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Hopscotch Difference Methods for
Nonlinear Hyperbolic Systems

Abstract: In a recent series of papers, one of the authors has developed and demonstrated properties of a computational algorithm for
solving partial differentiai equations. This process, known as the hopscotch algorithm, has been studied particularly with reference to the
efficient integration of parabolic and elliptic problems. In the present paper attention is directed to the application of the technique to the
numerical integration of first-order nonlinear hyperbolic systems. While maintaining the properties of the hopscotch process as applied
to parabolic problems, it is shown that one of the novel schemes generated by this approach has an added bonus, namely, maximum sta-
bility for a variable choice of damping or pseudoviscous term. This property should be of particular value in the solution of problems with

shocks. A class of hopscotch Lax-Wendroff schemes is also studied.

Introduction

Over the past few years, several finite difference methods
have been devised for the solution of nonlinear hyper-
bolic systems of the form (du/ar) + (3f/dx) =0, where
u is an N-vector function of the unknowns (u , u,,- - -,
u,) and fis a nonlinear function of the components of u.
In the main, such methods have been tested exhaustively
on smooth solutions although increasing attention is being
paid to the schemes’ capabilities of representing shock-
like phenomena that arise in the solutions of nonlinear
hyperbolic systems (see Burstein [ 1], Burstein and Rubin
[2], Emery [3], van Leer [4]).

The explicit methods that have been considered fall
into two distinct categories, namely, first-order methods
with added viscosity of the type first introduced by Von
Neumann and Richtmyer [5] and second-order methods,
which have no additional viscosity terms and are of a
higher order of accuracy than the former methods. Van
Leer has recently stated [4] that first-order methods with
an optimal pseudoviscosity term seem to perform better
on problems with discontinuities than do the higher-order
accurate methods. There appears to be a great deal of
truth in this statement. The best second-order method at
present appears to be that due to Burstein and Rubin as
described in Ref. 2, where several numerical experiments
are reported on the use of their method on problems with
shock-like phenomena.

We mention also in connection with shocks the recent
work of Rusanov [6], who considers third-order accurate

JuLy 1972

explicit methods for the solution of nonlinear hyper-
bolic systems and recognizes the better dissipative prop-
erties of third-order accurate schemes compared to
second-order methods. Following on from this work,
Burstein and Mirrin [7] have considered other third-
order methods of a form similar to that of Rusanov and
have considered the application of these methods to
shock problems. However, these third-order methods
are time-consuming in comparison with the first- and
second-order methods and we feel that, as yet, it is not
obvious that such methods have anything to offer over
and above the first-order methods with optimal pseudo-
viscosity.

In the present paper, we will consider both first-order
and second-order methods. These schemes are similar
in nature to the hopscotch scheme introduced by Gour-
lay [8] for the solution of parabolic differential equations.

First-order method
We consider the solution of the nonlinear system

(3ufdt) + (afox) =0 (n
subject to the initial conditions
u(x,0) =g (), a=x=g )

and some suitable boundary conditions

B(u,ab,t) =g,(1). (3)
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(The precise form of the boundary conditions will not
concern us because we will not consider their influence.
The development of the schemes and the stability analy-
sis will be carried through as if we were studying the
initial value problem.)

To solve equations (1) subject to conditions (2) and
(3) we superimpose, in the usual way, a rectilinear grid
with mesh spacing A, = h in the x-direction and A, =k
in the time direction. We assume the mesh ratio p = k/h
is constant. We represent a grid point by (i, n), where
(ih,nk) = (x,t) and represent the value of the unknown
function u at the point (i,n) by u; = u(i,n) = u(ih.nk).

The difference operators are defined in the usual way
as

8,u; = u;, 1 — u; 1, the central difference operator,
2 2

pu; =3%(u;,, +u; ), the average difference operator,

and

n__ . n n
Hr“i T

Using this notation we can then define the familiar
first-order method due to Lax [9] as

W=l — (pI2)H ] + o8iu’, (4)

where o is a coefficient of the pseudoviscous term szul."
and is chosen to obtain the best possible shock resolution.
This method is subject to the well-known local stability
requirement, obtained by applying the von Neumann
analysis to the linearized scheme:

P\ = V20 and 0 < ¢ = 4,

where |A] is the maximum modulus eigenvalue of the
Jacobian matrix A of partial derivatives of f with respect
to u.

For good shock resolution it is found that a fairly
small value of o is needed, requiring a small value of p
to be chosen. This choice leads to an increase in the num-
ber of steps required to carry through the computation.
Since we are dealing with explicit schemes, the theoreti-
cal upper bound on p|A|, given by the Courant-Fried-
richs-Lewy condition, is p|A] = 1.

Ideally we would like to be able to compute with a
difference scheme with a value of p|\| close to the upper
limit and yet have considerable freedom in the amount of
pseudoviscosity (i.e., the value of a parameter o) em-
ployed.

In this section we show that a hopscotch version of the
above Lax scheme enjoys precisely these characteristics.

It is stable up to the C-F-L limit for any positive value of

o and is still explicit. This freedom permits an arbitrary
variation in the amount of viscosity introduced during
the computation.
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Consider the following difference scheme:

“:Hl + 0[n+1[(p/2)H‘rfln+1 _ 0'62 un+1]

=u} = 0;[(PI2)H f] — o8, u7] . (5)
where the function

1 if n+iis odd
6" =
0 if n+1iis even.

For n + i odd it is clear that Eq. (5) is equivalent to Eq.
(4). However for n + i even, Eq. (5) becomes the implicit

scheme

”inﬂ + [(p/z)fo?+l — 8 Mn+1] ="

it i
which, at first sight, appears to require the solution of a
nonlinear tridiagonal system.

For a fixed value of n, the hopscotch implementation
proceeds as follows. Apply scheme (5) for those values
of i with (n + i) odd, thereby calculating every alternate
point explicitly. If we now apply scheme (5) for those
values of /i with (n + i) even and make use of the points
we have just calculated explicitly, the over-all method
becomes computationally explicit.

Application of method (5) over a time interval 2k , that
is, two applications of (5), gives

uin+1 + 0?+|[(p/2)HIf;n+1 _ 0'8; lln+1]

=u; — 0/ [ (pI2)H f] — 08> u}];
Wi+ 0 (pI2)H 1T — o8 ult?]

x i

=ul"' =0 [(pI2)H 7 — a8l ui ], (6)

x i
With the difference method written in this manner, it
becomes clear that a “fast” version of the algorithm can
be derived similar to that described in [8] for the para-
bolic differential equations. By rewriting the right-hand
side as

2 = {0 (P H T — o8 1]} @)

x e

and using Eq. (6), Eq. (7) can be written as
w0 [(pI2)H  f 1 — o8 )]
=2 = {u] — O (p/2)H f} — 085 u}]}.  (8)

For the points for which 6% = 67 = 0, Eq. (8) reduces
to the simple relation ™= 2u;"" — u}. Note that this
relation does not apply at all grid points (n + i) with i
fixed and thus that the inherent linear instability of the
two-term recursion will not manifest itself.

The values at remaining points at = (n + 2)k are cal-
culated using these points and (8) with 8] =¢0'=1.
The computational details are similar to those reported
in [8] and are not repeated.

The stability of the difference scheme (6) and (7) may
be studied away from boundaries and from the initial
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line by using the equivalence of the process to a three-
level scheme on two interlacing grids (as mentioned in
[10]). Thus (6) and (7) are equivalent to the three-level
scheme

(A +20)u]™ = (1 =20)u] ™" — pH_f} + dopu; .

The stability of this scheme is studied using the standard
von Neumann approach to its linearization. The condi-
tion for stability thus amounts to requiring that the roots
p of the quadratic equation

(1 +20)p° + {2ipA sin 8 — 40 cos B}p — (1 —2a) =0

have modulus less than or equal to one for all 6.
With the results of Miller [11], it is straightforward to
verify that the conditions for stability are

PIA[=1 and o=0.

The freedom in the available values of o allows con-
siderable control to be exercised in the amount of second-
order viscosity introduced, without reducing the possible
step length. This control is in marked contrast to the Lax
scheme. Experiments confirm the conclusions of the
above paragraphs.

Hopscotch Lax-Wendroff method

The two-step version of the Lax-Wendroff Method [12]
formulated by Richtmyer [13] is well known. Just as the
Lax method (4) formed the basis for the hopscotch Lax
method, the two-step Lax-Wendroff method forms the
basis of the hopscotch Lax-Wendroff Method. To derive
the required scheme consider the difference equations
given by

W' =, = (P28
s u S 2t n+iodd )
u; =u; —pd_f; "+

wpt =t = (I8,
n+:1 P 1 n+ieven, 10)
u 't =ul —pd fi"

where f;""' = f(u;"*"), and where ;""" is an intermedi-
ate or auxiliary solution. These equations can be written
in terms of the function 6; as
) =67 L) — (p12)8,fL)

+ 0] [, — (p12)8,f711] (1
$ =l — (pl2)8 M (12)

where it is understood that the order of the calculation
is that given by Eq. (9) followed by Eq. (10). That is,
formulae (11) and (12) are solved first for 0:‘“ =0 and
then with 9 = 0. Careful consideration of these equa-
tions will indicate that the method is truly implicit for
half the points «*" ; that is for 6;"' = 1. A local expan-
sion of the truncation error will indicate that the method
is second-order accurate. However, in order to solve
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Egs. (11) and (12) an additional feature must be added
to the method, namely that half the points must be calcu-
lated iteratively. This is performed as follows. Write Eqgs.
(11) and (12) in the form

Vupt = 07w, Vil = (p12)8, VA1)

i+l i ixl
3 3

GO = — (pl2)8, VM (13)

1

where the superscript j applies only to those points for
which 0:'“ = 1. The case j=1 is solved by using an
average of the u?“ calculated from Egs. (11) and (12)
with /"' =0, namely "' =3+ u]"). It was
found in practice that j need take only the values up to
either two or three.

The stability condition of the hopscotch Lax-Wendroff
method may be derived by appealing to the result for the
hopscotch Lax scheme. If we set o = p*\’J2 in the quad-
ratic equation then that equation governs the stability of
the hopscotch Lax-Wendroff scheme. It follows auto-
matically that this scheme is stable for p|A| = 1.

Generalized hopscotch Lax-Wendroff method

In [14], [15], it was found expedient to generalize the
two-step Lax-Wendroff method in order to obtain a class
of methods that gave better results than the usual two-
step formulation. The expense in so doing however, was
that the region of stability was reduced. The difference
method of [14] can be written as

u"" = ! — 2apd f'

1

it =ul — pl (1 —}a)s, f' +1ad ;"]

1

where a is a parameter. It was found for stability that

a = %,and p|i| 52—\1/—‘7
have to be satisfied simultaneously.

This method can be used to generate a generalized
hopscotch Lax-Wendroff method, in much the same way
as was done previously. (The details are omitted). A
similar iterative process is required to obtain the solution.
From empirical evidence it appears that this scheme is
stable for 3 = a = % up to the Courant-Friedrichs-Lewy
limit. However in view of the disappointing behavior of
this scheme in practice, it would seem to be of little value
to verify the stability conditions analytically. The gen-
eralized hopscotch Lax-Wendroff method cannot be
recommended for practical computation.

Numerical experiments
The model problem considered was the smooth solu-
tion problem:

(8ufar) + (afox) G’y =0, u(x0)=x, u(04)=0

351

HOPSCOTCH SCHEMES FOR INTEGRATION



352

Figure 1 Lax method at 50 time steps, &/ =0.01.

Figure 2 Hopscotch Lax method at 50 time steps, £ = 0.01.

(Curves continue to be
smoothed for increasing o )

X ——

with theoretical solution u = [x/(1+1¢)]. We call this
problem ““P.1” for future reference. We also performed a
series of experiments on the shock problem comprising
a simple step function of size unity, namely

(dufor) + (8ox) Gu®) =0
1(x,0) =

u(0,0) =1,

where in the experiments o was taken to be 0.1. For refer-
ence purposes we call this problem “P.2.”

For the model problem P.1, we compared the first-
order method (6) and (7) with the solution of P.1 for a
series of p and o . The prediction of the stability criterion
for the method is borne out by these experiments, namely
for all positive o with p|\| = 1 stable results were ob-
tained.

For problem P.2 the shock resolution for method (6)
and (7) was certainly as good as, if not better than, that
obtained from the L.ax method. Moreover it was possible
to take maximum steps with the hopscotch Lax scheme
and then adjust ¢ to give good resolution. With the Lax
scheme one is required to choose o and step size together,
to satisfy stability.

The experiments on P.1 and P.2 for the second-order
methods was less encouraging, although the shock resolu-
tion in P.2 was as good as that obtainable from standard
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Figure 3 Generalized second-order method for #= 0.01, 100
time steps: () p=0.5;®B)p=07; () p=0.95.

second-order schemes. For P.2 the results were poorer
than those obtained for (6) and (7).

Sample graphs of the behavior of the Lax, hopscotch
Lax, and generalized Lax-Wendroff method (generalized
second-order method) are given in Figs. 1 to 3. It may be
seen that the shock front representation for hopscotch
Lax is better than that for the Lax scheme. The shock
fronts propagate at the right speed in the computations.

Conclusions
Novel hopscotch schemes for the integration of nonlinear
hyperbolic systems have been derived. A first-order
scheme, the hopscotch Lax method has very desirable
stability/pseudoviscosity properties that should prove
useful in the computation of shock problems. In com-
parison, the advantages of a hopscotch formulation of
second-order methods are of much less importance.
Generalization of the novel methods to a higher num-
ber of space dimensions is an extremely straightforward
task and follows from the discussion given in Ref. 8.
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