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Numerical  Properties of a 
Multivariate  Ritz-Trefftz  Method 

Abstract: In this paper  the numerical  properties of the Ritz-Trefftz  algorithm are  discussed in the context of the  numerical  approxima- 
tion to the linear parabolic  regulator problem using multivariate  splines. The algorithm is first derived in the problem context and  the 
resulting linear  algebraic  system is discussed. Such  properties  as  definiteness and band structure  are  treated.  The algorithm is applied 
to  a number of sample  control  problems,  and it is shown that the  method  yields efficient and highly accurate  continuous approximations 
to the solutions of the selected  sample  problems. Computer implementation of the  general algorithm is also discussed. 

Introduction 
In [ 1 ] the  authors developed the Ritz-Trefftz algorithm 
for  the numerical treatment of the linear  parabolic regu- 
lator  problem.  We describe  the problem again in the pres- 
ent  context of numerical properties of the algorithm. 

Minimize (over 11 a n d f )  the quadratic cost  functional 
7 ' 1  

J [ ~ ( . f l = + /  / { ( u ( x ,  t ) ,  Q(x,  f l u b ,  t ) )  

+ (14(x, t ) ,  R ( x ,  t)LI(X, r))}dxdt 

0 ,I 

+ 3 laT ( f ( t )  , s ( t ) f ( r )  )dt+ ( 1 )  

subject to linear partial differential equation constraint 

and associated boundary  and initial conditions given by 

4 x  9 0) = u,,(x) 3 0 5 x 5  1 (3)  

and 

We assume  that u is an n-dimensional state  vector and 
that I I  is an r-dimensional boundary  control vector.  Fur- 

.+Angular brackets  indicate a vector lnterproduct notation. 
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ther, we assume  that 11cA,~,  USA?,  and j & A , ,  where 
A U  , A , ,  and A, are suitable  Sobolev spaces.  Here A is 
an n X n matrix  function, Q and S are n X n positive 
definite  matrix functions (we note  here  that  either Q or 
S could be identically zero,  the  development  for  these 
cases is straightfoward  and not  presented in this paper), 
B an n X r matrix function,  and R an Y X r positive defi- 
nite matrix function. We require that cy, /3 and c be sca- 
lars, that A , B , Q , R be (elementwise) in C y [ O ,  I ]  X 

C"'[O, T ]  and that u,,(x) be in Cy[O,  I ]  (here C y  is the 
space of y-order continuously  differentiable  functions on 
[0 , I ] )  . We require that y be greater  than  one.  The ter- 
minal time, T ,  is assumed fixed and 0 5 r Z n .  

The basic notion of the algorithm is the replacement of 
the infinite dimensional constraints (2) to (5) by the re- 
laxed (finite dimensional) constraints given by 

f o r i =  1 , 2 ,  . . . , m a n d j =  1 , 2 ,  . . . , n .  The functions 
w i ( x ,  t )  ( i  = 1 , 2 , . . . , m) form a basis for  any conven- 393 
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ient finite dimensional space Sm over  the rectangle [0  , I ]  
X [0 , TI . Although  conditions (6) to (9) are in the  Galer- 
kin tradition, we do not require  that  the  elements u , 1 1 ,  

and f lie in S, as in the  standard  Galerkin  approach.  The 
concept is closely  related to  that of Trefftz, who  first 
used  a  similar idea  to  produce approximate  solutions to 
partial differential equations. 

In [ 1 1  the  authors  presented  error  bounds  for  the  cost 
functional as well as  for  the  state and  control. In addition 
they pointed out in detail the theoretical advantages of 
the Ritz-Trefftz  method over  the  standard  Ritz procedure. 

In  the  present  paper  the numerical properties of the 
algorithm are  our chief interest. In the  next  section  we 
present a short  derivation of the algorithm in the problem 
context.  Subsequently  we establish the definiteness of 
the resulting matrix  and discuss  some resulting  numerical 
implications of this property.  We  spend  some time  dis- 
cussing the band structure of the matrix and  the computa- 
tional  complexity of the  elements of the matrix. Then  we 
present  some numerical examples  to illustrate the compu- 
tational efficiency and  accuracy of the algorithm. We con- 
sider a  simple  problem for which we  have  an  analytic 
solution for  accuracy  comparisons  and  two slightly more 
difficult problems  from mathematical physics, i.e., a laser 
cooling problem  and the optimal  heating of a  slab (see 
Sage [2]). The  last  section  contains some remarks con- 
cerning the implications of the  results  presented in  this 
paper. 

Ritz-Trefftz algorithm for parabolic regulator 
The problem (1) to ( 5 )  is known  to  be equivalent to com- 
puting 

max min L [ u  , f ,  u ;  A ] ,  (10) 
A d ,  ucAu 

f cA,- 
vsAy 

where L [ u  , f ,  u ; A] is defined by 

L [ u , f ,  u ;  A] = J [ u , f l  + +,(x, t )  ,-- aU 
at 

+ A  ax + Bujdrdt 

r l  + J (A , (x ) ,  u(x ,  O 
n 
rT 

where A = (A, , A, ,   A , ,  A,) and A, represents suitably 
choosen  dual  spaces.  Replacement of (2) to (5) with (6) 
to (9) is then  equivalent to computing 

max min L [ u , f ,  u ;  A ] .  (12) 
A d ,  urA, 

f 'Af 
D € A ,  

It is easily shown, by standard variational arguments, 
that this  problem is equivalent to computing 

Here we have  taken A(x, t )  = A,(x,  t )  , 

and 

Problem  formulation (1 3) serves  as  the basis for  the 
computational procedure.  Let wi(x, t )  ( i  = 1 , 2 ,  . . . , m) 
form a  basis for S i .  Then if AicS: (notice that A is an a- 
vector), we conclude  that 

where q$j = 1 , 2 ,  . . . , rn) is some  set of n-vector CO- 
efficients. 

We  now derive  an  expression  for L in terms of the qj . 
We first note  that 

L [ u  , f ,  u ;  A] = J [ u  , f ]  - ( A ,  u)I@ 
0 

at ax2 
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and 

-. 
'I 

where 

F i j ( x ,  t )  = 1iji(x, t ) w j ( x ,  t ) Q " ( x ,  t )  

E= -: [j": 1' { E i j  + Ei> + F i j  + FiS}dxdt 
j =  I n 

= O  

for i = 1 , 2 ,  . . . , rn . Define M i j  by 

Then, in terms of the q i ,  Eq. (30) is equivalent to  the 
linear  system 

M y = b ,  (32 )  

where  the (mn X mn symmetric)  matrix M is defined by 

M =  

and v and b are given by 

Numerical  properties of algebraic system 
In this  section we establish the positive  definiteness of 
M ,  and show  that  the matrix is sparse and  has band struc- 
ture, providing we select the patch  basis for  the  space 
S,' . We first prove a theorem in which the definiteness of 
M is established. 

Theorem 
Assume  that M is given by Eqs. (31) and (33) for  the 
linear  parabolic  regulator problem. Then  the matrix M 
is positive definite. 

Proojl Suppose ~ E R ~ " ,  y f 0 .  Let A correspond  to y 
according to  Eqs. ( 3 2 )  to ( 3 4 )  and ( 2 1 )  and let u ,  f, 
and u correspond  to A according to  Eqs. ( 1 4 )  to (19). 
Then we have by ( 2 4 ) ,   ( 2 5 ) ,  and ( 2 6 )  

y'My = *y'{ l :  1' [ E  + Et + F + F'ldxdf 
11 
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- Gt(O,  r)ldt]r 

= 1: 1: ( u  , Ru)dxdt  + 1: 1: ( u ,  Qu)dxdt 

+ [ ( f  9 S f  

= 2 J [ u ,  f ]  . ( 3 5 )  

The proof is now complete  since J is a  positive  definite 
form in the variables u ,f, and u . 

We  remark  here  that  the  standard  Ritz  method  does 
not utilize  relationships (24) to (26) .  The  functions u , 
f ,  u , and A are  each  restricted  to S, , and it can be  shown 
that  the resulting  matrix is indefinite. 

For numerical  work the definiteness of M is obviously 
extremely significant, especially in large  problems. For 
example,  suppose S, is a space of multivariate cubic 
spline on  some  appropriate mesh. Let {wj(x, t)}j",, be 
the  patch basis for S, . Then  we  have 

1: 1: (WiWj) (x 1 t)dxdt = 0 ,  (3 6 )  

where  each pair (i , j ) e {  ( i  , j ) : d ( i  , , j j  Z 4 ) .  Here d ( i  , j j  
= max{ / i ,  - j ,  I , l i ,  -j,l , . . . , Ji,, - jnl} and i = (i, , i, , 
. . . , in) , j  = (j, , . j2  , . . . ,jn) are n-tuples which represent 
a coordinate index set  for  the basis functions. For ex- 
ample, if we  consider a vector problem of a single spatial 
variable with r, mesh  points in x ,  r2 mesh  points in time, 
and index the  components of M along the spatial  coor- 
dinate, M assumes  the form 

M =  ' (37) 

where  the lines represent  the  nonzero matrix  subdiagonal. 
Each  element  on  the diagonals is an (n  X n)  block matrix. 
Since M is positive  definite, we can  now  apply  a Cholesky 
decomposition to (32). I t  is  well known that  the  Cholesky 
algorithm is extremely stable, and we retain the band 
structure in the decomposition, i.e., zeros  outside  the 
band remain zeros  throughout  the decomposition. Us- 
ually however,  zeros within the band are filled in. It can 
be shown  that  the  number of multiply-adds required  for 
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2b + 1 is approximately b2 + b times the  order of the 
matrix. Thus, in our  case, taking b = (2r ,  + 3 ) n ,  we ob- 
tain approximately [ (2r ,  + 3)'n2 + (2r2 + 3)n] [nr,(r, + 
l ) ]  = 0(4r:n3rl)  multiply-adds instead of O(*r:rin3) as is 
the  case with Gaussian elimination. We remark that, in 
the  standard  Ritz  procedure,  Gaussian elimination is 
normally  used since  the resulting  matrix is indefinite. 

We next  consider  the difficulties involved in computing 
the matrix.  We discuss  the computational requirements of 
generating the M matrix for  several choices of uniform 
grids. 

In Fig. 1 we  present  data  generated  from a computer 
code designed to count  the  number of integrations  re- 
quired to  accurately  generate  the M matrix. We  count 
only  integrations which are possibly nonzero [i.e, those 
along the diagonals in (37)]. Also only half the matrix 
need be  generated  since M is symmetric. Since splines 
are not  homogeneous  polynomials over  the  entire region 
of integration, all regions of integration are  assumed  to 
be  the  subrectangles of the mesh so that a single element 
of M may involve several  independent integrations. We 
count in thousands of integrations per  state variable. 

Figure 1 is approximately expressible by no. ops. = 
[ r , ( r ,  - 1)/16] thousands. If we use a Cartesian four- 
point  Gauss integration scheme,  we  have  sixteen func- 
tional  evaluations per integration so that  the  number of 
functional  evaluations  required to  generate M is approxi- 
mately O(r,r,) in thousands  per  state variable. 

to  three sample  problems. 

Some numerical examples 

Sample  problem 
We begin this  section by considering  a  simple  parabolic 
system of one  scalar variable with additive control only. 
Consider  the  system 

In  the  next  section we apply the Ritz-Trefftz algorithm 

"- d u ( x ,  t )  a"U(x, t )  - 
at  ax' + u ( x ,  t )  , ( x ,  t ) & [ O ,  11 x [ O ,  I ]  

(38) 

with the initial condition 

u ( x ,  0 )  = 1 ,  X . [ O ,  11 (39) 

and  boundary conditions 

" a u ( o  1 t )  - " a u ( 1  1 t )  - o ,  t & [ O ,  1 1 .  (40) 
ax ax 

The  cost functional is given by 

J [ u ,  u ]  = t 6 JT: {U"x, t )  + U"x, t ) } d x d t .  (41) 

We  take  the  set of admissible controls, A,, , and the  set of 
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admissible states, A c  , to be the  set of Lebesque  square 
integrable functions  over  the rectangle [0 , I ]  X [0 , I ] . 

We can easily solve this  problem  analytically. From  the 
necessary  conditions  (14) to ( I  9)  and  the calculus of 
variations, we deduce  that in order  that u* and u* be an 
optimal  solution to (38) to (41), there must exist a mul- 
tiplier A*cL, corresponding to ( M *  , v*) such  that 

d ~ *  ( x ,  t )  + ( x ,  t )  + t )  = 0 ,  
at axz 

r r * ( x , t ) + h * ( x , t ) = O ,  ( x , t ) ~ [ O , 1 ] ~ [ 0 , 1 1 ,  

d A * ( O ,  t )  - - d A * ( l ,  t )  = o ,  
dX 

t E [ O ,  I ]  , and ax 
h * ( x ,  1 )  = 0 ,  XE[O, 1 1 .  (42) 

Using the  equations (38) to (42)  and  exploiting the 
symmetry in x ,  we obtain  the following solution for u* 
and u* : 

u * ( x ,  t )  = sinh ( t )  - cosh ( t )  sinh (1)lcosh ( 1 )  

u * ( x ,  t )  = cosh ( t )  - sinh ( t )  sinh (l) /cosh ( 1 )  . (43) 

We list in Table 1 the results to five decimal places  ob- 
tained from  the Ritz-Trefftz procedure  over a 4 X 4 grid 
using a  bicubic  spline basis with boundary  conditions 
enforced. All calculations  were done in eleven plus 
decimal digits accuracy and the system M y  = b was 
solved using a Cholesky decomposition  without  iterative 
improvement. 

The L, norms 11u* - and I(u* - U(I2 (where U and U 
denote  the  computed control  and state, respectively) 
were  also  calculated using a Cartesian four-point Gauss 
integration scheme  over each  subrectangle. The  results 
are 

I ~ U *  - U(l, = 7.9066 X 

I I u *  - f i l l 2  = 7.4660 X IO-' (44) 

J [ U ,  U] = 0.76159. 

We  notice  that  the  error bound on U is an  order of mag- 
nitude  better than the bound on U. This is to be expected 
and is consistent with other spline  applications  in  nu- 
merical analysis,  since our problem has  no spatial  varia- 
tions and therefore  the spatial derivatives  do not affect 
the  accuracy of the solution. The  computed  state, how- 
ever, is time  varying and is calculated  from the time  de- 
rivative of the Lagrange multiplier A. 

From  the  considerations of the previous paragraph 
(problem symmetry,  smoothness, etc.) and  the  results 
obtained by Bosarge and  Johnson  [3], we should expect 
the  error bound on U to be O(h4) and the bound on U to be 
O(h3) .  Using these  error bounds we calculate the empiri- 
cal order  constants  to be  6.4 X for U and 2 X 

for 6. These  estimates  are in good agreement with order 
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Figure 1 The relationship between  the number of integration 
per  problem and  the grid size. 

Table 1 The analytical and computational  solution to the 
sample problem. 

t U *  11 U* U 
~~ 

0 -0.76159  -0.76159 1 .o 0.99974 
0.1 -0.66524 4 .66524  0.92872  0.92883 
0.2 -0.57554  -0.57554 0.86673 0.86669 
0.3 -0.49160  -0.49161 0.81342 0.81331 
0.4 -0.41259  -0.41259 0.76824 0.76837 
0.5 -0.53770 -0.33769 0.73076 0.73079 
0.6 -0.26619  -0.26619 0.70060  0.70050 
0.7 -0.19735  -0.19735 0.67744  0.67744 
0.8 -0.13048  -0.13048 0.66105 0.661 10 
0.9 -0.64913  -0.64912 0.65130 0.65130 
1 .0 0 0  0.64805 0.64804 

~_____. 

constants  computed from  spline  applications in other 
areas of numerical  analysis. The  constants  can be  esti- 
mated  from approximation theory using the  Peano  Ker- 
nel theorem.  For  the natural cubic spline the  constants 
can be shown  to be somewhere  near 0.00 I times the  norm 
of the  fourth  derivative of the function being interpolated. 

Laser heating problem 
Here we consider the optimal cooling of a high-power 
(one megawatt) cw laser. After normalization and assum- 
ing that all heat transfer is  by diffusion, we obtain the 
system illustrated in the figure. The  arrows indicate the 
heat diffusion direction at  the  ends of the crystal: 

W. E. BOSARGE, JR. A N D  C. 
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""1 I 

Figure 2 Temperature distribution for  the  laser heating 
problem. 

Figure 3 Optimal boundary control for the  laser  heating 
problem. 

Table 2 Temperature distribution  and optimal boundary  con- 
trol for the  laser  heating  problem. 

t f ( t )  u ( 0 , t )  u ( f , t )  U ( + , f )  u ( 1 , t )  
~~ ~ 

- 
0 0.35000 4 . 0 2 8 5 5  0.00940  0.00410 0.00212 
0.2  0.33397  0.02905  0.12106  0.16793  0.18063 
0.4  0.29482  0.17062  0.25275  0.30417  0.32135 
0.6 0.22809  0.33440 0.40213  0.44622 0.46108 
0.8  0.131 18 9.52500  0.56814  0.59972  0.61085 
1.0 0.0 0.75855  0.75855 0.77164 0.77741 

. ... -_______ 

If we take g(x , t )  = 1 and consider  the transformation 
u ( x  , t )  = T ( x  , t )  - T;, , we obtain the  system 

(46) 
with boundary  conditions 

initial condition 

U ( X ,  0) = o ,  (48) 

and  cost functional 

J l f ,  U I  = d JT,' i,' U ' ( X ,  t )  dxdt + 3 j : f ' ( t ) d t .  (49) 

The problem stated in equations (46) to  (49) is a standard 
parabolic  regulator  problem with boundary  control. From 
the  necessary conditions (14)  to  (19) and the calculus of 
variations there must exist  Lagrange multipliers Al*&L2 
and A,*EL, such  that 

ah,* (0 ,  t )  ah,* (1 , t )  
ax 

- - 
ax = 0 ,  E [ O ,  13 . ( 5 2 )  

Applying the Ritz-Trefftz procedure we obtain Table 2. 
The values of Table 2 are plotted in Figs. 2 and 3 .  

We remark here  that  the Ritz-Trefftz algorithm repre- 
sents a novel approach  to solving  a  problem where bound- 
ary control is present. We note  that neither the a  priori 
error bounds presented in [ 11 nor  the  order  constants of 
the previous  section are affected by the  presence of a 
boundary  control. 

Optimul heating of a slab 
Consider  the optimal  heating of a slab as it passes through 
a furnace. We  consider heat  transport by diffusion only 
and  assume  that  our control is additive. The  heat  transfer 
from the  ends of the rod is zero.  The  system is described 
by the  set of equations. 

where T ( x  , 0)  = T ,  , T ( x  , t )  is the  temperature at the 
point ( x ,  t )  , T ,  is the ambient air  temperature, andf ( t )  
is the control.  We take  as  the performance  index the 
functional 

J c f ,  TI = 3 1 1 [ T ( x ,  t )  - T a l 2  dxdt + 3 l f ( t ) d t ,  
1 1  

I) n 
aU(x, t )  - > t )  + u ( x  , , t) , 

(45) at  ax' 
- 

(53) 
398 and  seek a solution TEL,  and f c L ,  . (x,  t ) f [ O ,  11 x r0, 11 9 
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with initial condition 

lim u ( x  , t )  = 4x" - 6 i 2  + 1 , xe[O , 11 3 (54) 

and  boundary conditions 
1-0' 

a u ( o ,  t )  - a u ( 1 ,  t )  - o ,  t E [ O ,  11. ( 5 5 )  - 
ax ax 

We assume  that  the  cost functional is given by Eq. (41). 
Again we seek  a  solution UCL, and UEL, . The  necessary 

conditions are given in equations (42). 
We  apply the Ritz-Trefftz procedure  to this  problem 

and present the  numerical  results in Tables 3 and 4. 
A plot of Table 3,  the control  functional, is presented 

in Figure 4. We note finally that  the M matrix generated 
for  the first example serves  just  as well  in this  example 
since only the initial state u , ( x )  was  changed for  the  two 
problems. 

Conclusions 
The numerical properties of the  Ritz-Trefftz algorithm 
have been presented in the  context of the numerical  ap- 
proximation to  the linear  parabolic  regulator  problem 
using multivariate  splines. The algorithm was first de- 
rived in the general  problem context and the definiteness, 
sparseness, and band structure of the resulting  linear 
algebraic system  were established. 

We  conclude that  the method represents  an efficient 
and highly accurate numerical approach  to solving para- 
bolic regulator  problems. In fact,  for equal  computing 
time,  the method  yields  superior accuracy compared 
with finite difference approximations to  the integro- 
partial differential Ricatti equation,  and  the  standard 
Ritz~  approach.  That is to  say, given a fixed number of 
operations,  the predictable error bounds for the Ritz- 
Trefftz  method are  superior  to  known  error bounds for 
the  other  methods assuming the  same  operation count. 

Further,  computer implementation of the method for 
large  parabolic systems yields definite, sparse, band 
matrices, which allows large  parabolic  control systems  to 
be  treated numerically. 

The method  can  be  used in various  control  applications 
requiring  real  time  numerical treatment of parabolic 
problems. Certain applications involving the use of this 
Galerkin-spline direct numerical treatment  are discussed 
in the forthcoming  paper. 
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