J. Rissanen

Recursive Evaluation of Padé Approximants for

Matrix Sequences

Abstract: An algorithm is described for calculating the existing Padé approximants to any sequence A

oA, - of s X t-matrices. As

an application the algorithm gives a new way for finding the minimal polynomial of any square matrix A and the inverse of the charac-

teristic matrix x/ — A .

Introduction

The classical Padé approximation problem [1] is to find
two polynomials of prescribed degree, P(x) = :';0 22 X
and Q(x) = 2:‘:0 4 X, with ¢,= 1, such that for a given
function f(x) = Y7 a, x',

f(X)Q(X)_P(X)=AX"H"+1+BX"HH+2+. . (1)

The rational form P(x)/Q(x) is called the [n,m] Padé
approximant to f(x).

Recently studies have been made to generate the Padé
approximants recursively; several algorithms are de-
scribed in [2] and an improved recursion scheme is
given in [3]. In both of these studies it is assumed that
the function f(x) is such that all the Padé approximants
not only exist but also are in their reduced form; i.e.,
there are no common factors in P(x) and Q(x). This as-
sumption seems to be a severe restriction because it is
not easy to tell when a function has that property, and
moreover, the algorithms fail if just one of the intermedi-
ately calculated approximants either is not in its reduced
form or, worse yet, does not exist.

In [4] the Padé problem was generalized for the case
where the coefficients of the power series expansion of
f(x) are s X r-matrices. An approximant was then taken
of the form P(x)Q"'(x). where P(x) is an s X ¢ and Q(x)
a ¢t X t matrix polynomial. In addition, recurrence equa-
tions for evaluating the approximants were derived for
certain special cases.

We shall study another generalization of the Padé
problem that differs from the preceding one in that Q(x)
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is taken to be a scalar polynomial. We also relax the re-
quirement that all the approximants exist.

Our version of the problem, although no less general
than the previous one, has its most natural applications in
certain special cases. One such is the problem of finding
the inverse of the characteristic matrix xI — A in the
form P(x)/q(x), where g(x) is the minimal polynomial of
A. Other applications appear in the area of systems iden-
tification, where the so-called transfer function of the
system has precisely the form P(x)/q(x) . In this context a
criterion for the existence of the approximants was given
in [5]. Our algorithm is an outgrowth of one studied
in[6].

Generalized Padé approximants

Let P(x) = E:’io P, x and Q(x) = 2?:0 0, x' bes X ¢~ and
s X s-matrix polynomials, respectively, where the ma-
trices P, and Q, have real-valued elements. If the deter-
minant g(x) = |Q(x)| does not vanish for all values of x,

the rational form

Cx)=Q '@IPx)=Tx)/q(x) = C, x' @)
i=0
may be defined. Here, T(x) is a matrix polynomial de-
termined by P(x) and O(x).
We define the Padé-approximants in the following way:

If a subset 4,4, , - -, A, of aninfinite set of s X -
matrices 4,, A,, - - - determines two polynomials
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P_n,m(‘x) = zirio Pi(n’m)xl and qn,m('x) = 27:0 qi(n’m)
x', g, (n,m)y=1, of prescribed degree m and n, re-
spectively; i.e., P, (n,m) # 0 and q,(n,m) # 0, such
that in the expansion of the rational form,

Pn,m(x)/qn,m(x) = E Cixi ’
i=o
1) C,=A,fori=0,1,---,Nand (3a)
2) there is no common factor other than (3b)

*1in g,,(x) and all the elements of
P, ().

then the pair (P, (x), 4, ,(x)) , also denoted [n,m],
is said to be a Padé approximant to the series A,
A , e

1

Requirement (3b) implies that [#,m] is unique. Fur-
ther, the approximants do not depend on N; hence N
need not appear in the polynomials nor in the approxi-
mant [n,m] .

The present definition extends those in [1 to 3] in that
all the approximants need not exist. Moreover, if one
exists it is unique; in other words, the rational form in
question is in its reduced form.

Conditions for approximants
Consider the equation

N n m ’

Ax g ) =S P xX=B """ +---+B_ ",
4 T 4 T 4 1 1 n
i=0 i=0 i=0 (4)

where N = max (n,m), gq,= 1, and

B, =qA,+tq, A, +---+q,A

N—n+1
N—n+2

B,=q, Ayt - +q,4

Bn = an

N-*

Define P,=0fori>m, q,=0fori>n,and 4,=0
for i < 0. Then the coefficients of x” in (4) yield

forr=0,1,---,N. 5)

quAr_l=P forr=0,1,---,m (6)
i=0

and

n .

> qA, ;=0 forr=m+1,---,N. (7

Since any solution (g, , - - -+, g,) of (7) defines through
(6) a solution (q,, - - -, q,, P,, -, P,) of (5), the ex-
istence of a unique solution for (7) is equivalent to the
existence of a unique solution for (§).

For each i, i = N, write Ai=[a].k(i)], 1=j=s,

1 =k =1t,asthe | X st vector,
Cay (), ay]. ®)

a,=la, (), a,0), -

Further, define the 1 X (N — m)st vector

h, = (a

J

T aN—n+j) (9)

forj=0,--,n.

m—n+j+1 "’ am—n+j+2 i

Finally, for k = n — m define H(k,n,N) as the (n + 1)
X (N — m)st matrix whose jth row forj=0,1,---,n
is given by /#;.

Then the system (7) can be written as
(4> Gy s

L q)Hk . N)=0. (10)

For this equation a unique solution with g, = 1 exists
if and only if the rows h,, - - -, h,_, are linearly inde-
pendent and A, is linearly dependent on them.

Suppose that (10) has a unique solution and suppose
further that P,, with m = n — k from (6) and ¢, turn out
to be nonzero. Then P(x) =", Px' and g(x)= St
g;x define the approximant [n,m] for the sequence
A,,A,, - -. Conversely, suppose there is an approx-
imant [n,m}= [P, (), q,,(x)] for the same sequence.
Then by (3a), Egs. (6)-(7) with g(n ,m) = q, and P{n ,m)
= P, hold. Also, both P, and g, are nonzero. The exis-
tence of [n,m] implies that /, is linearly dependent on
h,, -, h,  ,and the requirement (3b) further implies
that A, - - -, h, , forms a linearly independent set.

It is clear by (3b) that the existence of an approximant
[n, n— k] satisfying (3a) for some N implies that no
approximant of the type [n’, n’ — k] for n’ < n and satis-
fying (3a) for the same N can exist. Another line of rea-
soning leads to the same result: each of the first n' + 1
rows of H(k,n,N) appears as a subrow in the correspond-
ing row of H(k,n’,N). Since this makes all the rows of
H(k,n' N) linearly independent, the result follows.

In general cases where the matrices A, have no special
properties it is necessary for an approximant to exist so
that n = (N — m)st. This means that the degree of g(x)
grows rapidly when s and ¢ are large, which makes these
kinds of approximants less attractive than those of the
type P(x)Q~'(x) . In special cases, however, such as those
studied in the last section and in systems identification
problems, where g(x) has a special meaning, our types
of approximants are the only ones of interest.

A factoring problem

Suppose k, n, and N are such that the first n rows of
H(k,n,N) are linearly independent. Consider the fol-
lowing factorization of H(k,n,N) (and although we illus-
trate the case k > 0, the given rules apply to the case
k = 0 as well):
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0 a, a, o ay,
) (l” (l] e u.\'—n+1
a,
£m+1 U ay ]
H{k.nN)
K T ey (N— m)st— 1]
o 1
= |1y sy 1
_‘n,n ’n,l T rn,n—l! gn,(} oy (N — m)st — l
R (n) Q (k,n,N) (1n

The elements of R(n) and Q(k,n,N) are uniquely de-
termined by the following rules, which allow their cal-
culation recursively one-by-one. At the same time we
also calculate the inverse D (n) = R (n)™" which is lower-
triangular. Observe, that for each pair »’ and n such that
n =n,D(n')isasubmatrixof D(n) .

Step 1. Set the first row of Q(k ,n,N) equal to the first
row of H(k ,n,N).Set R(0)=D(0)=(1).

Step 2. Proceeding recursively we shall have determined
at the ith row all the rys and g ’sfor h=0,1,-- -,
i as well as R(i) and D(i). Let s(i/) be the least integer
such that ¢, , # 0. For i<n+1, s(i) exists. Set
G0 =0 for all # > i. Equation (11) leads to a set of
i + 1 equations, one for each column s(j) ,j=0,---,i.
From these equations the unknowns r,, ,, - * -
be found recursively one-by-one, which gives R(i + 1)
and D(i + 1) . The latter further determines the g
which terminates the cycle.

s
i+1.js’

If now, in addition, the last row of H (k ,n ,N) is linearly
dependent on the first n, the last row of Q(k.,n N) is
zero and is the only such row. But then the last row of
D(n), namely d,,, d,,, ", d,,_,» 1), spans the
space of solutions to the equation

xXHk,n N)=0. (12)

In that case we define

Gy (¥) = 3 g,(n,m)x’
=0

x)=>> P(n )x (13)
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where g,(n,m) =d, ,_, and the P;(n,m)’s are determined
by (6) with g, = g,(n ,m) .

We conclude that the approximant [n ,m] = [P, (x),
Dm (x)] obtained from (13) exists if and only if q,(n,m)
and P, (n,m) both turn out to be nonzero.

The preceeding factoring algorithm is clearly related to
a Gauss-elimination scheme with a particular choice of
the pivoting elements [7]. This choice is so made that the
following is true: Foranyn’ and N’ ,n’ = nand N' = N,
the last row of the corresponding submatrix H (k ,n' ,N')
of H(k ,n,N) is in the linear span of the other rows if and
only if the last row of Q (k ,n' ,N') is arow of zeros. Then
as above the last row of D(n') satisfies the equation
x'H (k ,n' N’} = 0. This means that the one and the same
factorization will also give us the approximant [n’' ,n’ — k]
if it exists. Hence, we can continue the factorization in-
definitely and obtain all the existing approximants with
n— m=k as fixed just by picking out certain rows of
D (n) . The details of the resulting algorithm are described
in the next section.

Observe that we need not—and to get recursion we
must not—perform any apriori reshuffling of rows and
columns of H(k.,n ,N) in order to guarantee that the
principal minors be nonzero, as must be done by applying
the other versions of the Gauss-elimination scheme.
Then, naturally, we cannot get Q(k,n,N) as upper-
triangular in general, but that is no disadvantage whatso-
ever. However, our fixed rules may cause difficulties due
to round-off errors in inverting R (n) if H(k ,n ,N) is ill-
conditioned. As a safeguard to this, one should check that
any picked last row of D (n) indeed produces a zero-row
in Q(k ,n ,N). If that does not happen, one may recalcu-
late that particular row by refactoring H (k ,n ,N ) by a dif-
ferent choice of the pivotal points. For instance, change
the rules above by letting s(i) be the integer for which
|qi,s(1’)| is maximum. After the correct row of D(n) is
found, the original factorization routine will be continued.
It is possible to devise other variations of the rules to
preserve recursion while handling various types of nu-
merical difficulties. See, e.g., the analysis in the last
section.

Algorithm

In order for the desired conditions to be maintained, the
main algorithm need only take care of how H (k ,n ,N) is
to be grown. We illustrate the algorithm described by the
flow chart in Fig. 1 by calculating the approximants of
several sequences, where the input in each example is a
given sequence 4, A4, , - - -, ANO and k.

e Example 1

We calculate the first three approximants with k=0
for the sequence 1,1 .44 75 which constitutes the first
five coefficients in the series expansion of ¢”. The first
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approximant is [0,0] = (1,1). We obtain after H (0,
1,2) the second approximant, [1,1]=1{(1+4x). (1
—4x)]. Continuing, the factorization of H (0,2 ,4) be-
comes

— — —

I I3

g =

|
o
—
<
-

1 1
[ 24 |

2
(S
fan]
o

This gives

—

D2)=|-

pof=
—_—

1T
Do
—

and the third approximant, [2,2] = [(1 +4x + 12x)),
(1 —4x + 2] .

e Example 2

For the sequence 0,0,1,1,1,2 and & = 1 we calculate all
the approximants. We have in Fig. 1 M = 2 which gives
the initial matrix H(1,3,5). Hence there is no approxi-
mant for N = 4 . The factorization of H (1,3 ,5) becomes

0 0 0 1 0 0 1
01 1|=]|1 1 01 0,
11 1 11 1 I 00
1 1 2 21 1 1 0 00

and we get [3,2]=[(x*, (1—x—x"]. This time
Q(1,3,5) cannot be made upper-triangular, and this ex-
ample is not calculable by the methods in [2] or [3].

e Example 3
Let s = ¢ =2 and consider the sequence

1 3 1 1 4 3 10 10
t 2] 0 1| [v ol |3 3]
We wish to calculate the first Padé-approximant for

k = 1. Proceeding analogously to the scalar-valued case
we have after a few steps the factorization of H(1,3,3) :

I3 12 1 I3 1 2
1 1 0 1 11 0 -2 —1 —I
4 03 10 |4 %1 0 0 % -3
10 10 3 3] (10 10 2 1,0 0 0 ©

Pick the
least M such
that M > 1—k and
Apy=0.
Setn < k+M
Nen+M

Form H(k,n,N) and
extend factorization:
H(k,n,N)=R(n) O(k,n,N)

D(n)=R(n)~1

Add.onerow to
H(k,n,N)
(nen+1,
N<N+1)

row of Q(k,n,N)

Calculate
Pn’n_k(x) and

qn,n—k(x)

Add st columns to
H{k,n,N)
(N<N+1)

q,(n,n—k)#0
Pm(n,n—-k) #0

Main algorithm for the Padé approximants.

Figure 1

We then obtain

[1 3:’ |:] 5:' [1 _z:l 2
— v + X
[3.2]= 1 2 2 3 0 —4 .

1 —2x—x"— X

To compare the efficiency of our algorithm to those in
[3] we assume that s = = 1. The number of arithmetic
operations required to calculate {n+ 1, m + 1] from
[n,m] is about n” 4+ m® ; to obtain [n ,m] it takes n* + m’
operations. The algorithm in [3], taking advantage of the
special Hankel-structure of the matrix H(k ,n,N) and
the assumption that all the principal minors of this ma-
trix are nonzero, only requires about n”+.m” operations
to get [n,m] . However, as that algorithm works through
the Padé-table along the upper right row-lower left di-
agonal it still takes (n+ 1)*+ (m + 1)® operations to
pass from [n,m] to [n+1,m+ 1]; ie., the given re-
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cursion is useless for the diagonal direction, which is the
direction of most interest.

Finally, we mention that by setting £ = 1 and relaxing
the requirement that P, # 0, see Fig. 1, we can deter-
mine all the partial transfer function realizations for a
linear system defined by its impulse response series A4, ,
A] R
Inverse of xi — A
An immediate application of our solution to the matrix-
valued Padé problem is to calculate the inverse of the
characteristic matrix x/ — A for any ¢ X ¢t matrix 4 as
well as the minimal polynomial of 4 . Qur solution turns
out to be somewhat simpler than the formulas due to
Faddeev. See Ref. 7.

We begin by considering the formula

(xI —A) ' =A)/Ax), (14)

where A(x) =det (x] —A), and the matrix polynomial
A(x) , the adjoint of 4 , has degree one less than the de-
gree t of A(x) . This means that if the coefficients of the
expansion in the parentheses in Eq. (15)

l—A) "=x""U+x"'A+x7247+- ), (15)

are fed into our algorithm with & = 1, the algorithm will
produce as a last printout the approximant [n.,n— 1] =
P (x"YH/g (x7") for some n no greater than r. We then
have the formulas

AP (Y _Pkx)
¢ (x) " g

(xI—A)"'=x Lq,=q,=1, (16)
where ¢(x) , rather than ¢’ (x™'), is the minimal poly-
nomial of 4. But since g{(x) is the lowest degree poly-
nomial for which g(4) =0, the approximant [n ,n — 1]
is at the same time the first and only printout of the
algorithm!

Because of the importance of this application we give
an analysis of the behavior of the algorithm using P(x)
and ¢(x) rather than P’ (x™") and ¢’ (x ") . With A, =4,
i=0,1,---,and g, as defined in (8) the algorithm will
find the least integer n such that a,,  is a linear combina-
tion of the a’s fori=0, - - -, n, and will determine that
linear combination. This is done by factoring the down-
wards-growing matrix

as in (11) until a zero-row appears in the second factor.
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Inverting the triangular first factor gives the minimal poly-
nomial of A as the last row of the inverse: If that last row
is (d,,.d,,,+".d,,,,1)theng;=d,;,,q,=1,and
q(x) =Y, gx . The coefficients of P(x) are then given
by

P, =1

n—1

Pn~2 = qnfll + A
a7

P=gl+gAd+---+gq, A" " +4""

P=ql+qA+---+q_A""+4"".

This algorithm requires of the order of ¢°n operations
for finding the inverse and the minimal polynomial of a
t X r matrix, where n is the degree of the minimal poly-
nomial. This compares well with the Faddeev-formulas,
which require of the order of ' operations. Our method
also gives the minimal polynomial directly without a need
to find the common factors in the elements of 4 (x) and
A(x) in (14).

As an example take

-1 0 0
A=] 0 0 1
0 1 0J

A factorization of the matrix defined by 4, ,a, , and a, re-
sults in:

1 00 010001
-1 00 0 01 010
1 0060100 01

1 1 00 01 00 01
000O0T1T10 11

I 0 1 00 00 O0O0O0O0O0

and we get
(I —A)'=xI + A~ 1.

Finally, for better numerical performance in this ap-
plication we should replace the rule for choosing the
pivotal point in the algorithm of the factoring problem
section by the following: Let s (i) be the least integer such
that ¢, # 0 and that |g, | is maximum.
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