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Enveloping  an  Iteration  Scheme 

Abstract: The problem of determining  the  optimal values of relaxation parameters  for a  linear  iteration is solved. The optimal  iteration 
scheme is achieved by a second-order linear  iteration  method. 

Introduction 
In this paper we discuss two procedures  for accelerating 
iterative  methods for solving the  Nth  order linear system 

A u = b ,  (1) 

where A is a given real nonsingular  N X N matrix, and 
b (whiFh is given)  and the solution u are  N-vectors.  One 
procedure is the  class of semi-iterative methods  and  the 
oth.er is the  class of relaxation  methods. Both of these 
methods  are described by R. S. Varga [ 11. Both methods 
deal with an iteration scheme of the form 

l l n + l  = Gun + f .  ( 2 )  

The iteration scheme has the  property  that its fixed point 
u, where 

u = G u + f ,  (3) 

is the solution, u ,  of ( I ) .  
Both acceleration  methods  employ an additional set of 

parameters,  one  for each  iteration for adjusting the value 
of the newly arrived at iterate. For a specified number of 
iterations,  say rn, we consider the problem of optimally 
determining these  parameters, i. e., determining  them so 
that the error between the rnth iterate and the  exact solu- 
tion is minimized. For semi-iterative  methods  this  prob- 
lem has  been  solved [2] and the  parameters  are  charac- 
terized  as the coefficients of an appropriately normalized 
Chebyshev polynomial of degree m. In this paper we 
show  that  the optimization  problem for  the class of re- 
laxation  methods is solved by choosing parameters which 
are  the roots of an appropriately  determined rnth degree 
orthogonal polynomial. 

For semi-iterative methods,  the optimal  iteration 
scheme is achievable by an  appropriate iteration  method 
of second degree, i.e., one of the form 

u,+1 = (a,C + P J U ,  + YnU,-l + k ,  ' (4) 
By this we mean that  for  appropriate choices of a,, P, , 
y,, and k , ,  u, coincides  with the nth iterate of the op- 
timal semi-iterative method of n steps,  for  any n . 

We will show  that  the  same is true  for  the optimal re- 
laxation  method.  We  refer to this  method of second  de- 
gree  as  the envelope of the class of relaxation  methods. 
We use this terminology for  the following reason. For a 
given choice,  say uo = 0 ,  consider  the polygonal path 
joining the points (i , Ilui - ull) , i = 0 ,  1 , . . . , n , where 

11 .11  denotes  the norm of the  vector u. This polygonal path 
characterizes  the iteration scheme  for each n and each 
choice of n relaxation parameters.  The totality of all 
such polygonal paths  corresponding to all possible  re- 
laxation schemes  has a  lower envelope  that  is  yet an- 
other polygonal path. This  envelope is described by the 
second-degree method. 

Our solution consists in  adapting to this more general 
case a  special case  that  has been  solved by E. Stiefel [3], 
where Gu + k is the gradient of a quadratic form. In  this 
case  the iteration scheme is a  relaxation  version of the 
method of steepest  descent  and the envelope is the 
method of conjugate  gradients. 

The optimal method 
Consider  the linear  system 

A u = h .  (1) 389 
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Let  the iteration scheme 

u,+j = Gun +j, n = O ,  I ; . .  ( 5 )  

where G is an N X N matrix and j an N-vector  have a 
unique fixed point that coincides with the solution of ( 1 ) .  
We write ( 5 )  as 

A u v = r v ,  v = O ,  I , . . . ,  (6) 

where 

Au,, = u,,+~ - u y ,  

r,, = f - M u Y ,  and 

M = I - G .  

where I is the identity  matrix. 

for (5). 
We now introduce  the first acceleration procedure 

Semi-iterative  methods 

Let , k = O ,  1;. . , n ,  n = O ,  1 ; .  . b e  
a sequence of real constants with the  property 

and  let 
n 

'n = zo %,k ' k  ' n = O ,  1 ; . .  (9) 

The u, define a  semi-iterative  method of successive  ap- 
proximations to u . The  error e, = u, - u satisfies 

e ,  = P n ( G ) e , ,  n = 1 , 2 ; . . ,  (10) 

in which P,( 1 )  = 1 . 
Let  the eigenvalues A of G be real and suppose  that 

they lie in the interval [a  , P ]  with a < /3 < 1. Then  for 
the eigenvalues P,  (A) of P, (G) , we see  that  the 

max IP,(A) I (12) 
LYd.I/3 

is minimized under  the  constraint P, (1 ) = 1 for 

where 

and the T ,  are  the  Chebyshev polynomials of degree n de- 
fined by 

T , ( x )  = cos(n cos-'x) , n = O , l ; . .  > (15) 
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Moreover from the  property 

T,+, ( x )  = 2 x T , ( x )  - T,-] ( X )  (16) 

of the  Chebyshev polynomials, it can be deduced  that  the 
u, of Eq. (9) for  the  choice of P ,  in ( 1  3) obey  the following 
second-order  recurrence relation: 

u,+l = (a,C + P , I ) u ,  + YnUn-' + f,, n = 1 1 2 1 . . . > 

(17) 

where 

a, = 
2 

( P  - a)Yw,+, 

@ + a  
(ff - P ) W , + I  

P, = 

Y, = 1 - W,+l 

f, = 
2 w,+1 

Y (P - a )  f 

U'] = 1 

1 w2 = 
1 - 1/2y" 

The choice of the gives the optimal  acceleration 
to  the semi-iterative scheme  and  the  property (16) en- 
ables one  to avoid using the coefficients of the  Chebyshev 
polynomials and resumming for  every  change in n, by 
use of the  second-order method ( 1 7 ) .  

Now let us consider  the  second  acceleration  procedure. 

Reluxation  methods 
Let t ,  , n = O , 1  , . . . be  a sequence of positive constants. 
Let x,, n = 0 , 1 , . . . define a  relaxed  iterative  method 
corresponding  to ( 3 ,  where 

x,+1 - x, = (lit,) (f - Mx,) ' 

We write  this as 

where Ax, = x,+, - x, and r, = f - M x ,  . 
The  error e, = x ,  - u satisfies 

e, = -M-'r,, ,  (21) 

if M is nonsingular. 
Suppose  that M is positive definite and Hermitian. 

Then if ( u  ,u) = u*u denotes  the usual inner  product in 
N-space, ( u  ,Mu)  defines a metric in  this space which 
we denote by p ( u )  . In particular for  the  N-vector e = 

-M-'r ,  we have 

p ( e )  = ( M - ' r , r )  (22) 

For each n ,  we consider  the problem of choosing the 
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t j ,  j = 0 ,  1 , . . . , n so that p (e,) is a minimum. Of 
course  the optimal relaxation parameters will depend on 
n, but for  convenience we suppress displaying  this  de- 
pendence.  Following  Stiefel, we may  formulate the solu- 
tion to this problem as follows. 

Let R , ( A ) ,  n = l ,  2 ,  . . .  , be  a sequence of poly- 
nominals  given by 

R,(A)  = ( 1  - A/tj - l )  . (23)  

If the initial iterate is x0 = 0 ,  then 

n 

j =1  

since by induction 

Let M have  distinct  eigenvalues 0 < A, < A, < . . 
< A,v < I and let T be the matrix whose  jth column is the 
eigenvector of M with eigenvalue A j ,  j = 1 , . . . , N. 
Then 

p ( e , )  = ("'T T - ' R , ( M ) T  T - Y ,  T T"R,(M)T r t f )  
= ( A - ' R ~ ( A ) ~ ,  R , ( A ) ~ ) .  (27)  

Here A is the N X N diagonal matrix, A = (AjSij) and 
f =  T-l f .  

Then 

P(e,) = [Rn2(Aj)l/Aj, (28)  
Y 

j = 1  

w h e r e J , j =  1 , .  . . , N are  the  components off. Thus 
if we introduce the density 

In  the  case that the eigenvalues of M are not  distinct 
this  representation for p (e,) will  in general involve R n  ( A )  
and  some of its  derivatives.  We do not treat this  more 
involved case  further. 

Now  the problem of optimal  choice of the relaxation 
parameters  corresponds  to finding the polynomial R,(A)  
which solves  the polynomial least-squares problem  with 
respect  to  the weight p(A)/A . Of course we must impose 
the additional constraint 

R,(O) = 1 , n = O ,  1 , .  . . 
if we  are  to  recover polynomials of the  type (23) .  Denot- 
ing the  class  of polynomial of degree n as II, , the problem 
to be solved is explicitly 

min p ( e , )  = min [ p ( A ) / A ] R n Z ( A ) d A .  
K R m i: 
R("O,=? R&)=? 

The solution to this constrained least-squares problem 
is the  set of polynomials P,(A) ,  orthonormal on (0,l) 
with respect  to the weight p(A) (see [4]), i.e., 

1: PY(A)P,(A)p(A)dA = 0 ,  p f  Y .  (3 1 )  

Thus  the optimal  relaxation parameters  are t j , n ,  j = 1 , 

the roots of P,(A) . 
As in the  case  for  the optimal  semi-iterative method, 

the optimal relaxation  method may be  replaced by a  sec- 
ond-order iteration  method that  frees  the method  from 
use of the  roots t j , ,  as well as  recomputing for  each n 
change. This  second-order method  emerges  from the 
second-order  recurrence relation 

ARi(A) = - q i R i + l ( A )  + (pi f q i ) R i ( A )  - PiRi- , (h)  , 

. . .  , n ,   n =  1 ,  2 , .  . . , where  for each n , the tj,n are 

i =  1 , 2 , .  . . (32)  

obeyed by the R , ( A )  , which we henceforth assume  to 
satisfy ( 3  1). We take 

R , , = 1 , ~ , , = O , q - , = 0 ,  

and 

4i = ( l / N i )  ( q ,  Mvi)  - p i  

= (1 /Ni )  1' h R ; ( ~ ) p ( h ) d A  - p i  
0 

Pi = (N,IN,+, )4i-l  

Ni = ( r i ,  ri) = R,'(A)p(A)dA,  i = 0 ,  1 , 2 , .  . .. 
( 3 3 )  

Note  that  the p i  and qi may be  computed without any 
use of the orthogonal  polynomials. 

l 
The  second-order  scheme is 

Azi = ( l / q i )  (ri + P ~ A ~ ~ - ~  1 , z O = o .  (34)  

We claim that  this scheme  envelopes  the optimal  relaxa- 
tion scheme  for  each n , i.e., zi = M"[Z - R i ( M ) ] f  [see 
(24)]. This may be seen as follows. 391 
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Since z,, = 0 , r, = f = R,  ( M )  f .  Suppose by induction 
that ri = R , ( M ) f .  Now  since ri = f - M z i ,  we  have 

ri+l - r i  = - M A z i .  (35) 

Then, from Eq. (34), 

M 
r i+l - ri = - - ( r i  + p iAz i - , )  

qi 

Using (32) this becomes 

T , + ~  = R i + ,  ( W f .  (37) 

Then having completed the induction we may write 

z i = M - ’ ( f - r i ) = M - l [ l - R i ( M ) ] f ,  (38) 

which is what was  to  be proved. 
Remark: Notice  that  the  three-step  recurrence  scheme 

(34) must  theoretically terminate  after N steps.  This 
follows  from the  fact  that  since p ( h )  as given in Eq. (29) 
has N jumps,  then only N orthogonal  polynomials P n ( A )  
can  be generated by (3 l).* 

Examples 
From Au = b , certain  iteration schemes  are obtained by 
splitting A 

A = P - N  (39) 

where N is nonsingular. Then writing 

N U , + ,  = Pu, - b . (40) 

*The  author is grateful to R. Varga for urging him to include  this  remark. 

Then 

f -N”b 

G = N “ P  

M = I - N”P (4 1) 

1) The  Jacobi method corresponds  to N = diag A . 
2) The Gauss-Seidel  method corresponds  to N = L 

(which  equals the  lower triangular  portion of A up to 
and including the main diagonal, with all other ele- 
ments of L taken as  zero). 

-A and f = b. 

In each of these  three  cases  we must take  care  that 
the associated  matrix M has  the  properties required in 
the section on  the optimal method, Le., Hermitian  and 
positive definite. 
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