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Parallel  Shooting  Method  for  Boundary-value  Problems: 
Application to  the^ Neutron  Transport  Equation 

Abstract: A direct method is given for  the solution of the spherical  harmonics  approximation to  the Boltzmann  equation for  neutron 
transport in slab  geometry.  The roundoff instability of the problem is eliminated by performing  linear  transformations of the matrices 
involved, which ensure  that  the matrix  columns are linearly  independent. The novelty of the  method lies in that only a minimum number 
of matrix  transformations is performed, the precise number being determined  dynamically, efficiently, and in a new way by the program 
itself in the  course of the  computation. 

Introduction 
The aim of this paper is to  present a direct method for  the 
numerical  solution of two-point boundary value  problems 
for linear systems of first-order  ordinary differential equa- 
tions that  are  subject to roundoff instability. The method 
is applied to  the solution of the spherical  harmonics ap- 
proximation to  the monoenergetic  (one-group) neutron 
transport  equation in slab geometry with arbitrary aniso- 
tropic  scattering  and source [ 11. This problem is ideally 
suited for testing the  method  because  the  computer pro- 
gram can  generate,  from analytical  formulas, finite- 
difference  approximations to large systems of coupled 
differential equations having an arbitrarily high degree 
of roundoff instability. Furthermore,  accurate  answers 
for many of these problems are available in the  literature 
of the  nuclear  reactor field. The method  discussed has a 
much  more general applicability than in the  present con- 
text of the  neutron  transport  equation.  For  example,  the 
problem of the numerical  solution of systems of coupled 
Schrodinger equations [ 21 has many features in common 
with the problem discussed here. 

We first reduce  the spherical  harmonics equations by 
means of finite differences to a general  algebraic  problem 
in block form.  Since  the matrices of the problem are non- 
convergent,  the roundoff errors grow  exponentially with 
distance.  This numerical  instability makes  the problem 
both difficult and interesting.  Because of the instability, 

354 the most  common numerical methods for  the solution of 

the spherical  harmonics equations  are  iterative [ 1 1. In 
general,  a quantitative discussion of the instability cannot 
be  made theoretically, because  it  depends  on slab  thick- 
ness,  anisotropy,  etc.,  and  these quantities are different 
for  each problem. 

In  the method proposed,  the numerical  instability is 
eliminated by performing  linear  transformations of the 
matrices of the problem, the  transformations being neces- 
sary  for  the linear independence of the matrix  columns. 
The new approach described here requires  only  a min- 
imum of matrix transformations, the  precise number 
being determined  dynamically by the program. Thus 
for thin slabs, in which the algorithm does  not  encounter 
instability, the optimal  direct  solution of the algebraic 
problem is obtained  without  performing  any  matrix trans- 
formations  whatever.  The idea of performing  linear trans- 
formations of matrices to  ensure  the linear independence 
of the  columns, and thus  the numerical  stability of a com- 
putation, is well known [2-51. However,  both  the pre- 
cise way in which these transformations are  done and 
their number are  crucial for the efficiency of a  numerical 
method. A comparison with the “stabilized march” tech- 
nique,  used by Lucey and Hansen  for  the solution of 
similar problems [ 5 ] ,  shows that  the  present  method re- 
quires one-third the computation  time for  each spatial 
grid point at which the reconditioning transformation of 
the matrices is performed. Furthermore,  the  fact  that  the 
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number of reconditioning  points is kept  to a minimum by 
the program will result in a  substantial decrease of that 
number, typically by a factor of 3 to IO.  The  present 
method is thus computationally  more efficient than  the 
stabilized  march technique. 

Results of extensive critical-length computations are 
given for both stable and unstable problems with iso- 
tropic  and  anisotropic  scattering. The comparison of 
these  results with previously  published work is encourag- 
ing, both as  to  the efficiency and the  accuracy of the pro- 
posed  method. 

Statement of the  problem 
We do not repeat  here  the derivation of the spherical 
harmonics  approximation to  neutron  transport starting 
with Boltzmann's  equation in integral form. The inter- 
ested reader  can find this  derivation in the review article 
of Gelbard [ I ] ,  whose  notation we follow closely. In 
slab geometry, Boltzmann's equation with anisotropic 
scattering and  source is 

p(acp(x 1 p ) / d x )  + Z,(x)cp(x, p )  

= i l l ,  
Z,(x, p 3 p')(p(x I p ' ) d p ' +  S ( x  3 p )  . (1) 

where p is the  cosine of the angle  between the  neutron 
velocity  and  the x axis; p(x, p) is the angular flux: &(x) 
is the total  cross  section; &(x, p , p') is the scattering 
cross section from p' to p; and S ( x  , p) is the  anisotropic 
neutron source. 

We  assume  that an approximate solution of ( I )  can  be 
obtained in the  form 

and 

1, 

S ( x ,  p.) z 3(21+ 1 ) S / ( X ) P / ( P )  1 (4) 
/=o 

where p(, is the  cosine of the angle  between the  neutron 
velocities in the  directions p' and p ,  and Pl(p)  are  the 
Legendre  polynomials. If we perform the  necessary angu- 
lar  integrations using the addition  theorem for  the Le- 
gendre polynomials  and  their  orthogonality properties, 
we obtain the classic  spherical  harmonics  approxima- 
tion, or P ,  approximation 

Equations ( 5 )  are a system of L + 1 inhomogeneous or- 
dinary differential equations.  Their general  solution  has 
L + 1 arbitrary  constants of integration, which must  be 
determined by imposing L + 1 suitable boundary condi- 
tions. To  fix ideas we limit our discussion to a symmetric 
slab  problem, in which abscissas  extend  from  the  center 
of the  slab, x = 0 ,  to  the  outer  boundary, x = R . 

Boundary conditions 
The interface and boundary  conditions are discussed by 
Gelbard [ I ]  and Davison [6]. In brief, for odd-L  ap- 
proximations, the spatial  moments j i are  continuous 
across interfaces of different media. As the directional 
flux is angularly symmetric  at  the  center of the domain, 
cp(0, p) = cp(0, -p) , we must have 

j,,,, (0) = 0 2 1 + 1 = 1 , 3 ; . . , L ,  (7 )  

exactly B(L + 1) left boundary  conditions. The vacuum 
boundary  condition  requiring that no neutrons return 
from the vacuum. 

cp(R 5 p )  = 0 p < 0 ,  (8) 

cannot be satisfied exactly by any finite expansion (2). 
Two commonly  used approximate boundary  conditions 
due  to  Marshak [ I ]  and  Federighi [8] can both be writ- 
ten in the form 

f , , (R) = G f , ( R ) ,  

, f , ( R ) =  

1 

1J 
and the  two approximations differ in the  elements of the 
square ;(L + 1)-order matrix G, for which values are 355 
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available [7 -91. The relative  merits of these approxi- 
mations are discussed  by a number of authors [8 - 141. 

In  summary,  the spherical  harmonics  approximation 
is a two-point boundary value  problem for a system of 
ordinary differential equations ( 5 )  with  left boundary 
conditions  (7) and right boundary conditions  (9). The 
numerical  solution of this  problem constitutes  the sub- 
ject of the remaining sections of this paper. 

Algebraic problem for spherical harmonics equations 
Using the  compact  notation of matrix theory,  our two- 
point boundary value  problem can  be  written  as follows: 

where  the following definitions have been used, 

r 

f (x)  = 

r 
213 

0 315 0 

L - 1  L 
2 L -  1 

0 -  2 L -  1 

2 L +  1 L o  

The boundary  condition  matrix G in (1 2) is defined an- 
alytically for  Marshak conditions [9] ; Federighi has 
given in his paper [8] the matrix elements of G to six 

356 significant figures. 
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It is now convenient  to premultiply  Eq. (1 1) by A" so 
that it becomes 

df(x)/dx + N ( x ) f  = v(x) , (13) 

where we have used the  obvious definitions 

N ( x )  = A - ' C ( x )  and v(x )  = A"s(x) . (134  

When the  cross  sections ui [see (1 IC) and  (6)] are con- 
stant,  independent of the spatial coordinate  (one homoge- 
neous region), it is known that a  direct  numerical  in- 
tegration of (13) is unstable  because  the roundoff errors 
grow  exponentially  with  distance. The instability is due 
to  the  fact  that  some of the eigenvalues of N are real  and 
occur in  positive and negative  pairs [ 1 1, which  explains 
in part  the instability of the  direct solution of the spherical 
harmonics equations  for very  thick  regions. 

In  reactor problems the  cross section matrix (1 IC) is a 
piecewise constant function of space.  Thus, if we inte- 
grate (13) between mesh  points j - 1  and j in the finite 
differences  approximation 

h i-1 

1-1 , , . }-I . . . I"--------/ 
1 2 j-1 j n-1 n 

we  obtain,  after using the trapezoidal  rule for integration, 

x = o  P x=R 

where N j - ]  is a constant matrix involving the  cross  sec- 
tions in the interval between  mesh points j - 1 and j . The 
boundary  conditions (1 2) in discrete form are 

The  boundary conditions (15) separate  sharply  the  even 
from  the odd components off at  the  two  boundary points. 
The  separation suggests that  the solution vectors fj  be 
rearranged, putting the  even  and  the odd components  at 
the  top  and  the  bottom halves,  respectively,  throughout 
the grid. In  fact, this rearrangement considerably simpli- 
fies the algebraic  analysis of the  system (14) and (1 5).  We 
thus  use  the definitions 

wj-l = +hjJvj-] + Vj) 1 (18) 

where  the primes denote  the reordering of the columns of 
the matrices  inside the  parentheses by parity, Le., the 
first half of the columns of the D's are  the  Ist,  3rd,  5th, 
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. . .  , Lth columns of the matrix inside the  parentheses, 
and the  second half are  the 2nd, 4th,  6th, . . . , ( L  + 1 )th 
columns. Using ( 1  6), ( 17), and ( 1  8), we write the algebraic 
problem (14) and  (15) in full: 

D,,g,  + Dl&, = w, 

= w, 

where  the  superscripts b and t designate  bottom  and top 
halves of the  respective  vectors,  the D’s are ( L  + 1)th- 
order  square matrices,  and the g’s and w’s are ( L  3- 1 ) 
component column vectors. 

An  attractive  feature of the spherical  harmonics 
method is  that  the algebraic  problem (19) can  be gen- 
erated numerically from  the analytical  formulas given in 
the  text, independently of the number of terms L + 1 
( P ,  approximation)  kept in the expansions (2), (3), and 
(4). It should also be  noticed that  the algebraic  problem is 
the  same  whether  the scattering cross-section 2, and  the 
external source  S(see  Eq. ( I ) )  are isotropic or aniso- 
tropic. The only change is that  the elements of the D 
matricis and the  components of the w vectors in ( 1  9)  are 
different, but  the form of the algebraic  problem,  and thus 
its  numerical  solution,  remains the  same. Finally, it is 
known [ 151 that  the finite-difference approximation used 
is 0 ( h 2 )  , where h is the mesh  size. More precisely, 

Direct solution of algebraic  problem 
In this  section we present  the matrix  algebra  analysis to 
implement the numerical  solution of (19). 

The block  algebraic system of Eqs. (19) has a  very 
simple structure  that suggests an obvious direct solution 
by substitution. First we define the following sequence of 
rectangular  matrices of order ( L  + 1 ) X f(L + 1 ) : 

In  (21)  the explicit  form of F ,  (its upper half is the unit 
matrix  and  its  lower half, the null matrix) was chosen  to 
satisfy the left boundary  conditions, whereas  the  other 
terms in the  sequence  are found by substitution in (19) 
without the inhomogeneous  terms. By substitution in the 
full inhomogeneous system (19) we now define the se- 
quence of vectors of L + 1 components 

If the  vector I, designates the  upper half of g, (the  lower 
half is  zero  from  the left  boundary  condition), then  the 
exact mathematical  solution of (1 9) is 

gi = Fill + a, , i = 1 , 2 ; . . , n ,  (23) 

where  the &(L + 1)  component  vector I, is given by the 
solution of the inhomogeneous system of equations 

obtained from  the right boundary  condition;  the  super- 
scripts t and b designate the  upper  and  lower halves of 
the  corresponding matrices and  vectors.  The method  by 
which this exact solution is obtained is the finite-differ- 
ence analogue of the well-known simple  shooting tech- 
nique  based on initial value  problems [ 161. 

The  trouble with this exact solution is  that in many 
problems  its  numerical  computation is unstable against 
the accumulation of roundoff errors.  The  errors result in 
some  instances in the  extreme ill-conditioning of the 
matrix in the left  side of (24), making its  numerical solu- 
tion  impossible. Actually, in some  cases,  an overflow is 
encountered during the computation of F , .  In a one- 
region problem  when the PI approximation is used, it can 
be  shown quite simply that  the  spectral radius of the r 
matrix in (21) is greater  than unity, i.e., that  the matrix r 
is divergent,  and when  computing F ,  = ( - )n - l rn - -LF1  its 
elements grow  larger  with each  successive matrix 
product.  Even if these  products did not  lead to overflow, 
the  accuracy in the  computation of F ,  would be  lost by 
subtraction of very  large numbers, with the result that  the 
computed F ,  would have linearly dependent columns. 
The  same numerical  instability is a well-known phe- 
nomenon in the numerical  solution of the Schrodinger 
equation, when the eigenfunctions in the classically  for- 
bidden  regions are  computed [2, 17, 181. 

Numerical  instability questions  can be  discussed ana- 
lytically only in very  simple situations,  such  as in one- 
region problems,  and  then only  qualitatively. In  an  actual 
problem, it is imperative  to  “measure”  the instability 
during the computation and  to eliminate it in the most 
efficient way. 

Stabilizing  transformations 
The  concept involved in the stabilizing transformations 
is quite  clear:  The  exact mathematical  solution of our 
problem,  given by (23) and (24), is to be transformed in 
such a way that  the new solution is expressed only in 
terms of matrices and  vectors  that  are arbitrarily well- 
conditioned for  computation.  Obviously,  the  transformed 
solution has  to be  mathematically  identical to  the un- 
transformed  solution. 357 
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Our general  method belongs to  the  class of parallel (or 
multiple) shooting  methods discussed by Keller [ 161 and 
recently  reviewed by Miranker [ 191. Osborne  [20] has 
also published some interesting  work along these lines. 

It is difficult to give a brief and  at  the  same time clear 
account of the  rather complicated  linear  algebra manipu- 
lations  involved in the stabilizing transformations. For 
the  sake of clarity  and completeness,  the linear  algebra 
analysis is expounded in considerable detail in the  Ap- 
pendix. 

Our stabilization procedure is based on  the generaliza- 
tion of a scheme  proposed by Godunov [ 3 ]  and later 
significantly improved by Conte  [4].  In  order  to  assure 
the linear independence of the columns of the matrices 
Fi[see  (21)],  both  authors  orthonormalize  their columns 
by means of the  Gram-Schmidt method. In  the Ap- 
pendix, it  is shown that  Conte's analysis is not  restricted 
to orthonormal  transformations,  but that it is valid for 
arbitrary transformation  matrices  and vectors.  This point 
is emphasized here,  because  for  each problem one should 
choose  the optimal  linear transformations  that offer the 
greatest  computational efficiency. With reference  to  the 
figure below, 

Reconditioning points 

c1 c2 c3 c .  C .  
1-1 I . .. 1-4 

1 n 
Mesh  points 

I 

in which c ,  = 1 , c2 ,  . . . , ci = n are  the equally spaced 
conditioning  points, we define the following sequence 
of reconditioned  rectangular  matrices ( L  + 1 )  X +(L + 1) : 

where  the matrices F and the transformation  matrices T 
are defined in (21) and  (A13).  The  superscripts t and b 
designate the upper and lower  halves of the  correspond- 
ing matrix. 

The  vectors ai defined by (22) must  also be transformed 
so that  the new vectors uj are linearly independent of the 
columns of U i .  This  can  be achieved  by using the  re- 

358 conditioned vectors 

u, = 0 

where  the + ( L  + 1 )-component transformation vectors 
tck are defined in (A14). In-between conditioning  points 
the matrix  and vector  sequences U i  and ui are determined 
by substitution in (19)  without  and with the inhomoge- 
neous  terms, respectively [see (21) and  (22)].  The tck's 
(A14)  are  chosen  to be  identical to  the  upper halves of 
the very same  vectors they are  to recondition  and so are 
available  without any  extra computation or storage. Be- 
cause  the  upper halves of the reconditioned  matrices Uck 
and  vectors u are analytically set equal to unit  matrix 
and  the null vector, respectively, they  are  not subject to 
roundoff errors.  Furthermore,  the columns of Uck and  the 
vectors u are  thus  guaranteed  to form a set of linearly 
independent  vectors. 

Ck 

In  the Appendix it is shown that  the solution to (19) 
can be  expressed in the well-conditioned form 

' k  

gj = UJ, + ui , ck 5 i < ck+,  

g, = U,li + u, 9 (27) 

I,-, = T,,(l, - t",) 1 k = 2 , 3 ; " , j - l ,  

li-, = T,Oj - t,) , (28) 

where  the + ( L  + 1 )-component  vectors 1, are given by 

and lj is given  by the solution of the following system of 
equations: 

( Unb - G Unt) l i  = GUnt - Unb = -unb . (29) 

With the choice of transformation  matrices  and vectors 
T and t given in (A13)  and (A14), and an  adequate fre- 
quency of conditioning, we can ensure  that  the  system of 
equations (29) is arbitrarily  well-conditioned. Once \ is 
obtained  from the solution of (29), all the  other I vectors 
are determined  recursively  from the formulas  (28);  this 
means  that  the solution vectors gci at all the conditioning 
points are obtained  from (27) by solving  only one system 
of equations, i.e., (29). Again,  this  method is the finite- 
difference  analogue of the well-known multiple shooting 
technique for  the solution of two-point boundary value 
problems [ 161. 

We conclude this  section with some  further  remarks  on 
Conte's method and  the stabilized  march technique of 
Lucey and Hansen  [5].  The transformation  matrices TCk 
used by Conte  are  those needed for  the  Gram-Schmidt 
orthonormalization  method [4].  The  computation of 
these TCk's requires approximately  2[+(L + 1)13 multi- 
plications versus [+(L + 1)13  multiplications for  the in- 
version of a matrix of the same order used in our method. 
The evaluation of his transformation vectors tck requires 
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the computation of +(L + 1) inner  products of pairs of 
3(L + 1)-component  vectors. Our choice of Tc  's and 
tck's, given in (A13) and (A14), results in a sim;ler and 
more efficient algorithm  than one based on  Conte's 
method. 

Our transformation  matrices T 's are  the  same  for- 
ward  transformation  matrices  used by Lucey  and  Hansen 
in their  treatment of the eigenvalue  problem for  the trans- 
port equation [5]. However, in their stabilized  march 
technique  another matrix  inversion such  as  that in (A 13) 
is required to define a stabilizing transformation in a 
backward march;  also, in order  to  match  the  forward  and 
backward  solutions, they have to  solve a system  such as 
(29) at  each reconditioning  point. The stabilized march 
technique thus requires at least three times more  com- 
putation at  each reconditioning  point  than the generaliza- 
tion of Conte's method used here, i.e., two matrix in- 
versions and  one linear  system  solution compared with 
one matrix  inversion. 

' k  

Nlcmericcd algorithm 
The first step in the algorithm to  solve  the block system 
of equations (19) is the computation of the untrans- 
formed (simple shooting)  solution  given by (23) and (24). 
To solve the system of equations (24), we use a linear 
system solver  (LINSY 1 )  based on Gaussian elimination 
with pivoting and iterative improvement of the solution, 
as described by Forsythe and  Moler [2 1 1 .  When  system 
(24) is well-conditioned, as determined by LINSY 1 [21], 
its  solution gives us the angular flux at  the slab center g, 
[see (1  9)], and the fluxes at  the  other mesh points are 
obtained by substitution in system (1 9). When  marching 
from the slab center  to  the  boundary,  the matrix and 
vector  sequences (21) and (22) are  computed again be- 
cause of storage limitations. For  the homogeneous  slab 
problems we have solved, all the T matrices in (21) are 
equal  and thus we have  to  store only one matrix T.  For 
typical reactor problems with a  few  material  regions, we 
would need to  store only one T matrix for  each different 
region, and this would not pose storage  problems. 

When system (24) is ill-conditioned in the  sense dis- 
cussed in [21], LINSYl  sets a signal for  the main pro- 
gram. Then  the  total spatial grid (see figure on page 358) 
is divided into  two equal  marching  intervals by a  recon- 
ditioning point at  the midpoint c2. The reconditioning 
transformations at c2 and  at the right boundary point, 
c3 = n , require the numerical  inversion of FcZf and 
F,['T,Tc2 [see (A13)]: only when the inversion of FCZ' is 
performed by LINSYl without  any error messages is 
the Ucq matrix [see (25)] computed and stored, and  com- 
putation is continued to  the slab  boundary. If FCzt is 
instead  ill-conditioned, the  computation with two march- 
ing intervals is immediately stopped.  The grid is then 
divided into four equal marching  intervals by four equally 

spaced conditioning  points, c2 , c:%, c, , cs = n , and the 
matrix  inversions  required at them are  started  [see 
(A1 3)]. Whenever  the first ill-conditioned matrix is 
detected,  the  sweep is stopped immediately  and the 
number of marching  intervals  doubled. The  procedure is 
thus  pursued, doubling the  number of marching  intervals 
each  time until all the matrices  involved in one given 
sweep  are well-conditioned. Finally, the well-conditioned 
system (29) is solved  and the solution vectors  are ob- 
tained at all the conditioning  points c, = 1 , c 2 , .  . . , 
c j  = IZ by means of the formulas (28) and (27). Between 
conditioning  points, the solution is obtained by marching 
(substitution)  through the inhomogeneous system (19). 
An error  check is always done by comparing the solution 
vector g, obtained  from solving the linear system (29) 
[see  also (27)] and  that obtained by marching  from the 
last  conditioning  point  before the right boundary. 

For  the experimental  homogeneous  slab computations 
described subsequently, a maximum number of 33 con- 
ditioning points was  programmed  and these proved to be 
sufficient. The main storage  requirements  are quite 
modest,  one  square T matrix [see (2  l)], 3 3  rectangular 
matrices U i  [see (25)] and 33 square  matrices T i  [see 
(A13)I. Since  the slabs are homogeneous, the marching 
intervals  were chosen naturally to have  equal length, 
although it is not  necessary  to  double  at  each  successive 
sweep  the number of them. Further numerical  experi- 
mentation could indicate that it might be more efficient 
to  add a fixed number of marching  intervals at  each suc- 
cessive sweep. For nonhomogeneous slabs, a more com- 
plicated  strategy is required, as  the length of the march- 
ing interval in each different  material  must be related to 
the  corresponding  neutron mean free path. 

The determination of the  proper  number of condition- 
ing points is of the  greatest  importance  for  the efficiency 
of a computer program, as most of the computation  time 
is spent  on  the conditioning  transformations. In this  re- 
spect.  two  approaches  are used.  Lucey  and Hansen [5] 
set  the number of conditioning points in the program in- 
put. This might be  quite inefficient because  the  number of 
conditioning  points  used might be  much  higher  than is 
necessary.  Compared with the  other commonly used 
method of rescaling the matrices  when the magnitude of 
any of their  columns exceeds a  certain  empirical  value 
[4, 161, the  present method has  the following distinct 
advantages: 
1. No examination of matrices at each grid point is neces- 

sary;  therefore, in stable problems the solution is 
obtained by the simple  and  direct  shooting  method 
without  any extra computation. 

2. The transformation of the matrices is carried  out only 
when an accurate numerical  solution of the problem 
cannot be obtained because of the ill-conditioning of 
the  matrices, not because  the values of their columns 359 
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exceed  a  certain  empirical  magnitude;  this conven- 
tional criterion is not  related  directly to  the  accuracy 
of the numerical  solution  and might result in more 
conditioning  points  than are  necessary. 

We might conclude by stating that  the efficiency of our 
algorithm for  the  more unstable  problems is not as high 
as  for  the  more stable ones,  because of the  extra matrix 
inversions  wasted due  to ill-conditioning. However, this 
is not  a  disadvantage in reactor calculations because, in 
the  power method for criticality computations [22], it is 
necessary  to  solve  system (19) many times, changing only 
the inhomogeneous terms  on  the right-hand  side. There- 
fore,  the  search  for  the  proper number of conditioning 
points is made  only once during the solution of the first 
source problem. Thereafter,  the  same well-conditioned 
sequence of matrices U i  [see ( 2 5 ) ]  is used,  and each new 
source problem requires only the  computation of the 
vector  sequence (26). 

Numerical results and discussion 

Isotropic scattering problems 

We now discuss  the numerical results  obtained with 
our experimental computer program for  some critical- 
length calculations in homogeneous  slabs with isotropic 
scattering. These calculations  were first reported by 
Carlson  and Bell [23] and have become a standard used 
by many in numerical neutron  transport studies. The 
transport  equation to be solved is 

p [ W ( x ,  p ) / d x ]  + X, + = Qc Z, s' p ( x ,  p')dp' (30) 

with the boundary  conditions 

+ ( O ,  1) = + ( O ,  -PI and 

$ ( R  I P )  = 0 -1 < p < 0 .  (3 1) 

-1 

In (30) the  total  cross section Z, is taken  as unity so that 
the total  mean free path is also unity, and c i s  the  average 
number of secondary  neutrons emitted per collision. For 
a given slab size,  the problem (30) and (3 1 )  has a  solution 
only if we replace c by c' with 

c' = c/A , A #  1 .  

Here A is the criticality  eigenvalue. The critical length 
problem is to determine  the  slab  thickness  for which 
A = 1 . Our program searches  for  the critical half-thick- 
ness by computing A for a  succession of slab thicknesses 
after starting with an estimated value. The criticality A 
for  each  size is obtained using the  power method [22]. 
Linear  interpolation of the  successive half-thicknesses 
is performed to  converge  to  the critical  half-thickness 
with a criticality A = 1 . The  error criterion used for  the 
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Table 1 Slab  critical  half-thickness in units of mean free  path 
by the P ,  approximation. 

Secondury  Murshuk's  houndury  conditions 
neutrons  per 

collision, _ _ _ ~  

C' Lucey  and  Hunsen"  This work" Analytic(' 
_ _ _ _ ~ ~  

.02 

.05 

.1 

.2 

.4 

.6 

.8 

.o 

5.6715 
3.3067 
2.1214 
1.30205 
0.75769 
0.53839 
0.41822 
0.34206 

5.6710d 
3.3065 
2.1213 
1.30200 
0.75766 
0.53837 
0.41821 
0.34205 

5.671 1 
3.3066 
2.1213 
1.30200 
0.75766 
0.53837 
0.41821 
0.34205 

"With 100  intervals, 20 reconditioning points, and single precision arithmetic [ 5 ] .  
"With 128 intervals,  no reconditioning points (except where noted), and double 

'Ref. 5 .  
precision arithmetic. 

"This was the only case In which two reconditionmg points  were  needed. 

In  Table 1 we give the  results obtained with the P,  
approximation and Marshak's  boundary  conditions for 
the critical  half-thickness  corresponding to  several val- 
ues of the number of secondary  neutrons emitted  per 
collision. For  comparison  purposes, we also give the 
values  obtained by Lucey  and Hansen [SI using the 
stabilized march technique, and those obtained with the 
analytic  solution of the P,  approximation (see  also  [6], 
p. I 16). A comparison of the  accuracy obtained by Lucey 
and Hansen with that in the  present work is not meaning- 
ful because we use double precision  arithmetic  whereas 
they used single precision. Table 1 shows  the  power and 
efficiency of our method for automatically  selecting the 
required  number of reconditioning  points  during the com- 
putation.  Only for  the  case c = 1.02 was  a slight in- 
stability detected.  This was  eliminated by the program 
with only two reconditioning  points. The  amount of com- 
putation  required by our program is thus substantially 
lower  than in the stabilized  march technique.  However, 
this  comparison is valid only if the stabilized  march  tech- 
nique was used to  solve (30) by the power  method.  Lucey 
and Hansen instead  solved the eigenvalue  problem  (30) 
directly. Nevertheless,  the  comparison is meaningful as 
to  the  number of reconditioning points used by each 
method,  and  the  amount of computation  at each of these 
points. 

In Table 2 we show  the results of high order P ,  com- 
putations for  the  thickest slab reported by Carlson and 
Bell.  In a previous  section [see discussion following 
Eq. (13)] we mentioned that  the roundoff errors grow 
exponentially with distance; it is also known (see  Da- 
vison, Ref. [6],  Ch. X) that,  because of the variation of 
the relaxation  lengths with the  order of the P ,  approxi- 
mation, the roundoff errors  also grow for  the higher P ,  
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Table 2 Comparison of Federighi's with Marshak's boundary  conditions for higher-order P,, calculations.  Slab  critical  half-thickness 
in units of mean free path for c = 1.02 (secondary  neutrons  per collision). Exact value" is 5.6655. 

P:, 5.6715 
PS 5.6682 
P ,  5.6671 
P!, 5.6667 
PI I 5.6664 
P ,  f 5.6663 
PI, 5.6662 
PI7 5.6661 
PI!, 

5.6710 
5.6676 
5.6666 
5.6662 
5.6659 
5.6658 
5.6656 
5.6656 
5.6655 

5.6638 
5.6047 
5.6650 
5.6651 
5.6652 
5.6654 
5.6655 

2 
4 
4 
8 
8 
8 

16 
16 
16 

"With 100 space  intervals, 20 reconditioning  points,  and  ingle precision  arithmetic [ I  11. 
"With 128 space  intervals  and  double  preclslon  arithmetic. 
'Shows  the  computational cost of the  automatlc  selection of the number of reconditioning  points. The  order  of the  matricec is J(L, + I ) .  
"Ref. 23. 

Table 3 Convergence of the  spherical  harmonics  method to the exact values of the  slab critical half-thickness in  units of mean free 
paths, using Federighi's  boundary  conditions." 

1.02 
1 .os 
1.1 
I .2 
1.4 
I .6 
1.8 
2.0 

5.6638(2) 
3.2989(0) 
2.1128(0) 
1.2920(0) 
0.7460(0) 
0.5263(0) 
0.4063(0) 
0.3307(0) 

5.6647(4) 
3.2996(2) 
2.1 1230) 
1.2886(0) 
0.7369(0) 
0.5141(0) 
0.3928(0) 
0.3 166(0) 

5.6650(4) 
3.2998(4) 
2. I 129(2) 
1.2888(0) 
0.7360(0) 
0.5 1 18(0) 
0.3894(0) 
0.3 124(0) 

5.665 l(8) 
3.3000(4) 
2.1 130(2) 
1.2891(2) 
0.7361(0) 

0.3885(0) 
0.5 I 1 S ( 0 )  

0.31 1 l(0) 

~ 

5.6652(8) 
3.3000(4) 
2.1131(4) 
1.2892(2) 
0.7363(0) 
0.5 1 1 S ( 0 )  
0.3884(0) 
0.3 107(0) 

~~ 

5.6655 
3.3002 
2.1134 
1.2893 
0.7366 
0.5 120 
0.3887 
0.3 108 

"All cases with 128 equal  mtervala;  the  numbers of recondltioning  pcjnts  required  are  given in parentheses 
"Ref. 23. 

calculations. The computations  shown in Table 2 are  thus 
a good test of the  capability of the method to deal with 
strongly  unstable  problems. These results are  further 
evidence that Federighi's  conditions [8] give consistently 
better  results than  Marshak's  conditions [ I  ] in the con- 
text of critical-length  computations. Table 2 also indi- 
cates clearly the  advantages of the  automatic setting of 
the number of reconditioning  points by the program. This 
advantage is most significant for  the more stable prob- 
lems, where  the number of required reconditioning  points 
is considerably  lower  than that used by Lucey  and Han- 
sen.  For  the more unstable problems  (higher PI, compu- 
tations), this advantage  decreases.  It was considered 
worthwhile to record the  approximate cost in computa- 
tion of the  automatic setting of the number of recondi- 
tioning points; this cost is due mainly to the  number of 
ill-conditioned  matrices  whose  inversion by LINSY 1 
fails, as  discussed in the previous  section. 

In Table 3 we give the results  obtained for critical 
length computations with several PI,  approximations and 
Federighi's conditions. These results  indicate the rapid 
convergence of the spherical  harmonics  method to the 
exact values when used in conjunction with Federighi's 
conditions. The efficiency of the  automatic setting of the 
number of reconditioning  points is illustrated in a  striking 
way, because  many of the problems  were  solved accu- 
rately by the simple  shooting  method  without  any  re- 
conditioning whatever. 

The increased  numerical  instability encountered  for 
the higher P,, calculations for isotropic  problems in thick 
slabs has  a simple physical explanation. In  the limit of 
an infinitely thick slab with a uniform and  isotropic fis- 
sion source, the scalar flux J;, [see Eqs. (5) and (6)] is 
constant and all higher moments vanish because the an- 
gular flux cp [see (2)] becomes  isotropic. Thus in  high PI,  
computations for  the  thicker slab  problems the limiting 361 
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case is being approached, and as  the first component of 
the solution vector gi [in (23)] becomes  orders of mag- 
nitude larger  than the  other  components,  the numerical 
instability  arises. 

A slightly modified version of the  present program  has 
been used recently to  solve  the  equations of radiative 
transfer in a  homogeneous  nonabsorbing Rayleigh at- 
mosphere [24] with an optical thickness of 16. This 
problem is subject to  severe roundoff instability  but  was 
solved accurately with 16 conditioning  points. 

Anisotropic  scattering  problems 
We  have  determined  the critical  half-thickness of a plane 
homogeneous  slab  with anisotropic scattering. The prob- 
lem  solved  was the following: 

pa(p(x, /.&)/ax + Z,cp = ) ( C p  + V C , )  I’ p ( x ,  p’)dp’ 
-1 

2 
+ xsaniso x H2n + l ) b , t P , ( ~ )   P , ( P ’ ) ( P ( ~  P ‘ ) ~ P ‘  

n=n i l l  

(32) 

with the  boundary conditions 

~ ( 0 ,  P )  = ~ ( 0 ,  -PI and 

cp(R 9 PI  = 0 - 1  < p < 0 ,  ( 3 3 )  

where x = 0 is the  slab  center  and x = R is  the right vac- 
uum boundary.  The solution of problem (32)  and ( 3 3 )  
has been reported by Lathrop  and  Leonard 1251, who 
gave  not only a numerical  solution  obtained  with  a S,, 
approximation using the  DTF code [ 2 5 ] ,  but  also  exact 
solutions  obtained  by the method of singular integral 
equations. Their notation is followed  closely here,  and 
the  reader is referred to  their  paper  for more  details. 
Eqs. (32) and (33)  were solved for different  values of the 
secondary  neutron  ratio c + e’ , where 

e = xsanlso 

is the anisotropic-scattering  ratio and 

IC, (34) 

e’ = (CSiS” + V Z , ) / Z ,  (35) 

is the isotropic secondary-neutron ratio. For  each value 
of c + c’ , c is increased to permit observation of the 
effects of the increased  anisotropy in the scattering. The 
values  used for b,  are  those of elastic  hydrogen  scattering 

bn = I , b ,  = 2/3 , b,  = 1/4, b, = 0 ,  b,  =- 1/24. 
(36) 

The values (36) result  from  expanding the scattering 
kernel in a  five-term Legendre polynomial  series. With 
our method we  can  expand  the scattering  kernel  unre- 
strictedly in a Legendre series with exactly L + 1 terms 

362 when performing  a P,  calculation. Further,  the actual 

computations  are independent of the number of terms 
kept in this expansion. 

The  results of the most  interesting  calculations  re- 
ported in [ 2 5 ]  are given in Table 4 with our p,, results 
obtained using Federighi’s boundary conditions. In all 
cases, 64 spatial  intervals  were  used. 

We chose  the calculations for  the minimum value of 
secondary  neutrons  per collision c + c’ = 1.05 reported 
in [ 2 5 ] ,  because this  value results in the  thickest  slabs, 
where  the roundoff effects are  greatest.  From a computa- 
tional point of view the S,, calculations are exactly  equiv- 
alent to P I ,  calculations  (i.e., both  are a two-point  bound- 
ary value  problem for a system of 16 differential equa- 
tions). The  convergence of the PL computations  to the 
analytic results of Leonard is shown clearly in the  upper 
portion of the table. Our P, ,  results  are in closer agree- 
ment with the analytic  values than  are  the s,, results. 

In  the  other  extreme we chose  the maximum  value, 
c + e’ = 1.4 neutrons  per collision reported in [25]. The 
angular flux  is more anisotropic  than  for c + e’ = 1.05 , 
because  the slabs are much thinner  and thus  the flux 
anisotropy due  to boundary  effects is higher. In a nu- 
merical sense, this has  the effect that  the higher  compo- 
nents of the solution vector gi [in (23) ]  become of the 
same  order of magnitude  as the first component  (the sca- 
lar flux) and thus  the numerical  problem  becomes  much 
more stable. Indeed  for  the  thinner slabs  listed at  the 
bottom of Table 4, the simple shooting  method  without 
any  reconditioning  points is sufficient to  obtain  an ac- 
curate numerical  solution. 

Appendix 
We show  here  that Conte’s  analysis is valid for  arbitrary 
transformation matrices  and vectors. With reference  to 
the figure on page 358 of the  text, t h e j  - 1 intervals  de- 
fined by the conditioning  points c ,  = l , cp , . . . , cj = n 
are called marching  intervals.  We  now define the follow- 
ing sequenceofrectangular matrices ( L  + 1 )  X + ( L  + 1 )  : 

U i  = 

where  the F,’s are defined in (21) ,  and the  arbitrary (ex- 
cept  that T I  = I )  square transformation matrices T 
of order ) ( L  + 1 ) are  to be  determined so as  to  assure 
that  the  transformed matrices Ui are well-conditioned, 
i.e., that  their columns are linearly  independent. The 
vectors ai [see (22) ]  must also be transformed in order 

‘k 

JOSk CANOSA AND H. R .  PENAFIEL IBM J .  RES.  DEVELOP. 



Table 4 Slab critical half-thickness in units of mean free path for anisotropic scattering. 

c + c' = 1 .os 

Exact 
c s a 

18 P I  1 " P I S "  valueC 

0.1 3.39042 3.39025" 3.39030 3.39033 3.39032 
0.3 3.59724 3.59705d 3.59710 3.59714 3.59714 
0.5 3.85135 3.851  14 3.85120 3.85125 3.85126 
0.7 4. I7506 4.17481 4.17489 4.17494 4.17495 
0.9 4.60935 4.60905 4.60915 4.60921 4.60927 

_ _ _ _ ~ ~  ~ ~ ~ _ _ _ _ " _ _ _ _ _  

_ _ _ ~ ~  

c, + c' = 1.4 
~ _ _ _ ~  
Excrct 

(' SI," PI," valuee 

0.1 0.74532 0.745 19 0.14529 
0.3 0.76381 0.76375 0.76378 
0.5 0.78393 0.78396 0.78396 
0.7 0.80595 0.80608 0.80610 
0.9 0.83022 0.83046 f 

"DTF transport code [ 2 5 ] .  
"With Federighi boundary conditions, 64 intervals and eight  reconditioning  points  except  where  noted. 
'Results from singular Integral equation method [ 2 5 ] .  

"With Fedenghi boundary conditions, 64 intervals and no reconditioning. 
'With four reconditioning  points. 

'Not reported; see [251. 

that  the new vectors ui be linearly independent of the 
columns of Ui. This can be achieved by the transforma- 
tions 

- - ac3 - Fc:J Tc,tc, - Uc:,tc:, ' 

u,  = an - F,,T,Te:C, - F,TlTc2T t - . . . - FnT,T,,  
c3 c:, 

' ' . Tc I - ]  . Tntn = an - FnT1Tr2tc, - FnTl Tc2Tc:tr:, 
- .  . . - FnTl . . . T , ,  

J- , tcj- l  - Untn (A')) 

where  the + ( L  + 1)-component transformation vectors 
tck are unspecified. As already  pointed out, between 
conditioning  points the  vector  sequence is determined by 
substitution in (19) [see (22)]. 

As in the first marching  interval the  sequences U i  and 
ui are  the  same  as  the untransformed sequences Fi and 
ai of the  exact solution  given by (23) and (24), the solution 
can be  written as 

gi = ut1 - ui , i = 1 , 2 ; . . c 2 - l ,  (A31 

where I, is the + ( L  + 1)-component  vector  equal  to  the 
top half components of g,. In  order  to use  only well- 
conditioned  matrices in our computation, we  express  the 
solution in  all the mesh  points as follows: 

gi = Uilk + ui ck 5 i < c k + l ,  

g, = U7,1j + un > ('44) 

where  the ) ( L  + 1 )-component  vectors l i  are  to  be de- 
termined by matching the solution at  the conditioning 
points. At the  second conditioning  point cpr the matching 
of the untransformed  and  transformed  solutions gives 

gc2 = Fc24 + a'., = ur,', + Ur2  . (A51 

From (A5), using the definitions of Uc2 and ucp given in 
(Al)  and (A')), we obtain 

1, = Tc,] (1, - f . , )  . (A61 

Thus, in the  second marching  interval the solution is ex- 
pressed  as 

gi = ut, + ui i =  c 2 ,  cp + 1 , . . . , e:, - 1 , (A7) 

which is obtained by substitution in the full system (1 9), 
with the  assumption  that  the solution at c2 is known,  as 
given by the right side of (A5). In terms of I,, the solution 
at e:, is 

gc:, FrxT, 'e:, + ar:, - Fc3Tl TC2fc2 3 648) 

which can be verified by substituting into (A8) the ex- 
pression  for I, given by (A6), in which case (A8) becomes 
the  exact (untransformed)  solution (23). Matching (A8) 
with the newly transformed  solution, we get 363 
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gc, = F c , T 1 T c 2 1 ~  + ac, - ‘c3T1Te,tc2 = Uc,4  + “e3 (‘9) 

I, = T,, (1, - t ) . 
so that 

c3 
(A 10) 

The general  formula  obtained from matching at  the suc- 
cessive  conditioning points including the right boundary 
point is 

L 1  - T& - tCk)  

lj-l = I,,($ - t,) . (A1 1) 

- k = 2 , 3 ; . . , j - I .  

We now use  the  second equation in (A4) and the right 
boundary condition in (19) to  obtain  the inhomogeneous 
system of + ( L  + 1) equations  for  the 2 ( L  + 1)  com- 
ponents of lj, 

( Unb - GUnf) l j  = GunL - uno. (A 12) 

Therefore,  the solution to  our problem (1 9) is given  by 
the general  formulas (A4), (A1 l) ,  and (A12), indepen- 
dently of the transformation  matrices  and vectors T and 
t, as was to be shown. 

In  our work we  chose  the following transformation 
matrices  and vectors: 

T l = I ,  

T = (F, , tTJ’  = ( F  t ) - l  , 

TC3 = (F,,tTlTr2)-1 7 

c2 c2 

T ,  = (FnfT1Tr2 . . . T , ,  ) - l ,  (‘413) 
J-1  

and 

t l = O ,  

t c, = (a ct - F,,TltlIt = ac2‘ , 

tc3 = (ac:, - ~ c , ~ ~ ~ e ~ c , ) ~  

t, = (a, - F,T,T,:,~ - . . . - F,T,T, ,  . . . T , ,  t,, 1“ 
J - 1  1-1 

(A 14) 
Substituting (A13) and (A14) into (AI) and (A2) and 
carrying out  the matrix and  vector  products, we obtain 
the reconditioned sequences U i  and ui given explicitly in 
the  text [(25) and (26)]. 
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