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A-stable, Accurate Averaging of Multistep Methods
for Stiff Differential Equations

Abstract: Several low-order numerical solutions of stiff systems of ordinary differential equations are computed by repeated integration,
using a muitistep formula with parameters. By forming suitable linear combinations of such solutions, higher-order solutions are ob-
tained. If the parameters are properly chosen the underlying solutions, and thus the higher-order one, can be made A-stable and strongly
damping with respect to the stiff components of the system. A detailed description is given of an algorithmic implementation of the
method, which is computationally efficient. Numerical experiments are carried out on some test problems, confirming the validity of

the method.

Introduction
We are concerned with the numerical integration of stiff
systems of ordinary differential equations

x=f(x), ey

i.e., systems with widely separated eigenvalues, A, of
the Jacobian matrix J = f, [as evaluated, for example,
along a particular solution x = F(r) of Eq. (1)]. Stiff sys-
tems are encountered in many areas of applications, e.g.,
reactor calculations, circuit analysis, chemical kinetics,
flight dynamics, constrained optimization, etc. For a sur-
vey on stiff systems, see Bjurel et al. [1].

In the presence of stiffness, a numerical integration
method must have very strong stability properties if it is
to be efficient. Typically, one wishes to integrate the sys-
tem of Eq. (1) with a fixed integration step / such that, for
one or more of the eigenvalues A of J , one has |g| > 1,
where g = M. It is thus desirable for a formula to have
unbounded regions of fixed-A stability in the complex
g-plane.

One stability concept that is widely used in connection
with stiff systems, called A-stability, was introduced by
Dahlquist [2]. It demands that all numerical solutions,
generated by applying a numerical integration method,
with an arbitrary integration step /, to the equation x =
Ax, Re A < 0 must be (strictly)'asymptotically stable. In
this case, the unbounded region of fixed-h stability men-
tioned above is the left-half ¢g-plane. It is easy to see that
for linear multistep formulae (LMF),
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(ex,,; — hBx,,;) =0, (2

J

M=

0

J

a necessary and sufficient condition for 4-stability is that
the roots z,, 1 = i = k, of the characteristic polynomial

K . K .
X,(2) =p2) —qo (@) p(2) =3 a2’ 0(2) = 3 B2’
Jj=1 j=1

3)

be inside the unit circle, for all ¢ in the left half-plane.

However, the class of A-stable LMF is quite small. In
fact, for an LMF to be A-stable, it is necessary that it be
implicit (B, # 0) and that its order of accuracy [3]
should not exceed two [2]. In order to find a broader
class of LMF, useful for solving stiff equations, one may
employ a somewhat weaker stability concept, such as
A (a)-stability introduced by Widlund [4], or stiff sta-
bility defined by Gear [5]. There do exist LMF, with
p > 2, which have either one of these properties. On the
other hand, it is possible to find strictly 4-stable methods
with p > 2 if one considers a class of formulae larger
than that described by Eq. (2), e.g., LMF involving
second derivatives [6].

Another way of generating A-stable integration meth-
ods with p > 2 was proposed by Dahlquist [2]. It con-
sists in integrating Eq. (1) more than once by an 4-stable
LMF, using different step sizes /&, and then extracting
from the solutions thus obtained a higher-order solution
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by Richardson extrapolation. For example, if x'"’ and x**’

are solutions of (1) obtained by the second-order A-stable
Trapezoidal Rule with step sizes h and 2A respectively,
then x* = (4x"’ — x®'}/3 represents, wherever defined,
i.e., at multiples of 24 , an A-stable solution of order four.
This procedure, however, has some disadvantages. In
principle, it gives higher-order values of the solution only
every two steps. The missing solution values have to be
obtained by interpolation of appropriate degree. More-
over, the Trapezoidal Rule is only marginally stable for
g — <, ie., rapidly decaying solutions of a stiff system
give rise to slowly decaying oscillatory numerical solu-
tions. To reduce the effect of such undesirable oscilla-
tions, it seems necessary for the integration by the
Trapezoidal Rule to be followed by a filtering process [7].

In this paper we consider an approach similar to the
one mentioned in the preceding paragraph. Starting from
a special LMF, which has an order of accuracy p and
contains intrinsic parameters other than s, we integrate
Eq. (1) repeatedly using the same formula and the same
h but with different values of those other parameters. We
then show how to obtain a solution of higher-order ac-
curacy by forming suitable linear combinations of such
parametrized solutions. The method has several useful
properties. The higher-order solution is produced di-
rectly at every time step and no interpolation is neces-
sary, since we use the same step size & for each integra-
tion. It can be arranged that the underlying integration
formulae are strongly damping with respect to the rapid
transients of stiff systems, thus avoiding the type of
oscillations accompanying the Trapezoidal Rule. Also,
by starting from special formulae with order p = 2, we
can assure the A-stability of the integration procedure as
well as its higher accuracy. Finally, this procedure can be
implemented in a computationally efficient way. We now
outline the plan of the paper.

In the second section we introduce an Adams-type,
k-step differential-difference operator (), of order p < k,
which contains d = k — p free “‘primary’’ parameters and
one ‘“‘secondary’’ parameter, in addition to the time-step
h. A simple recipe is then given for constructing, from
Q , another operator )’ of higherorderp+m,1 = m=d
which contains (d — m) primary parameters. The recipe
consists of forming a suitable linear combination of
(m+ 1) versions, Qp, 1=p=m+1, of Q corre-
sponding to (m + 1) different sets of values of the pri-
mary parameters. We then prove that if m = p and x,, is
the numerical solution of Eq. (1) associated with Qp,
then the corresponding linear combination of the x s,
which we sometimes loosely call their ‘““average,” repre-
sents a numerical solution of order p + m . The secondary
parameter is held fixed throughout the averaging process
for saving computer operations, which is discussed in the
final section. In the third section, we discuss the result of
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averaging Adams-type solutions from the point of view of
global error analysis. The nonlinear difference equation
governing the accumulated truncation error is first de-
rived, and a perturbation method is then used to obtain
the explicit dependence of this error on the primary
parameters. By examining the form of this dependence
we generalize the averaging recipe mentioned above and
remove the restriction m = p. We also indicate, via an
example, how this approach leads to averaging pro-
cedures for solutions obtained from integration formulae
other than of Adams type. Next three specific operators
are introduced and the domains of A-stability in their
parameter spaces are explicitly determined. To do this
we apply a convenient criterion given earlier by one of
the authors [8]. Then a finite algorithmic implementation
of the averaging method is discussed for the case of one
of the specific operators mentioned above. The algorithm,
designated ““A4,” consists in computing one solution by
using cubic extrapolation and a single Newton-step, then
computing two other solutions from linearization around
the first, and finally “‘averaging” the three solutions. We
prove that the averaging process is correct for the finite
algorithm, i.e., it produces fourth-order solutions. Also,
the A-stability analysis of this finite algorithm is identical
to that of the implicit difference equation obtained by
applying Eq. (2) to x = Ax (see Section 4.2 of [6]). In the
final section we give numerical results obtained by ap-
plying, to two test problems, the algorithms associated
with the three specific operators mentioned earlier. These
algorithms are A4, for which p=2 , k=4, m=d=2;
A3, forwhichp=2,k=3,and m=d=1; and A2, for
whichp=1,k=2,and m=d= 1. We also offer some
remarks about the computational efficiency of A4 as
compared to an implicit Runge-Kutta algorithm [9].

Averaging of Adams-type solutions

Let x(¢) be a real analytic function on the real line and
{t,}, t,= nh, ninteger, adiscrete set of values of ¢ with
increment — or step — h > 0. Consider the linear dif-
ferential-difference expression

I(t,) =x(t,,,)—xt,)—h [c x(t,, )+

k-1 )
(1= k() + S (b* — OV x(r,)], @)

where V' denotes the jth backward difference, the b*
and c are, for the moment, undetermined constants (later,
we refer to ¢ by the term ‘“‘secondary parameter’’) and

the dot denotes differentiation with respect to ¢. It is
convenient to associate with the expression (4), an op-

erator

k=1
@ =a-D[a+i+3 b7, (s)

i=1
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where A is the first forward difference and D = h(d/dr) .
An operator whose form is indicated by (5) is said to be of
the Adams type. When the differences in Q* are ex-
panded, it can be written in the perhaps more familiar
ordinate form that is more suitable for the analysis of
stability questions.

A procedure for defining the accuracy of Q* is the
following: Let x(r) and its differences be expanded in
Taylor series about t =1, . If by the symbol >~ we de-
note equality with error o (k") where k is the step number
of O* |, then

DV’NE'yUD”' j=1, k=1, (6)

where y;; are known constants (which may be derived,
for example, from the tables in Abramowitz and Stegun
[10]). Upon substitution in (5) from (6), one obtains

K .
QY u,D', )
i=2
where
izl') Eyle >
Note that if the secondary parameter c is introduced as

in (5), then the relation (8) between the quantities v,
and b, * becomes independent of c .

2=i=k. (8)

Since

ViZZ'yjiDjz (D+%D2+- -)i=D'+ -
j=i

one has vy, =1 for all i. Hence, noting that the coef-
ficient matrix defined by (8) is triangular, one can solve
these equations uniquely for the ,* , for any given set of
values v;. If, for example, the constants bj* were chosen
to make v,, i=2, -+, p, p=k vanish, then the
operator defined by (7) is O (A”*") and is said to be of the
order of accuracy p. If, starting from the class of all
operators of order p = k — 1, we impose the additional
constraints v,=0,i=p+1, ,p+Hm, 1l =m=d,
d =k — p, then we raise the order of Q* fromptop + m.
In particular, let b, denote the solution of (8) when all the
v; vanish, then Q* ~ 0 and it has maximum order p =k .

We now describe an alternate method for raising the
order of accuracy of an operator {} . Consider

p—1

Q=A- D[cA+l+2(b —c VJ+2 (b;—c

j=1 Jj=p
i)V, ©)

where u,, - - -, u, are, for now, arbitrary constants we
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call primary parameters. It is easy to see that in this case
the expansion (7) for () takes the form

Q~D" 3 u D', (10)

27111+1p1+] j i=1,---,d. an

Thus Q is of order =p for any set of parameters «,, - - -,
u,. These parameters form a d-dimensional vector u.
Consider m + 1 such vectors, u = ('“‘u: L, ud,p) ,
p=1,-++, m+ 1, and for each p the operator {} de-
fined by (9) and associated with u, . Form the operator

m+1

2 4 n’ (12)

Given the vectors u, p= 1,--+, m+1, we show
how to choose the “weights” v, to make {1’ have order
p + m. From (10), (11), and (12) one gets

d .
Y~ DN 7 D',

i=1

where
m+1

=D Y, By (13)
p=1

An easy calculation shows that 7, =0, i=1,---,m,

if and only if
Sovu, =0, i=1,.m. (14a)

Adjoin to the system (14a) the normalizing condition

m+1
Sov,=1, (14b)

p=1

the significance of which will appear later. If the v  satisfy
(14), the operator ' = O (h"*™"") . More specifically, if

m+1

Wy = 2 UipVs o
p=1

then

i=m+1,---,d (15)

p+m=1

O ~A—D [C‘A+ 1+ 3 (bj—c)VJ

j=1
k—1 ! A
+ 3 (bj—c+wj)VJ], (16)
J=p+m
which has order of accuracy (p + m).

The unique solvability of (14) is equivalent to the con-
dition that the (m+ 1) truncated vectors u'= (u, ,
-,um)p), p=1,---, m+ 1, span an m-dimen-
sional linear space. To see this, note that the pth column
vector of the coefficient matrix M defined by the system
(14) is the composite vector (1, up’)T . Now if, for ex-
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ample, the vectors up’ ,p=1,---,m, are independent

— r__ ’
and v, =, u,. ., ,then

|M|(m+1)><(m+1) = |V] LI Vm|m><m # 0

and thus M is nonsingular. The necessity of the condition
is obvious. For the special case m = 2, which we shall
consider later, the solvability condition is that the 2-
vectors u,’, u,’, u,’ are the position vectors of points
forming a nondegenerate triangle.

We now turn to the effect of the averaging procedure
defined by (12) and (14) on the approximate numerical
solution of the system (1). Let N denote the nonlinear
difference operator derived from (9) by substituting the
smooth function f(x) for the derivative x. Similarly, de-
fine N and N'. Let x, be the solutionof N x =0, p=
1,--+,m+ 1, atan arbitrary time 7 = ¢, and define the
averaged solution z = z,, by

m+1

=3 vx,, a7
p=1

where the v, are defined by (14). Then we have the fol-
lowing theorem.

s Theorem
If Kk <2p and m = p, then the approximate solution z
satisfies the difference equation N’z = 0 globally to with-
in an error O(4**").

The following corollary is an immediate consequence
of this theorem:

Corollary: The global discretization error of the approxi-
mate solution z is O(h*™™).

Proof. Let (1) denote the exact solution of (1), defined
on an interval (a, b) and y = y(t,) its value at the grid
pointz,=a+nh, n=0,1,---, H, where Hh=»b —
a. Since x, is defined by a stable difference operator of
order p, the global truncation error (x, — y) = oM [11].
Therefore, one has

z=y=3 v,(x,—y) =0")

p=1
and thus
x,—z=(x,—y)+(—2)=00"). (18)
From the definition of z it follows that
p—1 A m+1
se=ifea+ 143 6, V][ v
j=1 p=1

k-1 m+1

+IV Y <bj—0+uj-p+1,p>v,,f,,}=0, (19)
p=1

Jj=p

where f,=f(x)). In the following, it is convenient to
think of all discrete values as being interpolated by C*
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functions. For simplicity in notation, we write ¢ = f(z),
J=f/2) and, for a generic p, x=1x, and f=f . Then
using Taylor’s theorem, together with the assumption
k = 2p, one has

f=¢+J[x—z] +OH")

so that

hfe~ he + hJ[x—z].
Similarly,

hAf=~ hA¢p + hA{J[x —z]},

Wi g+ hWi{J[x—2z]}. j=1,---,(p—1).

The last term in the above relation is o(4*) if j = p, and
therefore

hVfe e, pP<j=<k—1.

Hence, if I denotes any one of the operators A, I or
v, j=1,---,p—1, the above relations imply

m+1 m+1

APEAET DAL

p=1 p=1

+ hF{J[”il v, (xp - z)]} =hl'¢ (20a)

p=1

and
pm1
hV}[E (bj —ct “j—pﬂ,p)ypfp]
p=1

rmtl
~ hVJ¢[2 Vp(bj“‘C+ u]._pﬂ’ﬂ)], (20b)

p=1

p=j=k—1.
Substituting the above into (19) and using the relations

(14) and definition (15) one obtains
p+m—1 .

Az — h[cA +1+ > (b,— c)v’

Jj=1

k-1
+> (bj—c-f-wj)V]]d)E 0. Qen
j=p+tm
Therefore z is governed by the relation N’z 0, which
completes the proof.

Global error analysis and an extension of the
averaging method

This section is concerned with a direct error analysis
approach that shows how to obtain any order of accuracy
in the approximate solution by combining, linearly, a
certain number of approximate solutions of lower order
which depend on sufficiently many parameters. The anal-
ysis is applicable to general difference operators with ar-
bitrary k, but we restrict the discussion, for the moment,
to the Adams-type operator (9) with k = 3p . The approx-
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imate solution z is again defined by (17) and our aim is to
derive the equations analogous to (14) which make z an
approximate solution of order k. Naturally, for £k = 2p,
the conditions (14) will be reproduced. As before, for a
parameter vector u= (i, - -, u,) where d=k—p,
let x be the solution of the difference equation

p—1
N(x) = Ax — h[c'Af‘+j'+ S (b~ Vf

k-1 ) ’
+Z(bj—c+uj_p+l)V’f}=0, (22)
i=p
where f=f(x). If y is the exact solution of (1) then,
since N(v) = Q(y), we obtain from (10) that

a : .
N(y) ~ E Mih?+ty(ﬂ+1) , (23)
i=1

where =~ means that terms of order (k + 1) are neglected
and where the u, are defined by (11). In the following,
and in defining N(y) , we shall use the notation F = f(y) .
Let e = x — y be the global discretization error at an ar-
bitrary grid point then, as stated earlier, e = O(h") . Sub-
tracting (23) from (22) and neglecting terms o(h") one
obtains

p—1
Ag— h{[cA +1+ 2 (bj — )V ][Fms-f—gF(Z)sm]
i=1

k—1
+ > (b].—c~|—uj_p+1)V (Fm )}

Jj=p

d ) ) .
_ 2 Mihpﬂy(m” , (24)
i=1

where F,,, F,, are the first and second (Fréchet) deriva-
tives of F at the solution y and ¢'* denotes the pair (£, ¢) .
Let e=h"y, substitute in (24) and divide by #’*' to
obtain

p-1

EA””“ [cA +1+ 2 (b;,— )V’ ][ an +%hpF(2)n[2]]

k-1 .
=X (b=t IV (Fym)
j=p
! i (p+it+l)
~ i i
RS by BT (25)
i=0
where & denotes that terms o(k®") are neglected. To
obtain the asymptotic expansion, in powers of /i, of
n we let

d-1
'S by, (26)
=0
expand the left side of (25) to order h*", and use regular
perturbation theory [12]. A straightforward but rather
long calculation shows that the m, are determined re-
cursively by the equations

JULYy 1972

(P+j+1)

LTl A P TR

Lo o d
_2 [G+ 1D)!] [77] l_F(l)nJ‘_,i]a
i=1

0<j=<p—1, (27a)

S _ @+j+1)
m; F(l)"”j_ MY

E {[(1 + D! [77] i giF(n'nj_,‘]}

+22[(1+1)']_ 1“,1, p<j=d—1
=0 (27b)
i-p i
where, if A, =) U!)flyi_j’p and ¢, =% v, i>p,
j=0 j=p
we have
€:1[(i+1)!]‘, 0<'<p—1
[G+ D +ey,— +2'yu pet s
j=p
p=i=d—1 (27¢)
and
!
=>Fuom;m 0=Il=d—1. (27d)
=0

The above equations, together with initial values which
may be assumed to vanish or to be o(4*), define the
functions 7, . In particular, the dependence of %; on the
parameters u, -, u, (or equivalently u,, - * -, ) can
be determlned recurswe]y Infact,forO=j;=p—1,itis
clear that ; is a linear function of the ,, 1 =1=j+1,
with coefficients depending only on the solution y. Ex-
plicitly one has

j
;= D MMy 0=j=p—1, (28)
=0
where the 7, satisfy
L’T)“ — y(ﬂ+j+l? ,
=
Ln,=—3 Am, - 0=i=j—1; 29)

i=1

here L = (d/dt) — F,, and

d'[d
A=10+)! [ —F jl
) ] d[ {1
We can now (re)prove that the approximate solution de-
fined by (17) and (14), with m = p, has a global error
O(h®) . To see this, let e = z — y. Then, in an obvious
notation,

p+1 P+t p+l
e=> Vp(xp—y)ZE Vp£p=hp2 v, 30)
p=1 p=1 p=1
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Substituting in (30) from (26) and (28) one obtains

e =i [‘§ S W 2ul+1pn]l+0(h”)]

p=1 =0 1=0

p—-1 i 7 p+1
=2 L [2 (2 Yp "“Hlsp)njl] + 0. G
j=0 1=0 ‘p=1
Because of (14a) and (11), the first term on the right-
hand side of (31) vanishes, which proves the assertion.
In order to find an approximate solution with accuracy
higher than 2p we need to calculate the dependence of the
errors 7;, p =j=d—1, on the parameter vector u
explicitly. Taking into account the form of the right-
hand side of (27b), and noting that the ¢, depend linearly
on u, an induction argument shows that 7, has the form

j—p j-p-1
E Mymyt E 2 My iMor M jir
I=0 1=0 r=0
p=j=2p—1, (32)

where the coefficients 7, , 1, depend only on the solu-
tion y.

As before, let x, be the solution to N x, =0, z=
Ep L VX o where /V is to be specified later and £e=z—y.
Then, using Ep ; ¥, = 1 and (32) we get

i o {E (§ Vp'ulﬂ,p)njl}

j=0 =0 ‘p=1

d-1 i i-p i—p—l
+ 2 h ! {E 2 <2 Vpl“‘l-#l,plu‘r+1,p>njlr}
+O(H.

Hence, if the coeflicients v satisfy the equations

M=
A
k-]
i
—

©
[l

=0, 0=l=d—-1 (33)

M=

Vp”'lﬂ P

©
[l
-

{Oflfd—p—l

Evp/"l+l,pl"‘r+l,p=0 0<rfd—p—l—l,

p=1
then & = O (K*"%), as desired. Note here that (33) repre-
sents a system of A4 = (d+ 1)+ (1/2)(d—p)(d—
p + 1) linear equations for the ./ unknowns v,. The
unique solvability of these equations, for almost all
parameter vectors p (or up) , follows from the analyticity
in u , of the coeflicient matrix.

For the sake of completeness we now record the equa-
tions defining the coefficients 7, 1;,, .

-1 J-t

- 2 Amj\i,l - E Ai,onj—i,l
Lnﬂ = i=t i=p
it

- 2 Am il
i=1
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Lnjj — y(IHjH) (34)

and
j—p-l-r
2 Aln_] 1lr+ (Ajlr Ajlr) 4
i=1
Ly, = 0<I[<j—p—1
0<r=j—p—1-—1
Afir = Ajur {Oflfj—p
r=j—p—1.

The operators in (34) are defined as follows. Let

Lo=LG+D1 " +c\,—¢) p<i=d-—1,

0=<j<i—p
i-p+1

Ct i1 2 Yi l+p‘yp+l,p+1 H
i=j

where 7 is the triangular matrix inverse of y,
R,=[20i+ 1)1}  dldr.

iy d
Aw*E{[(hLl)!] aTI_gi,OF(I)}

4
A= E [Ci,ij]

j-r
*

A]l?‘ E Ai,t+177j—i,r
i=p+1 p=j=d—1
J=p=l-v jop—i-r

i=0 n=1

O0=sl=j-p
0=r=j—p—1. (35

X Ri[F(z)nnlnj—p—i—n,r]J

We remark here that if we impose the constraints (33)
with d replaced by &', d’ = d— 1, then the global error
£=O(h"*"n,) . The equations (32) and (34) would then
allow for computing an estimate for n, which could be
used for error control.

It is clear that this perturbation method can be used to
arrive at solutions of accuracy (p + d) for any d, but we
defer a complete discussion to a future paper since the
procedure of the second section will suffice for the fol-
lowing sections. It should also be remarked that the
perturbation procedure is applicable to any consistent
scheme [13] and we end this section by stating the re-
sults of its application to the two-parameter operator

Q=6A+ (3+ 12u, — 2u,)A’
— D{6 + (6 + 12u, — 2u,)A + (1 + Su, — u,)A%},

which is of order p = 2 for any u= (u, ,u,) . Foru=0,
Q represents Simpson’s Rule. The general operator ( is
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equivalent to that associated with formula (12) of Ref. 14
via the parameter transformation

1

u = (=2 —28,+8,)(1+8,+8)"
u, = (—15—9,804-6/31)(1 +,8“+BI)_

By= (1 —Tu + u,) (1 + 5u, — ”2)1]
B, = (4+2”|)(1 "_5”1—”l2)_1 .

The operator {) was shown in Ref. 8 to be A-stable in an
appropriate parameter domain. In terms of the present
parameters, this domain is {u, < 6u,, u, <—1/2}.

4

If z= E v, x as before, where
p=1

M ES
bﬁ
Il

T
I}

M- 1=
o A\
° ©
—_ =
() &
= © .
Il

e o
cal

=

o~

_ |

I L
=] ]

©
|

then z is an approximate solution of order four.

A-stability analysis

In the rest of this paper we consider in detail three opera-

tors of the form (9) and the algorithms for producing ap-

proximate solutions associated with them. The operators

are defined by

Q=A—D[cA+1+ G—c+r)V]; p=1,k=2,
(36)

Q,=A—D[A+1+ (F—)V+ (22— c+rV’];
p=2,k=3, (37

Q=A—D[cA+1+ G—c)V+ (x—c+rV

+ 3—c+s)V']; p=2,k=4, (38)
where r, s are the primary parameters.

This section is concerned with determining the do-
mains, in the parameter spaces, of A-stability of Q, , Q,,
Q,. To this end we transform (36), (37) and (38) to the
ordinate form and use a criterion derived by one of the
authors [8]. If g(z) = p(z)/o(z) , where p , o are the famil-
iar polynomials associated with linear multistep opera-
tors, then the conditions for A4-stability are N1: that the
zeros of o lie inside the unit circle, and N2: that P(x) = 0,
—1 = x =1, where P is a certain polynomial depending
on the coefficients of p and o . This latter condition is
equivalent to the requirement that Re ¢(z) = O for all
|z| = 1. For a k-step operator, the condition N1 is equiva-
lent to demanding that the roots of o(0) = ({ — D*o(2(0) ,
2=+ DI— 1)3 lie in the left half of the {-plane.
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Figure 1 A-stability domain of Q.

o A-stability of Q,

In the case of the operator (2, , we find that 20(z) =
2¢2+B—4dc+29z—(1—2c+2r) and (O =0+
(1 4+ 2L + (—2 + 4¢ — 2r) . By the Routh criterion [15]
the roots of o are in the left half-plane (and thus N1 is
satisfied) if and only if the inequalities 1 + 2r > 0 and
1 —2¢ + r < 0 hold. For the operator ), , condition N2
requires that (x — D{(—1+2¢c—2nNx+(1—-20] =0,
—1 = x = 1, be satisfied, which is the case if and only if
either -1 +2c=r=—%+cor—3+c¢=r=0is true;
i.e., if (r, c) is either in wedge 1 or wedge 2 of Fig. 1. Ex-
cept on a portion of the boundary, these inequalities im-
ply those associated with condition N1 and, thus, £, is
A-stable if 0 = r < — 1 + 2c¢; i.e., if the point (r, ¢) is in
the partially open wedge 3 of Fig. 1.

* A-stability of Q,

In the Q,-case, 36() =30 + 6 + 2 + 12N¢ + (—11 +
24¢ — 12r) and N1 is satisfied if and only if — 5 + 2¢ <
¥ < — 1%+ 2¢ holds. The condition N2 requires that
x—1D[G—4c+4x—G—29]=0for =1 =x=1,
which is true if and only if either 2c — 3= r=c — &
or ¢ — 7z = r = %c — % holds (wedges 1 and 2 of Fig. 2).
As in the previous case, N2 thus essentially implies
N1 and Q, is A-stable in ¢ — 1 = r < 2¢ — 15 (wedge 3
of Fig. 2).
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Figure 2 A-stability domain of ),

9 .

e A-stability of €,

In the case of 2,

36(0) =30+ 90 + (8 + 1210 + 24sL (39)
+ (—20 + 48¢c — 12r — 24s) .

In the notation of Ref. 15, the Routh criterion implies
the inequalities

e, =2+3r—2s>0 (40)
¥d,= (15 —36¢+ 9r + 34s

+ 24rs — 165°) /(2 + 3r — 25) > 0 1)
te,=—5+12c—3r—65>0. (42)

For any ¢ # 0 and ¢, # 0, d,= 0 represents a nonde-
generate hyperbola with center (—33, —%) and asymp-
totes Asl: s =—3%, As2: s = &r + 3 ; the latter is parallel
to the line ¢, = 0 (see Fig. 3). The hyperbola intersects
both ¢, =0 and e, = 0 at the point P, =(—15+ ¢, —§ +
3¢) and e,= 0 once more at P, = (—3+ 4c, 0). P, and
P, coalesce for ¢ = }. If ¢ > 0, that branch of the hyper-
bola d, > 0 which lies in s < — £ (the bottom left-hand
part) may be disregarded since it does not intersect ¢, >
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0. Tt will be shown later on that N2 cannot be satisfied
if ¢ < %; we thus restrict ourselves to the case ¢ = %,
even though N1 can be satisfied for ¢ < 0, which may be
useful for integrating unstable problems.

In the case of €),, condition N2 requires that (x — 88
Ox) =0, —1=x=1, where

Qx) = (=9 +24c—245)x> + (5 — 12¢ + 129)x
+ (4—12c+6r+12s) ; (43)

which is true if and only if Q(x) =0, —1=x=1.
The eﬁvelope of the lines Q(x) =0, for—1=x=1,
is that part of the ellipse

6" + 24rs + 485" + (14 — 36¢)r + (34 — 96¢)s
+ 75 (13— 36¢)" =0, (44)

which lies “between” P, = (— & + ¢, — 15 + +sc) , the
tangent point on the tangent 7,: s = 3#/2 corresponding
to x=+1, and P,= (—15+ 3¢, =4+ %c), the tangent
point on the tangent z, (corresponding to x =—1) ; ¢, co-
alesces with e, = 0. This may be seen by calculating s =
s(x), the s-coordinate of the tangent point, and showing
that it decreases between P,(x = 1} and P, = (— 1% + 3¢,
4, corresponding to x =—3%, and increases between P,
and P, (x = —1), so that the derivative ds/dx vanishes only
once in —1 = x = 1. The ellipse lies between the two
parallel tangents f, and ¢,, the latter corresponding to
x = 0 and having the tangent point P, = (—z + ¢, — +
%¢). From (43) with x =0 and x =—1, one obtains s =
—ir+c—4ands = (—%+ 2¢) — #r, respectively, which
are compatible only if ¢ =%, as mentioned earlier. In
this case, N2 is satisfied in the closed set § represented
by the shaded area of Fig. 3, bounded by the lower part
of the ellipse and the tangents ¢, and r, . We remark here
that the center of the ellipse is (—13 +2¢, — %+ 10)
which, as ¢ varies, lies on the line s = ir + 5 passing
through the center of the hyperbola d,= 0. Also, inde-
pendently of c, the angle between the positive r-axis and
the major axis of the ellipse is —14°50’.

We now show that (), is 4-stable in the half-closed set
S, obtained by deleting from S the closed boundary seg-
ment [P,, P,]. We do this by proving that all points of
S satisfy the strict inequalities imposed by N1. First, the
inequality (42) defines the same open half-plane as the
strict inequality Q(—1) > 0 (the one below the tangent
t,) , containing all of S. Second, all points of S lie in the
half-plane s = $r bordered by ¢, and thus satisfy the
weaker inequality (40). Third, to see that all of S lies in
d, > 0, it is sufficient (as P,, for example, is in d, > 0)
to show that the boundary of § does not intersect the
hyperbola. Now, if P,(—+5 + ¢, —3§ + #¢) is the intersec-
tion point of 7, and ¢, , it is very easy to show that the seg-
ment [P,P_] lies strictly between the two intersection
points P, and P, of ¢, with the hyperbola and thus all of
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Figure 3 A-stability domain of Q, for c=4.

[P,P,] is in d, > 0. Similarly, both P, and P, and thus
the whole segment [P, P,], lie on the (d, > 0)-side of the
single intersection point of ¢, with the hyperbola (inde-
pendently of ¢, the r-coordinates of P, and of that point
differ by +4%). Finally, to demonstrate that the elliptical
part of the boundary of § does not intersect the hyper-
bola, we prove that this is true for the ellipse as a whole.
Substituting from (44) into d, = 0 and letting s = 30/4,
the points of intersection would have to correspond to
real solutions, with respect to o, of

(726" — 240+ 2)" + (—1200° — 280" + 140 — 1)¢
+ (500" + 406® + 30° — 20 + 1/8) = 0. (45)

But the discriminant, with respect to ¢, of (45) equals
—2160" and thus, for any real o, Eq. (45) is not satisfied
by any real value of ¢. This is equivalent to saying that,
for any real value of ¢, this equation has no real solutions
with respect to o (except for o = 0 which corresponds to
the double root ¢ = 1), as required.

Algorithm A4
Consider the nonlinear difference equation

N(w) = Aw—h[cAf+f+ 3 —c)Vf

+(FH—c+nNVf+ E—c+)Vf]=0,
(46)

associated with Q, [Eq. (38)] of the previous section,
with f=f(w). According to the results of the second
section, three different solutions of (46), corresponding
to three noncollinear points (r, s) chosen from the A-
stability domain of (), , are needed to produce a fourth-
order A-stable approximate solution. As it stands, the
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procedure for computing this higher-order solution is
costly from a computational point of view, except pos-
sibly in a parallel mode. It would involve, at each inte-
gration step, the solution of three systems of nonlinear
algebraic equations.

We now describe a finite algorithm, which we call
“A4,” for achieving the same purpose much more effi-
ciently. It consists of two steps. First, instead of solving
(46) exactly, we show that an approximation, obtained
via cubic extrapolation of previous data [16] followed
by a single Newton-Raphson step around this “predic-
tion,” is sufficient to maintain the validity of the theorem
in the second section. Second, only one approximate
solution is calculated in this way; the other two— more
precisely approximations thereof —are calculated from
linearizations around the first one.

~ Step 1, finite Newton-Raphson approximation
Starting with initial data with error at most O(h%), we
calculate the approximate solution x*, at /" = (n + 1),
from previous data as follows. Let x be the Newton solu-
tion at ¢ = nh, then compute a “‘predicted” value ¥ as
follows:

it=x+4Ax,

AX=Vx+ Vx + V'x. (47)

The correction 6x" is obtained from linearizing N about
~t .
x" and is defined by

N*[x] = [I = hef*Jox" + {As — hlcf + (1 —o)f
+ @G —Vvf
+{(EZ—c+rVf+ E—c+s)VF}=0, (48)
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where f=f(x),f =f(") etc. Define

xt=x+Ax, Ax=Ai +6x". (49)

We now derive an equation governing the global dis-
cretization error € = x — y at an arbitrary point t = nh .
To this effect we calculate N*(y), where y is the exact
solution of (1), denoting again by the symbol ‘> that
we are neglecting errors which are O(#’) . The notation
¢, ¢ ", etc. denotes f(y), f(F), etc. First, let

V=1 +V+V+V )y [1+D+iD°+1D*—33D%]y.

(50)
Then
S 4
Ay [<Eﬁpl>—%%u ]y 1)
i=1
and hence

hed” o hed + hedy,, [Dy + 3D%y +4D%y]
+4he G, [ (D)™ + (Dy) (D*y) ] +#he (DY)
Using the differential equation, one obtains
- 4 1 )
o Diy.
LGP (52)

Also
(1 =)+ (G~

OV+ (F—c+nNV+ EF—c+s5)V']e

~[(1—c)D+ GE—e)D’+ G —3c+r)D*+
(s —dc—r+s)D'ly.

(53)
From (51), (52), and (53) the { } in N*(y) is given by
{ Y —ryY = (L —r+s)h'y™". (54)
By definition 8y" = y* — 3" =~ h'y", and therefore
[1—hed™ )10y = n'y™. (55)
From (54) and (55) one gets
N*(y) &2 —rl'y™ — (s = r)h'y™. (56)
Write equation (48) in the form
(1 — hef™,]0x" — hM (x, 6x") = —Ax, (57)

where M is some nonlinear difference operator. Then
(1= hed" )0y — kM (y, 0y") = —AF — ri’y™

— (s —ryh'y?. (58)
Subtracting, one gets
' =—As + O (1) = O(h’), (59)

where we have used the fact that € = O(4”) since the
global errore, for0 = v = n, is O (K") . This latter fact is
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a consequence of the stability and the second order ac-
curacy of N* (see, for example, Spijker [17]). Now, since
0x" = 6y" + 6" and y" is O (k") by (55), it follows that

Ox" = O(h’) . (60)
Subtracting (56) from (48) and using (60) and the relation
Ae = A& + 0", (61)
one is led to

[l — hed', JAe — h[cd” g+ (1 — ) e
+ =0V () rh’y® + (s — )iy, (62)

which is similar to the Eq. (24) governing the global
error between y and the exact solution N(w) =0. Itis
now clear that if the approximate solution x" is used — in
place of the exact solution of N =0 — in forming the
linear combination (17), then the global error, being a
linear homogenous function of the parameters r, s be-
cause of (62), will be of O (h*) , as asserted.

The above conclusion could have been arrived at in an
indirect manner. Since N* is of second-order accuracy,
one has initially, with suﬂiciently accurate starting values
for x and w, jw" ~y'|= 0" and | —y" | =0 .
Then, |5c*—w |=0(* and thus |x'—w'|=0(")
(Liniger, [18]). The stability of N* then shows that
[x* — w|=0(h% globally. Therefore, to O(h'), one
may use x in lieu of the exact solution w of N =0 in
forming the averaged solution (17).

o Step 1, perturbation about one solution

Let x = x, be the solution of (48) corresponding to the
point (r,, s,) and f=f,, etc. Let X, p=2,3, be the
solutions defined by N* o [xp] = 0 in an obvious notation.
We note that

1 if ¢, =x,—x,then £ = O (/) globally, and

2. the curly bracket in (48) is O(4*) — see (59); hence
one can replace the term £, in N* by f, as this
causes an error O (A") in the solution.

Linearizing N* (x ) = 0 around x and using the fact
that, on any suﬂi01ently smooth function, V’ raises the
order by j, one thus obtains

[1— he f* ) )6x", + A% + AE, — h{cf" + of " &,
+ (=) f+ (1 =) fy)8,
+ 3=V + G= OVIf,] + (Fr—c+r)Vf
+@—c+s,) V=0, (63)
where £ =", — %", A, = A%, — Ak, etc.

Subtracting (63) from the corresponding equation for
0x” , we get
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U —he f )06, + A&, — h{cf*y €+ (1—o)f, &,
+ = OV, E,)
+ (r, = r)VF+ (s, = 5 )V} 22 0. 64)

Solving (64) for 6¢°,, defining §,=¢&,+ 0, and
x',=x"+¢&, and using (14b), one finds that the
averaged solution is given by

Z=xt g, g, (65)
Two further remarks are appropriate here:

1. The updating of the differences V’x, Vx, - - - is par-
ticularly simple. In fact, by using the definition of X~ ,
one finds that

Vxt=6x" 4+ V'x; (66)

thus V'x updates the same way as x itself. The other
differences are obtained by ‘““integrating,” i.e.,

Vi = Vx + Vit s
Vx' =V 4+ Vi, (67)

Similar relations hold for the ¢, p=2, 3. Up-
dating the differences in this manner may help re-
duce the effect of rounding errors.

2. Each of the differences of f is computed from lower
order differences, rather than from the values of f
themselves, which reduces the storage requirements.

We conclude this section by summing up the results in
the form of the finite algorithm A4. Similar algorithms,
designated A2 and A3, have been derived in conjunction
with ©,, Q, (36) and (37). They correspond, in the nota-
tion of the second section, to the case m=d=1 and
produce solutions with global errors of orders two and
three, respectively. All three algorithms were tested on
the problems of the next section.

o Algorithm A4
Given (r,s,), (r,,s,), (r,,s,) , representing three non-
collinear points in the A-stability domain of Fig. 3, let
v, v,, v, satisfy (14). Given [19] z;x, Vx, Vx, V'x;
[V V&, VE,, VE,VE; (F,£,) . V(L)
p=2,3:

Predict first solution:

Ax=Vx+Vx+Vx, i"=x+Ax, [T=fG"),
fre=fE. (68)
Compute Newton correction by solving
(I = hef " )0x" =—Ax + hlcf" + (1 — o) f+ (3= )Vf
+ (Br—c+r)Vf+ G—c+s5)Vf]. (69)
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Correct first solution:
=40 VX =Vt ox’, VT =V
+ Vi, W =V + VT (70)
Predict perturbations:
AE, =VE, + V€, + Ve, E = +AE,,
p=2,3. (71
Compute Newton corrections by solving:
(= hef" )07, == A, + hlcf €7, + (1 - 0) f€,
+ E— OV(f£,)
T (r,—r) Vif+ (s, — s,)Vf1,
p=2,3. (72
Correct perturbations:
£, =8, 106, VE, =V, 168,V =V,
+VE L VE = Ve + V. (73)
Update auxiliary quantities: Compute
F8, VL) =1, — 1,
Reevaluate “derivatives™:
fr=f GV = = VT =V -V,
Vi =V -V, (75)

p=2.3. (14

and update the averaged solution

= e, g, (76)

Numerical results and remarks
The algorithms A2, A3, A4 were used to solve the fol-
lowing two test problems P1 and P2:

P1: x =-—2000x + 1000y + 1000,
y=x—y. a7

This is the (slightly rescaled) first example in the sur-
vey paper of Bjurel [1], section 4, p. 1, and Example A
of Ref. 20. It is a linear problem with constant coef-
ficients having the eigenvalues A, =—2000.500125,
A, =—0.499875 with a “stiffness ratio” of 4000. The
exact solution of this problem with x(0) = y(0) =0 is
x=1—0.49975,00000 ¢ "1 — 0.50025,00000 ¢ 2’ ; y =
1 4 0.00024,99374,688 ¢ "' — 1.00024,99374,688 ¢ 2" .
To stay away from the boundary layer [16] of amplitude
0.5 in the x-component at t =0, the integration by
A2-A4 was carried out from t=1 to t =4, using the
exact solution values near r = 1 as starting values in the
multistep methods. The results are plotted on the doubly
logarthmic graph of Fig. 4. Specifically, the maximum rel-
ative accumulated truncation error in absolute value in
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Figure 4 Accumulated truncation error for test problem P1.

the y-component is shown (the results for the other com-
ponent follow very closely the same curves) as a func-
tion of 4 or of the total number of steps. The lower parts
of the curves show straight-line behavior with slopes
approximately as predicted by the theory (-2, =3, or
—4 , corresponding to the orders 2, 3, and 4, respectively).
The “kinks” in the upper parts of the curves for A2 and
A4 are due to a sign reversal in the error. The (large)
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Number of steps
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Figure 5 Accumulated truncation error for test problem P2.

g-value, g, = A i, is 2 to 3 orders of magnitude larger —
and thus so is # — than what one could use, for example,
with standard Runge-Kutta methods.

P2: $=0.01 —[1+ (x+ 1000) (x + 1)](0.01
+x+y)
y=001— (1+y)(001+x+y). (78)
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This is problem no. 2 in the paper by Liniger {21] and
stems from an application in chemical kinetics. Again
there is a boundary layer effect near =0, and near
t = 100 the eigenvalues begin to vary rapidly. Therefore,
an interval of integration was chosen in the “smooth
part,” from t =1 to t = 81 . A numerically exact solution
was computed by the standard fourth-order Runge-Kutta
method with an extremely small step, # =0.002, using
40,000 steps on this interval. Appropriately spaced
values of this solution near t = 1 were used to start the
integration by A2-A4. The eigenvalues range from A\, &
—981, \,A~—-2x 10" at =1 to \, A —185, \, &
—107" at r=81. Thus the stiffness ratio ranges from
RIS X 10" at t=1 to &2 x 10” at r = 81. Note that i =
0.002 for Runge-Kutta is just barely stable with respect
to the eigenvalue A, & 1000, since the stability limit is
g=Mh~2.78.

In Fig. 5, the errors, defined as in P1, are plotted and
show the same general qualitative behavior. The error
in the y-component only of (78) is shown, since the error
in the x-component is very nearly the same.

Some remarks about the choice of parameters can be
made. Thus far, such a choice is restricted only by a) the
requirement of the dimensionality of the space spanned
by the parameter points to insure the unique solvability
of (14) for the weights v, and b) the A-stability require-
ments. This leaves one with a lot of freedom, and other
criteria could be used in selecting these parameters; e.g.,
maximizing the possible damping of solutions at ¢ = % or
minimizing the local truncation error in some sense. In
the above problems, when using A4, the parameter points
were (r;, s,) =(7,2); (r,, s,) =(5,2) and (r,, 5,) = (7,1).
The secondary parameter was chosen as ¢ = 4, which is
a compromise giving a reasonably large A-stability do-
main without too adversely affecting the local truncation
error constant.

We conclude by commenting on the “amount of work”
involved in one “pass” of algorithm A4 and comparing
it to a similar algorithm. Two function evaluations ( f+
in step 1 and f* in step 8), one Jacobian evaluation ( f*l
in step 1) and one L\ U matrix factorization (that of
(I — hef™)) in step 5) are needed [22]. The algorithm
A4 is rather similar to implicit Runge-Kutta methods of
Rosenbrock type [23]. Specifically, if we compare it to
case no. 9 of the three-level, fourth-order methods of
Allen-Pottle [9], we find this latter method requires three
function evaluations [ f(x),f(x + b.k) ,f(x — b,k +d, D],
one Jacobian evaluation, and two L\ U matrix factori-
zations [those of (I — ha,f,) and (I — ha,f,)]. The rela-
tively low number of operations per pass in A4 is due to

1. The use of one single Newton-Raphson step in com-

puting the basic solution [24].
2. The introduction of an auxiliary parameter ¢, which
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makes the Adams formula slightly longer than would
be necessary for accuracy purposes, but can be used
to improve the stability properties and to fix the co-
efficient matrix in step 5 when calculating the other
two solutions, thereby saving two L\ U factoriza-
tions.

3. The application of a perturbation method, which en-
ables one to use the function and Jacobian evaluations
associated with the first solution in computing solu-
tions 2 and 3.

Aside from the major items of computation mentioned
thus far there is, in A4, more data handling of other types
than in the Allen method, but we expect that this should
not have a great influence on the relative performance
of the two methods.

References and notes

1. G. Bjurel et al., “Survey of stiff ordinary differential equa-
tions,” Report NA70.11, Royal Institute of Technology,
Stockholm, Sweden, 1970.

2. G. G. Dahlquist, “A special stability criterion for linear
multistep methods,” BIT 3, 22-43 (1963).

3. P. Henrici, Error Propagation for Difference Methods,
J. Wiley & Sons, New York, 1963, p. 23.

4. O. Widlund, “A note on unconditionally stable linear multi-
step methods,” BIT 7, 65-70 (1967).

5. C. W. Gear, “The automatic integration of stiff ordinary
differential equations,” Information Processing (North Hol-
land Publishing Co., Amsterdam) 68, 187 ~193 (1969).

6. W. Liniger and R. A. Willoughby, “Efficient integration
methods for stiff systems of ordinary differential equations,”
SIAM J. Num. Anal. 7, 47-66 (1970).

7. B. Lindberg, “On smoothing and extrapolation for the Trap-
ezoidal Rule,” BIT 11, 29-52 (1971).

8. W. Liniger, “A criterion for 4-stability of linear multistep
integration formulae,” Computing 3, 280-285 (1968).

9. R. Allen and C. Pottle, “Stable integration methods for
electronic circuit analysis with widely separated time con-
stants,” Proc. Sixth Annual Allerton Conference on Circuit
and Systems Theory, Univ. of lllinois, Oct. 1967, pp. 534 -
543.

10. M. Abramowitz and I. A. Stegun (Ed.), Handbook of Math-
ematical Functions, National Bureau of Standards, Appl.
Math. Ser. 55, 883 (1964).

11. P. Henrici, Discrete Variable Methods in Ordinary Differ-
ential Equations, J. Wiley & Sons, New York, 1962,

12. J. B. Keller, “Perturbation Theory” Lectures presented at
the Department of Mathematics, Michigan State University,
East Lansing, Michigan, 1968.

13. Henrici, Ref. 3, p. 18.

14. Liniger, Ref. 8, p. 283.

15. F. R. Gantmacher, “The Theory of Matrices,” Chelsea
Publishing Co., New York, 1959, vol. 2, pp. 177-180.

16. Obviously, with large time steps, such a procedure is mean-
ingful only during the smooth asymptotic phase of the solu-
tion. In the initial boundary layer, it is natural to use small
steps in order to sample the solution properly.

17. M. N. Spijker, Stability and Convergence of Finite Differ-
ence Methods, Doctoral thesis, Department of Mathema-
tics, University of Leiden, Leiden, 1968.

18. W, Liniger, “A stopping criterion for the Newton-Raphson
method in implicit multistep integration algorithms for non-
linear systems of ordinary differential equations,” Comm.
ACM 14, 600-601 (1971).

19. The quantity z represents an output and is not used in the
calculation.

347

A-STABLE INTEGRATION METHOD




348

20.

21.

22.

23.

M. E. Fowler and R. M. Warten, “A numerical integration
technique for ordinary differential equations with widely
separated eigenvalues,” IBM J. Res. Dev. 11, 537-543
(1967).

W. Liniger and R. A. Willoughby, “Efficient numerical in-
tegration of stiff systems of ordinary differential equations,”
report RC-1970, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, N.Y., 1967.

F. G. Gustavson et al., “Symbolic generation of an optimal
Crout algorithm for sparse systems of linear equations,”
J. Assoc. Comput. Mach. 17, 87 -109 (1970).

H. H. Rosenbrock, “Some general implicit processes for
numerical solution of differential equations,” Comput. J.
5,329-330 (1963).

W. LINIGER AND F. ODEH

24. For strongly nonlinear situations it may be preferable to
carry out additional Newton steps. In the test problems de-
scribed here the extra iterations did not improve the ac-
curacy appreciably.

Received December 17, 1971

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 10598.

IBM J. RES. DEVELOP.




