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Enveloping an Iteration Scheme

Abstract: The problem of determining the optimal values of relaxation parameters for a linear iteration is solved. The optimal iteration

scheme is achieved by a second-order linear iteration method.

Introduction
In this paper we discuss two procedures for accelerating
iterative methods for solving the N'th order linear system

Au=b, (1)

where A4 is a given real nonsingular N X N matrix, and
b (which is given) and the solution « are N-vectors. One
procedure is the class of semi-iterative methods and the
other is the class of relaxation methods. Both of these
methods are described by R. S. Varga [1]. Both methods
deal with an iteration scheme of the form

u,, =Gu, +f. (2)

The iteration scheme has the property that its fixed point
v, where

v=Guv+f, 3)

is the solution, u, of (1).

Both acceleration methods employ an additional set of
parameters, one for each iteration for adjusting the value
of the newly arrived at iterate. For a specified number of
iterations, say m, we consider the problem of optimally
determining these parameters, i. e., determining them so
that the error between the mth iterate and the exact solu-
tion is minimized. For semi-iterative methods this prob-
lem has been solved [2] and the parameters are charac-
terized as the coefficients of an appropriately normalized
Chebyshev polynomial of degree m. In this paper we
show that the optimization problem for the class of re-
laxation methods is solved by choosing parameters which
are the roots of an appropriately determined mth degree
orthogonal polynomial.
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For semi-iterative methods, the optimal iteration
scheme is achievable by an appropriate iteration method
of second degree, i.e., one of the form

Uy, = (,G + B v, +v,u,_, T k,. 4)

By this we mean that for appropriate choices of «, , 8, ,
v,» and k,, v, coincides with the nth iterate of the op-
timal semi-iterative method of n steps, for any n.

We will show that the same is true for the optimal re-
laxation method. We refer to this method of second de-
gree as the envelope of the class of relaxation methods.
We use this terminology for the following reason. For a
given choice, say u,= 0, consider the polygonal path
joining the points (i, {lu,— ull) ,i=0,1,-- -, n,where
']l denotes the norm of the vector u. This polygonal path
characterizes the iteration scheme for each n and each
choice of n relaxation parameters. The totality of all
such polygonal paths corresponding to all possible re-
laxation schemes has a lower envelope that is yet an-
other polygonal path. This envelope is described by the
second-degree method. :

Our solution consists in adapting to this more general
case a special case that has been solved by E. Stiefel [3],
where Gu + k is the gradient of a quadratic form. In this
case the iteration scheme is a relaxation version of the
method of steepest descent and the envelope is the
method of conjugate gradients.

The optimal method
Consider the linear system

Au=b. (N
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Let the iteration scheme

Uy, =Gu, +f. n=0,1, - (5)

where G is an N X N matrix and f an N-vector have a
unique fixed point that coincides with the solution of (1).
We write (5) as

Aau=ry’ V:O,l,"‘, (6)
where
Au,=u,, —u,, )

r,=f—Mu,, and
M=I1—-G.
where I is the identity matrix.

We now introduce the first acceleration procedure
for (5).

~ Semi-iterative methods
Letan,k, k=0,1,---,n, n=0,1, --be
a sequence of real constants with the property

EQH’kzl, n=0,1, - (8)
k=0

and let

=3 e, n=0,1,- - ©)

The v, define a semi-iterative method of successive ap-
proximations to « . The error e, = v, — u satisfies

e,= P (G)e,, n=1,2,---, (10)
Pxy=" a,,x". (1
k=0

in which P, (1) = 1.

Let the eigenvalues A of G be real and suppose that
they lie in the interval [a, 8] with & < 8 < 1. Then for
the eigenvalues P, (\) of P (G), we see that the

max |P, (M) 12)
is minimized under the constraint P, (1) =1 for
P =1,(EZEE) /1.0, a3)
where

2—B—-«
YT a (14)

and the T, are the Chebyshev polynomials of degree n de-

fined by
T, (x) =cos(ncos ' x), n=0,1,---, (15)

if x] =1.
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Moreover from the property
T, ,(x)=2%xT,(x) =T, (x) (16)

of the Chebyshev polynomials, it can be deduced that the
v, of Eq. (9) for the choice of P, in (13) obey the following
second-order recurrence relation:

Upyy = (,G+B,Dv, +yv, , +f,. n=1,2,-",
(a7
where
——— 2
"B a)yw,,,
+
p——Bra
(a_ﬁ)yw,n+l
yn: 1 _Wn+]
2w,
nz_—TH—f
vy (B—a)
w,=1
U
21 —1/29
1
w n=2,3,::-. (18)

n+]=]_wnl4‘y27

The choice of the e, , gives the optimal acceleration
to the semi-iterative scheme and the property (16) en-
ables one to avoid using the coefficients of the Chebyshev
polynomials and resumming for every change in s, by
use of the second-order method (17).

Now let us consider the second acceleration procedure.

&~ Relaxation methods

Lett,,n=0,1,- - -beasequence of positive constants.

Let x,,n=0,1, - - - define a relaxed iterative method

corresponding to (5), where

X, — X, = (1) (f— Mx,) . (19)
We write this as

Ax,=r,lt,, (20)

where Ax, =x,, —x,and r, =f— Mx, .

The error e, = x, — u satisfies
e,=—M'r,, @1
if M is nonsingular.

Suppose that M is positive definite and Hermitian.
Then if (1 ,v) = u*v denotes the usual inner product in
N-space, (u,Mu) defines a metric in this space which

we denote by w(u) . In particular for the N-vector ¢ =
—M7'r, we have

pie) = (M 'rr) (22)

For each n, we consider the problem of choosing the
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t,,j=0,1,---, n so that u(e,) is a minimum. Of
course the optimal relaxation parameters will depend on
n, but for convenience we suppress displaying this de-
pendence. Following Stiefe], we may formulate the solu-
tion to this problem as follows.

Let R,(\), n=1, 2, , be a sequence of poly-
nominals given by

n

R,(\) =] (1 =Mr_,). 23)

J=1

If the initial iterate is x, = 0, then

X, = {—0 = M“[l - (1 —%)]fe M1 — R, (M)]f.
Then
x,=M7'[I —R,]f, (24)

since by induction

x +1=M“[1 R +M—M(1—R )]f

=M'[I-R,, ]f.
Similarly
r,=R,(M)f (25)

so that from (22)
ple) = (M'R,(M)f, R (M)f). (26)

Let M have distinct eigenvalues 0 <A, <A, < - -
< A, < | and let T be the matrix whose jth column is the

eigenvector of M with eigenvalue \;, j=1, ---, N.
Then
ple)=MI'TT'R(MYTT'f, T TR (M)T T°'f)
= (ATR,(M)f, R, (A)]) . 27)
Here A is the N X N diagonal matrix, A = ()\jSi].) and
f=T7f.
Then
N
ple) =3 F RN, (28)
j=
where f,,j=1 , N are the components of f. Thus

if we introduce the density

EV Fan -\, 29)
we may write
we,) = f [p(VAIR (A .. (30)

In the case that the eigenvalues of M are not distinct
this representation for u (e,) will in general involve R, (\)
and some of its derivatives. We do not treat this more
involved case further.
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Now the problem of optimal choice of the relaxation
parameters corresponds to finding the polynomial R, (A)
which solves the polynomial least-squares problem with
respect to the weight p(x)/A . Of course we must impose
the additional constraint

R(0)=1, n=0,1,---

if we are to recover polynomials of the type (23). Denot-
ing the class of polynomial of degree n as I1,, , the problem
to be solved is explicitly

min p(e,) = min f [p(M/N]R, “(\)dn.
eﬂ R e[l
R(o) 1 R(O):l

The solution to this constrained least-squares problem

is the set of polynomials P,(\), orthonormal on (0,1)
with respect to the weight p(\) (see [4]), i.e.,

f P,(MP, (Mp(M)dr=0, nFEV. a3n

Thus the optimal relaxation parameters are Lo J=1,
“sn,n=1,2,.--, where for each n, the ¢,  are
the roots of P (A).

As in the case for the optimal semi-iterative method,
the optimal relaxation method may be replaced by a sec-
ond-order iteration method that frees the method from
use of the roots 7, as well as recomputing for each n
change. This second-order method emerges from the

second-order recurrence relation
AR (M) =—qR, (A} + (p, + q)R,(N) — pR,_,(\),
i=1,2, " (32)

obeyed by the R,(\), which we henceforth assume to
satisfy (31). We take

R,=1,py=0,9_,=0,
and

q; = (I/Ni)(ri’ Mri) — P

= Ny [ ARE M —p,

= (N,/N;_))a;_,

i=0,1,2,

N;=(r;,r) =fRf(>\)p(A)d>\
‘ (33)

Note that the p, and g, may be computed without any
use of the orthogonal polynomials.
The second-order scheme is

Az, = (1/q,) (r; + pAZ_ ) 7,=0. (34)
We claim that this scheme envelopes the optimal relaxa-

tion scheme for each n, i.e., z,= M '[I — R,(M)]f [see
(24)]. This may be seen as follows.
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Since z,=0, r,=f= R, (M)f. Suppose by induction
that r,= R,(M)f. Now since r, = f — Mz, , we have

ry, —r,=—MAz,. (35)

it+1

Then, from Eq. (34),

q; q; (36)
Using (32) this becomes
Fivi =Ri+1(M)f' (37D

Then having completed the induction we may write
=M (f—r)=M"[I-R(M]If, (38)

which is what was to be proved.

Remark: Notice that the three-step recurrence scheme
(34) must theoretically terminate after N steps. This
follows from the fact that since p(A) as given in Eq. (29)
has N jumps, then only N orthogonal polynomials P, (\)
can be generated by (31).*

Examples
From Au = b, certain iteration schemes are obtained by
splitting A

A=P—N 39
where N is nonsingular. Then writing

Nu, ,=Pu,—b. (40)

*The author is grateful to R. Varga for urging him to include this remark.
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Then
f=—N7
G=N"'P
M=I—N"'P 41)

1) The Jacobi method corresponds to N = diag 4 .

2) The Gauss-Seidel method corresponds to N =L
(which equals the lower triangular portion of 4 up to
and including the main diagonal, with all other ele-
ments of L taken as zero).

3) The method of steepest descent corresponds to M =
—A and f= b.

In each of these three cases we must take care that
the associated matrix M has the properties required in
the section on the optimal method, i.e., Hermitian and
positive definite,
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