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Parallel Shooting Method for Boundary-value Problems:
Application to the Neutron Transport Equation

Abstract: A direct method is given for the solution of the spherical harmonics approximation to the Boltzmann equation for neutron
transport in slab geometry. The roundoff instability of the problem is eliminated by performing linear transformations of the matrices
involved, which ensure that the matrix columns are linearly independent. The novelty of the method lies in that only a minimum number
of matrix transformations is performed, the precise number being determined dynamically, efficiently, and in a new way by the program

itself in the course of the computation.

Introduction :

The aim of this paper is to present a direct method for the
numerical solution of two-point boundary value problems
for linear systems of first-order ordinary differential equa-
tions that are subject to roundoff instability. The method
is applied to the solution of the spherical harmonics ap-
proximation to the monoenergetic (one-group) neutron
transport equation in slab geometry with arbitrary aniso-
tropic scattering and source [1]. This problem is ideally
suited for testing the method because the computer pro-
gram can generate, from analytical formulas, finite-
difference approximations to large systems of coupled
differential equations having an arbitrarily high degree
of roundoff instability. Furthermore, accurate answers
for many of these problems are available in the literature
of the nuclear reactor field. The method discussed has a
much more general applicability than in the present con-
text of the neutron transport equation. For example, the
problem of the numerical solution of systems of coupled
Schrédinger equations [2] has many features in common
with the problem discussed here.

We first reduce the spherical harmonics equations by
means of finite differences to a general algebraic problem
in block form. Since the matrices of the problem are non-
convergent, the roundoff errors grow exponentially with
distance. This numerical instability makes the problem
both difficult and interesting. Because of the instability,
the most common numerical methods for the solution of
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the spherical harmonics equations are iterative [1]. In
general, a quantitative discussion of the instability cannot
be made theoretically, because it depends on slab thick-
ness, anisotropy, etc., and these quantities are different
for each problem.

In the method proposed, the numerical instability is
eliminated by performing linear transformations of the
matrices of the problem, the transformations being neces-
sary for the linear independence of the matrix columns.
The new approach described here requires only a min-
imum of matrix transformations, the precise number
being determined dynamically by the program. Thus
for thin slabs, in which the algorithm does not encounter
instability, the optimal direct solution of the algebraic
problem is obtained without performing any matrix trans-
formations whatever. The idea of performing linear trans-
formations of matrices to ensure the linear independence
of the columns, and thus the numerical stability of a com-
putation, is well known [2-5]. However, both the pre-
cise way in which these transformations are done and
their number are crucial for the efficiency of a numerical
method. A comparison with the “stabilized march” tech-
nique, used by Lucey and Hansen for the solution of
similar problems [5], shows that the present method re-
quires one-third the computation time for each spatial
grid point at which the reconditioning transformation of
the matrices is performed. Furthermore, the fact that the
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number of reconditioning points is kept to a minimum by
the program will result in a substantial decrease of that
number, typically by a factor of 3 to 10. The present
method is thus computationally more efficient than the
stabilized march technique.

Results of extensive critical-length computations are
given for both stable and unstable problems with iso-
tropic and anisotropic scattering. The comparison of
these results with previously published work is encourag-
ing, both as to the efficiency and the accuracy of the pro-
posed method.

Statement of the problem

We do not repeat here the derivation of the spherical
harmonics approximation to neutron transport starting
with Boltzmann’s equation in integral form. The inter-
ested reader can find this derivation in the review article
of Gelbard [1], whose notation we follow closely. In
slab geometry, Boltzmann’s equation with anisotropic
scattering and source is

(e (x, w)fax) + 2 (x)e(x, )

=f S, pop e, wde' 8, w). (D)

where u is the cosine of the angle between the neutron
velocity and the x axis; ¢(x, 1) is the angular flux; 2,(x)
is the total cross section; X(x, u, p') is the scattering
cross section from u' to w; and S(x, u) is the anisotropic
neutron source.

We assume that an approximate solution of (1) can be
obtained in the form

L
=0

elx, w) =N 321+ 1) f ()P (1) . (2)
We also expand

Scrop, ) = (1/2m)3,(x s )
L

= (1/2m) Y 2+ DE(x)P () 3)

=0

and

L
W) S 2L+ DS, (0P (k) @

=0
where u, is the cosine of the angle between the neutron
velocities in the directions ' and u, and P(u) are the
Legendre polynomials. If we perform the necessary angu-
lar integrations using the addition theorem for the Le-
gendre polynomials and their orthogonality properties,
we obtain the classic spherical harmonics approxima-
tion, or P, approximation
af,

—— o, (x)fy(x)

dx =8,(x);
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[+1 df,,(x) I df_ (x)
20+ 1 dx 20+ 1 dx

+ o, () f(x) = 8,(x)

I=1,2, -, L—1;
L df,_(x) .
2L +1  dx + o, () f,(x)=58(x). )
In Eq. (5),
filx) = f_ e(x, w)P()du;
o {x) = Zi(x) — Zg(x) = Z(x)
- E (x5 pg) Py (o) dpey s
S, (x) Ef S, (x, WP, (w)du . (6)

Equations (5) are a system of L + 1 inhomogeneous or-
dinary differential equations. Their general solution has
L + 1 arbitrary constants of integration, which must be
determined by imposing L + 1 suitable boundary condi-
tions. To fix ideas we limit our discussion to a symmetric
slab problem, in which abscissas extend from the center
of the slab, x = 0, to the outer boundary, x = R..

® Boundary conditions

The interface and boundary conditions are discussed by
Gelbard [1] and Davison [6]. In brief, for odd-L ap-
proximations, the spatial moments f, are continuous
across interfaces of different media. As the directional
flux is angularly symmetric at the center of the domain,
00, w) = (0, —un), we must have

fo(0) =0

exactly (L + 1) left boundary conditions. The vacuum
boundary condition requiring that no neutrons return
from the vacuum,

o(R,pmu)=0 u <0, (8)

204+1=1,3, -, L, D

cannot be satisfied exactly by any finite expansion (2).
Two commonly used approximate boundary conditions
due to Marshak [1] and Federighi [8] can both be writ-
ten in the form

f,(R) = Gf.(R), 9
where
fi(R) fo(R)
f5(R) f2(R)
f,(R)=| . |, f.(R)= ol (10)
f(R) fod(R)

and the two approximations differ in the elements of the
square (L + 1)-order matrix G, for which values are
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available [7-9]. The relative merits of these approxi-
mations are discussed by a number of authors [8-14].

In summary, the spherical harmonics approximation
is a two-point boundary value problem for a system of
ordinary differential equations (5) with left boundary
conditions (7) and right boundary conditions (9). The
numerical solution of this problem constitutes the sub-
ject of the remaining sections of this paper.

Algebraic problem for spherical harmonics equations
Using the compact notation of matrix theory, our two-
point boundary value problem can be written as follows:

Aldft (x)]ldx] + C(x)f=s(x), (11)
£,(0) =0, f,(R)=Gf.(R), (12)
where the following definitions have been used,

fulx)

S (x)
f(x) .

f,jﬂ (11a)

0 1
1/3 0 2/3
2/5 0 3/5

(11b)

0 -1 0 -

A1
i

a,(x) 0
Cx)=| o) |; (11c)

0 o, (x)
So(x)
s(x) =[S, (x)] . (11d)

5, (x)

The boundary condition matrix G in (12) is defined an-
alytically for Marshak conditions [9]; Federighi has
given in his paper [8] the matrix elements of G to six
significant figures.
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It is now convenient to premultiply Eq. (11) by A" so
that it becomes

df(x)fdx + N(x)f=v(x), (13)
where we have used the obvious definitions
N(x) =A7'C(x) and v(x) = A 's(x) . (13a)

When the cross sections o, [see (11c) and (6)] are con-
stant, independent of the spatial coordinate (one homoge-
neous region), it is known that a direct numerical in-
tegration of (13) is unstable because the roundoff errors
grow exponentially with distance. The instability is due
to the fact that some of the eigenvalues of N are real and
occur in positive and negative pairs [1], which explains
in part the instability of the direct solution of the spherical
harmonics equations for very thick regions.

In reactor problems the cross section matrix (11c) is a
piecewise constant function of space. Thus, if we inte-
grate (13) between mesh points j — 1 and j in the finite
differences approximation

hi—l
x=0 x=R
: — - Il — cer b —
1 2 j-1 j n-1 n

we obtain, after using the trapezoidal rule for integration,

£, —f_  +ih N, (£ +£)=3h;_ (v, +Vv),

J

j=2.,3,--,n, (14)

where N;_, is a constant matrix involving the cross sec-
tions in the interval between mesh pointsj — 1 andj . The
boundary conditions (12) in discrete form are

(), =0, (£),=G(f,).. (15)

The boundary conditions (15) separate sharply the even
from the odd components of f at the two boundary points.
The separation suggests that the solution vectors f P be
rearranged, putting the even and the odd components at
the top and the bottom halves, respectively, throughout
the grid. In fact, this rearrangement considerably simpli-
fies the algebraic analysis of the system (14) and (15). We
thus use the definitions

- fe] : (16)
5 =1
D, = (-I+ih N, ),

D,,,=U+¥_N_); (D
w_, =_ (v +v), (18)

where the primes denote the reordering of the columns of
the matrices inside the parentheses by parity, i.e., the
first half of the columns of the D’s are the 1st, 3rd, 5th,
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- - -, Lth columns of the matrix inside the parentheses,
and the second half are the 2nd, 4th, 6th, - - -, (L + 1)th
columns. Using (16), (17), and (18), we write the algebraic
problem (14) and (15) in full:

D,g + D,g, =W
D,g + D,g, =W,
Dn—l,n—lgn—l + Dn—l,ngn =W,

g'=0, g'=0Gg/', (19)
where the superscripts b and ¢ designate bottom and top
halves of the respective vectors, the D’s are (L + 1)th-
order square matrices, and the g’s and w’s are (L + 1)
component column vectors,

An attractive feature of the spherical harmonics
method is that the algebraic problem (19) can be gen-
erated numerically from the analytical formulas given in
the text, independently of the number of terms L + 1
(P, approximation) kept in the expansions (2), (3), and
(4). It should also be noticed that the algebraic problem is
the same whether the scattering cross-section 2, and the
external source S(see Eq. (1)) are isotropic or aniso-
tropic. The only change is that the elements of the D

matrices and the components of the w vectors in (19) are -

different, but the form of the algebraic problem, and thus
its numerical solution, remains the same. Finally, it is
known [15] that the finite-difference approximation used
is O (A%) , where h is the mesh size. More precisely,

lg(x;) —g|=O"). (20)

Direct solution of algebraic problem
In this section we present the matrix algebra analysis to
implement the numerical solution of (19).

The block algebraic system of Eqs. (19) has a very
simple structure that suggests an obvious direct solution
by substitution. First we define the following sequence of
rectangular matrices of order (L + 1) X ¥(L + 1) :

1
F, = [0], F,=—aF ,F,=mmF , -+ F,
= (—)n_lﬂ'nq”n—z s Fy
m =D, 'D;. @1

In (21) the explicit form of F, (its upper half is the unit
matrix and its lower half, the null matrix) was chosen to
satisfy the left boundary conditions, whereas the other
terms in the sequence are found by substitution in (19)
without the inhomogeneous terms. By substitution in the
full inhomogeneous system (19) we now define the se-
quence of vectors of L + 1 components
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-1 —1
a=0,a,=D, w—ma ,a=D, w,—ma,,- -,

~ 17, A (22)

n—1"n-1"°

23

n—1

-1
a, = Dn—l,n w

If the vector |, designates the upper half of g, (the lower
half is zero from the left boundary condition), then the
exact mathematical solution of (19) is

g=F]l +a, i=1,2,--+,n, (23)

where the (L + 1) component vector 1, is given by the
solution of the inhomogeneous system of equations

(F'—GF ), =Ga'—a’, (24)

obtained from the right boundary condition; the super-
scripts ¢ and b designate the upper and lower halves of
the corresponding matrices and vectors. The method by
which this exact solution is obtained is the finite-differ-
ence analogue of the well-known simple shooting tech-
nique based on initial value problems [16].

The trouble with this exact solution is that in many
problems its numerical computation is unstable against
the accumulation of roundoff errors. The errors result in
some instances in the extreme ill-conditioning of the
matrix in the left side of (24), making its numerical solu-
tion impossible. Actually, in some cases, an overflow is
encountered during the computation of F,. In a one-
region problem when the P, approximation is used, it can
be shown quite simply that the spectral radius of the =
matrix in (21) is greater than unity, i.e., that the matrix =
is divergent, and when computing F, = (—)""'#«""'F its
elements grow larger with each successive matrix
product. Even if these products did not lead to overflow,
the accuracy in the computation of F, would be lost by
subtraction of very large numbers, with the result that the
computed F, would have linearly dependent columns.
The same numerical instability is a well-known phe-
nomenon in the numerical solution of the Schrodinger
equation, when the eigenfunctions in the classically for-
bidden regions are computed [2, 17, 18].

Numerical instability questions can be discussed ana-
lytically only in very simple situations, such as in one-
region problems, and then only qualitatively. In an actual
problem, it is imperative to ‘“‘measure” the instability
during the computation and to eliminate it in the most
efficient way.

e Stabilizing transformations

The concept involved in the stabilizing transformations
is quite clear: The exact mathematical solution of our
problem, given by (23) and (24), is to be transformed in
such a way that the new solution is expressed only in
terms of matrices and vectors that are arbitrarily well-
conditioned for computation. Obviously, the transformed
solution has to be mathematically identical to the un-
transformed solution.
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Our general method belongs to the class of parallel (or
multiple) shooting methods discussed by Keller [16] and
recently reviewed by Miranker [19]. Osborne [20] has
also published some interesting work along these lines.

It is difficult to give a brief and at the same time clear
account of the rather complicated linear algebra manipu-
lations involved in the stabilizing transformations. For
the sake of clarity and completeness, the linear algebra
analysis is expounded in considerable detail in the Ap-
pendix.

Our stabilization procedure is based on the generaliza-
tion of a scheme proposed by Godunov [3] and later
significantly improved by Conte [4]. In order to assure
the linear independence of the columns of the matrices
F.[see (21)], both authors orthonormalize their columns
by means of the Gram-Schmidt method. In the Ap-
pendix, it is shown that Conte’s analysis is not restricted
to orthonormal transformations, but that it is valid for
arbitrary transformation matrices and vectors. This point
is emphasized here, because for each problem one should
choose the optimal linear transformations that offer the
greatest computational efficiency. With reference to the
figure below,

Reconditioning points

C1 62 C3 C]'—l C].
L J | | — d
L 4 o I 1
1 n

Mesh points

in which ¢, =1,¢,, -, ¢;=n are the equally spaced
conditioning points, we define the following sequence
of reconditioned rectangular matrices (L + 1) X (L + 1):

vi=lo)

I
U = -
€2 [(F(?Zle) (Fc;Tl) l:l ’
1

¢ [(Fc;’TITCZ) (FC;TITCZ)_'] ’

<

I
n= [(Fanchz e TC' )(FntTchq PN

j—1

v T, il
s

where the matrices F and the transformation matrices T
are defined in (21) and (A13). The superscripts ¢t and b
designate the upper and lower halves of the correspond-
ing matrix.

The vectors a, defined by (22) must also be transformed
so that the new vectors u, are linearly independent of the
columns of U,. This can be achieved by using the re-
conditioned vectors
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" J
llc == b b b
* [a = F T Tt = —F T\T, Tt

ke Ck

k=2,3,---.j, (26

k

where the 3(L + 1)-component transformation vectors
tck are defined in (A14). In-between conditioning points
the matrix and vector sequences U, and u, are determined
by substitution in (19) without and with the inhomoge-
neous terms, respectively [see (21) and (22)]. The tck’s
(A14) are chosen to be identical to the upper halves of
the very same vectors they are to recondition and so are
available without any extra computation or storage. Be-
cause the upper halves of the reconditioned matrices Uck
and vectors u, are analytically set equal to unit matrix
and the null vector, respectively, they are not subject to
roundoff errors. Furthermore, the columns of U, and the
vectors u, are thus guaranteed to form a set of linearly
independent vectors.

In the Appendix it is shown that the solution to (19)
can be expressed in the well-conditioned form

g=Ul +u, . =i <oy,

g, = Unl].-f-un, 27
where the 3(L + 1)-component vectors 1, are given by
lk—l:Tck(lk_tck)’ k=2,3,---,j—1,

L, =T,(0,—¢t), (28)

and 1, is given by the solution of the following system of
equations:

(U, = GUN,=Gu,' —u,'=—u,”. (29)

n n

With the choice of transformation matrices and vectors
T and t given in (A13) and (A14), and an adequate fre-
quency of conditioning, we can ensure that the system of
equations (29) is arbitrarily well-conditioned. Once 1, is
obtained from the solution of (29), all the other 1 vectors
are determined recursively from the formulas (28); this
means that the solution vectors g, at all the conditioning
points are obtained from (27) by solving only one system
of equations, i.e., (29). Again, this method is the finite-
difference analogue of the well-known multiple shooting
technique for the solution of two-point boundary value
problems [16].

We conclude this section with some further remarks on
Conte’s method and the stabilized march technique of
Lucey and Hansen [5]. The transformation matrices T,
used by Conte are those needed for the Gram-Schmidt
orthonormalization method [4]. The computation of
these T, ’s requires approximately 2[3(L + D]? multi-
plications versus [4(L + 1)]° multiplications for the in-
version of a matrix of the same order used in our method.
The evaluation of his transformation vectors t, requires
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the computation of #(L + 1) inner products of pairs of
(L+ 1)-component vectors. Our choice of T, ’s and

s given in (A13) and (A14), results in a s1mpler and
more efficient algorithm than one based on Conte’s
method.

Our transformation matrices T, ’s are the same for-
ward transformation matrices used by Lucey and Hansen
in their treatment of the eigenvalue problem for the trans-
port equation [5]. However, in their stabilized march
technique another matrix inversion such as that in (A13)
is required to define a stabilizing transformation in a
backward march; also, in order to match the forward and
backward solutions, they have to solve a system such as
(29) at each reconditioning point. The stabilized march
technique thus requires at least three times more com-
putation at each reconditioning point than the generaliza-
tion of Conte’s method used here, i.e., two matrix in-
versions and one linear system solution compared with
one matrix inversion.

s Numerical algorithm

The first step in the algorithm to solve the block system
of equations (19) is the computation of the untrans-
formed (simple shooting) solution given by (23) and (24).
To solve the system of equations (24), we use a linear
system solver (LINSY 1) based on Gaussian elimination
with pivoting and iterative improvement of the solution,
as described by Forsythe and Moler [21]. When system
(24) is well-conditioned, as determined by LINSY1 [21],
its solution gives us the angular flux at the slab center g
[see (19)], and the fluxes at the other mesh points are
obtained by substitution in system (19). When marching
from the slab center to the boundary, the matrix and
vector sequences (21) and (22) are computed again be-
cause of storage limitations. For the homogeneous slab
problems we have solved, all the = matrices in (21) are
equal and thus we have to store only one matrix . For
typical reactor problems with a few material regions, we
would need to store only one 7 matrix for each different
region, and this would not pose storage problems.

When system (24) is ill-conditioned in the sense dis-
cussed in [21], LINSY sets a signal for the main pro-
gram. Then the total spatial grid (see figure on page 358)
is divided into two equal marching intervals by a recon-
ditioning point at the midpoint ¢,. The reconditioning
transformations at ¢, and at the right boundary point,
¢,=n, require the numerical inversion of F ; nd
F, tT T. [see (A13)]; only when the inversion ofF
performed by LINSY1 without any error messages is
the U_ matrix [see (25)] computed and stored, and com-
putatlon is continued to the slab boundary. If F_
instead ill-conditioned, the computation with two march-
ing intervals is immediately stopped. The grid is then
divided into four equal marching intervals by four equally
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spaced conditioning points, ¢,, ¢,, ¢,, ¢,=n, and the

matrix inversions required at them are started [see

(A13)]. Whenever the first ill-conditioned matrix is

detected, the sweep is stopped immediately and the

number of marching intervals doubled. The procedure is
thus pursued, doubling the number of marching intervals
each time until all the matrices involved in one given
sweep are well-conditioned. Finally, the well-conditioned
system (29) is solved and the solution vectors are ob-
tained at all the conditioning points ¢, =1, ¢,, - -,
c;=n by means of the formulas (28) and (27). Between
conditioning points, the solution is obtained by marching

(substitution) through the inhomogeneous system (19).

An error check is always done by comparing the solution

vector g, obtained from solving the linear system (29)

[see also (27)] and that obtained by marching from the

last conditioning point before the right boundary.

For the experimental homogeneous slab computations
described subsequently, a maximum number of 33 con-
ditioning points was programmed and these proved to be
sufficient. The main storage requirements are quite
modest, one square 7 matrix [see (21)], 33 rectangular
matrices U, [see (25)] and 33 square matrices T, [see
(A13)]. Since the slabs are homogeneous, the marching
intervals were chosen naturally to have equal length,
although it is not necessary to double at each successive
sweep the number of them. Further numerical experi-
mentation could indicate that it might be more efficient
to add a fixed number of marching intervals at each suc-
cessive sweep. For nonhomogeneous slabs, a more com-
plicated strategy is required, as the length of the march-
ing interval in each different material must be related to
the corresponding neutron mean free path.

The determination of the proper number of condition-
ing points is of the greatest importance for the efficiency
of a computer program, as most of the computation time
is spent on the conditioning transformations. In this re-
spect, two approaches are used. Lucey and Hansen [5]
set the number of conditioning points in the program in-
put. This might be quite inefficient because the number of
conditioning points used might be much higher than is
necessary., Compared with the other commonly used
method of rescaling the matrices when the magnitude of
any of their columns exceeds a certain empirical value
(4, 16], the present method has the following distinct
advantages:

1. No examination of matrices at each grid point is neces-
sary; therefore, in stable problems the solution is
obtained by the simple and direct shooting method
without any extra computation.

2. The transformation of the matrices is carried out only
when an accurate numerical solution of the problem
cannot be obtained because of the ill-conditioning of
the matrices, not because the values of their columns
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exceed a certain empirical magnitude; this conven-
tional criterion is not related directly to the accuracy
of the numerical solution and might result in more
conditioning points than are necessary.

We might conclude by stating that the efficiency of our
algorithm for the more unstable problems is not as high
as for the more stable ones, because of the extra matrix
inversions wasted due to ill-conditioning. However, this
is not a disadvantage in reactor calculations because, in
the power method for criticality computations [22], it is
necessary to solve system (19) many times, changing only
the inhomogeneous terms on the right-hand side. There-
fore, the search for the proper number of conditioning
points is made only once during the solution of the first
source problem. Thereafter, the same well-conditioned
sequence of matrices U, [see (25)] is used, and each new
source problem requires only the computation of the
vector sequence (26).

Numerical results and discussion

o Isotropic scattering problems

We now discuss the numerical results obtained with
our experimental computer program for some critical-
length calculations in homogeneous slabs with isotropic
scattering. These calculations were first reported by
Carlson and Bell {23] and have become a standard used
by many in numerical neutron transport studies. The
transport equation to be solved is

1
u[a¢<x,u>/ax]+2t¢=%cztf oG w)dy’  (30)
-1

with the boundary conditions

¢(0, ) =¢(0,—u) and ’
SR, u)=0 ~1<u<o. 31)

In (30) the total cross section Z, is taken as unity so that
the total mean free path is also unity, and c is the average
number of secondary neutrons emitted per collision. For
a given slab size, the problem (30) and (31) has a solution
only if we replace ¢ by ¢’ with

c'=c/h, ANFE .

Here A is the criticality eigenvalue. The critical length
problem is to determine the slab thickness for which
A= 1. Our program searches for the critical half-thick-
ness by computing A\ for a succession of slab thicknesses
after starting with an estimated value. The criticality A
for each size is obtained using the power method [22].
Linear interpolation of the successive half-thicknesses
is performed to converge to the critical half-thickness
with a criticality A = 1. The error criterion used for the
computed X is | — 1< 107%,

computed
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Table 1 Slab critical half-thickness in units of mean free path
by the P, approximation.

Secondary Marshak’s boundary conditions
neutrons per

collision,

¢ Lucey and Hansen®  This work”  Analytic
1.02 5.6715 5.6710° 5.6711
1.05 3.3067 3.3065 3.3066
1.1 2.1214 2.1213 2.1213
1.2 1.30205 1.30200 1.30200
1.4 0.75769 0.75766 0.75766
1.6 0.53839 0.53837 0.53837
1.8 0.41822 0.41821 0.41821
2.0 0.34206 0.34205 0.34205

“With 100 intervals, 20 reconditioning points, and single precision arithmetic [5].
"With 128 intervals, no reconditioning points (except where noted), and double
precision arithmetic.

“Ref. 5.

“This was the only case in which two reconditioning points were needed.

In Table 1 we give the resuits obtained with the P,
approximation and Marshak’s boundary conditions for
the critical half-thickness corresponding to several val-
ues of the number of secondary neutrons emitted per
collision. For comparison purposes, we also give the
values obtained by Lucey and Hansen [5] using the
stabilized march technique, and those obtained with the
analytic solution of the P, approximation (see also [6],
p. 116). A comparison of the accuracy obtained by Lucey
and Hansen with that in the present work is not meaning-
ful because we use double precision arithmetic whereas
they used single precision. Table 1 shows the power and
efficiency of our method for automatically selecting the
required number of reconditioning points during the com-
putation. Only for the case ¢ =1.02 was a slight in-
stability detected. This was eliminated by the program
with only two reconditioning points. The amount of com-
putation required by our program is thus substantially
lower than in the stabilized march technique. However,
this comparison is valid only if the stabilized march tech-
nique was used to solve (30) by the power method. Lucey
and Hansen instead solved the eigenvalue problem (30)
directly. Nevertheless, the comparison is meaningful as
to the number of reconditioning points used by each
method, and the amount of computation at each of these
points.

In Table 2 we show the results of high order P, com-
putations for the thickest slab reported by Carlson and
Bell. In a previous section [see discussion following
Eq. (13)] we mentioned that the roundoff errors grow
exponentially with distance; it is also known (see Da-
vison, Ref. [6], Ch. X) that, because of the variation of
the relaxation lengths with the order of the P, approxi-
mation, the roundoff errors also grow for the higher P,
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Table 2 Comparison of Federighi’s with Marshak’s boundary conditions for higher-order P, calculations. Slab critical half-thickness
in units of mean free path for ¢ = 1.02 (secondary neutrons per collision). Exact value® is 5.6655.

Marshak’s boundary conditions

Order of _— —
Approx. Lucey” This work”
P, 5.6715 5.6710
P, 5.6682 5.6676
P, 5.6671 5.6666
P, 5.6667 5.6662
P 5.6664 5.6659
P 5.6663 5.6658
Pl 5.6662 5.6656
Pl 5.6661 5.6656
P 5.6655

No. of
inversions
required’

Federighi's
boundary
conditions

No. of
recond. points

5.6638 2
5.6647 4
5.6650 4
5.6651 8
5.6652 8
5.6654 8
5.6655 16

16

16

AR WW RN —

“With 100 space intervals, 20 reconditioning points, and single precision arithmetic [11].

“With 128 space intervals and double precision arithmetic.

‘Shows the computational cost of the automatic selection of the number of reconditioning points. The order of the matrices is (L + 1).

“Ref. 23.

Table 3 Convergence of the spherical harmonics method to the exact values of the slab critical half-thickness in units of mean free

paths, using Federighi’s boundary conditions.”

Secondary neutrons
per collision,

4 P, P,
1.02 5.6638(2) 5.6647(4)
1.05 3.2989(0) 3.2996(2)
1.1 2.1128(0) 2.1125(0)
1.2 1.2920(0) 1.2886(0)
1.4 0.7460(0) 0.7369(0)
1.6 0.5263(0) 0.5141(0)
1.8 0.4063(0) 0.3928(0)
2.0 0.3307(0) 0.3166(0)

Ovrder of approximation

- Exact
P, P, P, value®

5.6650(4) 5.6651(8) 5.6652(8) 5.6655

3.2998(4) 3.3000(4) 3.3000(4) 3.3002

2.1129(2) 2.1130(2) 2.1131(4) 2.1134

1.2888(0) 1.2891(2) 1.2892(2) 1.2893

0.7360(0) 0.7361(0) 0.7363(0) 0.7366

0.5118(0) 0.5115(0) 0.5115(0) 0.5120

0.3894(0) 0.3885(0) 0.3884(0) 0.3887

0.3124(0) 0.3111(0) 0.3107(0) 0.3108

“All cases with 128 equal intervals; the numbers of reconditioning po_ints required are given in parentheses.

"Ref. 23.

calculations. The computations shown in Table 2 are thus
a good test of the capability of the method to deal with
strongly unstable problems. These results are further
evidence that Federighi’s conditions [8] give consistently
better results than Marshak’s conditions [1] in the con-
text of critical-length computations. Table 2 also indi-
cates clearly the advantages of the automatic setting of
the number of reconditioning points by the program. This
advantage is most significant for the more stable prob-
lems, where the number of required reconditioning points
is considerably lower than that used by Lucey and Han-
sen. For the more unstable problems (higher P, compu-
tations), this advantage decreases. It was considered
worthwhile to record the approximate cost in computa-
tion of the automatic setting of the number of recondi-
tioning points; this cost is due mainly to the number of
ill-conditioned matrices whose inversion by LINSY1
fails, as discussed in the previous section.
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In Table 3 we give the results obtained for critical
length computations with several P, approximations and
Federighi’s conditions. These results indicate the rapid
convergence of the spherical harmonics method to the
exact values when used in conjunction with Federighi’s
conditions. The efficiency of the automatic setting of the
number of reconditioning points is illustrated in a striking
way, because many of the problems were solved accu-
rately by the simple shooting method without any re-
conditioning whatever.

The increased numerical instability encountered for
the higher P, calculations for isotropic problems in thick
slabs has a simple physical explanation. In the limit of
an infinitely thick slab with a uniform and isotropic fis-
sion source, the scalar flux f, [see Eqs. (5) and (6)] is
constant and all higher moments vanish because the an-
gular flux ¢ [see (2)] becomes isotropic. Thus in high P,
computations for the thicker slab problems the limiting
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case is being approached, and as the first component of
the solution vector g; [in (23)] becomes orders of mag-
nitude larger than the other components, the numerical
instability arises.

A slightly modified version of the present program has
been used recently to solve the equations of radiative
transfer in a homogeneous nonabsorbing Rayleigh at-
mosphere [24] with an optical thickness of 16. This
problem is subject to severe roundoff instability but was
solved accurately with 16 conditioning points.

* Anisotropic scattering problems
We have determined the critical half-thickness of a plane

homogeneous siab with anisotropic scattering. The prob-
lem solved was the following:

. 1
i (x . w)[ox + Sep = H( + 13, f o Cx s u')du
-1

iso > ! 7 r
£35S 42n D2 W) [Pl )
—1

n=0
(32)

with the boundary conditions

(0, n) =¢(0, —p) and

e(R,u)y=0 —-1<u<0, (33)

where x = 0 is the slab center and x = R is the right vac-
uum boundary. The solution of problem (32) and (33)
has been reported by Lathrop and Leonard [25], who
gave not only a numerical solution obtained with a §
approximation using the DTF code [25], but also exact
solutions obtained by the method of singular integral
equations. Their notation is followed closely here, and
the reader is referred to their paper for more details.
Egs. (32) and (33) were solved for different values of the
secondary neutron ratio ¢ + ¢, where

¢ = Esaniso/Et (34)
is the anisotropic-scattering ratio and
¢ =(E VI (35)

is the isotropic secondary-neutron ratio. For each value
of ¢ +¢', c is increased to permit observation of the
effects of the increased anisotropy in the scattering. The
values used for b, are those of elastic hydrogen scattering

bo=1, b,=2/3, b,=1/4, b,=0, b,=—1/24.
(36)

The values (36) result from expanding the scattering
kernel in a five-term Legendre polynomial series. With
our method we can expand the scattering kernel unre-
strictedly in a Legendre series with exactly L + 1 terms
when performing a P, calculation. Further, the actual
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computations are independent of the number of terms
kept in this expansion.

The results of the most interesting calculations re-
ported in [25] are given in Table 4 with our P, resuits
obtained using Federighi’s boundary conditions. In all
cases, 64 spatial intervals were used.

We chose the calculations for the minimum value of
secondary neutrons per collision ¢ + ¢’ = 1.05 reported
in [25], because this value results in the thickest slabs,
where the roundoff effects are greatest. From a computa-
tional point of view the S, calculations are exactly equiv-
alent to P calculations (i.e., both are a two-point bound-
ary value problem for a system of 16 differential equa-
tions). The convergence of the P, computations to the
analytic results of Leonard is shown clearly in the upper
portion of the table. Our P results are in closer agree-
ment with the analytic values than are the §,, results.

In the other extreme we chose the maximum value,
¢ + ¢’ = 1.4 neutrons per collision reported in [25]. The
angular flux is more anisotropic than for ¢ + ¢’ = 1.05,
because the slabs are much thinner and thus the flux
anisotropy due to boundary effects is higher. In a nu-
merical sense, this has the effect that the higher compo-
nents of the solution vector g, [in (23)] become of the
same order of magnitude as the first component (the sca-
lar flux) and thus the numerical problem becomes much
more stable. Indeed for the thinner slabs listed at the
bottom of Table 4, the simple shooting method without
any reconditioning points is sufficient to obtain an ac-
curate numerical solution.

Appendix

We show here that Conte’s analysis is valid for arbitrary
transformation matrices and vectors. With reference to
the figure on page 358 of the text, the j — | intervals de-
fined by the conditioning points ¢, =1, ¢,, -+, ¢;=n
are called marching intervals. We now define the follow-

ing sequence of rectangular matrices (L + 1) X (L + 1) :

FT =Fl=F, i=1,2,-,¢,—1

FiTch2 i=c,,c,+1,--+,¢,—1
U,=

FiTchz' . -Tck i=c,c+1l, ¢, —1

~FiT1Tcz T Tn i=n, (A1)

where the Fs are defined in (21), and the arbitrary (ex-
cept that T, =) square transformation matrices Tck
of order #(L + 1) are to be determined so as to assure
that the transformed matrices U, are well-conditioned,
i.e., that their columns are linearly independent. The
vectors a, [see (22)] must also be transformed in order
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Table 4 Slab critical half-thickness in units of mean free path for anisotropic scattering.

c+c =105
Exact
c St P" PP pP.h value®
0.1 3.39042 3.390254 3.39030 3.39033 3.39032
0.3 3.59724 3.597054 3.59710 3.59714 3.59714
0.5 3.85135 3.85114 3.85120 3.85125 3.85126
0.7 4.17506 4.17481 4.17489 4.17494 4,17495
0.9 4.60935 4.60905 4.60915 4.60921 4.60927
c+c =14
Exact
¢ St P.* value¢
0.1 0.74532 0.74519 0.74529
0.3 0.76381 0.76375 0.76378
0.5 0.78393 0.78396 0.78396
0.7 0.80595 0.80608 0.80610
0.9 0.83022 0.83046 f
“DTF transport code {25].
"With Federighi boundary conditions, 64 intervals and eight reconditioning points except where noted.
“Results from singular integral equation method [25].
With four reconditioning points.
“With Federighi boundary conditions, 64 intervals and no reconditioning.
Not reported; see [25].
that the new vectors u, be linearly independent of the g=Ul +u G =i<c,s
columns of U.. This can be achieved by the transforma-
i Y g,=Ul +u,, (A4)

tions
uc2 = ac2 - F(‘ZTITCZtc2 = ar‘z - U(‘Ztcz ’
3

e, = ac:; - FC:;TITCztcz - FC3T1 T“zTczst”.z

= ac3 - Fc:; T, T”ztcz - Uc:;tc:z ’

un = an - FnTITC tC - FnTch T(‘ tC - FnTch
2 "2 2 373 2
: ch_lTntn = an - FnTl T62t62 - FnTl TCZTC:;tc3
— - —FT,--T, t, —Ut, (A2)
i it B B |

where the #(L + 1)-component transformation vectors
tck are unspecified. As already pointed out, between
conditioning points the vector sequence is determined by
substitution in (19) [see (22)].

As in the first marching interval the sequences U, and
u, are the same as the untransformed sequences F; and
a, of the exact solution given by (23) and (24), the solution

can be written as
g=Ul —u, i=1,2,---¢,—1, (A3)

where 1 is the $(L + 1)-component vector equal to the
top half components of g,. In order to use only well-
conditioned matrices in our computation, we express the
solution in all the mesh points as follows:
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where the 3(L + 1)-component vectors I, are to be de-
termined by matching the solution at the conditioning
points. At the second conditioning point c¢,, the matching
of the untransformed and transformed solutions gives

g, =F 1 +a =U]l+u, . (A5)

From (AS), using the definitions of U e and u, given in
(A1) and (A2), we obtain

L=T.,0,—t). (A6)

Thus, in the second marching interval the solution is ex-
pressed as

B UL+ i=c,e+l, -1, (A7)

which is obtained by substitution in the full system (19),
with the assumption that the solution at ¢, is known, as
given by the right side of (A5). In terms of L, the solution
at ¢, is

3

g, =F,T.T,L+a, —F,TT,¢t. (A8)

which can be verified by substituting into (A8) the ex-
pression for 1, given by (A6), in which case (A8) becomes
the exact (untransformed) solution (23). Matching (A8)
with the newly transformed solution, we get
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g, = FC3T1_TCZI2 + a, — F(/,:‘Tchztc2 = UCBI3 tu,, (A9)
so that

L="T,0,~t). (A10)

The general formula obtained from matching at the suc-
cessive conditioning points including the right boundary
point is

lk-lzTck(lk_tck) k=2,3,,1—-1

L, =T,0,—t). (A11)

We now use the second equation in (A4) and the right
boundary condition in (19) to obtain the inhomogeneous
system of #(L + 1) equations for the 3(L + 1) com-
ponents of 1,

b ty y b
(v,” — GUn)l].-— Gu, —u .

n

(A12)

Therefore, the solution to our problem (19) is given by
the general formulas (A4), (A11), and (A12), indepen-
dently of the transformation matrices and vectors T and
t, as was to be shown.

In our work we chose the following transformation
matrices and vectors:

T,=1,
t -1 t\ ~
T, =(F,T)" =(F)H",

— ¢ -1
T03 (F03 T]TCZ) ’

Tn= (FntTchZ R : )—1’
J

. (A13)
and
t,=0,
tc2 = (ac2 - Fcletl)t = aczt ’

. _ t
tc3 - (ac_.i Fc3Tchztcz) >

J— —_ —_ e e — . . t
t, = (an FnTchztc2 FnTch2 ch_ltcj_]) '

(A14)

Substituting (A13) and (A14) into (A1) and (A2) and
carrying out the matrix and vector products, we obtain
the reconditioned sequences U, and u, given explicitly in
the text [(25) and (26)].
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