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Abstract: In a recent  series of papers,  one of the  authors has  developed and  demonstrated properties of a computational algorithm for 
solving partial differentiai equations. This  process, known as  the hopscotch  algorithm, has been  studied  particularly with reference  to  the 
efficient integration of parabolic  and elliptic problems. In the present  paper  attention is directed to  the application of the technique to  the 
numerical  integration of first-order  nonlinear  hyperbolic  systems. While maintaining the  properties of the hopscotch process  as applied 
to parabolic  problems, it is shown that  one of the  novel schemes  generated by this approach  has an added bonus,  namely, maximum sta- 
bility for a  variable  choice of damping or  pseudoviscous term.  This property should be of particular  value in the solution of problems with 
shocks. A class of hopscotch Lax-Wendroff schemes  is also  studied. 

Introduction 
Over  the  past few years, several finite difference methods 
have been  devised for  the solution of nonlinear  hyper- 
bolic systems of the  form (&/at )  + (af’/ax) = 0 ,  where 
LI is an  N-vector function of the unknowns (u l  , u2 , . . . , 
L I , ~ )  and f is a  nonlinear  function of the  components of 11. 

In  the main, such  methods  have been tested exhaustively 
on smooth solutions  although  increasing attention is being 
paid to  the schemes’  capabilities of representing  shock- 
like phenomena that  arise in the solutions of nonlinear 
hyperbolic systems  (see Burstein [ 11, Burstein and Rubin 
[2], Emery [3], van Leer [41). 

The explicit  methods that  have been  considered fall 
into two distinct categories, namely,  first-order methods 
with added viscosity of the  type first introduced by Von 
Neumann and  Richtmyer [SI and second-order  methods, 
which have  no additional  viscosity terms and are of a 
higher order of accuracy than the  former methods. Van 
Leer  has recently stated [4] that first-order methods with 
an optimal  pseudoviscosity  term  seem to perform better 
on problems with discontinuities  than do  the higher-order 
accurate methods. There  appears  to be a great deal of 
truth in this statement.  The  best  second-order method at 
present  appears  to be that  due  to Burstein and Rubin as 
described  in  Ref. 2, where several  numerical experiments 
are  reported on the  use of their method on problems with 
shock-like  phenomena. 

We  mention also in connection with shocks  the  recent 
work of Rusanov [6], who considers third-order accurate 

explicit  methods for  the solution of nonlinear  hyper- 
bolic systems  and recognizes the  better dissipative  prop- 
erties of third-order accurate  schemes  compared  to 
second-order  methods. Following on from  this work, 
Burstein and Mirrin [7] have considered other third- 
order  methods of a form similar to  that of Rusanov  and 
have considered the application of these methods to 
shock problems. However,  these third-order  methods 
are time-consuming in comparison with the first- and 
second-order  methods and we feel that,  as  yet,  it  is not 
obvious  that  such methods have anything to offer over 
and above  the first-order methods with optimul pseudo- 
viscosity. 

In  the  present  paper,  we will consider both first-order 
and second-order methods. These  schemes  are similar 
in nature  to  the  hopscotch  scheme introduced by Gour- 
lay [8] for  the solution of parabolic differential equations. 

First-order method 
We  consider  the solution of the nonlinear system 

( a l l l a t )  + (aflax) = 0 

subject  to  the initial conditions 

u ( x  1 0) = gl (x) 3 ( Y 5 x 5 p  

and some  suitable boundary conditions 
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(The precise  form of the boundary  conditions will not 
concern us because we will not consider their influence. 
The  development of the  schemes and the stability  analy- 
sis will be carried through as if we were studying the 
initial value  problem.) 

To solve equations (1) subject  to conditions ( 2 )  and 
(3) we superimpose, in the usual way, a rectilinear grid 
with mesh  spacing A, = h in the x-direction  and A, = k 
in the time  direction. We  assume  the mesh  ratio p = k / h  
is constant. We represent a grid point by ( i  , n)  , where 
(ih,nk) = (x,t)  and  represent  the value of the unknown 
function u at  the point ( i ,n)  by 11: = u( i ,n )  = u( ih ,nk) .  

The difference operators  are defined in the usual way 
as 

8 , ~ ;  = u:+; - uy-4, the  central difference operator, 

1 2  = +(u;+~ + . G I )  , the  average  difference  operator, x 1  

and 

H X u ;  = u:+' - /A,"_, . 
Using  this  notation we can  then define the familiar 

first-order  method due to Lax [9] as 

uf+l = /4; - (p/2)HjFfin + (Ts:u;, (4) 

where u is a coefficient of the  pseudoviscous term Ss'uin 
and is chosen  to obtain the  best possible shock resolution. 
This method is subject  to  the well-known local  stability 
requirement, obtained by applying the von Neumann 
analysis to  the linearized scheme: 

p l X l 5 G  a n d O 5 u 5 + ,  

where / A I  is the maximum modulus  eigenvalue of the 
Jacobian matrix A of partial derivatives  off with respect 
to u. 

For good shock  resolution it is found that a fairly 
small value of (T is needed, requiring  a small value of p 
to be chosen.  This choice  leads to an increase in the num- 
ber of steps required to  carry through the computation. 
Since  we  are dealing with explicit schemes,  the theoreti- 
cal upper bound on p l A  , given by the  Courant-Fried- 
richs-Lewy  condition, is p l A  5 1 . 

Ideally we would like to be able  to  compute with a 
difference scheme with a  value of p ( h l  close to  the  upper 
limit and yet  have considerable  freedom in the  amount of 
pseudoviscosity (Le., the value of a parameter (T) em- 
ployed. 

In this section we show  that a hopscotch version of the 
above  Lax  scheme enjoys  precisely these  characteristics. 
It is stable up to  the  C-F-L limitfor any  positive  value of 
(T and is still explicit. This  freedom permits an  arbitrary 
variation in the  amount of viscosity  introduced  during 
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Consider  the following difference scheme: 

u;'' + 0;" [ ( p / 2 )  H,f:+' - ITS: ur"] 

= u: - 0;[ ( p / 2 ) H x f Y  - vsy 47 , ( 5 )  

where  the function 

if n + i is odd 

if n + i is  even. 
0; = {; 

For n + i odd  it  is  clear  that  Eq. (5) is equivalent to  Eq. 
(4). However  for n + i even,  Eq. (5) becomes the implicit 
scheme 

u;+l + [ (p/2)H,f:+'  - as: uf"] = ur 

which, at first sight, appears  to  require  the solution of a 
nonlinear tridiagonal system. 

For a fixed value of n, the  hopscotch implementation 
proceeds  as follows.  Apply scheme (5) for  those values 
of i with ( n  + i )  odd,  thereby calculating every  alternate 
point explicitly. If we now apply scheme ( 5 )  for  those 
values of i with (n  + i )  even and make use of the points 
we  have  just calculated  explicitly, the over-all  method 
becomes computationally explicit. 

is,  two applications of ( 9 ,  gives 
Application of method (5) over a time  interval 2k , that 

L/;+' + 0;" [ (p /2)   Hxf in+'  - vS: u;"] 

= U; - O;[ ( p / 2 ) H x f :  - (TS: u;] ; 

+ 0;+2[ ( p / 2 ) H x f , ? f '  - (Ts: 4+'] 

- - u ; + 1  - Of+'[  ( p / 2 ) H z f l + '  - (Ts; .%+'I . (6) 

With the difference method written in this manner, it 
becomes  clear  that a "fast" version of the algorithm can 
be derived similar to  that described in [8] for  the para- 
bolic differential equations. By rewriting the right-hand 
side  as 

2~l;+l - {L{;+' + 0;" [ ( p / 2 ) H x f y + l  - CTS: u;+']}  (7 )  

and using Eq. (6), Eq. (7) can  be  written as 

L{;+' + e:+'[ ( p / 2 ) H  X I  f?' - (TS' x 1  u?" 1 
= 2 ~ ; "  - {u; - On[ ( p / 2 ) H , f n  - (~6: u ; ] }  . (8) 

For  the points for which 07' = 0; = 0 ,  Eq. (8) reduces 
to  the simple  relation u;+' = 2u;" - u:. Note  that this 
relation does not  apply at all grid points ( n  + i )  with i 
fixed and thus  that  the  inherent linear  instability of the 
two-term  recursion will not  manifest itself. 

The values at remaining points at t = (n  + 2)k are cal- 
culated using these points and (8) with 0;" = 0; = l . 
The computational  details are similar to  those  reported 
in [8] and  are not repeated. 

The stability of the difference scheme (6) and (7) may 
be studied  away from boundaries and from the initial 
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line by using the equivalence of the  process  to a three- 
level scheme  on  two interlacing  grids  (as  mentioned in 
[ 101). Thus (6) and (7) are equivalent to  the three-level 
scheme 

( 1  + 2u)u;" = (1 - 2u)u:" - p H ,  f ; + 4up,u:. 

The stability of this scheme is studied using the  standard 
von Neumann  approach  to its  linearization. The condi- 
tion for stability thus  amounts  to requiring that  the  roots 
p of the  quadratic  equation 

( 1  + 2u)p'  + (2 iph sin 0 - 4 u  cos 0 ) p  - (1 - 2 c )  = 0 

have modulus less  than  or equal to  one  for all 8. 

verify that  the conditions for stability are 

plhl 5 1  and ~ 2 0 .  

With the results of Miller [ 111, it is straightforward to 

The  freedom in the available  values of u allows  con- 
siderable  control to be  exercised in the  amount of second- 
order viscosity introduced, without  reducing the possible 
step length. This control is in marked contrast  to  the  Lax 
scheme.  Experiments confirm the conclusions of the 
above paragraphs. 

Hopscotch Lax-Wendroff method 
The  two-step version of the Lax-Wendroff Method [ 121 
formulated by Richtmyer [ 131 is well known. Just  as  the 
Lax  method (4) formed the basis for  the  hopscotch  Lax 
method,  the  two-step Lax-Wendroff  method forms  the 
basis of the  hopscotch Lax-Wendroff Method. To derive 
the required scheme  consider  the difference equations 
given by 

where J*fl+' = f ( U T ' " ' )  , and  where uin+l is an intermedi- 
ate  or auxiliary  solution. These  equations can  be  written 
in terms of the function 0: as 
*n+l - n+L 

uitl - [cL,~;:; - ( P / ~ ) s J Z ~  

ui  = u; - (p/2)6,fi*n+1, 

+ 8; [Pxu;z I - (P/2) s,Jq i 1 ( I  1 )  
n+ 1 (12) 

where it is understood  that  the  order of the calculation 
is that given by Eq. (9) followed by Eq. (10). That is, 
formulae (1 I )  and  (12) are solved first for 0;" = 0 and 
then with 8; = 0 .  Careful consideration of these equa- 
tions will indicate that  the method is truly implicit for 
half the points ur+' ; that is for = 1 . A local expan- 
sion of the  truncation  error will indicate that  the method 
is second-order  accurate.  However. in order  to  solve 

Eqs. (1 1) and ( I  2) an additional feature must  be added 
to  the  method, namely that half the points  must  be  calcu- 
lated  iteratively. This is performed  as  follows. Write  Eqs. 
(1 1) and (12) in the  form 

where  the  superscript j applies only to  those points for 
which 8;" = 1 . The  case j = 1 is solved  by using an 
average of the u;+' calculated  from Eqs. (1 1) and  (12) 
with = 0 ,  namely (l)u;+l = +(u;:: + u;::). It was 
found in practice t h a t j  need take only the values up to 
either  two  or three. 

The stability  condition of the  hopscotch Lax-Wendroff 
method may be  derived by appealing to  the result for  the 
hopscotch  Lax scheme. If we  set u = p"h'/2 in the quad- 
ratic equation  then  that  equation  governs  the stability of 
the  hopscotch Lax-Wendroff  scheme. It follows auto- 
matically that this scheme is stable  for p ( h  1 5 1 . 

Generalized hopscotch Lax-Wendroff method 
In [ 141, [ 151, it was  found expedient  to generalize the 
two-step Lax-Wendroff  method in order  to obtain  a  class 
of methods  that  gave  better  results  than  the usual  two- 
step formulation. The  expense in so doing however,  was 
that  the region of stability was reduced. The difference 
method of [ 141 can be written as 

UT"+' = p,u; - 2ap~,f 

u;+I = u; - p [  ( 1  - *a)S,f + $aSxfT1] , 

where u is a parameter.  It  was found for stability that 

a 1 f ,andplh l  5 - 

have  to  be satisfied simultaneously. 
This method can be used to  generate a generalized 

hopscotch Lax-Wendroff method, in much the  same way 
as was done previously. (The details are omitted). A 
similar iterative process is required to obtain the solution. 
From empirical evidence it appears  that this scheme is 
stable  for $ 5 a 5 + up to  the  Courant-Friedrichs-Lewy 
limit. However in view of the disappointing behavior of 
this scheme in practice, it would seem  to  be of little value 
to verify the stability  conditions  analytically. The gen- 
eralized hopscotch Lax-Wendroff  method cannot be 
recommended for practical  computation. 

1 
2* 

Numerical  experiments 
The model problem  considered  was the  smooth solu- 
tion  problem: 

(aular) + (alax) ( + 2 )  = 0 ,  u(x,O) = x ,  rr(0,t) = 0 351 
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Lr- 

Figure 1 Lax method at 50 time steps, h = 0.01 

Figure 2 Hopscotch Lax method at 50 time steps, h = 0.01 

Ix- 

with theoretical  solution 11 = [x/( I + t ) ]  . We call this 
problem “P. I ” for  future reference. We  also performed  a 
series of experiments  on  the  shock problem  comprising 
a simple step function of size  unity, namely 

( d u l d t )  + (dlax) (+Liz) = 0 

1r(x,O) = 

u(0 , t )  = 1 ,  

I 1 o 5 x 5 a  

0 a < x 5 1 ;  

where in the  experiments a was taken  to  be 0.1. For refer- 
ence  purposes  we call this  problem “P.2.” 

For  the model problem P. 1 ,  we  compared  the first- 
order  method (6) and (7) with the solution of P . l  for a 
series of p and cr . The prediction of the stability  criterion 
for  the method is borne  out by these  experiments, namely 
for all positive cr with p l A  5 1 stable results were ob- 
tained. 

For problem P.2 the  shock resolution for method (6) 
and (7) was  certainly as good as, if not  better  than,  that 
obtained  from the  Lax method. Moreover it was possible 
to  take maximum steps with the  hopscotch  Lax  scheme 
and  then adjust  to give  good  resolution.  With the  Lax 
scheme  one is required to  choose u and step size  together, 
to satisfy  stability. 

The  experiments on P.l and P.2 for  the  second-order 
methods  was  less  encouraging,  although the shock  resolu- 
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Figure 3 Generalized second-order method for h = 0.01 , 100 
time steps: (a) p = 0.5 ; (b) p = 0.7 ; (c) p = 0.95 . 

second-order  schemes.  For P.2 the results were  poorer 
than those obtained for (6) and (7). 

Sample graphs of the behavior of the  Lax,  hopscotch 
Lax, and  generalized  Lax-Wendroff  method  (generalized 
second-order method) are given in Figs. 1 to 3 .  It may be 
seen  that  the shock front  representation  for  hopscotch 
Lax is better than that  for  the  Lax  scheme.  The shock 
fronts propagate at the right speed in the computations. 

Conclusions 
Novel  hopscotch  schemes  for  the integration of nonlinear 
hyperbolic systems  have  been  derived. A first-order 
scheme,  the  hopscotch  Lax  method has  very  desirable 
stability/pseudoviscosity properties  that should prove 
useful in the computation of shock  problems. In com- 
parison, the  advantages of a hopscotch formulation of 
second-order  methods  are of much less  importance. 

Generalization of the novel methods to a higher num- 
ber of space dimensions is an extremely  straightforward 
task  and follows from  the discussion  given in Ref. 8. 

IBM J. RES.  DEVELOP. 



References 
1. S. Z. Burstein,  “Finite-Difference  Calculations  for Hydro- 

dynamic Flows containing  Discontinuities,” J .  Computu- 
tional  Physics 1, 198 (1966). 

2. S. Z.  Burstein and  E. Rubin,  “Difference Methods  for the 
Inviscid and Viscous  Equations of a Compressible  Gas,” 
J .  Computational  Physics 2, 178 (1967). 

3. A. F. Emery,  “An Evaluation of Several Differencing Meth- 
ods  for Inviscid Fluid Flow  Problems,” J .  Computational 
Physics 2, 306  (1968). 

4. B. van Leer, “Stabilization of Difference Schemes  for the 
Equations of Inviscid Compressible  Flow by Artificial Dif- 
fusion,” J .  Computational Ph.v.sics 3, 476  (1968). 

5 .  J. Von Neumann and R. D.  Richtmyer,  “A Method  for  the 
Numerical  Calculation of Hydrodynamic  Shocks,” J .  Appl. 
Phys. 21, 232  (1950). 

6. V. V. Rusanov, “Difference Schemes of the  Third-order 
Accuracy  for  Continuous  Computation of Discontinuous 
Solutions,” Soviet  Mothematics Dokl. 9, 771 (1968). 

7. S. Z. Burstein and A.  Mirrin, “Third-order Difference Meth- 
ods  for  Hyperbolic  Equations,”  A.  E.  C.  Research and De- 
velopment  report. NYO-1480-136,  1969. 

8. A. R. Gourlay,  “Hopscotch: A Fast  Second-order Partial 
Differential Equation  Solver,” J .  Inst. Maths. and  its  Ap- 
plications 6, 375 (1970). 

9. P. D. Lax, “Weak  solutions of Nonlinear  Hyperbolic Equa- 
tions  and Their Numerical Computation,” Commun.  Pure 
crnd Appl. Math. 7, 159 (1954). 

I O .  A. R.  Gourlay,  “Some  Recent  Methods  for the  Numerical 
Solution of Time-Dependent Partial  Differential  Equations,” 
IBM UK Scientific Centre  Rep. 002  (1970) and Proc.  Roy. 
Sot,. (London) A 323, 219  (1971). 

JULY 1972 

1 1. J. J .  H. Miller, “On the  Location of Zeros of Certain  Classes 
of Polynomials with Applications to Numerical  Analysis,” 
Proceedings  of  the  Applicutions  of  Numerical  Analysis 
Conference, Dundee 197 I ,  Springer  Verlag. 

12. P.  D.  Lax  and B. Wendroff, “Systems of Conservation 
Laws,” Comrnun.  Pure  und  Appl. Muth. 13, 217  (1960). 

1 3 .  R. D. Richtmyer, “A  Survey of Difference Methods  for 
Non-steady Fluid Dynamics,”  NCAR  Technical  Notes 
63-2, 1962. See also R. D. Richtmyer and K. W. Morton, 
Difference  Methods  for  Initial  Vulue  Problems, Wiley In- 
terscience, 1967. 

14. A. R. Gourlay  and 3 .  L1. Morris,  “Finite Difference Meth- 
ods  for  Nonlinear  Hyperbolic  Systems,” Maths. of’ Comp. 
22, 28 (1968). 

.. 

15. A. R. Gourlav  and J. L1. Morris. “Finite Difference Meth- 
ods for  Nonlinear  Hyperbolic  Systems 11,” Muths. of Comp. 
22, 549  (1968). 

16. A. R. Gourlay and J .  LI. Morris,  “On  the  Comparison of 
Multistep Formulations of the Optimized Lax-Wendroff 
Method  for  Nonlinear  Hyperbolic  Systems in Two  Space 
Variables,” J .  Computationul  Physics 5, 229  (1970). 

Received  October 26, 1971 

A .  R .  Gourlay  is  located at the I B M  U K  Scientijk Cen- 
tre,  Peterlee, Co. Durham,  England. J .  Ll. Morris  is at 
the  Department o j  Mathematics,  University of Dundee, 
Dundee,  Scotland. 

353 

HOPSCOTCH  SCHEMES FOR  INTEGRATION 


