequences,  where  the input in each  example is a 
given sequence A , ,  A , ,  . . . , A,vo and k . 

Example I 
We  calculate the first three  approximants with k = 0 
for  the  sequence 1 , I  ,+ ,Q ,A which constitutes  the first 
five coefficients in the  series expansion of e x .  The first 403 
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approximant is [0 ,O] = ( 1 , 1 )  . We obtain after H (0 , 
1 ,2) the  second  approximant, [ 1 , I ]  = [ ( 1 + +x j . ( 1 
- &x)] . Continuing, the  'factorization of H (0 ,2 ,4 j be- 
comes 

This gives 

and the  third  approximant, [ 2 , 2 ]  = [ ( I  + &x + &a'), 
( 1 - i x + A i 2 ) ] .  

Example 2 
For  the  sequence 0 ,O , 1  ,1 , I  ,2 and k = 1 we calculate all 
the  approximants. We have in Fig. 1 M = 2 which gives 
the initial matrix H ( 1  ,3 , 5 )  . Hence  there is no approxi- 
mant for N 5 4 . The factorization of H ( 1  ,3 3 )  becomes 

and we get [3   ,2]  = [(x2, ( 1  - x  7 x"] . This time 
Q(1 ,3 3 cannot be  made  upper-triangular,  and  this  ex- 
ample is not  calculable by the  methods in [ 2 ]  or [ 3 ] .  

Example 3 
Let s = t = 2 and consider the sequence 

We wish to calculate the first PadC-approximant for 
k = 1 . Proceeding  analogously to  the scalar-valued case 
we  have  after a  few steps  the factorization of H ( 1 ,3 ,3)  : 

- 

I 3  1 2  3 1  

4 3 O I O  ]=I: ; 1 ] 1 -; -; j]. 
10 10 3 3 10 10 2 I 
- 

P Start 

Pick  the 
least M such 

that M 2 1 - k  and 

S e t n + k + M  
N + n + M  ' 1 

~ 

Figure 1 Main  algorithm for the Pad6 approximants. 

We  then  obtain 

To compare  the efficiency of our algorithm to  those in 
[ 3 ]  we  assume  that s = t = 1 . The  number of arithmetic 
operations required to calculate [n  + 1 , m + 11 from 
[n  ,m] is about n2 + m2 ; to obtain [n  ,mJ it takes n" + m2 
operations.  The algorithm in [ 3 ]  , taking advantage of the 
special Hankel-structure of the matrix H ( k  ,n , N )  and 
the assumption that all the principal  minors of this ma- 
trix are  nonzero, only requires  about n2+.m2 operations 
to  get [n  ,m] . However,  as  that algorithm works through 
the  Padt-table along the  upper right  row-lower  left di- 
agonal it still takes ( n  + 1 ) 2  + ( m  + I )' operations to 
pass from [n  , m ]  to [ n  + 1 ,m + 11 ; i.e., the given  re- 
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cursion is useless  for the diagonal direction, which is the 
direction of most interest. 

Finally, we mention that by setting k = 1 and relaxing 
the requirement  that P," # 0 ,  see Fig. I ,  we can deter- 
mine all the partial transfer  function realizations for a 
linear system defined by its impulse response  series A,, , 
A , ; .  . .  

Inverse of x /  - A 
An immediate application of our solution to  the  matrix- 
valued Pad6 problem is to calculate  the  inverse of the 
characteristic matrix x/ - A  for  any t X t .matrix A as 
well as the minimal polynomial of A . Our solution turns 
out to be somewhat simpler than the formulas due to 
Faddeev.  See Ref. 7. 

We begin by considering  the  formula 

( X /  - A ) "  = A ( x ) / A ( x )  , (14) 

where A (x) = det ( x f  - A ) , and  the matrix polynomial 
A ( x )  , the adjoint of A , has  degree  one  less  than the de- 
gree t of A(x) . This means that if the coefficients of the 
expansion in the parentheses in Eq. (1 5 )  

are fed into our algorithm with k = I , the algorithm will 
produce  as  a last printout the approximant [ n  ,n - I ]  = 

P' (x-')/q' (x-') for  some n no  greater  than t . We then 
have the formulas 

where q(x) , rather than q' (x") , is the minimal poly- 
nomial of A . But since q(x) is the lowest degree poly- 
nomial for which q ( A )  = 0 ,  the  approximant [ n  ,n - 1 ] 
is at the  same time the first and only printout of the 
algorithm! 

Because of the importance of this application we give 
an  analysis of the  behavior of the algorithm using P ( x )  
and q(x) rather than P'(x") and q'(x") . WithAi = A ' ,  
i = 0 ,  1 , . . . , and ut as defined in (8) the algorithm will 
find the  least integer n such that an+, is a linear combina- 
tion of the ui's for i = 0 , . . . , n , and will determine  that 
linear combination. This is done by factoring  the  down- 
wards-growing matrix 

a I t  

as in (1  1) until a  zero-row appears in the  second factor. 

Inverting  the  triangular first factor gives the minimal  poly- 
nomial of A as  the last row of the  inverse: If that last row 
is (dn." ,  dn,, , . . . , d,,,-, , 1 )  then qi = dn, ' ,  4 ,  = 1 , and 
q(x) = x:=o q i x ' .  The coefficients of P ( x )  are then given 
by 

P,l-l = 1 

P,_% = q,-J + A 
(17) 

P ,  = qJ + q3A + . . . + q,_lA"-3 + A"-' 

Po = q,f + q2A + . . . + q,-,An-2 + A " " .  

This algorithm requires of the  order of t3n operations 
for finding the  inverse and the minimal polynomial of a 
t X t matrix,  where n is the degree of the minimal poly- 
nomial. This  compares well  with the Faddeev-formulas, 
which require of the  order of t4 operations. Our method 
also gives the minimal polynomial directly without a need 
to find the  common factors in the elements of A (x) and 
A(x) in (14). 
As an  example take 

A =  0 0   1 .  r: :I 
A factorization of the matrix defined by uo ,ul , and up  re- 
sults in: 

1 0 0 0 1 0 0 0 1  

1 0 0 0 1 0 0 0 1  

1 0 0 0 1 0 0 0 1  

0 0 0 0 1 1 0 1 1  

0 0 0 0 0 0 0 0 0  1 1 

I 

1 0 I. 

and we get 

( x / - A ) - I = x / + A / x 2 -  1 .  

Finally,  for better numerical performance in this ap- 
plication we should replace the rule for choosing the 
pivotal point in the algorithm of the  factoring problem 
section by the following: Let s ( i )  be the least integer such 
that qi,s(i) # 0  and  that (qi,s(i)l is maximum. 
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