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Turan Formulae and Highest Precision Quadrature
Rules for Chebyshev Coefficients

Abstract: Expansions of functions in series of Chebyshev polynomials are frequently used in numerical analysis. The coefficients occur-
ring in the expansion are definite integrals; the purpose of this paper is to investigate numerical integration formulae for the coefficients

of highest degree of precision.

Introduction
To each function f(x) , integrable on (—1, 1), there corre-
sponds a Fourier-Chebyshev series,

i,AnTn(x) R 6))
where
_ 2 dx
A=, =2 [ T 00 5t
n=0,1,2, -, 2)

The stroke on the summation sign means that the term
for n =0 is to be halved, and T (x) = cos n8, with x =
cos @, is the Chebyshev polynomial (of the first kind).
Chebyshev expansions are widely used in numerical
analysis (cf. Fox and Parker [1]) and consequently meth-
ods of computing the coefficients, (2), are of interest.
Our purpose is to describe a sequence of quadrature rules
for evaluating (2), one for each n=1, 2, - - -, each of
which is of highest degree of precision (that is, exact for
a polynomial of degree as high as possible). Some of our
formulae are related to ones given by Turan [2] and the
simple form in which they emerge here enables us to
answer a question of Turan [2]. Indeed, in the particular
case that interests us we obtain a generalization of
Turan’s formulae.

The second section of this paper is devoted to the de-
rivation of this generalization. In the third section, ap-
plication is made of the Turan formulae to the evaluation
of Chebyshev coeflicients, and some bounds for degree
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of best polynomial approximation using our methods are
obtained. Finally, a section is devoted to the evaluation
of Chebyshev coefficients using only function values and
not derivatives.

Generalization of some Turan formulae
Let us put

g =cos [(2j— )m/2n], j=1, -, n.

The ¢; are the zeros of T,(x). We recall the generat-
ing function for the Chebyshev polynomial (Cf. Erdélyi
(3D

Ga.=(U-DO1—2m+=25 7T, 3

i=o
valid for |t| < 1 and —1 = z = 1. If we put
a(t)=(1—=r)=2t; B()=(1+7)/2 Y
then we can write

Gz, t)=al(z—8).

o Lemma 1
If (1) converges for —1 = x = 1 and

FE) =S A, T,(x),  —l1=x=1, ®)
j=0

then

P SHE = 1)y, ©
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Proof

Put Lf= En:f(g.) ; then

i=1

LGz, t)—aEglﬂ

=—aT,(B)IT,(B),
in view of the identity

p'(x)

1
plx) ’

S XX

_M=

where the x, are the zeros of an arbitrary p € P, (P,
denotes the set of polynomials of degree at most n).
The subscript z on the linear functional L indicates that
it operates on functions of z. Now

r(t) =—aT,(B)IT,(B)

is a rational function of 7 [via (4)] and its value on the
unit circle in the complex f-plane, t = e 0=0=2nmis

in sin n@
cos no

r(e®) =—

3

hence

LG (z. ) = () = n(1
n i/(—l)" ok
i=0

If we apply L, to both sides of (3) we obtain, in view
of (7),

— M1+ ™)

lf] < 1. )]

—1Yn, k=2jn, j=0,1,2,

LT (z)= [

0,k +#* 2jn, j=0,1,2,

The lemma now follows upon applying L, to both sides
in (5).

Remark 1

This result is also an easy consequence of the ortho-
gonality property of the Chebyshev polynomials on the
set {¢,, - -,&,}.

Remark 2

If f € P,, , then (6) becomes

1 n 1 dx

LS e = A2 =1im [ o

i=1

Gaussian quadrature with respect to the weight func-
tion (1 — x)"2

We next recall the notion of the divided differences of
afunction. If g has a continuous kth derivative on [—1, 1]

and x,, - - -, x, are distinct points of that interval then
m, m, m,
GO Xy X Xy, Xy K, X
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where m=k+1,j=1, , 5, the divided difference
of g with respect to the x; with multiplicity m,, i=1,
-, s, is the leading coefficient of the unique p € P,,

s

= Z m;—1,
i=1
which satisfies
PV (x) =g"(x), i=1,---

o Lemma 2

Iff € C'([—1, 1]) and

—1=x=1,

= i, 4, T;,(x)

j=0
then
Lf=f(&, &, . &)
2" i'(1)(,+1 e GAr—1)

X (2j+r)A

@2j+rin ?

r. —
(where &, is shorthand for ¢&,, - - -, ).

Proof
First we observe that

&)
T’(f)

and, therefore, if we put /(z) = (z — B) "

g, §)—2"'2

_ et o 1 2"
M 6) =2 S = T8

Hence

W,

8= ]

and by continuity we obtain

) =g [TE(B)]' .

h'(flr, -
Thus

1 ’
L. G(z,t)= a2’V [r—] =—q2' ",
’ T,(B)

a rational function of ¢, whose form we determine by its
values when r=¢", If r = ¢

T,(B)
T;+1(B) >

_Ara—1y inr sin n@
L .G(z,1)=-2 —_

r+1’

(cos n8)

so that 373

COEFFICIENTS IN CHEBYSHEV EXPANSION




L.G(z,t)=n2" (" (1 ="+ "™

nr

=(r_1),2< DG+ GHr=1)

X (2 + )", (8)

The lemma now follows as in the conclusion of the proof
for the case in Lemma 1.

Let I', denote the lemniscate in the complex z-plane
defined by |T,(z)| = 1. For each positive p < 1, let C,
be the ellipse in the z-plane with foci (=1, 0) defined by

t+ 1/t
Z:B(t)=T, ltl=p. (€))
The mapping in (9) gives a 1-to-1 conformal mapping of
the unit disc, 7| < 1, onto the extended z-plane with the

segment [—1, 1] deleted. Put
|T,[B(1)]1 > 1}.

Observe that the open segment —1 < ¢ < 1 is contained
inr,.

r,={djl <1,

o Lemma 3
The equation

f f(x

[Zf(f

P ar @8 (10)
j=1
is satisfied by f(x) = G(x, 1) for r € 7,, where
1
;)
a_(_l)] j 1 j=172""- (11)
/ 24"

Proof
In view of (3),

f G(x t)_dx_:
L

But the right-hand side of (10) for f(x) =
cording to (7) and (8), equal to

[ 1—¢" 1—r2 -t
A Lo ey I
n[ 1+ 1+z“j§‘ J 2

e Gl

G(x, 1) is, ac-

2 -1
- tu(l— - )‘=w, (12)
1+t T.(B)
where we have used the identity
374 T,(8)=("+1")2,

C. A. MICCHELLI AND T. J. RIVLIN

and the fact that the infinite series in (12) is a convergent
binomial expansion since tE€r, .

Let R be a region in the z-plane containing I, strictly
in its interior, and let A(R) denote the set of functions
analytic on R.

e Theorem 1
If fEA(R) then f satisfies (10) with the coefficients, @,
given by (11).

Proof

There exists 8 > 0 such thatT" : [T ()| =1+ 8, (a sim-
ple closed curve), is contained in R and I, is strictly in-
side I'. Then if —1 = x = 1 we have, by the Cauchy in-
tegral formula,

_ L@
fla) = 2771 C—x

Let us put

lf=j f(x)Tli%;;,

and let Q denote any of the bounded linear functionals.
I,L,L ,r=1,2,---.Then

ff(c ( ).

and, in particular
e[S+ Sara ]
-f-2fure § o)

2771] f(C){I igl—x—z[L glx
XTI

< L @ -1
=5 f,‘ @) )]

w

x [—

n

where ¢ is in the pre-image of I under the mapping 87",

and we have used Lemma 3. As is evident from (12),
given € > 0, there exists m, such that for m = m,

‘If—%[iéf(f) "

where M is a bound on fon I', and C is a constant bound-
ing |e(n|™" and other functions of ¢ appearing in the final
sum in (13). This concludes the proof.

£

S Ly, Go.o|| . (13)

j=m+1

m

S f1(E

j=1

~~~,§ij)]‘fCMe,
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Remark 1

The somewhat unusual condition that fEA(R) can be
replaced by a more familiar but less precise requirement
in the hypothesis of the Theorem 1. Let E be the inside
of the ellipse Cp defined above. Then if we require that
fbe analytic in E for some p satisfying

p< (V2-1)'", (14)

the conclusion of Theorem 1 holds. To see this we ob-
serve that for zEC,, |T,(z)| = ¥p™" — p") and hence if

(14) holds, IT,l(z)} > 1,sothat Ep can serve as aregion R.

Remark 2

This theorem is our generalization of Turan’s formula,
namely, if fEP,, . , then the hypotheses of the theorem
are satisfied and we obtain

J’ fO——=

= (w/n) [Zf(f
k-1 N -
FY a8 as)

Turan [2] showed that for any weight function, w(x),
there is a unique quadrature formula

fl Ffw(x)dx = i [)\;O)f(xj) + A}l)f, (xj)

J=1

4. 4 }\J!Z(k‘—l)y[z(kfl)](xj)] (16)

valid for f€P, ., k=1,2,---. This formula is ob-
tained by choosing the nodes x, , - - -, x, to be the zeros
of the unique polynomial which minimizes

f [p(x)1*w(x)dx

among all p € P, with leading coefficient 1, and integrating
the Hermite interpolating polynomial of degree at most
(2k — )n — 1, which agrees with f and its first 2(k — 1)
derivatives at x,,- -, x,. Thus in the case w(x)=
(1 - xz)‘”2 , (16) and (15) must be identical. As a further
remark, then, we see that

1
n n—1 p dx
+a ++aq]"
f~l [x n—1% ao] \ /1 _xz

is minimized for p=2k., k=1, 2, , by the Cheby-
shev polynomial of degree » normalized so that its lead-
ing coeflicient is 1. It is known that this is the case for
allreal p= 1.

Turan [2] asks whether, even for k = 2, the weights
/\;0) A )\‘2) are positive for w(x) = 1. He shows that

> J

)\; " are posmve but states that the status of thq )\(0) nd
A;" is an open question. When w(x) = (1 — x*)"? our for-
mat, (15), of the Turan formula enables us to determine

the weights easily fork = 2. When k = 2, (15) reads

JuLy 1972

[ 100 B = i [ ree)
1 ! 2 . . 2
RGE ,fn)] (17

In order to evaluate the divided difference f’(.ff L,

fi) , we note that

n
§ T, (x)

-3 [re ()

j=1 I’l - gj

£
I —‘LT
) o |

satisfies pEP,, ., p§)=h&), p'E)=h(E), j=1
-, n. Therefore f’(§f, SR g;) is the leading coeffi-
cient of p, which yields

fr@E ) =@ S ()
j=1

+ (=& (€] (18)

Thus, in this case, the Turdn weights A" and A;" are
are all positive but the A;" are not.

We end this section by briefly describing another ex-
pansion, similar to (10), but based on the points n; = cos
jwln, j=0,1,---,n.Itis well known that

fx)ydx =
2" fny) (19)
for fEP,, ,. The double stroke on the summation sign

indicates that the first and last terms are to be halved.
Equation (19) is the highest-precision quadrature formula
of the Lobatto type corresponding to the weight w(x) =

IV — 42 (cf. Krylov [4]). The method used to prove
Theorem 1 also can be used to prove the following
theorem.

e Theorem 2
Let f be analytic inside {z:{7%(z) — 1| = 1 + €} for some
€ > 0. Then

d.
[

£ 3 D af n?, o | o)
=1

where a; are given by (11).

Remark 3
Formula (20) also has the property that any partial sum
of the series is a quadrature formula of highest degree of
precision.
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=[5

k-1

+ 3 a1 Oy,
j=

f Sl

_X
y
M n’,,)]

is exact for f€P,, , k=1,2,--. This is a quad-
rature formula of the Turan type where the nodes +1
and —1 are prescribed, what might be called a “Lobat-
tomized” Turan formula.

Quadrature rules for Chebyshev coefficients involv-
ing derivatives and other applications of the Turan
formula

Let us next apply the formula (17) to the evaluation of
A, . We obtain, in view of (17), for fEP,

3n—-1"

A, () = [zf T, (£)

(2{( ENLFETIE) + ToE) ' (€)]
+ (L= E)fENT) (&) + 21" (£)T,(E)
FTLE) 1G]

which since (§ =0,
=—n T (x) and T'(f)z

(1—x T”(x) —xT; (x)
—-1)"'n(1 —§]:) z, simplifies to

A, = (1—§j>f'(§j)T;,<§j)

1
n & TE) Qn

o Theorem 3
The quadrature rule

, 1-n

" 2
A4,() = 2 —n“f/(& s &) (22)

1
n ;

is exact for f€P,, ,, n=1,2,--
is no quadrature formula

- . Moreover, there

A ) =3 [af(x) + b,f" (x)] (23)
exact for f€P, , for any choice of a;, b, and x,.

Proof

Equation (22) follows immediately from (21). If
ox)=(x—x) - (x—x,, (24)

then for f= wZTnEP:m the right-hand side of (23) is zero
376 but the left-hand side is positive.
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Remark 1
Equation (22) is the only formula of the type

A, =S bf (x) (25)

exact for feP,, . For if (25) exists, consider

pi(x) = fr 210

0 (t_xi)

T, (t)dt, i=1, " ,n,
where o is defined by (24).

Since p,(x) €P,,, and when (22) and (25) are applied
with f=p,, we have

0=bw (x)T,(x,) .

Because b, and o' (x;) are not zero, x; must be a zero of
T,. This argument can be repeated for each i=1,
LN,

We do not know (when n = 4) if (22) is the only rule of
the form (23) that is exact for fEP,, | with the x, satis-
fying —1 = x, = 1, but it is not unique if nodes outside of
[—1,1] are permitted.

Remark 2

Note that (22) is a sequence of formulae, one for each
n=1,2, .. The evaluation of 4, (f) can be accom-
plished by (17).

In order to present another application of our methods,
we recall some notation and results about best uniform
approximation by polynomials. If f€C([—1,1]) and p*
is its best uniform approximation out of P, then
E,(f)=f—p* —jnale x) = p*(x)|.

If X denotes the set of distinct real numbers {x,, - - -,
x,} and p,* is the best approximation of f on X out of
P,_, then

Jmax |f(x) = pr ()= —pill =E, ().

It is well known (cf. Rivlin [5]) that

Ef (N =1fCx, - x)lglx,, o, x)l,

where g is any function satisfying g{(x,;) =
,k.Also,ifXC[—1,1],

EL,(N)=EL ).
Choose X =T={¢,, -,
D' _

£} . the zeros of T, (x) ; then

k
SN ] :zk—l — A 1
¢ (&, &) 270 2 T, (§)|
e (2i — ])77 2k
P xsn T
= k smﬂ
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Thus for k = 2,
k sin (7r/2k

E,,(f) = =R AlE

A now familiar procedure yields
Kotk 1— 12

Glg, g =21
)\ 1 E ( (Z]+1)k 1 t(2j+lik+1) ,

J=0
and hence if
f(x)IE’AjTj(x), —1=x=1
j=0
we have for k = 2,
T k sin 2k
By =R )
- (A3k71 _A.‘lk+l) + - | . 27

A simple consequence of (27) is therefore the weaker
result

E,(f)Zz (A, —A, ) — Ay, — A, )+ |
(28)
If
m; = cos jm/n, j=0,---,n,
so that the 7, are the extrema of T, (x) on [—1,1],
T,,(nj)=(—1)J, j=0,--.n,
we put U= {n,, -, n,}. Since
o=l n )
fg. - omy) ===3" =1)f(n), (29)
j=0

where the two strokes on the summation sign mean that
the first and last summands are to be halved, we see that

E_ (f)=1f(ny. -, m)|/2"". But
Gy oumy ) =2" 3270,
j=1

and hence if
fx) = EAT(x) —1=x=1,

=0
we obtain
fOrgss o) =2 T Ay (30)

j=1
and recover the well-known result of de La Vallée
Poussin,

EC(f) = 31

A(2jv1)(n+1) ’
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Highest precision quadrature formulae for Cheby-
shev coefficients using only function evaluations

o Theorem 4
The quadrature rule

A,(0) lE (1) =2y, (32)

:

is exact for f€P,,_,, n=1,2,
n > 1 there is no quadrature formula

. Moreover, when

n

> of (x)

=0

A,(f) = (33)

that is exact for f€P,, for any choice of ¢; and distinct
X and (32) is the only rule of the form (33) exact for
f'65193"‘]

Proof

Equation (32) is an immediate consequence of (30) and
(29). Suppose (33) is exact for fEP,, . Put Q(x) =
(x=my) - x=m,), o) = (x—x)x—x) -
(x—x,), and consider f(x)=Q(x)ow(x)(x— xi)_1
eP . According to (32) and (33), we have

2n+1

0=A4,)=cflx)=cQx)o (x,) .

Since ¢, (x;) # 0 we must have Q(x;) =0. The same
argument for each i leads to w = ). The weights in (32)
are, clearly, uniquely determined. Moreover, (30) is not
exact for fEP,, as fl(x)={(1 —xz)[(x—nl) R
(x—m,_,) ]ZTn (x) € P,, shows.

Remark
When n = 1 the highest degree of precision is 4, and the
unique quadrature formula, exact for fEP, , is

2 (! x 2 —»(x@)zﬁ(\/?)
< = X2} - =V3 -2
ﬂfﬁlf(x)x\/l_xz 3\/3f 2 3 f 2
Let us consider quadrature formulae of highest precision

k

S ¢ ).

j=0

A4,(f) = (34)
We have just seen that for k =n > 1, (32) is the unique
formula of highest precision. Let h(k) be the largest in-
teger such that there exists aformula (34) exactforf€P, .
Then for n > 1 we obtained h(n) =3n— 1. We wish to
conclude by examining the function 4 (k) as k varies.

o Theorem 5
1 hik)=k—1,k=1 ,n—1.
2) a) h[Cm—1Dnj=UAm—1)n—1,
b) hCmn—1)=4m+1)n+1,
form=1,2,

n>1,

COEFFICIENTS IN CHEBYSHEV

377

EXPANSION




378

3) a) If2mn—1<k< 2m+ 1)n,
mzl’z’...
hik) <2mn+k.
b)) If Cm—1)n<k<2mn—1,
m=1,2, -,
hk) < 2m—Dn+k+1.

Proof
1) If h(k) = k then

k
0 =An(f) = E Cif(xi)

i=0
for any f&P,. In particular, choose f;€P, such that
L) =8,

then =0 and there is no quadrature formula of the in-
dicated kind. However, given any set of distinct nodes

X,» ', X, the k linear equations in £ + 1 unknowns
K .

S exi=0, J=0,---,k—1

i=0

have a nontrivial solution, and, indeed, no ¢;= 0. For
if, say, ¢, = 0, the homogeneous system

k .

Ecixj=0, j=0,---,k—1

i=0

i#q

has only the trivial (zero) solution since its matrix is of
Vandermonde type. Thus A(k) =k — 1.

(2mn)

2a) Let " =cos (ja[2mn), j=0,---,2mn.
There is a quadrature formula of Lobatto type

! dx w o (2mn)
fﬁlg(x)ﬁf:%; gm ) (35)
which is exact for g€P,,., .. [Cf. (19).] Since each zero
of T,(x),
g=cos (2i—1) —, i=1, - ,n

2n
is found among the n,*"", j=0,- - -, 2mn, we obtain
from (35) '
@2m-1)n

A4, (H= 3 bfin), (36)

=0

[where the \; are the m; which are not zeros of T, (x) ]
exact forfe P If there is a formula

(dm-1)m-—1*
@m—1)n
4,(0="3 ¢fx)
j=0

exact for f€P,, ., . then we put Q(x)=(x—A) - -
(X = Mgy and o(x) = (x — x;) * * * (x — Xp,,_,),) - Thus
: ®(x) .
flx) =Q(x) a—— € Plprynos > since n > 1,

[
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Hence 4,(f) = 0 by (36) and therefore
o (x)Q(x,)=0,

which implies that ) = o . But (36) cannot be exact for
fEP, as the choice

am—1)n
FE) =0 =[x =Xx) (= A yy) I T ()
€ P(4m—1)n
demonstrates.

2b)  h@2mn—1) < (4m+ Dnsince o’'T, € P10,
By Gaussian quadrature (cf. Remark 2 following Lemma

])’

l 2m+1)n
dx Ll f(2m+1)n)

i - j 37
f;lé’()\/r_“x“z 2m+ 1)n J; g (¢ Y (37)
is exact for gE€P,,,., ), » Where f}am*l)"] are the zeros
of T(2m+1)n(x) . Hence

2mn—1
A4,0)="3 dfw), 38)
Jj=0

where the u; are the zeros of T which are not also

zeros of T, , is exact for fEP

2m+1)n

@m+1m-1"

3a) Let
k

A, = ¢f (x))

j=0
be exact for fEP,,. Let Q)= (x— )+ (X — Bypn_y)
€ P,,,and o(x)={x—x)) - - - (x—x,) € P, then
w{x)

X=X

Sx) =Q(x) € P

2mn+k

and in view of (38) we conclude, in a fashion that is by
now familiar, that A(k) < 2mn + k.

3b) The argument resembles 3a) and we omit it.

Remark

This theorem gives the surprising information that the
addition of nodes to a quadrature formula may result in
reducing the highest degree of precision.

Conclusion

Let us now place our results in a broader context. The
existing literature seems to be exclusively concerned with
approximations of the Chebyshev coefficients as a means
of approximating a partial sum of a Chebyshev expan-
sion. With that aim a single formula applicable to all of
the coefficients of interest is desirable. We, however, pro-
vide a different formula for each coefficient since our ob-
ject is to study the highest degree of precision formulae
for each coefficient. A good survey of the state of the art
of Chebyshev coefficient evaluation is given in Cooper
[6]. The formula (32) is mentioned there, but no atten-
tion is given to the highest degree of precision problem.
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