>
»m

L. Isop

oodman

o>

Finite Difference Formulas for Neumann
Conditions on Irregularly Shaped Boundaries

Abstract: A method, based on finite element techniques, is described for obtaining finite differences for Neumann conditions on irregu-
larly shaped boundaries. The resultant difference equations may be used in both time-dependent and -independent problems. As an ex-
ample, the propagation of an elastic surface wave (Rayleigh wave) around a 90° corner is studied. The results of this simulation compare

favorably with laboratory experiments.

Introduction

The finite element method for the numerical solution of
partial differential equations (referred to in this paper as
PDE’s) has found application in many fields since its
introduction in 1956 by Turner et al. [1] for airframe
structure design. Most of the applications have involved
elliptic PDE’s, although some parabolic and hyperbolic
PDE’s have been solved by this method. In contrast to
the older finite difference method, the finite element meth-
od offers certain advantages:

1. Neumann boundary conditions, involving derivatives
of the field variable, are easily applied over irregular
boundaries.

2. The elements may be chosen to be small in regions
where the range of values of the solution is expected
to be large and vice versa, thereby conserving on stor-
age requirements and computation time.

This latter advantage is purchased at the price of add-
ing complicated logic to the computer program.

The finite element method and the finite difference
method are generally considered to be completely differ-
ent approaches to the numerical solution of PDE’s. How-
ever, Friedrichs and Keller [2] have demonstrated that
for linear approximation functions over triangular ele-
ments whose nodes are grid points of a rectangular net,
the two methods yield the same difference formulas at
interior points. It is therefore possible to choose a hybrid
method midway between the finite element and finite
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difference methods. One starts with a rectangular grid,
thereby forfeiting the second advantage, but greatly sim-
plifying the logical design of the program. Having chosen
a rectangular grid, one may immediately use the standard
centered difference formulas for the interior points. Then
the finite element method may be used to obtain differ-
ence formulas for the boundary points. The first advan-
tage is thus preserved. This is of particular value if one
already has a finite difference code for some problem and
wishes to consider cases in which the boundaries are
irregular. Furthermore, the only requirement is that the
grid be rectangular. Since there is no requirement of fixed
intervals between points, some flexibility in the size of
the elements is possible.

Friedrichs and Keller obtained their difference formu-
las by a variational approach. In the next section, it will
be shown how Friedrichs and Keller’s piecewise linear
functions with compact support (termed tent functions)
may be used to obtain finite difference formulas by the
standard engineering approach to the finite element meth-
od. In this and following sections it will be assumed that
the reader has a knowledge of the finite element method
equivalent to the material contained in the first two chap-
ters of Ref. 3. The following section will discuss the ex-
tension of the finite element method to time-dependent
problems. Finally, the results of computations, using this
method, will be described for an elastic surface wave
(Rayleigh wave) on a quarter space and compared with
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Figure 1 Hexagonal tent function centered about the grid
point 0. The six sides indicated by Roman numerals are planar.
The amplitude at the point 0 is one, and it is zero all around the
boundary.

Table 1 Components of tent function.

Region Function
I 1—xlh
18! 1+ z/k
111 1+ zlk + x/h
v 1 +x/h
v 1—z/k
\%! 1 —zlk —xlh

model experiments of other authors. This is an example
of a problem that has defied analytic solution [4], for
which a recourse to numerical solution is justified.

Difference formula derivation for finite elements
Let a rectangular grid in the x,z plane be given with the
diagonals from lower left to upper right drawn in to yield
a triangularization of the plane. The quantities to be cal-
culated are the nodal displacements in a region % of the
plane with boundary % on which Neumann conditions
are given. Assume that within each triangle the displace-
ments are a linear function of the displacements at the
vertices of the triangle. If one imagines the displace-
ments to be vertical displacements, then the plane of the
triangle is shifted to a plane passing through the dis-
placed vertices.

Next consider the planes formed by partial displace-

ments such that the displacement at any two nodes is set
equal to zero, while the displacement at the remaining
node assumes its previous value. There are three such
planes for each triangle. The sum of the partial displace-
ments is the original displacement, since the sum must
be linear and has the same values at three points, the
vertices.

An alternate formulation is obtained using Friedrichs
and Keller’s tent function as shown in Fig. 1. Since our
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examples will be taken from elasticity models, we follow
the common procedure of choosing z positive down-
wards. Therefore the y axis is directed out of the page.
The function is identically zero everywhere except in the
six triangles numbered with Roman numerals. The cen-
tral mesh point is numbered zero, and the six outside
mesh points are numbered in a counterclockwise sense
starting at the positive x-axis. The tent function is a con-
tinuous function made up of linear functions defined over
the six triangles such that the value of every function is
unity at the central mesh point and zero at the outside
mesh points. Assume similar functions centered about
the other mesh points. Then the three tent functions cen-
tered about the points 0, 1, and 2 and no others will have
nonzero values over triangle /. Thus the displacement at
a point (x,z) of the triangular element / may be written
as B, 8, T(x.z) where §, is the displacement at the apex
i and T,(x,z) is the value of the tent function about the
apex i at the point (x,z) .

Friedrichs and Keller used these tent functions cen-
tered on the grid points as trial functions for solving ellip-
tic PDE’s by the Ritz method. We will use them in the
usual engineering procedure for deriving stiffness ma-
trices, since the method for handling irregular boundaries
is more easily seen in this way.

Following Zienkiewicz, we first obtain the B matrix
which, when multiplied by the displacement vector,
yields the strain components. We will assume the sim-
plest case of transverse motion (in the y direction) so that
the strain components are dvf/dx and dv/dz, where v is
the transverse displacement.

In Fig. 1, let us assume that the central mesh point is
at the origin, that the spacing along the x axis is 4 and
along the z axis k. Then we may make a table of the equa-
tions for the six planes, the parts of which make up the
tent function.

The calculation of strains involves taking derivatives
so that only the slopes of the planes, which are not func-
tions of x and z, are of importance. Therefore, it suffices
to consider only the region about the origin. We begin
by making a table of derivatives from Table 1.

The B matrix for region I will be a2 X 3 matrix since it
gives two strain components from the displacements
of the three vertices. The strains are obtained by multi-
plying the value of the displacement at the origin, v, , by
the derivatives for I in Table 2 and adding to it v, times
the derivatives for 11I and v, times the derivatives for V.
This procedure is appropriate since the part of the tent
function about point 1 which covers I has the same slope
as I1I, and that about 2 has the same slope as V. Thus the
B matrix for I is

—1/h 1/h 0

. (H
0 1/k —1/k
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Table 2 Derivatives.

I 11 111 v \' V1
afax —1/h 0 1/h 1/h 0 —1/h
a/oz 0 1/k 1/k 0 —1/k —1/k

Note that since the B matrix is not a function of x and z,
the strain is the same everywhere in region 1. This is the
case only when the trial functions chosen are linear.

Next the D matrix, which gives the stress components
in terms of the strain components, is required. For this
case we will assume that a constant factor u, times each
strain component yields the stress. Hence D = y; times
the 2 X 2 identity matrix. Finally, the stiffness matrix
K, for Lis [,B"D B dxdz, where B” is the transpose
of B, and the integration is carried out over region I.
Since B"D B is constant under the above assumptions,
the effect of the integration is to multiply the constant by
(1/2)hk . Evaluation of this quantity yields

1K —1/K 0
K= (1[2)hkp,|—1/H (IR + (1K =1k . ()
0 —1/k* 1k

This matrix multiplied by the displacements at 0, 1,
and 2 yields the forces at 0, 1, and 2 resulting from the
straining of I. To find the total force at 0, the stiffness
matrices for the remaining five regions must be evaluated
and combined. The resuit is a 7 X 7 matrix which yields
the forces at the seven grid points due to straining of the
six elements. Only the force at 0 is complete, since neigh-
boring regions will make contributions to the forces at
the outside points. Therefore, we are interested only in
the product of the first row of the stiffness matrix times
the displacements, which yields the force at 0, F,. The
result is:

2F [hk = [(1R*) (py + g + gy + s2g)
+ (UK (py + py + s + 1) I,
= (IR (e, + mgdv, — (K (g, + py) v,
— (UR) (g + ) v, — (UK (g + pg)vg. (3)

If we assume that the w’s are the same for all six tri-
angular elements, the formula on the right is just the nega-
tive of the usual centered difference formula for the La-
placian. A difference approximation for the Laplacian
is to be expected since an obvious sample of the strain
and stress assumed here is the deformed membrane,
which satisfies Laplace’s equation.

As the next example consider plane strain. At each
node there will be two horizontal components of displace-
ment, # and w, and two horizontal components of force.
The three components of strain are du/dx, dw/dz, and
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(0ufdz) + (ow/dx) . The B matrix for a triangular element
will therefore be 3 X 6. The D matrix [5]is 3 X 3

A+ 2u A 0
D=I: A A+ 20 0}, 4)
0 0 M

where A and p are the Lamé constants for an isotropic
medium.

Once again the stiffness matrix is calculated for each
triangular element. It is now 6 X 6. The stiffness matrix
for all six elements is now 14 X 14, of which only the
first two rows are of interest. If we assume a homogen-
eous medium, the first row (which gives the component
of force at the 0 grid point in the x direction) is

&_2()\4-2#)

. X Quy—u, —u,)

2u
+ k_z Qu,— u, — uy)

At p
+T QCw,—w, +w,—w,—w, +w, —w).
)
The appropriate differential equation [5] for F, is:
F,, kY u *w
—E= A 2u) St (M) - (6)
hk ax dz axdz

The procedure again yields the ordinary centered differ-
ence formula for the first two second derivatives. The
third expression on the right of (5) is an expression for
A*w/AwAz . Normally we would expect

2
Aw  ow, = w = w wy

)

AxAz 4hk ’

where the grid points 7 and 8 are shown in Fig. 1. How-
ever, since 7 and 8 are not part of the region covered by
the tent function about 0, a different expression for
A*w[AxAz is obtained.

There is obviously some asymmetry being introduced
here. Why should the points 2 and 5 be favored over the
points 7 and 8, which are equally as close to 0? The tent
function might just as well be drawn as in Fig. 2. If one
calculates a difference formula for F, for this configura-
tion a result similar to (5) results. Finally, if one takes
the average of the two expressions for F , the usual cen-
tered difference formula for A*w/AxAz, (7), is obtained.

The procedure at a boundary is clear. For example, if
the boundary # is defined by z = constant, only half of
the tent function will lie in the region #. This is illustrated
in Fig. 3. Therefore, only the stiffness matrices for IV,
V, VI and IV’, V', VI' need be calculated. These will
yield the forces at 0 due to displacements at the points
0, 1,4, 5, 6, and 8. If the force is known (Neumann con-
dition) the displacement at point 0 may be calculated.
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Figure 2 Reflection in the z axis of the tent function of Fig. 1.

Figure 3 The tent functions of Figs. 1 and 2 centered about
boundary points lying on a line z = constant. Since the top three
surfaces of the tents are outside of the boundary they make no
contribution to the stiffness matrix.

r=—-—=ax I o
e A AN AN
s /7 N TN
/7 | // | | \\ i \\
e [ | i N \
4,7 L I 4/ N N
A } 4 z=constant
v A%t v vr
. .
5 6 8 5 6 8

Time-dependent problems
The finite element method has been used mainly for static
problems, but not exclusively. The usual method for
handling a time dependency is to treat the time-dependent
term as an additional nodal force. The same procedure is
applied to vibration problems. The acceleration term is
treated as an inertial force applied at the nodes. The mo-
tion is considered harmonic so that the time derivative
can be replaced by the angular frequency squared times
the displacement, and finally eigenfunctions are obtained.
Treating the time-dependent term as an additional
nodal force is equivalent to assuming that the displace-
ment of a node as a function of time is piecewise linear
between the sampled time points. This mode of displace-
ment can be demonstrated from the principle of conser-
vation of energy. Let the vector consisting of the applied
force acting at each node be designated by F. The work
done by F over a time interval At is

to+AL
f“ F8(1) — 8(1,) ]di = Frean[8(1, + At) — 3(1,)] .(8)
¢

0

where & is the displacement vector. From our assumption
of piecewise linearity F.., = F(z, + A#/2), hence the
energy put into the system is

F(t, + Atf2)[8(t, + At) — 8(2) ] . ©)
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Similarly, the work done by the stress is
Average Stress + [strain (¢, + A¢) — strain (¢,) ]
= Stress (t, + At/2) - B[8(s, + At) — 6(¢,)]
=B'DB &(1,+ At/2)[8(1, + Ar) — 8(z,)] . (10)
The change in kinetic energy is
1/2 m[vz(to + Af) — vz(to)]
=1/2m[v(t,+ A1) —v(t,) 1[v(¢, + A1) +v(1,)]
=mv(t, + At/2)[8(s, + A1) — d(z,) ], (an

where v and v are the velocity and acceleration vectors,
respectively, and m is a diagonal tensor giving the mass
associated with each nodal point. Hence

F(1, + At/2) = B'"DB (1, + At]2) + m v(1, + At/2) .
(12)

If, in addition, the discontinuity in slope in our piecewise
linear functions at the sampled time points is slight, then
(12) may be applied over two time intervals, and using
standard centered difference formulae we find that

8(1,+ 241 = —%’ [B'DB &(1, + At)]
+28(t, + Aty — 8(¢,)

2

At
+7F([O+At). (13)

Expression (13) is in a form suitable for an explicit itera-
tive solution with all boundary conditions contained in
the stiffness matrix, the mass tensor and the force terms.

Propagation of Rayleigh wave on quarter space

As an illustration we will consider the propagation of a
Rayleigh wave around a corner. This is an example of a
problem possessing a boundary point, the corner, where
one previously did not have a difference formula for the
free surface, a Neumann condition. A related problem,
an interior pulse source located at a point on the interior
diagonal, has been treated numerically [6] by the device
of rounding off the corner. A Rayleigh wave [7] is an
elastic surface wave with both’ compressional and shear
components which has large amplitudes at the surface
that decay exponentially with depth. For homogeneous
media the expressions in the second section for plane
strain will apply.

Figure 4 illustrates the boundary conditions applied
at the corner. The known amplitude distributions for the
two components of Rayleigh wave motion are applied
at each time step on side 1 multiplied by sinusoidal func-
tions varying with time. The phases of the sinusoidal
variations applied to the horizontal and vertical displace-
ments are appropriate for a Rayleigh wave propagating
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along side 2 from left to right. Vertical displacements are
displacements in the z direction. Sides 2 and 3 are treated
as free surfaces, stress = 0. The boundary conditions
are obtained by calculating the forces at the surface
points as a function of the displacements at neighboring
points and setting them equal to the inertial force. This
yields a relation between the displacement at the bound-
ary point at time ¢ = t, + 2At and ¢ = ¢, and the displace-
ments at neighboring points at time r = ¢, + Ar . In Fig. 4,
7= 27|w, the period of the wave.

In expression (13) the value of the mass assigned to
each point is also required. For interior points the mass is
just phk , where p is the density, which is assumed con-
stant throughout. Since the integral of a tent function over
the plane is just Ak , it is a suitable weighting function for
calculating m. If we assume p constant in a triangular
element, the contribution of the element to the mass as-
signed a point is 1/6 phk . Therefore points on the bound-
ary which have only three triangles associated with them
are assigned a mass of 1/2 phk .

The relations for points on boundary 2 are calculated
to be

—2pity = (4ufk*) (u, — ug) + [N+ 2u)/H*] (4u, — 2u,
= 2u) + [\ = w)/kh] (v, = w,)
+ L+ ) k] (= wy)
—2p¥, = (u/h*) (4w, — 2w, — 2w,
+ [4O+2p) K] Oy — wy)
+ [N = p)kh] (u, — u,)
+ [N+ w)kh] (uy — uy) . (14)

Here double dots indicate second derivatives with re-
spect to time. The relations for points on boundary 3 can
be obtained from (14) by suitable transformations. The
relations obtained for the right-hand corner point are
(see Fig. 5):

—dpity = 9 (w/k®) (uy~ u;) + [ (A + 2u)/R°] (0, — u,)
+ 30N+ p)kh] Ovg — 2w,)
+ 3(Nkh) 2w — w,) + 3 (plkh) 2w, — wy) 3
—4piv, = 9 (ulh®) (v, — w,)
+ 9L+ 2p) K] (wy — wy)
+ 30N+ w)fkh] (uy — 2u,)

+ 3(Nkh) Qu, — uy) + 3 (plkh) Qug —u,) .
(15)

The boundary condition on side 4 is a radiation con-
dition. The functional dependence of a Rayleigh wave
traveling down side 3 is A(x)e'“" "’ where k = w/c, with
w the angular frequency and ¢, the Rayleigh wave phase
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2. Frec surface

0 150
0
X
0=3 B=3
1. Rayleigh source Ax=1 Az=1 2
=10 Ar=0.1 3. Free surface
100

4. Radiation condition
C =258

Figure 4 The numerical model used to calculate the transmis-
sion of Rayleigh waves around a corner. The boundary condi-
tions shown on the four sides are described in the text.

Figure 5 The tent functions of Figs. 1 and 2 centered about a
corner point. Only the elements 1V and V of Fig. 1 contribute
to the stiffness matrix and only element IV’ of Fig. 2.

velocity. Taking partial derivatives with respect to z
and ¢ yields

d {u 1 8 ({u

6-Z<W)+c‘ua<w>_0' (16)
This is the equation of the characteristic for outgoing
waves with phase velocity ¢ . The difference form of (16)
together with (13) suffice to determine the boundary
values on side 4 such that no Rayleigh waves are reflected
back.

Figure 6 shows various stages of propagation of the
Rayleigh wave on the surface of the quarter space. The
leading edge of the Rayleigh wave is tapered with a cosine
taper to prevent ringing. Table 3 compares the results of
this numerical model experiment for the transmission
coefficient, T, and phase shift with results from labora-
tory model experiments. The agreement is good.
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Figure 6 In (a) the leading edge of the tapered Rayleigh wave has reached the corner. The next figure (b) occurs at a time difference of
one period from (a). Displacement is now occurring on the right-hand boundary past the corner. In the next figure (c) the leading edge
of the tapered Rayleigh wave has reached the bottom boundary where the radiation condition is applied. Sinusoidal motion occurs in u
and w on the right-hand boundary with appropriate phase difference at some distance from the corner. The last figure (d) shows the
Rayleigh waves propagating about the corner and beyond the bottom boundary. The motions on the top boundary are modulated by a
Rayleigh wave reflected from the corner.

Table 3 Transmission of Rayleigh wave around a corner.

Researchers
De Bremaecker [8] K nopoff and Gangi [9] Pilant, Knopoff Alsop and Goodman,
and Schwab [10] present results
Finite element
Polystyrene sheet Aluminum sheet Aluminum sheet method simulation
Physical a=1.82 a=576 a=5.40 a= 15,196
constants B=1.15 B=13.26 B=3.12 B=3.00
o=0.17 o=0.266 o=0.25 o=0.25
p=3.00
DT =0.05
DX=DZ=0.5
T,
amplitude 0.633 0.73 0.67 0.645
Phase shift, —90 — —74.9 —83.6
degrees + 6.5
370
L. E. ALSOP AND A. S. GOODMAN IBM J. RES. DEVELOP.




References
1. M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp,

“Stiffness and deflection analysis of complex structures,”

J. Aero. Sci. 23, 805 (1956).

. K. O. Friedrichs and H. B. Keller, “A Finite Difference

Scheme for Generalized Neumann Problems,” Numerical

Solutions of Partial Differential Equations, Academic

Press, New York, 1966, p. 1.

. O. C. Zienkiewicz, The Finite Element Method in Struc-
tural and Continuum Mechanics, McGraw-Hill Publishing
Co., Inc., London, 1967.

. E. R. Lapwood, “The Transmission of a Rayleigh Pulse
around a Corner,” Geophysical Journal 4,174 -196 (1961).

. 1. S. Sokolnikoff, Mathematical Theory of Elasticity, Mc-
Graw-Hill Publishing Co., Inc., New York, 1946.

. Z. S. Alterman and A. Rotenberg, “Seismic Waves in a
Quarter Space,” Bulfl. Seismological Soc. Am. 59, 347 -368
(1969).

. W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves
in Layered Media, McGraw-Hill Publishing Co., Inc., New
York, 1957.

JuLy 1972

8.

9.

10.

11.

J. Cl. De Bremaecker, “Transmission and Reflection of
Rayleigh Waves at Corners.” Geophysics 23, 253 (1958).
L. Knopoff and A. F. Gangi, ‘““Transmission and Reflection
of Rayleigh Waves by Wedges,” Geophysics 25, 1203
(1960).

W. L. Pilant, L. Knopoff, and F. Schwab, “Transmission
and Reflection of Surface Waves at a Corner. Pt. 3. Ray-
leigh Waves (Experimental),” J. Geophys. Res. 69, 291
(1964).

J. H. Griesmer and R. J. Jenks, “SCRATCHPAD -1: An
Interactive Facility for Symbolic Mathematics, Proceed-
ings of the Second Symposium on Symbolic and Algebraic
Manipulation, S. R. Petrick, Ed., ACM, March, 1971.

Received November 1, 1972

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

371

FINITE DIFFERENCES FOR NEUMANN CONDITIONS




