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Multivariate Ritz-Trefftz Method

Abstract: In this paper the numerical properties of the Ritz-Trefftz algorithm are discussed in the context of the numerical approxima-
tion to the linear parabolic regulator problem using multivariate splines. The algorithm is first derived in the problem context and the
resulting linear algebraic system is discussed. Such properties as definiteness and band structure are treated. The algorithm is applied
to a number of sample control problems, and it is shown that the method yields efficient and highly accurate continuous approximations
to the solutions of the selected sample problems. Computer implementation of the general algorithm is also discussed.

Introduction

In [1] the authors developed the Ritz-Trefftz algorithm

for the numerical treatment of the linear parabolic regu-

lator problem. We describe the problem again in the pres-

ent context of numerical properties of the algorithm.
Minimize (over « and f) the quadratic cost functional

Jmuﬂ=%f_[{wu,n,gu,wwa»

+{ulx, 1), R(x, Hulx, t))dxdt

T
w1 g s (1)
0
subject to linear partial differential equation constraint
w(x, uix,
%=A(x,t)a—v(iﬂ+8(x,t)u(x,t) 2)
. 2

and associated boundary and initial conditions given by

v(x,0) =y, (x), 0=x=1 3)
and
a0, ) + 2290 _ ey 0=t=T (4)
ax
auv(l,t)
1.+ oy, 0=:=T.
Bu(l,1) " )

We assume that v is an n-dimensional state vector and
that « is an r-dimensional boundary control vector. Fur-

‘fAngular brackets indicate a vector interproduct notation.
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ther, we assume that ued, , ved,, and fed , where
A4,.A4,, and 4, are suitable Sobolev spaces. Here 4 is
an n X n matrix function, Q and § are n X n positive
definite matrix functions (we note here that either Q or
S could be identically zero, the development for these
cases is straightfoward and not presented in this paper),
B an n X r matrix function, and R an r X r positive defi-
nite matrix function. We require that o, 8 and ¢ be sca-
lars, that A, B, Q, R be (elementwise) in C'[0, 1] X
C”7'[0, T] and that v,(x) be in C*[0, 1] (here C” is the
space of y-order continuously differentiable functions on
[0, 1]). We require that y be greater than one. The ter-
minal time, T, is assumed fixed and 0 = r = n.

The basic notion of the algorithm is the replacement of
the infinite dimensional constraints (2) to (5) by the re-
laxed (finite dimensional) constraints given by

Tt o v
f wl.(x,t)<———|—A .)+Bu) dxdt =0 (6)

0 Yo ot ax” "J

1
f w,(x, t)[vlx, 0) —Uo(x)]]. dx=0 (7
i\

7 0,
j w, (0, t)[—chr av(0, 1) +M] dr=20 ®)
3} ox J

r
f wi(l,t)[,Bv(l,t) +3"(—1’J—)] di=0 ©)
o ax 7
fori=1,2,-+-,mandj=1,2, - -,n.The functions

wix, ) (i=1,2,-,m) form a basis for any conven-
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ient finite dimensional space S, over the rectangle [0, 1]
X [0, T] . Although conditions (6) to (9) are in the Galer-
kin tradition, we do not require that the elements v, u
and f'lie in §,, as in the standard Galerkin approach. The
concept is closely related to that of Trefftz, who first
used a similar idea to produce approximate solutions to
partial differential equations.

In [1] the authors presented error bounds for the cost
functional as well as for the state and control. In addition
they pointed out in detail the theoretical advantages of
the Ritz-Trefftz method over the standard Ritz procedure.

In the present paper the numerical properties of the
algorithm are our chief interest. In the next section we
present a short derivation of the algorithm in the problem
context. Subsequently we establish the definiteness of
the resulting matrix and discuss some resulting numerical
implications of this property. We spend some time dis-
cussing the band structure of the matrix and the computa-
tional complexity of the elements of the matrix. Then we
present some numerical examples to illustrate the compu-
tational efficiency and accuracy of the algorithm. We con-
sider a simple problem for which we have an analytic
solution for accuracy comparisons and two slightly more
difficult problems from mathematical physics, i.e., a laser
cooling problem and the optimal heating of a slab (see
Sage [2]). The last section contains some remarks con-
cerning the implications of the results presented in this
paper.

Ritz-Trefftz algorithm for parabolic regulator
The problem (1) to (5) is known to be equivalent to com-

puting
max min Llu,f,v;Al, (10)
)\zA)\ ued,,

feAf

where L[u, f, v; A] is defined by

Liu, fiv: A =J[u,f] +f:fol <>\1(x,t),——
A8 i
+f0] (3, w(x, 0) = u,(x))dx
+fT (0,

v (0, t)
P00y,
ox

—¢f +av(0, 1)

+LT <)\4(z) , Bu(l, 1) +%-)->dt,
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where A= (A,, A,, A;, A,) and A4, represents suitably
choosen dual spaces. Replacement of (2) to (5) with (6)
to (9) is then equivalent to computing

max min Llu,f,v;A]. (12)
AeS,, ued,,
feAf

ved,,

It is easily shown, by standard variational arguments,
that this problem is equivalent to computing

max Liu,,f,, v A, (13)
res®,
where
u,(x, 1) =—R7'B'\(x, 1) (14)
£ =cS7'4'(0, HA(0, 1) (15)
b (x, 1) ——Q“{a)‘ i(;:ﬁ} (16)
A (x) =—A(x,0) (13)
A (1) =440, HA(0, 1) (18)
N () =—A'(1, DA, 1) . (19)
Here we have taken A(x, 1) =\, (x, 1),

={xeS, : Ax,T) =0, a(dN)(0, 1)

N (AN (0, 1) —0.
ox

and
B(At)\)(l,t)—f—Mt—)\-‘a)—;O’—t):O}. (20)

Problem formulation (13) serves as the basis for the
computational procedure. Let w(x, ) (i=1,2,---,m)
form a basis for an. Then if AisS,z (notice that A is an n-
vector), we conclude that

AMx, )= g“ nw(x, 1), (x,)el0, 1] x [0, T], @21
=

where n,(j=1, 2,
efficients.

We now derive an expression for L in terms of the ;.
We first note that

, m) is some set of n-vector co-

L[u,f,v;x]=1[u,f]—f ()T
SRS :>—<v""§'f>};
ef [ {2222

+ (A, Bu}}dxdt

dt
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[ o - et 0.0

4 (0, t)>dt

ox

+ <)\4 , Bu(l, 1) +ﬂ}~(alx—’t)—>}dt

+f (A, vlx, 0) —v,(x))dx. (22)

From conditions (14) to (19) we deduce the result

Ll[ux,fpvx;)\]=—l[u,f]+f (A(x.0), v (x))dx.
(23)

From (21) we now obtain

1 T m m 1 T
ff (u, Ruydxdt =33 n; U f Eij(x,t)dxdt]"r)j
0v0 i=1 j=1 00

(24)

where E; is an n X n symmetric matrix defined by
Ei].(x » D =wix, t)wj(x , DB(x, DR '(x, l)Br(x , 1) . Simi-
larly, we find that

f:) f: (v, Qv)dxdt=2 i n; [f: f: Fi(x, t)dxdt}nj(25)

and o
f: f, Sf)dt:é;é 77: [f: Gij(t)dt:lnj’ (26)
where

Fl.j(x, 1) = w;(x, t)wj(x, HO Hx, 1)

. azijt(x 1)

+w,(x, )0 2
ax

. dtw, A x,t

+w(x, NQ ‘——(—)
ax”

aw,A' o Fw.A(x, 1)
ax® ax” 27

and
Gyjx, 1) =c*wi (0, Hw;(0, 1) A0, 1)S™'4°(0,1). (28)

Finally, we have that

m

j; A (x,0), v,(x))dx =3 Ul w,(x, O)Uo(x)dx]ni.

i=1 0 (29)
We now perform the maximization indicated in (13). A
necessary condition for the maximization of L{u, . f, .
v,sAl=L[n,,m,, -, m,] overu, is that
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m

~ T ,l
ir_1 EU f {E,+ EL+ F,y + F}dxdt
i J=1 0o

T 1 .
+j {G,;+ Gi;}dt]nj-Fj wi(x, 0)y,(x)dx  (30)
0 0
=0

fori=1,2, -, m. Define M, by

T p1
M”:%f f {E;+ E/+F;+F}dxdt
0 0

1" .
- N e . 31
+2f0 (G, + G/ }dt (31)

Then, in terms of the n,, Eq. (30) is equivalent to the
linear system

My=b, 32)

where the (mn X mn symmetric) matrix M is defined by

Mll M12 : Mlm
My, My M,
M=|. . M, =M, (33)
Mml Mm2 e Mmm
and v and b are given by
1
h J- w, (x, 0)u, (x)dx
T’z 0
y=|. 1. b= . . 349
1
" f W, (x, 0)v,(x)dx

0

Numerical properties of algebraic system

In this section we establish the positive definiteness of
M, and show that the matrix is sparse and has band struc-
ture, providing we select the patch basis for the space
Sm0 . We first prove a theorem in which the definiteness of
M is established.

o Theorem

Assume that M is given by Egs. (31) and (33) for the
linear parabolic regulator problem. Then the matrix M
is positive definite.

Proof: Suppose yeR™, y # 0. Let A\ correspond to y
according to Eqs. (32) to (34) and (21) and let «, f,
and v correspond to A according to Egs. (14) to (19).
Then we have by (24), (25), and (26)

T 1
yMy = %y'{ f J [E+E' + F + F'ldxdr
0 0

+fT[G(1,t)+G‘(1,z)—G(o,t)
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- GY0, t)]dt}y

=f:];w,Ruﬁhdr+f:f:@,Qvﬂﬁm

+f0T<f,Sf)dz

=2J{u,f]. 35)

The proof is now complete since J is a positive definite
form in the variables u, f, and v.

We remark here that the standard Ritz method does
not utilize relationships (24) to (26). The functions u,
f» v, and \ are each restricted to S, , and it can be shown
that the resulting matrix is indefinite.

For numerical work the definiteness of M is obviously
extremely significant, especially in large problems. For
example, suppose §,, is a space of multivariate cubic
spline on some appropriate mesh. Let {w(x, N}}., be
the patch basis for .S, . Then we have

[ | o e nawti=o, (36)

where each pair (7, j)e{(i,j):d(i,j) = 4}. Here d(i,])
= max{li, = j,|. i, —hyl -+ -+ liy—Jul} and i= G, . i,

5 0) i =, »Jss " * *»J,) are n-tuples which represent
a coordinate index set for the basis functions. For ex-
ample, if we consider a vector problem of a single spatial
variable with r, mesh points in x, , mesh points in time,
and index the components of M along the spatial coor-
dinate, M assumes the form

-

» (37)

where the lines represent the nonzero matrix subdiagonal.
Each element on the diagonals is an (n X n) block matrix.
Since M is positive definite, we can now apply a Cholesky
decomposition to (32). It is well known that the Cholesky
algorithm is extremely stable, and we retain the band
structure in the decomposition, i.e., zeros outside the
band remain zeros throughout the decomposition. Us-
ually however, zeros within the band are filled in. It can
be shown that the number of multiply-adds required for
the Cholesky decomposition of a matrix with band width
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2b + 1 is approximately b+ b times the order of the
matrix. Thus, in our case, taking b = (2r, + 3)n, we ob-
tain approximately [(2r, + 3Vr + 2r, + 3nl[nrlr, +
1)] = O(4r}n’r,) multiply-adds instead of O(37irin’) as is
the case with Gaussian elimination. We remark that, in
the standard Ritz procedure, Gaussian elimination is
normally used since the resulting matrix is indefinite.

We next consider the difficulties involved in computing
the matrix. We discuss the computational requirements of
generating the M matrix for several choices of uniform
grids.

In Fig. 1 we present data generated from a computer
code designed to count the number of integrations re-
quired to accurately generate the M matrix. We count
only integrations which are possibly nonzero [i.e, those
along the diagonals in (37)]. Also only half the matrix
need be generated since M is symmetric. Since splines
are not homogeneous polynomials over the entire region
of integration, all regions of integration are assumed to
be the subrectangles of the mesh so that a single element
of M may involve several independent integrations. We
count in thousands of integrations per state variable.

Figure 1 is approximately expressible by no. ops. =
[r,(r,— 1)/16] thousands. If we use a Cartesian four-
point Gauss integration scheme, we have sixteen func-
tional evaluations per integration so that the number of
functional evaluations required to generate M is approxi-
mately O(rr,) in thousands per state variable.

In the next section we apply the Ritz-Trefftz algorithm
to three sample problems.

Some numerical examples

s Sample problem

We begin this section by considering a simple parabolic
system of one scalar variable with additive control only.
Consider the system

du(x, t) _ avlx, 1)

2

+ulx, ), (x,Del0,1]1x][0,1]

at ax (38)
with the initial condition
vix,0)=1, xe[0, 1] 39)
and boundary conditions
wO.0_wll.0_o 0,11, (40)

ax ox
The cost functional is given by

1

J[u,v]z%jo fo {V*(x, ) + u*(x, 1) Ydxdt . 41)

We take the set of admissible controls, 4, and the set of

U’
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admissible states, 4, , to be the set of Lebesque square
integrable functions over the rectangle [0, 1] x [0, 1].

We can easily solve this problem analytically. From the
necessary conditions (14) to (19) and the calculus of
variations, we deduce that in order that «* and v* be an
optimal solution to (38) to (41), there must exist a mul-
tiplier A*eL, corresponding to («*, v*) such that

N*(x,1) L N*(x, £)
ot ax”

+v¥(x,1)=0,

w*{x, 1)+ A (x,1)=0, (x,)el0, 11x [0, 1],

A*(0,1)  aa*(l,1)
dx - ax

AM(x,1)=0,

=0, te[0,1], and

xe[0,1]. (42)

Using the equations (38) to (42) and exploiting the
symmetry in x, we obtain the following solution for «*
and v* :

u*(x,t) = sinh (1) — cosh (¢) sinh (1)/cosh (1)
v¥(x, t) = cosh (r) —sinh (r) sinh (1)/cosh (1). (43)

We list in Table 1 the results to five decimal places ob-
tained from the Ritz-Trefftz procedure over a 4 X 4 grid
using a bicubic spline basis with boundary conditions
enforced. All calculations were done in eleven plus
decimal digits accuracy and the system My= 4} was
solved using a Cholesky decomposition without iterative
improvement.

The L, norms [u* — il|, and [[v* — ol|, (Where i and ¥
denote the computed control and state, respectively)
were also calculated using a Cartesian four-point Gauss
integration scheme over each subrectangle. The results
are

e — afl, = 7.9066 x 10~°
[[v* — 2ll, = 7.4660 x 10~ (44)
Jlia, 5] =0.76159.

We notice that the error bound on # is an order of mag-
nitude better than the bound on 0. This is to be expected
and is consistent with other spline applications in nu-
merical analysis, since our problem has no spatial varia-
tions and therefore the spatial derivatives do not affect
the accuracy of the solution. The computed state, how-
ever, is time varying and is calculated from the time de-
rivative of the Lagrange multiplier A.

From the considerations of the previous paragraph
(problem symmetry, smoothness, etc.) and the results
obtained by Bosarge and Johnson [3], we should expect
the error bound on & to be O(/4") and the bound on o to be
O(h% . Using these error bounds we calculate the empiri-
cal order constants to be 6.4 X 107" for # and 2 x 107"
for 0. These estimates are in good agreement with order
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No. integrations (thousands)

4 8 12 16

Grid size 12

Figure 1 The relationship between the number of integration
per problem and the grid size.

Table 1 The analytical and computational solution to the
sample problem.

t u* i v* v
0 —0.76159 —0.76159 1.0 0.99974
0.1 —0.66524 —0.66524 0.92872 0.92883
0.2 —0.57554 —0.57554 0.86673 0.86669
0.3 —0.49160 —0.49161 0.81342 0.81331
0.4 —0.41259 —0.41259 0.76824 0.76837
0.5 —0.53770 —0.33769 0.73076 0.73079
0.6 —0.26619 —0.26619 0.70060 0.70050
0.7 —0.19735 —0.19735 0.67744 0.67744
0.8 —0.13048 —0.13048 0.66105 0.66110
0.9 —0.64913 —0.64912 0.65130 0.65130
1.0 0 0 0.64805 0.64804

constants computed from spline applications in other
areas of numerical analysis. The constants can be esti-
mated from approximation theory using the Peano Ker-
nel theorem. For the natural cubic spline the constants
can be shown to be somewhere near 0.001 times the norm
of the fourth derivative of the function being interpolated.

o Laser heating problem

Here we consider the optimal cooling of a high-power
(one megawatt) cw laser. After normalization and assum-
ing that all heat transfer is by diffusion, we obtain the
system illustrated in the figure. The arrows indicate the
heat diffusion direction at the ends of the crystal:

| _ p | ) _FTCLD o | 2L 0 refo, 1],
axlo ar ax X h
“«t —t—

P¢——x——P 1|
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Figure 2 Temperature distribution for the laser heating
problem.

Figure 3 Optimal boundary control for the laser heating
problem.

X

ol § 7 /
o /] [/
01 ' /V

v(x, 1)
"IN
~

Table 2 Temperature distribution and optimal boundary con-
trol for the laser heating problem.

t f(t) v(0, 1) v(3, t) v(F, t) v(l,1)

0 0.35000 —0.02855 0.00940 0.00410 0.00212
0.2 0.33397 0.02905 0.12106  0.16793  0.18063

0.4 0.29482 0.17062  0.25275 030417 0.32135
0.6 0.22809 0.33440 040213  0.44622 0.46108
0.8 0.13118 9.52500 0.56814  0.59972 0.61085
1.0 0.0 0.75855 0.75855 0.77164 0.77741

where T(x,0)=T,, T(x, t) is the temperature at the
point (x, ¢), T, is the ambient air temperature, and f ()
is the control. We take as the performance index the
functional

Il T]=éf f [T(x,1) — T, dxdt+%flf(t)dt,
s

and seek a solution Tel, and feL, .
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If we take g(x, ) = 1 and consider the transformation
v(x, 1) =T(x,1) — T,, we obtain the system

oolx. ) _ Fole.t) oy (x,0e[0, 1% [0, 1]

at ox
(46)
with boundary conditions
w0, 1) ov(l,1) _
B =f(n, Framl US 47
initial condition
v(x,0)=0, (48)

and cost functional
1ot o

JIf, vl =%f j vix, 1) dxdt—i—%f Fioyde. 49)
0 0 0

The problem stated in equations (46) to (49) is a standard
parabolic regulator problem with boundary control. From
the necessary conditions (14) to (19) and the calculus of
variations there must exist Lagrange multipliers A, *eL,
and \,*eL, such that

N F(x, 1) FNF(x, 1)
+ :

o o +v*(x,t)=0,

(x,0)e[0, 1] x [0, 1] (50)
A (x, 1) =0, xe[0, 1],
MO, 0+ N (0,0 =F(), te[0, 1], (51
and
MU R LR =0, te[0, 1]. (52)

ax ox

Applying the Ritz-Trefftz procedure we obtain Table 2.
The values of Table 2 are plotted in Figs. 2 and 3.

We remark here that the Ritz-Trefftz algorithm repre-
sents a novel approach to solving a problem where bound-
ary control is present. We note that neither the a priori
error bounds presented in [1] nor the order constants of
the previous section are affected by the presence of a
boundary control.

s Optimal heating of a slab

Consider the optimal heating of a slab as it passes through
a furnace. We consider heat transport by diffusion only
and assume that our control is additive. The heat transfer
from the ends of the rod is zero. The system is described
by the set of equations.

wix, 1) _ dvlx, 1)
ot ax’

(x,pe[0,1] x[0,1],

+u(x,.t),
(53)
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with initial condition

lim wv(x,1) =4x"—6x"+1, xe[0, 1], (54)
=0

and boundary conditions

(.0 _au(l,1)_4 e[0, 1]. (55)

dx ox

We assume that the cost functional is given by Eq. (41).

Again we seek a solution ueL, and veL, . The necessary
conditions are given in equations (42).

We apply the Ritz-Trefftz procedure to this problem
and present the numerical results in Tables 3 and 4.

A plot of Table 3, the control functional, is presented
in Figure 4. We note finally that the M matrix generated
for the first example serves just as well in this example
since only the initial state v,(x) was changed for the two
problems.

Conclusions

The numerical properties of the Ritz-Trefftz algorithm
have been presented in the context of the numerical ap-
proximation to the linear parabolic regulator problem
using multivariate splines. The algorithm was first de-
rived in the general problem context and the definiteness,
sparseness, and band structure of the resulting linear
algebraic system were established.

We conclude that the method represents an efficient
and highly accurate numerical approach to solving para-
bolic regulator problems. In fact, for equal computing
time, the method yields superior accuracy compared
with finite difference approximations to the integro-
partial differential Ricatti equation, and the standard
Ritz approach. That is to say, given a fixed number of
operations, the predictable error bounds for the Ritz-
Trefftz method are superior to known error bounds for
the other methods assuming the same operation count.

Further, computer implementation of the method for
large parabolic systems vyields definite, sparse, band
matrices, which allows large parabolic control systems to
be treated numerically.

The method can be used in various control applications

"requiring real time numerical treatment of parabolic
problems. Certain applications involving the use of this
Galerkin-spline direct numerical treatment are discussed
in the forthcoming paper.
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