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Finite Difference  Formulas  for  Neumann 
Conditions on Irregularly Shaped  Boundaries 

Abstract: A method,  based  on finite element  techniques, is described for obtaining finite differences  for  Neumann  conditions  on  irregu- 
larly shaped  boundaries.  The  resultant  difference  equations may be  used in both time-dependent and -independent  problems. As an ex- 
ample,  the  propagation of an elastic  surface wave  (Rayleigh  wave)  around a 90" corner is studied.  The  results of this simulation  compare 
favorably with laboratory  experiments. 

Introduction 
The finite element  method for  the numerical  solution of 
partial differential equations (referred to in this paper as 
PDE's) has found  application in many fields since  its 
introduction in 1956 by Turner et al. [ 1 ] for airframe 
structure design. Most of the  applications have involved 
elliptic PDEs. although  some  parabolic  and  hyperbolic 
PDE's have been  solved by this  method. In  contrast  to 
the  older finite difference method,  the finite element  meth- 
od offers certain  advantages: 

1 .  Neumann boundary  conditions, involving derivatives 
of the field variable, are easily  applied over irregular 
boundaries. 

2.  The elements may be chosen  to be small in regions 
where  the range of values of the solution is  expected 
to be  large and vice versa,  thereby conserving on stor- 
age requirements and computation time. 

This  latter  advantage is purchased at  the price of add- 
ing complicated logic to the  computer program. 

The finite element  method  and the finite difference 
method are generally  considered to  be completely differ- 
ent  approaches  to  the numerical  solution of PDE's. How- 
ever,  Friedrichs  and Keller [ 2 ]  have  demonstrated  that 
for linear  approximation  functions over triangular  ele- 
ments whose nodes are grid points of a rectangular net, 
the  two  methods yield the  same difference formulas  at 
interior  points. It is therefore possible to  choose a  hybrid 
method midway between  the finite element  and finite 

difference methods. One  starts with a  rectangular  grid, 
thereby forfeiting the  second  advantage, but greatly sim- 
plifying the logical design of the program. Having  chosen 
a  rectangular  grid, one may immediately use  the  standard 
centered difference formulas for  the interior  points. Then 
the finite element  method may be  used to obtain differ- 
ence formulas for  the  boundary points. The first advan- 
tage is thus  preserved.  This  is of particular  value if one 
already has a finite difference code  for some  problem  and 
wishes to  consider  cases in which the boundaries are 
irregular. Furthermore,  the only requirement is that  the 
grid be  rectangular. Since  there is no  requirement of fixed 
intervals between  points,  some flexibility in the size of 
the elements is possible. 

Friedrichs  and Keller  obtained  their  difference  formu- 
las by a variational approach.  In  the  next  section, it will 
be  shown how Friedrichs  and Keller's  piecewise  linear 
functions with compact  support (termed tent  functions) 
may be used to  obtain finite difference  formulas by the 
standard engineering approach  to  the finite element meth- 
od. In this  and following sections it will be  assumed that 
the  reader  has a  knowledge of the finite element  method 
equivalent to  the material contained in the first two  chap- 
ters of Ref. 3. The following section will discuss  the ex- 
tension of the finite element  method to time-dependent 
problems.  Finally, the  results of computations, using this 
method, will be  described for  an  elastic  surface wave 
(Rayleigh wave)  on a quarter  space and  compared with 365 
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Figure 1 Hexagonal tent function centered  about  the grid 
point 0. The six sides indicated by Roman numerals  are planar. 
The amplitude at  the point 0 is one,  and it is zero all around the 
boundary. 

Table 1 Components of tent function. 

Region Function 

I 
I1 1 + zlk 

111 1 + z lk  + x /h  
I V  1 + x l h  
V 1 - zlk 

VI 1 - zlk - x / h  

1 - x l h  

model experiments of other  authors.  This is an example 
of a problem that  has defied analytic  solution [4], for 
which a recourse  to numerical  solution is justified. 

Difference formula  derivation for finite e l e r n h s  
Let a rectangular grid in the x ,z plane be given  with the 
diagonals  from lower left to  upper right drawn in to yield 
a triangularization of the plane. The quantities to  be cal- 
culated are  the nodal displacements in a region 9 of the 
plane  with boundary 98 on which Neumann conditions 
are given. Assume  that within each triangle the displace- 
ments  are a linear  function of the displacements at  the 
vertices of the triangle. If one imagines the displace- 
ments to  be vertical displacements,  then  the plane of the 
triangle is shifted to a plane passing through the dis- 
placed  vertices. 

Next  consider  the planes  formed by partial  displace- 
ments such  that  the displacement at  any two nodes is set 
equal to  zero, while the displacement at  the remaining 
node  assumes  its previous  value. There  are  three  such 
planes for  each triangle. The sum of the partial  displace- 
ments is the original displacement,  since  the sum must 
be linear and  has  the  same values at  three  points,  the 
vertices. 

An  alternate formulation is obtained using Friedrichs 
366 and Keller’s tent function as shown in Fig. 1 .  Since our 
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examples will be taken from  elasticity  models, we follow 
the common procedure of choosing z positive  down- 
wards. Therefore  the y axis is directed  out of the page. 
The function is identically zero  everywhere  except in the 
six  triangles numbered with Roman numerals. The cen- 
tral mesh  point is numbered zero, and the six  outside 
mesh  points are numbered in a counterclockwise  sense 
starting  at  the positive  x-axis. The  tent function is a con- 
tinuous  function made  up of linear  functions defined over 
the six triangles such  that  the value of every function is 
unity at  the central  mesh point and zero  at  the outside 
mesh  points. Assume similar functions  centered  about 
the  other mesh  points. Then  the  three  tent functions  cen- 
tered  about  the points 0, 1, and 2 and no  others will have 
nonzero values over triangle I .  Thus  the displacement at 
a point (x ,z)  of the triangular  element I may be  written 
as f i i  T,(x,z)  where 6, is the displacement at  the  apex 
i and T,(x,z) is the value of the  tent function about  the 
apex i at  the point (x ,z)  . 

Friedrichs  and Keller  used these  tent  functions cen- 
tered on  the grid points as trial functions  for solving ellip- 
tic PDE’s by the Ritz  method.  We will use  them in the 
usual engineering procedure  for deriving stiffness ma- 
trices,  since  the method for handling irregular  boundaries 
is  more easily seen in  this  way. 

Following  Zienkiewicz, we first obtain the B matrix 
which,  when multiplied by the displacement vector, 
yields the strain components.  We will assume  the sim- 
plest case of transverse motion (in the y direction) so that 
the strain components  are du/dx and d u / d z ,  where u is 
the  transverse displacement. 

In Fig. 1, let us assume  that  the central  mesh  point is 
at  the origin, that  the spacing along the x axis is h and 
along the z axis k .  Then we may make a table of the equa- 
tions  for  the six  planes, the  parts of which make up the 
tent  function. 

The calculation of strains involves taking derivatives 
so that only the  slopes of the planes, which are not  func- 
tions of x and z ,  are of importance. Therefore,  it suffices 
to consider  only the region about  the origin. We begin 
by making a table of derivatives  from  Table 1. 

The B matrix for region I will be a 2 X 3 matrix  since it 
gives two strain components from the displacements 
of the  three  vertices.  The  strains  are obtained by multi- 
plying the value of the displacement at  the origin, u,, , by 
the derivatives for I in Table 2 and adding to it u, times 
the derivatives for 111 and ug times the  derivatives  for V. 
This  procedure is appropriate  since  the  part of the  tent 
function about point 1 which covers I has  the  same  slope 
as 111, and  that  about 2 has  the  same  slope  as V. Thus  the 
B matrix for I is 

(1) 
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Table 2 Derivatives. 

I 11 I l l  IV V VI 

dlax -1lh 0 
~ "_ 

1/12 llh 0 -1lh 
a/az 0 I lk  111, 0 --Ilk "Ilk 

Note  that since the B matrix is not a function of x and z ,  
the  strain is the  same  everywhere in region I .  This is the 
case only when the trial  functions chosen  are linear. 

Next  the D matrix, which gives the  stress  components 
in terms of the  strain  components, is required. For this 
case we will assume  that a constant  factor pr times each 
strain  component yields the  stress.  Hence D = p, times 
the 2 X 2 identity  matrix.  Finally, the stiffness matrix 
KI for I is SI BTD B dx dz , where BT is the  transpose 
of B ,  and the integration is carried out  over region I.  
Since BTD B is constant  under  the  above  assumptions, 
the effect of the integration is to multiply the  constant by 
(1/2)hk . Evaluation of this quantity yields 

l/h' -l/h' 
KI= (1/2)hkpI -l/h' ( l /h ' )  + ( l /k')  -Ilk' . ( 2 )  [ 0 "Ilk' 1 / k t  O J  

This matrix multiplied by the displacements at 0, 1, 
and 2 yields the  forces  at 0,  1 ,  and 2 resulting from the 
straining of I.  To find the total force  at 0, the stiffness 
matrices for the remaining five regions  must  be evaluated 
and combined. The result is a 7 X 7 matrix  which  yields 
the  forces  at  the  seven grid  points due  to straining of the 
six elements.  Only the  force at 0 is complete, since neigh- 
boring regions will make contributions to  the  forces  at 
the  outside points. Therefore, we are  interested only in 
the  product of the first row of the stiffness matrix  times 
the  displacements, which yields the  force  at 0, F,, . The 
result is: 

2F,lhk = [ ( llh') bcL, + p3 + EL,, + p,) 

+ (I lk')  (pLp + p3 + ps + p,)Iu, ,  

- ( l / h ' ) ( p l  + p6)u1 - ( I / k Z ) ( p 2  + pCLQ)uQ 

- ( I / h ' ) ( p 3  + p J u 4  - ( l / k ' ) ( p s  + p,)u,. (3) 

If we  assume  that  the p's are  the  same  for all six tri- 
angular  elements, the formula on  the right is just  the nega- 
tive of the usual centered difference formula  for  the La- 
placian. A difference approximation for  the Laplacian 
is to  be  expected  since an obvious  sample of the strain 
and  stress assumed here is the deformed membrane, 
which  satisfies  Laplace's  equation. 

As  the  next  example consider  plane  strain. At  each 
node  there will be two horizontal components of displace- 
ment, u and w ,  and two horizontal components of force. 
The  three  components of strain are &/ax, a w l d z ,  and 
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(duldz) + (dw/dx) .  The B matrix for a triangular  element 
will therefore  be 3 X 6 . The D matrix [5] is 3 X 3 

where A and p are  the  Lam6  constants  for  an isotropic 
medium. 

Once again the stiffness matrix is calculated for  each 
triangular  element. It is now 6 X 6.. The stiffness matrix 
for all six elements is now 14 X 1 4 ,  of which  only the 
first two  rows  are of interest. If we assume a  homogen- 
eous medium, the first row (which gives the  component 
of force  at  the 0 grid point in the x direction) is 

The  appropriate differential equation [5] for F,, is: 

The  procedure again yields the  ordinary  centered differ- 
ence  formula  for  the first two  second derivatives. The 
third expression  on  the right of (5) is an expression  for 
A ' ~ / h w h z .  Normally we would expect 

where  the grid points 7 and 8 are  shown in Fig. 1 .  How- 
ever,  since 7 and 8 are not part of the region covered by 
the  tent function about 0, a  different expression  for 
A'wIAxAz is obtained. 

There is obviously some  asymmetry being introduced 
here.  Why  should the  points 2 and 5 be favored  over  the 
points 7 and 8, which are equally as close to O? The  tent 
function might just  as well be drawn  as in Fig. 2 .  If one 
calculates  a difference formula  for F,, for this configura- 
tion a result  similar to (5) results.  Finally, if one  takes 
the average of the  two  expressions  for F,, , the usual cen- 
tered difference formula  for A'wlAxAz , (7), is obtained. 

The  procedure  at a  boundary is clear. For  example, if 
the boundary 98 is defined by z = constant, only half of 
the  tent function will  lie  in the region 8. This is illustrated 
in Fig. 3. Therefore, only the stiffness matrices for IV, 
V, VI and IV', V', VI' need  be  calculated. These will 
yield the  forces  at 0 due  to displacements at  the points 
0, 1, 4 ,  5 ,  6, and 8. If the  force is known (Neumann con- 
dition) the displacement at point 0 may be calculated. 367 
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Figure 2 Reflection in the z axis of the  tent function of Fig. 1. 

Figure 3 The  tent functions of Figs. 1 and 2 centered  about 
boundary  points lying on a line z = constant.  Since the top  three 
surfaces of the  tents  are  outside of the boundary  they  make no 
contribution to  the stiffness matrix. 

Time-dependent problems 
The finite element  method has been  used mainly for  static 
problems, but not  exclusively. The usual method for 
handling a  time dependency is to  treat  the  time-dependent 
term as  an additional nodal force.  The  same  procedure is 
applied to vibration  problems. The acceleration  term is 
treated as an inertial force applied at  the nodes. The mo- 
tion is considered  harmonic so that  the time derivative 
can be  replaced by the angular frequency  squared times 
the  displacement, and finally eigenfunctions are obtained. 

Treating  the time-dependent  term as an additional 
nodal force is equivalent to assuming that  the displace- 
ment of a node  as a  function of time is piecewise  linear 
between the sampled  time  points. This mode of displace- 
ment can be demonstrated from the principle of conser- 
vation of energy. Let  the  vector consisting of the applied 
force acting at  each node  be  designated by F. The work 
done by F over a  time  interval At is 

irAt F[S(t) - 8(to)Idt= Frnean[S(t, + A t )  - S ( t O ) l  , (8) 

where S is the displacement vector.  From  our assumption 
of piecewise  linearity F,,,, = F( t ,  + A t / 2 )  , hence  the 
energy  put into  the  system is 
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Similarly, the work done by the  stress is 

Average  Stress . [strain (to + A t )  - strain (t ,)  ] 

= Stress (to + A t / 2 )  . B [ S ( t ,  + A t )  - S ( t o ) ]  

= BTDB S ( t ,  + A t / 2 )  [ 6 ( t o  + A t )  - S ( t , ) ]  . (10) 

The change in kinetic  energy is 

1/2 rn[u'(to + A t )  - u 2 ( t , ) ]  

= 1/2 m [ v ( t ,  + A t )  - ~ ( t , ) ]   [ ~ ( t ,  + At)  + ~ ( t , ) ]  

= rn v(t, + A t / 2 )  [ S ( t ,  + A t )  - S ( t , , ) ]  , ( 1  1) 

where v and v are  the velocity  and  acceleration vectors, 
respectively, and rn is a diagonal tensor giving the mass 
associated with each nodal point. Hence 

F ( t ,  + Atl2)  = B'DB S ( t ,  + A t / 2 )  + rn v(t, + A t / 2 )  . 
(12) 

If, in addition,  the discontinuity in slope in our piecewise 
linear  functions at  the sampled  time  points is slight, then 
(12) may be  applied over two  time intervals, and using 
standard  centered difference  formulae we find that 

S ( t ,  + 2 A t )  = -; [B'DB S ( t , ,  + A t ) ]  
A t 2  

+ 26(t , ,  + A t )  - S ( t O )  

Expression (1 3) is in a form  suitable for an explicit  itera- 
tive  solution with all boundary conditions  contained in 
the stiffness matrix, the mass tensor and the  force terms. 

Propagation of Rayleigh wave on  quarter space 
As an illustration we will consider the propagation of a 
Rayleigh wave around a corner. This is an example of a 
problem  possessing  a  boundary point,  the  corner,  where 
one previously did not have a  difference formula  for  the 
free  surface, a Neumann condition. A related  problem, 
an interior pulse source located at a  point on  the interior 
diagonal,  has  been treated numerically [6] by the device 
of rounding off the  corner. A Rayleigh wave [7] is an 
elastic  surface  wave with both' compressional and  shear 
components which has large amplitudes  at the surface 
that decay  exponentially with depth.  For homogeneous 
media the  expressions in the  second section for plane 
strain will apply. 

Figure 4 illustrates the boundary  conditions applied 
at  the  corner.  The known  amplitude  distributions for  the 
two  components of Rayleigh wave motion are applied 
at  each time step  on side 1 multiplied by sinusoidal  func- 
tions  varying  with time. The  phases of the sinusoidal 
variations  applied to  the horizontal and vertical  displace- 
ments are  appropriate  for a Rayleigh wave propagating 
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along side 2 from left to right. Vertical  displacements are 
displacements in the z direction.  Sides 2 and 3 are  treated 
as free  surfaces,  stress = 0 .  The boundary  conditions 
are obtained by calculating the  forces  at  the surface 
points as a  function of the displacements at neighboring 
points and setting  them  equal to  the inertial  force. This 
yields a  relation between  the displacement  at the bound- 
ary point at time t = t, + 2At and t = to and the displace- 
ments at neighboring points  at  time t = t,, + A t .  In Fig. 4 ,  
T = 27r /o ,  the period of the wave. 

In expression (13)  the value of the mass assigned to 
each point is also  required. For interior  points the  mass is 
just phk , where p is the  density, which is assumed con- 
stant throughout.  Since the integral of a tent function over 
the plane is just hk , it  is a  suitable weighting function for 
calculating m. If  we assume p constant in a  triangular 
element,  the contribution of the element to  the mass as- 
signed a  point is 1/6 phk . Therefore points on  the bound- 
ary which have only three triangles  associated with them 
are assigned  a  mass of 1/2 phk . 

The relations for points on boundary 2 are calculated 
to be 

-2pii0 = ( 4 p / k L )  (ull - u c ; )  + [ ( A  + 2 p ) / h 2 ]   ( 4 u l ,  - 211, 

- 2 ~ , )  + [ ( A  - p ) / k h ]  ( w ,  - w,) 

+ [ ( A  + ~ ) / k h ]  - w K )  ; 

-2p;i',, = (p/h2)  (41(1, - 2 ~ , ,  - 2~1,)  

+ [ 4  ( A  + 2 p ) / k Z ]  ( w,, - IV,)  

+ [ ( A  - p ) / k h 1  ( ~ 1 ~  - u , )  

+ [ ( A  + u ) / k h ]  ( L I ~  - u K )  . (14)  

Here  double  dots indicate second  derivatives with re- 
spect  to time. The relations for points on boundary 3 can 
be  obtained from ( 1  4 )  by suitable transformations.  The 
relations  obtained for  the right-hand corner point are 
(see Fig. 5 ) :  

-4pii0 = 9 ( p / k 2 )  ( u O  - u t i )  + 9[ ( A  + 2 p ) / h ' ]  (u, - u,) 

+ 3[ ( A  + p ) / k h ]  (a,, - 2wo) 

+ 3 (A/kh)  (2121, - M ' ~ )  + 3 ( p / k h )  ( 2 ~ ,  - w,) ; 

-4piij, = 9(p/17')) ( ~ t . ~ )  - ~ 1 ~ )  

+ 9 [ ( A  + 2 p ) / k 2 ]  ( II', - w,) 

+ 3 [ ( A  + p ) / k h ]  (u, - 2 ~ 1 , ~ )  

+ 3 ( h / k h )  (211, - u,) + 3 ( p / k h )  ( ~ L I ,  - L1,) . 
( 1 5 )  

The boundary  condition on side 4 is a  radiation con- 
dition. The functional dependence of a Rayleigh wave 
traveling down side 3 is A(x)e'""'"' where k = w/cH with 
w the angular frequency  and cII the Rayleigh wave phase 
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1 .  Rnyleigh source 

c 

2. Frcc  surfacc 

p = 3  p=3 

A . r = l  A z = I  

7 = 10 

v 
4. Radiation condition 

C,=2.758 

Figure 4 The numerical model used to calculate the transmis- 
sion of Rayleigh waves around  a corner.  The boundary  condi- 
tions shown on the four sides are described in the  text. 

Figure 5 The  tent functions of Figs. 1 and 2 centered  about a 
corner point.  Only the  elements 1V and V of Fig. 1 contribute 
to  the stiffness matrix and only element IV' of Fig. 2. 

velocity. Taking partial derivatives with respect  to z 
and t yields 

This is the  equation of the  characteristic  for outgoing 
waves with phase velocity cK . The difference form of ( 1  6) 
together with ( 1  3 )  suffice to  determine  the boundary 
values on side 4 such  that  no Rayleigh waves are reflected 
back. 

Figure 6 shows  various  stages of propagation of the 
Rayleigh wave on the  surface of the  quarter space. The 
leading edge of the Rayleigh wave is tapered with a cosine 
taper  to  prevent ringing. Table 3 compares  the  results of 
this  numerical model experiment  for  the transmission 
coefficient, T ,  and  phase shift with results from  labora- 
tory model experiments. The agreement is good. 
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Figure 6 In (a)  the leading edge of the  tapered Rayleigh wave  has reached the  corner.  The next figure (b)  occurs  at a  time  difference of 
one period from  (a).  Displacement is now occurring on  the right-hand boundary  past  the  corner.  In  the  next figure (c)  the leading edge 
of the  tapered Rayleigh wave  has reached the  bottom boundary where  the radiation  condition is applied.  Sinusoidal motion occurs in u 
and w on  the right-hand boundary with appropriate  phase difference at  some  distance  from  the  comer.  The last figure (d)  shows  the 
Rayleigh waves  propagating about  the  corner  and beyond the bottom boundary,  The motions  on the  top  boundary  are modulated by a 
Rayleigh wave reflected from the  corner. 

Table 3 Transmission of Rayleigh wave  around a corner. 

~~ ~ 

Physical 
constants 

T ,  
amplitude 

Researchers 
De Bremaecker [ 8 ]  Knopoff  and  Gangi [ 9 ]  Pilant,  Knopoff  AIsop  and  Goodman, 

and  Schwab [ I O ]  present  results 
~~ 

Finite element 
Polystyrene  sheet Aluminum sheet Aluminum sheet method  simulation 

01 = 1.82 a = 5.76 01 = 5.40 a = 5.196 
p = 1.15 /3 = 3.26 p =  3.12 p = 3.00 
a = 0 . 1 7  u = 0.266 u = 0.25 u = 0.25 

p = 3.00 
DT = 0.05 

D X  = DZ = 0.5 
" 

0.633 
. . - ." 

0.73 0.67 0.645 

Phase shift, -90 - -74.9 -83.6 
2 6.5 degrees 
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