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Turan  Formulae  and  Highest  Precision  Quadrature 
Rules  for  Chebyshev  Coefficients 

Abstract: Expansions of functions in series of Chebyshev polynomials are frequently  used in numerical  analysis. The coefficients occur- 
ring in the expansion are definite  integrals; the  purpose of this  paper is to investigate  numerical  integration formulae  for  the coefficients 
of highest  degree of precision. 

Introduction 
To each  functionf(x) , integrable on (-1 , 1 )  , there  corre- 
sponds a Fourier-Chebyshev series, 

where 

n = 0 , 1 , 2 ; . .  . ( 2 )  

The  stroke  on  the summation sign means that  the  term 
for n = 0 is to be  halved,  and T,(x) = cos n e ,  with x = 

cos 0 ,  is the  Chebyshev polynomial (of the first kind). 
Chebyshev  expansions  are widely used in numerical 
analysis (cf. Fox and Parker [ 1 1 )  and  consequently meth- 
ods of computing the coefficients, (2), are of interest. 
Our  purpose is to  describe a sequence of quadrature rules 
for evaluating (2), one  for  each n = 1 , 2 ,  . . . , each of 
which is of highest degree of precision (that  is,  exact  for 
a polynomial of degree  as high as possible). Some of our 
formulae are related to ones given by T u r h  [ 2 ]  and the 
simple form in which  they  emerge here enables us to 
answer a question of TurAn [ 21. Indeed, in the particular 
case  that  interests us we  obtain a generalization of 
Turhn’s  formulae. 

The  second  section of this paper is devoted  to  the  de- 
rivation of this  generalization. In  the third section, ap- 
plication is made of the  Turan formulae to  the evaluation 
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of best polynomial  approximation using our  methods  are 
obtained.  Finally, a section is devoted  to  the evaluation 
of Chebyshev coefficients using only  function  values  and 
not derivatives. 

Generalization of some  Turan  formulae 
Let us put 

t j = c o s  [ (2 j -   1 ) . i r /2n] ,  j =  1 , .  . . 9 n .  

The tj are  the  zeros of T,(x) . We recall the generat- 
ing function for  the  Chebyshev polynomial  (Cf.  Erdelyi 
[31) 

m 1  

G ( z ,  t )  = (1 - t ’ ) / ( l  - 2zt + t 2 )  = 2 t j  T j ( Z )  , (3) 
j = 0 

valid for It1 < 1 and -1 5 z 5 1 .  If we  put 

a ( t )  = (1 - ?”/-2t; P ( t )  = (1 + t”/2t (4) 

then  we can  write 

G ( z , t ) = a / ( z - P ) .  

Lemmu I 
If (1) converges  for -1 5 x 5 1 and 

f ( x )  = c. Aj Tj(X)  > 

2 ,  

-1 5 x 5  1 ,  (5) 
j = O  

then 
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in view of the identity 

PI (x) " I  
P ( X )  i = ]  

~- 

where  the xi are  the  zeros of an arbitrary p E Pn ( P ,  
denotes  the  set of polynomials of degree at most n). 
The  subscript z on the linear  functional L indicates that 
it operates on functions of z. Now 

r ( r )  =- T;(P)IT,(P) 

is a rational  function of t [via (4)] and its  value on  the 
unit circle in the complex  r-plane, t = e , 0 5 8 5 2.rr is 

r ( e  ) =-- 

i8  

i8 in sin no 
cos no ' 

hence 

L ~ C  (z , t )  = r ( t )  = n ( 1 - t'")/( 1 + t pn)  

- 2n x (-1 )j p n  , m ,  

- It1 < 1 . (7) 
j = O  

If we apply Lz to  both sides of (3) we obtain, in view 
of (71, 

The  lemma now follows  upon  applying Lz to  both sides 
in (5). 

Remark I 
This result is also  an  easy  consequence of the  ortho- 
gonality property of the  Chebyshev polynomials on  the 
set (5, , . . . , 5 , ) .  

Remark 2 
Iff E P2n-l then (6) becomes 

Gaussian  quadrature with respect  to  the weight func- 
tion (1 - i'1-i . 

We  next recall the notion of the divided diffc>rences of 
a function. If g has a continuous kth  derivative on [-I , 1 ] 
and x1 , . . . , x, are  distinct  points of that interval  then 

A- A 
m m2 m 

~ ~ X , , X 1 ; ~ ~ , X ~ , X p ; ~ ~ , X 2 ; ~ ~  >XS'. . . , x s )  3 

where mj 5 k + 1 , j = 1 , ' . . , s , the divided difference 
of g with respect to the xi  with multiplicity m i ,  i = 1 . 
. . . , s , is the leading coefficient of the unique p E P ,  . 

I =  E m i -  1 ,  

which satisfies 

s' 

i= 1 

p ' j ! ( x J  = g'j)(x) , i =  1 , . . . , s ;  j = O ; . . , m i - l .  

r 
& 

(where (L is shorthand  for t i ,  . . . , ti). 

Proof 
First we observe  that 

and,  therefore, if we put h(z)  = ( z  - P)" 

Hence 

and by continuity we obtain 

Thus 

a rational  function o f t ,  whose form we  determine by its 
values when t= ei8 . If t = eiH 

Lr,zc ( z  , t )  = -2") inr sin n8 
(cos no)"' ' 

so that 
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X (2j  + r )  t('j+rln. (8) 

The lemma  now  follows as in the conclusion of the proof 
for  the  case in Lemma 1. 

Let rn denote  the lemniscate in the complex z-plane 
defined by IT&)] = 1 . For  each positive p < ,I , let Cp 
be the ellipse in the z-plane with foci (k1 , 0) defined by 

t + l / t  z = P ( t )  =- 
2 '  It1 = P .  (9) 

The mapping in (9) gives a 1-to-I  conformal mapping of 
the unit disc, It/ < 1 , onto  the  extended z-plane with the 
segment [-1 , 11 deleted. Put 

r,= {tlltl < 1 ,  IT,[P(t) l I  > 11. 
Observe  that  the  open segment "I < t < 1 is contained 
In 7,. 

Lemma 3 
The  equation 

is satisfied by f ( x )  = G(x , t )  for t E r,  , where 

1-3) 

Proof 
In view of (3), 

But the right-hand  side of (10) for j(x) = G(x  , t )  is, ac- 
cording to (7) and (8), equal to 

where we have used the identity 

374 T,(P) = (t" + t - " ) / 2 ,  
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and the  fact  that  the infinite series in ( 1 2 )  is a  convergent 
binomial expansion  since t €7, . 

Let R be a region in the z-plane  containing r, strictly 
in its  interior,  and  let A ( R )  denote  the  set of functions 
analytic on R .  

Theorem I 
If f 'EA(R) then f satisfies (10) with the coefficients, aj , 
given by ( 1   1 ) .  

Proof 
There exists 6 > 0 such  that r : IT,(z)l = 1 + 6 , (a sim- 
ple closed curve), is contained in R and rn is strictly in- 
side r. Then if -1 5 x 5 1 we have, by the  Cauchy in- 
tegral formula, 

Let us put 

and let Q denote any of the bounded  linear  functionals. 
I , L , L ~ , r = 1 , 2 ; . . . T h e n  

and, in particular 

where t is in the pre-image of r under  the mapping P-' , 
and we have used Lemma 3. As is evident  from (1 2), 
given E > 0 ,  there  exists rn, such  that  for m 1 m,, , 

where M is a bound on f on r, and C is a constant bound- 
ing la(t)l" and  other functions of t appearing in the final 
sum in ( 1  3). This concludes the proof. 
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Remark I 
The  somewhat unusual condition that f € A ( R )  can  be 
replaced by a more familiar but less  precise  requirement 
in the hypothesis of the  Theorem 1. Let E,  be  the inside 
of the ellipse C,  defined above. Then if we require  that 
f be analytic in EP for  some p satisfying 

p < (a- 1 ) I / " ,  (14) 

the conclusion of Theorem 1 holds. To  see this we  ob- 
serve  that  for z E C p ,  IT,(z)l 1 +@, - p") and hence if 
(14) holds, I T,(z)l > 1 , so that ED can serve  as a region R .  

Remark 2 
This  theorem is our generalization of Turhn's  formula, 
namely, if f E P Z l c n - ,  then the  hypotheses of the theorem 
are satisfied and we obtain 

TurPn [ 2 ]  showed  that  for  any weight function, w ( x ) ,  
there is a unique quadrature  formula 

1' f ( x ) w ( x ) d x  = [AT' f (x j )  + A j I ' f '  ( x j )  
--I j =  I 

+ . . . + Aj2(h.- l ) l  [2(h.-l)l , f ( X j ) ]  (16) 

valid for f € P 2 k n - ,  , k = 1 , 2 , . . . . This formula is ob- 
tained by choosing the nodes x ,  , . . . , x,  to be the  zeros 
of the unique polynomial which minimizes 

j" I P ( x ) l Z k w ( X ) d x  
- 1  

among all p E P ,  with leading coefficient 1 ,  and integrating 
the  Hermite interpolating polynomial of degree  at most 
(2k - 1)n - 1 , which agrees  with f and its first 2(k - 1) 
derivatives at x, , . . . , x , .  Thus in the  case "(x) = 

, ( 1  6) and ( I  5 )  must  be  identical. As a further 
remark,  then, we see  that 

( 1  - x 2 ) - 1 / 2  

[x" + a"-lXn-l + . . . + any' ___ dx 

is minimized for p = 2 k ,  k = 1 , 2 ,  . . . , by the  Cheby- 
shev polynomial of degree n normalized so that its  lead- 
ing coefficient is I .  It is known that this is the  case  for 
all real p 1 1 . 

Turan [ 2 ]  asks  whether,  even  for k = 2 ,  the weights 
A!", A; ') ,  A;"' are positive for w(x)  = 1 . He shows  that 
A?' are positive but  states that the  status of thq AjoJ and 
Aj IS an  open question.  When w(x) = (1 - x2)-T our  for- 
mat, (1 5) ,  of the TurPn  formula enables us to  determine 
the weights  easily fork = 2 . When k = 2 , (1 5 )  reads 

: I ,  . 

Thus, in this case,  the TurPn weights Ajn)  and A;" are 
are all positive  but the  are not. 

We  end  this  section by briefly describing another ex- 
pansion, similar to (lo), but  based on  the points nj = cos 
j x l n  , j = 0 ,  1 , . . . , n . It is well known that 

for f € P Z n - ,  . The double stroke  on  the summation sign 
indicates that  the first and last  terms  are  to be halved. 
Equation  (19) is the highest-precision quadrature formula 
of the  Lobatto  type corresponding to  the weight w(x)  = 

1/- (cf. Krylov [4]). The method  used to  prove 
Theorem 1 also  can be used to  prove  the following 
theorem. 

Theorem 2 
Letf be  analytic  inside { z :  lT i ( z )  - 1 I = I + E }  for  some 
E > 0 .  Then 

where aj are given by ( 1  1). 

Remark 3 
Formula (20) also  has the  property  that any  partial sum 
of the  series is a quadrature formula of highest  degree of 
precision. 375 
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is exact  for f€P2k,-l , k = 1 , 2 ,  . . . . This is a quad- 
rature  formula of the Turfin type  where  the nodes + I  
and -I are  prescribed, what might be called a "Lobat- 
tomized" Turfin formula. 

Quadrature  rules for Chebyshev coefficients involv- 
ing derivatives and other applications of the Turhn 
formula 
Let us next  apply the formula ( I  7 )  to  the evaluation of 
A , .  We obtain, in view of (17), for fE  P:3n-l , 

Theorem 3 
The  quadrature rule 

is exact  for f'EP:jn-l , n = I , 2 , . 
is no quadrature  formula 

n 

A , ( f )  = [ a , f ( x J  + b , f ' ( x ; ) ]  
1 = 1  

3 5,) (22)  

Moreover,  there 

exact  forfEP,, , for any  choice of ai , bi and x i .  

Proof 
Equation  (22) follows immediately  from  (21). If 

o ( x )  = ( x - x J  . . . (x-x,) , (24) 

then for f=  0 2 T n  E P:3r, the right-hand  side of (23) is zero 
376 but the left-hand  side is positive. 
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Remark I 
Equation (22) is the only formula of the  type 

n 

A,Cf) = 2 b f  ( X j )  
j = 1  

exact  forfEP,,,_, . For if (25) exists, consider 

where o is defined by  (24). 

with f = p i ,  we have 
Since p, (x )  EP,, , and when (22) and (25) are applied 

0 = b;,' (x;) T , ( x ; )  . 

Because bi and o' ( x i )  are not zero, x i  must  be a  zero of 
T , .  This argument can be repeated  for  each i = 1 , 

We do not know (when n 1 4 )  if ( 2 2 )  is the only rule of 
the form (23) that is exact forfEP3n-l  with the xi  satis- 
fying -I 5 xi  5 1 , but it is not unique if nodes outside of 
[-I ,1]  are permitted. 

. . .  , n .  

Remark 2 
Note  that (22) is a sequence of formulae, one  for each 
n = 1 , 2 , . . . . The evaluation of A , ( f )  can  be  accom- 
plished by (1 7 ) .  

In order  to  present  another application of our  methods, 
we recall some notation and results  about  best uniform 
approximation by polynomials. Iff E C  ([-I , I ] )  and p* 
is its best uniform approximation out of P, then 

If X denotes  the  set of distinct real numbers {x, , . . . , 
x k }  and px* is the  best approximation off'  on X out of 
Pk-2 then 

i =p t?x  3 ,  ,If(x,) - P; (xi) I = llf- p;il, = Ef-2(f') . 

It is well known  (cf. Rivlin [ 5 ] )  that 

where g is any  function satisfying g ( x i )  = (-1 ) '  , i = 1 , 
. . . ,  k . A l s o , i f X c [ - I , I ] ,  

EZ-,V) 5 E,-,V) . 
Choose X = T = {t, , . . . , 5,) , the  zeros of T ,  (x) ; then 
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= 2"" ) j ( t l l j + l ) / c - l  - t ' 2 i+1 'k+l  1 ,  
; d l  

and hence if 
r 

f ( x )  =E' A j T j ( X )  1 - 1 5 x 5  1 
j=O 

we have for k 1 2 , 

E" ( f ) =  k sin (7r/2k) 
k - L  I -A ,+ ,  1 

- - A : l k + l )  + ' ' . I .  (27) 

A simple consequence of (27) is therefore  the  weaker 
result 

E , , ( f )  1 3  I (A,l+, - A , + : % )  - (A:,,,, -A:,,+,) + . . . 1 . 

If 

aj = COS jn-ln, . . , n ,  

so that  the qj are  the  extrema of T, (x )  on [ - I  , I ]  , i.e., 

T , ( ~ ~ l j )  = (-1 j = 0 , .  . . , n ,  

we put U = {aO , . . . , a,} . Since 

(28) 

2,-1 
f ( a ,  1 . ' ' 3 a , )  = n E" (-1 )Y(Tj )  3 (29) 

j = O  

where the two strokes on the  summation sign mean that 
the first and last summands are  to be  halved, we see that 
E:-, Cr) = If(a,, , . . . , 7,) 1/2"" . But 

r 

G (a(, 3 ' " q , ; t ) = 2 ' 1 ~ t  , 
cz j - l ln  

j =  1 

and hence if 

we obtain 
r 

f ( T ( ,  9 . ' ' > a,) = 2"-l E Ar2;-l)n > (30) 
j =  1 

and recover  the well-known result of de  La VallCe 
Poussin, 

Highest  precision quadrature formulae for Cheby- 
shev  coefficients using only function evaluations 

Theorem 4 
The  quadrature rule 

A , ( f )  = - E" (-1 )Y(Tj) = 2 ' - R a 0  > . ' ' 9 a,) 1 "  
(32) ' j -0  

is exact  forfEP:,n-l , n = 1 , 2 ,  . . . . Moreover, when 
n > 1 there is no quadrature formula 

(33) 

that is exact  forfEP:,,  for any choice of cj and  distinct 
xj,  and (32) is the only rule of the form (33) exact  for 
fEP, , - ,  ' 

Proof 
Equation (32) is an immediate consequence of (30) and 
(29). Suppose (33) is exact  for f E P : , , - I .  Put n(x) = 

(x - X,) , and consider f ( x )  = R ( x ) o ( x )  (x - xi)-' 
EP,,+, . According to (32) and (33), we have 

(x - a[) )  . . . (x - a,) 1 o ( x )  = (x - X()) (x - X I )  . . . 

0 = A , ( f )  = C j f ( X i )  = c i n ( X i ) o ' ( x j )  . 

Since c p '  ( x i )  # 0 we must have fL (x i )  = 0 .  The  same 
argument for  each i leads to o = a. The weights in (32) 
are, clearly, uniquely determined. Moreover, (30) is not 
exact  for f~ P,, as f ( x )  = ( I  - X') [(x - . . . 
(x - 7 , h - I  ) ] 'T , ( x )  E P,, shows. 

Remurk 
When n = I the highest degree of precision is 4, and the 
unique quadrature  formula,  exact  for f E P ,  , is 

Let us consider quadrature formulae of highest precision 

(34) 

We  have just  seen  that  for k = n > 1 , (32) is the unique 
formula of highest precision. Let h ( k )  be the largest in- 
teger  such that  there  exists  aformula (34) exact  forfEP,. 
Then  for n > 1 we obtained h ( n )  = 3 n  - I . We wish to 
conclude by examining the function h ( k )  as k varies. 

9 Theorem 5 
1) h ( k ) = k - l , k = l ; . . , n - l .  
2) a) h [ ( 2 m -  I ) n ] =  ( 4 m -  1 ) n -  I ,  n >  1 ,  

b) h(2mn - 1 )  = ( 4 m  + l ) n  + I ,  
f o r m = 1 , 2 ; . .  . 377 
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3) a) If 2mn - 1 < k < ( 2 m  + l ) n ,  
m = 1 , 2 ; . .  
h ( k )  < 2mn + k .  

b) If ( 2 m  - 1 ) n  < k < 2mn - 1 ,  
m = 1 , 2 ; . . ,  
h ( k )  < ( 2 m - l ) n + k + l .  

Proof 
1) If h(k)  1 k then 

k 

for any f E P ,  . In particular, choose j i E  Pk such  that 

q x i ,  = sij  ? 

then cj = 0 and there is no  quadrature formula of the in- 
dicated kind. However, given  any set of distinct nodes 
x,, , . ' . , xk , the k linear equations in k + 1 unknowns 

x c i x i = O ,  j = O , .  . . , k -  1 

have a  nontrivial  solution, and,  indeed,  no ci = 0 .  For 
if, say, cq = 0 ,  the homogeneous system 

h ' .  

i=O 

k 

has only the trivial (zero)  solution since  its matrix is of 
Vandermonde  type.  Thus h(k)  = k - 1 . 

2a) Let qjZrnn' = cos (j7rl2mn) , ,i = 0 ,  . . . , 2mn.  
There is a quadrature  formula of Lobatto  type 

which is exact  for g EP4mn-l . [Cf. (19).] Since  each  zero 
of T J x )  , 

ti = cos (2i - 1 )  -, 

is found  among the qiZmn), j = 0 ,  . . . , 2 m n ,  we obtain 
from ( 3 5 )  

A , ( f )  = C. bjfCAj) , (36) 

[where  the Aj are  the qj which are not zeros of T , ( x ) ]  
exact  forf E P~4m"l)n"l . If there is a formula 

7r 

2n 
i = l ; .  . ,  n 

(2rn-l)n 

j=O 

( Z r n - I  Jn 

A , ( f )  = C j J ' ( X j )  
j = O  

exact  for fEP~4m-I),  , then we put R(x) = (x - A,,) . . . 
( x  - Ac2rn-l ,,) and 4 x 1  = (x - x,,) . . . (x - x~~,,-~),) .  Thus 

f ( x )  = R(x)  - 0 (x) 
x - x i  E P(4m-1)n-l ' since n > 1 , 

378 
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Hence A n ( f )  = 0 by (36) and therefore 

CiW' ( X i ) R ( X i )  = 0 , 

which implies that R = w . But (36) cannot  be  exact  for 
J'E P(4rn-l)n as  the  choice 

f ( x )  = ( 1  - i2) [ (x  - A , )  . . . (x - A c e m - , ) n - l ) ] z T n ( ~ )  

E P ( 4 n - l ) n  

demonstrates. 

2b) h(2mn - 1 )  < (4m + l )n  since w2Tn E P(4,n+l)n. 
By Gaussian  quadrature (cf. Remark 2 following Lemma 
11, 

is exact  for g E P2c2rn+l , where tj are  the  zeros ( ( m t  1)nl 

of T ~ 2 1 , + l ) n ( x ) .  Hence 

A , ( f ) =  x djf(Fj) ,  
Zmn--1 

(38) 

where  the pj are  the  zeros of Tc2m+l)n which are not  also 
zeros of T , ,  is exact forfEP~4rn+1,,-1.  

j = O  

3a) Let 
k 

A , ( f )  = C. c j f ( x j )  
j=o 

be  exact  forfEP,(,) . Let R(x) = (x - pO) . . . ( x  - pnrnn-,) 
E P,,, and w(x)  = ( x  - x") . . . ( x  - x k )  E Pk+l , then 

and in view of (38) we conclude, in a  fashion that  is by 
now familiar, that h(k) < 2mn + k . 

3b) The argument resembles 3a) and  we  omit it. 

Remark 
This  theorem gives the surprising  information that  the 
addition of nodes  to a quadrature formula may result in 
reducing the highest degree of precision. 

Conclusion 
Let us now  place our  results in a broader  context.  The 
existing literature  seems  to  be exclusively concerned with 
approximations of the  Chebyshev coefficients as a means 
of approximating a partial  sum of a Chebyshev expan- 
sion. With that aim a single formula applicable to all of 
the coefficients of interest is desirable. We,  however, pro- 
vide a different formula  for  each coefficient since  our ob- 
ject is to  study  the highest degree of precision  formulae 
for  each coefficient. A good survey of the  state of the  art 
of Chebyshev coefficient evaluation is given in Cooper 
[6]. The  formula (32) is mentioned there, but no  atten- 
tion is given to the highest degree of precision  problem. 
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