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A-stable, Accurate  Averaging of Multistep Methods 
for  Stiff Differential Equations 

Abstract: Several  low-order numerical solutions of stiff systems of ordinary differential equations  are  computed by repeated integration, 
using a multistep  formula with parameters. By forming  suitable  linear  combinations of such solutions,  higher-order  solutions are ob- 
tained. If the  parameters  are properly chosen the  underlying  solutions, and thus the higher-order one,  can  be  made A-stable and strongly 
damping  with respect  to  the stiff components of the system. A detailed  description is given of an  algorithmic  implementation of the 
method, which is computationally efficient. Numerical experiments  are carried out on some  test problems, confirming the validity of 
the method. 

Introduction 
We are  concerned with the numerical  integration of stiff 
systems of ordinary differential equations 

x =f ( x )  , ( 1 )  

i.e., systems with widely separated eigenvalues, A ,  of 
the  Jacobian matrix J = fx  [as  evaluated,  for  example, 
along a  particular  solution x = F ( t )  of Eq. ( l ) ] .  Stiff sys- 
tems  are  encountered in many areas of applications, e.g., 
reactor calculations,  circuit  analysis,  chemical  kinetics, 
flight dynamics,  constrained optimization, etc.  For a sur- 
vey on stiff systems,  see Bjurel et al. [ 11. 

In  the  presence of stiffness,  a  numerical  integration 
method  must have  very strong  stability properties if it is 
to  be efficient. Typically,  one  wishes to integrate the sys- 
tem of Eq. (1 )  with a fixed integration step h such  that,  for 
one or more of the eigenvalues A of J , one  has 141 >> 1 , 
where q = Ah. It is thus desirable for a formula  to  have 
unbounded regions of fixed-h stability in the complex 
q-plane. 

One stability concept  that is widely used in connection 
with stiff systems, called A-stability, was  introduced by 
Dahlquist  [2].  It  demands  that all numerical  solutions, 
generated by applying  a  numerical  integration method, 
with an arbitrary integration step h, to  the equation ,t = 

Ax, Re A < 0 must be (strict1y)’asymptotically stable. In 
this case,  the unbounded region of fixed-h stability men- 
tioned above is the left-half q-plane. It is easy to  see  that 
for linear  multistep  formulae (LMF), 

k c. (ajxn+j - = 0 , 
j=O 

a necessary  and sufficient condition for A-stability is  that 
the  roots zi , 1 5 i 5 k , of the  characteristic polynomial 

x,(z) = p ( z )  - q(.(z)  3 p ( z )  = a j z j ,  U ( Z )  = P j Z j  
j =  1 j = 1  

(3) 

be  inside the unit  circle, for all q in the left half-plane. 
However,  the  class of A-stable LMF is quite small. In 

fact,  for  an  LMF  to be  A-stable, it is necessary  that  it be 
implicit (p, # 0 )  and that  its  order of accuracy [3] 
should not exceed two [2]. In order  to find a broader 
class of LMF, useful for solving stiff equations,  one may 
employ  a somewhat  weaker stability concept,  such as 
A (a)-stability introduced  by Widlund [4], or stiff sta- 
bility defined by Gear  [5].  There  do  exist  LMF, with 
p > 2 , which have  either  one of these properties. On  the 
other hand, it is possible to find strictly  A-stable methods 
with p > 2 if one  considers a  class of formulae  larger 
than  that  described by Eq. (2), e.g., LMF involving 
second derivatives [ 61. 

Another way of generating  A-stable  integration  meth- 
ods with p > 2 was proposed by Dahlquist  [2].  It con- 
sists in integrating Eq. (1) more  than once by an A-stable 
LMF, using different step sizes h , and then  extracting 
from  the solutions thus obtained  a  higher-order  solution 335 
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by Richardson  extrapolation. For  example, if x“’ and xi2’ 
are solutions of ( I )  obtained by the  second-order A-stable 
Trapezoidal Rule with step sizes h and 2h respectively, 
then x* = (4x”’ - xi”)/3 represents,  wherever defined, 
i.e., at multiples of 2h , an A-stable  solution of order four. 
This  procedure,  however,  has  some disadvantages. In 
principle, it gives  higher-order  values of the solution  only 
every two steps.  The missing solution  values have  to be 
obtained by interpolation of appropriate  degree.  More- 
over,  the  Trapezoidal  Rule is only marginally stable  for 
y + x ,  i.e., rapidly decaying  solutions of a stiff system 
give rise to slowly decaying  oscillatory  numerical solu- 
tions. To  reduce the effect of such undesirable oscilla- 
tions, it seems  necessary  for  the integration by the 
Trapezoidal Rule to be  followed  by  a filtering process [7]. 

In this paper  we  consider  an  approach similar to  the 
one mentioned in the preceding  paragraph.  Starting  from 
a  special LMF, which has  an  order of accuracy p and 
contains  intrinsic parameters  other than h , we integrate 
Eq. (1) repeatedly using the  same  formula  and  the  same 
h but with different  values of those  other  parameters. We 
then show how to obtain  a  solution of higher-order ac- 
curacy by forming suitable  linear  combinations of such 
parametrized  solutions. The method has several useful 
properties.  The higher-order  solution is produced di- 
rectly at  every time step  and  no interpolation is neces- 
sary, since we use  the  same  step size h for  each integra- 
tion. It can  be  arranged that  the underlying  integration 
formulae are strongly  damping with respect  to  the rapid 
transients of stiff systems,  thus avoiding the  type of 
oscillations  accompanying the  Trapezoidal Rule. Also, 
by starting from special formulae with order p 5 2 , we 
can assure  the A-stability of the integration procedure  as 
well as its  higher accuracy. Finally,  this procedure can be 
implemented in a computationally efficient way. We now 
outline the plan of the paper. 

In the  second section we introduce  an  Adams-type, 
k-step differential-difference operator 0 ,  of order p < k , 
which contains d = k - p free  “primary”  parameters and 
one  “secondary”  parameter, in addition to  the time-step 
h . A simple recipe is then  given for  constructing, from 
0 ,  another  operator 0’ of higher order p + rn , I 5 rn 5 d 
which contains ( d  - rn) primary parameters.  The recipe 
consists of forming  a  suitable  linear  combination of 
(rn + 1 ) versions, SZp,  1 5 p 5 rn + 1 , of 0 corre- 
sponding to ( m  + 1)  different sets of values of the pri- 
mary  parameters.  We  then prove  that if m 5 p and x,, is 
the numerical  solution of Eq. ( 1 )  associated with a,, , 
then the corresponding  linear  combination of the xp’s,  
which we sometimes  loosely call their  “average,” repre- 
sents a  numerical  solution of order p + rn . The  secondary 
parameter is held fixed throughout  the averaging process 
for saving computer  operations, which is discussed in the 

336 final section. In  the third section, we discuss  the result of 

averaging Adams-type solutions from  the point of view of 
global error analysis. The nonlinear  difference equation 
governing the accumulated  truncation error is first  de- 
rived, and a perturbation method is then  used to obtain 
the explicit dependence of this error on the primary 
parameters. By examining the  form of this dependence 
we generalize the averaging recipe mentioned above and 
remove the restriction rn 5 p . We  also  indicate,  via an 
example, how this approach  leads  to averaging  pro- 
cedures  for solutions  obtained from integration  formulae 
other  than of Adams type. Next  three specific operators 
are introduced and  the domains of A-stability in their 
parameter  spaces  are explicitly determined. To  do this 
we apply a convenient criterion given earlier  by one of 
the  authors [SI .  Then a finite algorithmic  implementation 
of the averaging  method is discussed for  the  case of one 
of the specific operators mentioned above.  The algorithm, 
designated “A4,” consists in computing one solution by 
using cubic extrapolation and  a single Newton-step, then 
computing two  other solutions from linearization around 
the first,  and finally “averaging” the  three solutions.  We 
prove  that  the averaging process is correct  for  the finite 
algorithm,  i.e., it produces  fourth-order solutions. Also, 
the A-stability analysis of this finite algorithm is identical 
to  that of the implicit difference equation obtained by 
applying Eq. (2) to X = Ax (see Section 4.2 of [6]). In  the 
final section we give  numerical  results  obtained by ap- 
plying, to  two  test problems, the algorithms associated 
with the  three specific operators mentioned  earlier. These 
algorithms are A4, for which p = 2 , k = 4 , rn = d = 2 ; 
A3,  for which p = 2 ,  k = 3 , and rn = d = 1 ; and A2, for 
whichp=l,k=2,andrn=d=I.Wealsooffersome 
remarks about  the computational efficiency of A4 as 
compared  to an implicit Runge-Kutta algorithm [ 9 ] .  

Averaging of Adams-type solutions 
Let x ( t )  be  a  real analytic function on  the real line and 
{t,} , t, = nh , II integer, a discrete  set of values oft with 
increment - or  step - h > 0 .  Consider  the linear dif- 
ferential-difference expression 

I(t,) = - x ( t , )  - h c x ( f n + l )  + [ 
k-1 

( 1  - c)x(f,) + x (bj* - c ) d  x ( t , ) ] ,  (4) 

where  denotes  the j th  backward  difference, the bj* 
and c are,  for  the  moment, undetermined constants  (later, 
we refer to c by the  term  “secondary  parameter”) and 
the  dot  denotes differentiation with respect  to 1 .  It is 
convenient to  associate with the  expression (4), an op- 
erator 

j = 1  
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where A is the first forward  difference and D = h ( d l d t )  . 
An  operator  whose form is indicated by (5) is said to be of 
the Adums type.  When the differences in R* are ex- 
panded, it can  be  written in the  perhaps more familiar 
ordinate form that is more  suitable for  the analysis of 
stability questions. 

A procedure  for defining the  accuracy of R* is the 
following: Let x ( r )  and its differences  be  expanded in 
Taylor series about t = t ,  . If by the symbol E we de- 
note equality with error o ( h k )  where k is the  step  number 
of R* , then 

A =  (;!)-I D' 
12 

i= I 

k 

D v j ~ E y ~ ~ D ~ + l ,  j = l ; . . , k - l ,  (6) 
i=j 

where y i j  are known constants (which may be  derived, 
for  example,  from  the tables in Abramowitz and  Stegun 
[IO]). Upon substitution in (5) from (6), one  obtains 

R*E uiDi,  (7) 
B 

j=2 

where 

ui = ( i ! ) - I  - 
i -  I 

Yi&,,jbj* 3 2 1 i I k .  (8) 
j = 1  

Note  that if the  secondary  parameter c is introduced as 
in ( 9 ,  then  the  relation (8) between the quantities u, 
and bi* becomes  independent of c . 

Since 
x 

V i = C y j i D ' =   ( D + - D 2 + .  1 . . ) ' E D ' + .  . . 
j=' 2! 

one has yi i  = 1 for all i .  Hence, noting that  the coef- 
ficient matrix defined by (8) is triangular, one  can solve 
these  equations uniquely for  the bj* , for any given set of 
values ui . If,  for  example,  the  constants hj* were chosen 
to make ui , i = 2 ,  . . . , p , p 1 k vanish,  then the 
operator defined by (7) is 0 ( h p + l )  and is said to be of the 
order of accuracy p .  If, starting  from the  class of all 
operators of order p 5 k - 1 , we impose the additional 
constraints ui = 0 , i = p + 1 , . . . , p + m ,  I Z m S d ,  
d = k - p , then we raise the  order of R" from p t o p  + m . 
In  particular, let hi denote  the solution of (8) when all the 
ui vanish, then R* 0 and it has maximum order p = k . 

We now describe  an  alternate method for raising  the 
order of accuracy of an  operator R . Consider 

R = A - D  c A + l + C  ( b j - c ) V j + c   ( b j - c  [ 
P - 1  IC-I 

j=1  j=7)  

+ uj-p+l)vj] , (9) 

where u1 , . . . , u d  are,  for now, arbitrary  constants we 
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call primury parameters. It is easy  to  see  that in this case 
the expansion (7) for R takes  the form 

d 

R E  D~ p, D ~ ,  (10) 
i= 1 

where 
I 

Pi = - ~ p l + i , r ) - l + j  uj 7 
; = I ,  . . .  , d .  ( 1  1 

j =  I 

Thus R is of order 2 p  for any set of parameters u,  , . . . 
u d .  These  parameters  form a  d-dimensional vector u 
Consider m + 1 such  vectors, up = (pI,, . . . , u ~ , ~ )  
p = I , . . . , m + 1 , and for  each p the  ,operator Rp de- 
fined by (9) and associated with u p .  Form  the  operator 

p= I 

Given  the  vectors u,, , p = 1 , . . . , m + 1 , we show 
how to  choose  the 
p + m . From (lo), 

"weights' 
(1 I), and 

" v,, to  make R' have  order 
( 1  2)  one  gets 

An easy  calculation shows  that wi = 0 , i = 1 , . . . , m , 
if and only if 

m+ 1 

VPui@ = 0 3 

p= 1 

Adjoin to  the  system 
m+ I 

V P ' I  3 

p= 1 

( 1  4a)  the normalizing condition 

the significance of which will appear later. If the v,, satisfy 
(14), the  operator 0' = O(hp+m+l )  . More specifically, if 

m c l  
)Vi = Ui,@VP > i = m + l ; . .  , d  (15) 

p=l  

then 

c A + I  + ( b j - c ) V J  
p + m - l  

j =  1 

+ (h j  - c + w j ) V ' ] ,  
I<-  1 

j = p + m  

which has order of accuracy ( p  + m) . 
The unique  solvability of (14) is equivalent to  the  con- 

dition that  the ( m  + 1 ) truncated  vectors up' = ( u ~ , ~  , 
, p = I , . . . , rn + 1 , span an m-dimen- 

sional  linear  space. To see this,  note that  the pth column 
vector of the coefficient matrix M defined by the  system 
(14) is the composite vector ( I  , up')' . Now if, for ex- 337 
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ample, the  vectors up‘ , p = 1 , . . . , rn , are  independent 
and vp = up’ - , then 

IMl(7n+l)x(m+1) = I v 1  3 . ’ . ’ vmImx7n f 0 

and  thus M is nonsingular. The  necessity of the condition 
is obvious. For  the special case rn = 2 , which we shall 
consider later,  the solvability  condition is that  the 2- 
vectors ul’ , u2’ , u3’ are  the position vectors of points 
forming a nondegenerate triangle. 

We now turn to  the effect of the averaging procedure 
defined by (12) and (14) on  the approximate  numerical 
solution of the  system ( I ) .  Let N denote  the nonlinear 
diffe’l-ence operator derived  from (9) by substituting the 
smooth function f ( x )  for  the  derivative X. Similarly,  de- 
fine N p  and N‘ . Let xp be  the solution of N p x p  = 0 , p = 

1 , . . . , rn + 1 , at an arbitrary time  t = t, and define the 
averaged  solution z = z, by 

m+ 1 

z = c. voxp 1 (17) 
p=1 

where  the vp are defined by (14). Then we have  the fol- 
lowing theorem. 

Theorem 
If k 5 2 p  and m 5 p , then the  approximate solution z 
satisfies the difference equation N‘z = 0 globally to with- 
in an error  O(hkfl). 

The following corollary is an immediate consequence 
of this theorem: 

Corollary: The global discretization error of the approxi- 
mate  solution z is O(hp+m). 

Proof. Let y(t) denote  the  exact solution of (l), defined 
on an interval ( a ,  b)  and y = y(t,) its  value at  the grid 
p o i n t t , = a + n h ,   n = O , l ; . . , H , w h e r e H h = b -  
a .  Since x .  is defined by a stable difference operator of 
order p ,  the global truncation  error (xp - y )  = O(hp) [ 1 1 1 .  
Therefore,  one  has 

m+ I 

z - y = v p ( x p  - Y )  = 0 ( h P )  
p= I 

and  thus 

xp - z = (xp  - y )  + ( y  - z )  = 0 ( h P )  . (18) 

From  the definition of z it follows that 

(bj  - c ) V j ] [  v,f,,] 
P-1 m+ 1 

p= 1 

“-1 m+l 

j = p  p=l  

where f ,  =f(x,) . In  the following, it is convenient  to 
338 think of all discrete values as being interpolated by C” 
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functions. For simplicity in notation, we write + = f ( z )  , 
J =f&)  and,  for a generic p ,  x = xp and j = f p .  Then 
using Taylor’s  theorem,  together with the assumption 
k 5 2 p ,  one has 

J’= + + J [ x  - z ]  + O(h”) 

so that 

h f E  h+ + hJ [x  - Z ]  . 

Similarly, 

hAf=  hA+ + hA{J[x - z ] }  , 

hVJf.” h V j +  + h V j { J [ x  - z ] )  , j =  1 1 . . . 9 ( P -  1 ) .  

The  last term  in the  above relation is o(hk) if j 1 p , and 
therefore 

hdf = hd+ , p 5 j 5 k - 1 .  

Hence, if l- denotes  any  one of the  operators A ,  I or 
V’ , j = 1 , . . . , p - 1 , the  above relations imply 

and 

p 5 j 5 k - 1 .  

Substituting the  above into (1 9) and using the relations 
(14) and definition ( 1  5 )  one  obtains 

cA + 1 + (bj - c)V’ 
p+m-l 

j = 1  

k-1 

Therefore z is governed by the relation N‘z“ 0 , which 
completes  the proof. 

Global error analysis and an  extension of the 
averaging method 
This section is concerned with  a direct  error analysis 
approach  that  shows how to obtain any  order of accuracy 
in the  approximate solution  by  combining,  linearly,  a 
certain number of approximate solutions of lower  order 
which depend  on sufficiently many parameters.  The anal- 
ysis is applicable to general  difference operators with ar- 
bitrary k ,  but we restrict  the  discussion,  for  the moment, 
to  the  Adams-type  operator (9) with k 5 3p . The  approx- 
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imate  solution z is again defined by (17) and  our aim is to 
derive  the  equations analogous to ( I  4) which make z an 
approximate solution of order k .  Naturally,  for k 5 2 p ,  
the conditions (14) will be reproduced. As before,  for a 
parameter  vector u = (ul  , . . . , ud) where d = k - p , 
let x be the solution of the difference equation 

cAJ'+J'+ (b j  - c)VJJ' 
P -  I 

i=1  

I r - I  

where f = f ( x )  . If y is the  exact solution of ( I )  then, 
since N ( y )  = f l ( y ) ,  we obtain  from (10) that 

where means that  terms of order (k + 1 )  are neglected 
and where the pi are defined by ( I  I ) .  In the following, 
and in defining N ( y )  , we shall use the notation F = J ' ( y )  . 
Let E = x - y be the global discretization error  at an ar- 
bitrary grid point then,  as  stated  earlier, E = O(hp) .  Sub- 
tracting (23) from (22) and neglecting terms o(hk) one 
obtains 

k-1 'I 

j=p 

i = l  

where F i , ) ,  Fc2) are  the first and second  (FrCchet)  deriva- 
tives of F at  the solution y and El2] denotes  the pair (E ,  E)  . 
Let E =  hPq , substitute in (24) and divide by h"" to 
obtain 

k-1 

j = P  

d-1 

i=O 

where NN denotes  that terms o(hd-l)  are neglected. To 
obtain the  asymptotic  expansion, in powers of h , of 
q we let 

If- 1 

l=n 

expand  the left side of (25) to  order hd" , and use regular 
perturbation theory [ 121. A straightforward  but rather 
long calculation shows  that  the q l  are  determined re- 
cursively by the  equations 

i j  - FiI)77j = - Pj+l Y 
w+j+ 1 I 

0 5 ; 5 p - 1 ,  

The  above  equations,  together with initial values which 
may be assumed to vanish or  to be o(h"') , define the 
functions q j  . In particular, the  dependence of q j  on  the 
parameters u 1  , . . . , ud (or  equivalently pl , . . . , pd) can 
be determined  recursively. In fact,  for 0 5 j 5 p - I , it is 
clear that qj is a  linear  function of the pl  , 1 5 I5 j + 1 , 
with coefficients depending only on the solution y . Ex- 
plicitly one has 

We can now (re)prove  that  the  approximate solution  de- 
fined by (17)  and (14), with rn = p , has a global error 
O(h") . To see  this, let E = z - y . Then, in an  obvious 
notation, 

P+ 1 P +  1 P +  1 

E 2 vP (xp - y )  = C, = hP vpqp . (30) 
p=1  p=1 p= I 339 
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Substituting in (30) from ( 2 6 )  and ( 2 8 )  one obtains 

Because of (14a)  and ( 1  I) ,  the first term  on  the right- 
hand  side of (31) vanishes, which proves  the  assertion. 

In  order  to find an approximate solution  with accuracy 
higher  than 2p we need to calculate the  dependence of the 
errors q j  , p 5 j 5 d - 1 , on  the  parameter  vector u 
explicitly. Taking  into  account  the  form of the right- 
hand  side of (27b), and  noting that  the & depend linearly 
on u , an induction  argument shows  that qj has the form 

p 5 j 5   2 p -  1 ,  ( 32 )  

where  the coefficients qjI , qjlr depend only on the solu- 
tion y . 

As before,  let xp be the solution to N p x p  = 0 ,  z = xp=l vpxp , where J" is to be specified later  and E = z - y . 
Then, using up = 1 and ( 3 2 )  we get 

Jr 
x 

+ 0 ( h p + d )  . 
Hence, if the coefficients up satisfy the  equations 

1 c, u p =  1 ,  
p=1 

p=1 

x 
c, ~ p P l + I , p P r + l , p  = 0 
p= I O < r ~ d - p - - l - l ,  

0 5  15 d - p -  1 

then E = 0 as  desired. Note  here  that (33 )  repre- 
sents a system of N =  ( d +  1 )  + ( 1 / 2 )  ( d - p )   ( d -  
p + 1 )  linear equations  for  the A" unknowns u p .  The 
unique  solvability of these  equations,  for almost all 
parameter  vectors pp (or up) , follows from  the analyticity 
in u , of the coefficient matrix. 

For  the  sake of completeness we now  record the equa- 
tions defining the coefficients qjl  , q j l r .  

and 
j - p - / - r  

Jlr 1 2 A ; q j - i , l , r  + ('j*lr - " j / r )  1 

i= I 

L q .  = { 
1 
0 5 1 5 j - p - 1  
O Z r 5 j - p - 1 - 1  

0 5 1 5 j - p  
r = j - p - 1 .  

Aj*lr - 'jlr 

The  operators in (34)  are defined as follows. Let 

6 , n  [ ( i  + 1 !I-' + c ( A ~  - li) p < i Z d - l ,  

0 5 j Z i - p  
i-p+l  

L + l  = Yi,l+p?p+l,p+j 9 

l = j  

where 9 is the triangular  matrix inverse of y , 

R + =  [ 2 ( i +  1 ) ! ] - ' d i / d t i  

[ (i + 1)  !]- - - <i,OF(l) i d  ]I [ p 5  i5 d -  1 
dt' dt  

Ji 0 5 j 5 i - p  A,,j = - [ < i , j F , , , I  
d' 
dt' 

p 5 j 5 d - 1  

0 5  1 5 j - p  
0 5  r 5 j - p - 1 .  (35) 

We remark here  that if we impose the  constraints ( 3 3 )  
with d replaced by d' , d' 5 d- 1 , then the global error 
E = O ( h P + d q C )  . The  equations ( 3 2 )  and (34 )  would then 
allow for computing an  estimate  for qd, which could  be 
used for  error control. 

It is clear  that this perturbation method  can  be  used to 
arrive  at solutions of accuracy 0, + d )  for any d ,  but we 
defer a complete  discussion to a future  paper  since  the 
procedure of the  second section will suffice for  the fol- 
lowing sections. It should  also  be  remarked that  the 
perturbation  procedure is applicable to any consistent 
scheme [ 131 and we  end this  section by stating the re- 
sults of its  application to  the  two-parameter  operator 

R =  6 A  + ( 3  + 1 2 ~ ,  - 2u,)A2 

- D ( 6  + ( 6  + 1 2 ~ ,  - 2 u 2 ) A  + ( 1  + S U ,  - u S ) A 2 } ,  

which is of order p 1 2 for any u = (u l  , u 2 )  . For u = 0 ,  
R represents Simpson's  Rule. The general operator R is 
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equivalent to  that associated  with  formula (12) of Ref. 14 
via the  parameter transformation 

The  operator R was  shown in Ref. 8 to be  A-stable  in an 
appropriate  parameter domain. In  terms of the  present 
parameters, this  domain is {uz < 6u, , u, < -1/2}. 

4 

If z = vpx as before, where 
p = l  

J 

4 

then z is an  approximate solution of order four. 

A-stability  analysis 
In  the  rest of this paper  we consider in detail three  opera- 
tors of the  form (9) and  the algorithms for producing ap- 
proximate solutions  associated  with  them. The  operators 
are defined by 

R , = A - D [ c A +  1 + ( & - c + r ) V ] ;  p =  1 , k = 2 ,  
(36) 

R , = A - D [ c A +  1 + ( & - c ) V +   ( & - c + r ) V ' ] ;  
p = 2 , k = 3 ,  (37) 

R , = A - D [ c A +   l +  (&-c)V+ ( & - c + r ) v '  

+ (% - c + S)V3]  ; p = 2 , k = 4 ,  ( 3  8) 

where r , s are  the primary parameters. 
This section is concerned with determining the do- 

mains, in the  parameter  spaces, of A-stability of R, , 0, , 
R a .  To  this end  we transform (36) ,  (37) and (38)  to  the 
ordinate  form and use a  criterion  derived by one of the 
authors [8]. If q(z )  = p(z)/a(z) , where p , m are  the famil- 
iar  polynomials associated with  linear  multistep opera- 
tors, then the conditions for A-stability are N 1: that  the 
zeros of u lie inside the unit  circle, and  N2:  that P(x)  3 0 , 
-1 5 x 5 1 , where P is a certain polynomial depending 
on  the coefficients of p and U .  This  latter condition is 
equivalent to  the  requirement  that  Re q(z )  1 0 for all 
Iz I = 1 . For a  k-step operator,  the condition N 1 is equiva- 

lent  to demanding that  the roots of a(<) = (< - l)'u(z(<)), 
z(<) = (5 + 1)/(< - 1) , lie in the left half of the <-plane. 

b,=O 

Figure 1 A-stability domain of SZ, . 

A-stability of Rl 
In  the  case of the  operator R, , we find that 2u(z) = 

2 c$ + ( 3  - 4c + 2r)z - (1 - 2c + 2r) and &(<) = <' + 
(1 + 245 + (-2 + 4c - 2r). By the  Routh criterion [ 1.51 
the  roots of u are in the left half-plane (and  thus N1 is 
satisfied) if and  only if the inequalities 1 + 2r > 0 and 
1 - 2c + r < 0 hold. For  the  operator 0, , condition N2 
requires  that (x - l)[(-1 + 2c - 2r)x + (1 - 2c)l 1 0 , 
-1 5 x 5 1 , be  satisfied, which is the  case if and  only if 
either -1 + 2c 1 r 1 - & + c or -+ + c 1 r 1 0 is true; 
i.e., if ( r  , c) is either in wedge 1 or wedge 2 of Fig. 1. Ex- 
cept on a  portion of the  boundary,  these inequalities im- 
ply those associated with condition N1 and,  thus, R, is 
A-stable if 0 5 r < - 1 + 2c ; i.e., if the point ( r  , c) is in 
the partially open wedge 3 of Fig. 1. 

A-stability of R, 
In  the R,-case, 3&(5) = 35" + 65' + (2 + 1245 + (-1 1 + 
24c - 12r) and N 1 is satisfied if and only if -A + $c < 
r < - % + 2c holds. The condition N 2  requires  that 
(x - I)'[(+ - 4c + 4r)x - (+ - 2r)l 3 o for -1 5 x 5 1 , 
which is true if and  only if either 2c - 3 r 1 c - x% 
or c - 2 r 1 +c - 4 holds  (wedges 1 and 2 of Fig. 2). 
As in the previous case, N 2  thus essentially implies 
N1 and C12 is A-stable in $ e  - f 5 r < 2c - 9 (wedge 3 
of Fig. 2). 341 
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Figure 2 A-stability  domain of CL2. 

A-stability of 0, 
In  the  case of a,, 
3 u ( 5 )  = 314 + 95, + (8 + 12r)5" + 24s5 

(39) 
+ (-20 + 48c - 12r - 24s) . 

In the notation of Ref. 15, the  Routh criterion implies 
the inequalities 

$ c n = 2 + 3 r - 2 s > 0  (40) 

id,, = ( IS  - 36c + 9r + 34s 

+ 24rs - 1 6 ~ ~ )  / (2 + 3r - 2s )  > 0 (41) 

$e,=-St- 12c -3 r -6s  > O .  (42) 

For any c # 0 and co # 0 ,  do = 0 represents a nonde- 
generate  hyperbola with center (-% , -#) and asymp- 
totes Asl :  s = -4 ,  As2: s = $r  + % ; the  latter is parallel 
to  the line e, = 0 (see  Fig. 3). The  hyperbola  intersects 
b o t h c , = O a n d e , = O a t t h e p o i n t P , = ( - g + c , - + +  
$e) and e, = 0 once  more at PI = (3 + 4 c ,  0) .  P ,  and 
P ,  coalesce  for c = a. If c > 0 , that  branch of the hyper- 
bola d,, > 0 which lies in s < - + (the bottom left-hand 

342 part) may be  disregarded since it does not intersect c,, > 

0 .  It  will be  shown later  on  that N2 cannot be satisfied 
if c < 4 ; we thus  restrict  ourselves  to  the  case c 2 3, 
even though N 1 can  be satisfied for c < 0 , which may be 
useful for integrating unstable problems. 

In  the  case of a,, condition N2 requires that ( x  - 1)' 
Q(x)  1 0 ,  -1 5 x 5 1 , where 

( 5  - 12c + 12r )x  

(43) 

. ) " O ,  - 1 5 x 5  1 .  
( x )  = 0 ,  for -1 5 x 5 1 , 

Q(x) = (-9 + 2 4 ~  - 2 4 ~ ) ; ~  + 
+ (4 - 1 2 ~  + 6r + 12s) ; 

which is true if and only if Q(x 
The edvelope of the lines Q 

is that  part of the ellipse 

6;' + 24rs + 48s2 + (14 - 36c)r + (34 - 96c)s 

+ &r (13  - 3 6 ~ ) ~  = 0 ,  (44) 

which lies "between" P,  = (- # + gc , - @ + &e) , the 
tangent  point on the tangent t,: s = 3r/2 corresponding 
to x = +l  , and P,  = (-% + 3c,  -4 + + e )  , the tangent 
point on the tangent t, (corresponding to x = -1) ; t ,  co- 
alesces with e,, = 0 .  This may be  seen by calculating s = 

s(x) , the  s-coordinate of the  tangent point,  and  showing 
that it decreases between P,(x = 1) and P ,  = (-B + 3c,  
4) , corresponding to x = -3, and  increases  between P ,  
and P,(x = -1) , so that  the  derivative ds/dx vanishes only 
once in -1 5 x 5 1 . The ellipse lies between  the  two 
parallel  tangents t ,  and t ,  , the  latter  corresponding  to 
x = 0 and having the tangent  point P ,  = (- + c , -+ + 
i c )  . From (43) with x = 0 and x = -1 , one  obtains s 1 
-3 r  + c - 4 and s 5 (-$ + 2c)  - +r  , respectively, which 
are compatible  only if c 1 +, as mentioned  earlier. In 
this case, N2 is satisfied in the closed set  represented 
by the  shaded  area of Fig. 3, bounded by the  lower  part 
of the ellipse  and the  tangents t ,  and t ,  . We remark  here 
that  the  center of the ellipse is (-# + 2 c ,  - 4 + 4c) 
which, as c varies,  lies on the line s = f r  + passing 
through the  center of the  hyperbola d, = 0 .  Also, inde- 
pendently of c,  the angle between  the positive v-axis and 
the major  axis of the ellipse is -14"SO'. 

We now show  that a, is A-stable in the half-closed set 
S ,  obtained by deleting  from the closed boundary seg- 
ment [ P 3 ,  PSI . We  do this by proving that all points of 
S satisfy the  strict inequalities  imposed by N 1 .  First,  the 
inequality (42) defines the  same  open half-plane as  the 
strict inequality Q(-1) > 0 (the  one below the tangent 
t,) , containing all of S .  Second, all points of S lie in the 
half-plane s 3 $r bordered by t ,  and  thus satisfy the 
weaker  inequality (40). Third,  to  see  that all of S lies in 
d, > 0 , it is sufficient (as P ,  , for example, is in d, > 0) 
to  show  that  the boundary of S does not intersect  the 
hyperbola. Now, if P5(- + c , - 3  + $e)  is the  intersec- 
tion point of t ,  and t ,  , it is very easy  to  show  that  the seg- 
ment [P3P5]  lies  strictly between  the two intersection 
points P ,  and P,  of t ,  with the  hyperbola and thus all of 
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Figure 3 A-stability domain of n3 for c = 4. 

Asymptote 1 

[P:,P,] is in do > 0 .  Similarly,  both P, and P, , and  thus 
the whole  segment [P,P,] , lie on  the (do > 0)-side of the 
single intersection point of t ,  with the  hyperbola (inde- 
pendently of e, the r-coordinates of P, and of that point 
differ by + &). Finally, to  demonstrate  that  the elliptical 
part of the boundary of S does  not intersect the hyper- 
bola, we  prove  that this is true  for  the ellipse as a whole. 
Substituting from (44) into d,, = 0 and letting s = 3 ~ / 4 ,  
the points of intersection would have  to  correspond  to 
real solutions, with respect  to u, of 

( 7 2 ~ ~  - 2 4 ~  + 2)C’ + ( - - 1 2 0 ~ ~  - 2 8 ~ ‘  + 14u - l ) ~  

+ ( 5 0 ~ ~  + 40m” + 30” - 2u + 1/8) = 0 .  (45) 

But the discriminant, with respect  to c, of (45) equals 
- 2 1 6 ~ ~  and  thus,  for  any real u, Eq. (45) is not satisfied 
by any real value of e. This is equivalent to saying that, 
for  any real value of e,  this  equation  has no real solutions 
with respect  to u (except  for u = 0 which corresponds  to 
the  double root c = i) , as required. 

Algorithm A4 
Consider  the nonlinear  difference equation 

N ( w )  A ~ - h [ c A f + f +  (4- c ) V f  

+ (& - c + r)v‘f+ (d - c + s)v’~] = 0 ,  
(46) 

associated with [Eq. (38)] of the previous section, 
with f = f ( w ) .  According to  the results of the  second 
section,  three different  solutions of (46), corresponding 
to  three noncollinear  points ( r ,  s) chosen from the A- 
stability  domain of n:, , are needed to  produce a  fourth- 
order A-stable approximate solution. As it stands,  the 

procedure  for computing  this  higher-order  solution is 
costly  from  a  computational  point of view, except pos- 
sibly in a parallel mode. It would involve, at  each inte- 
gration step,  the solution of three  systems of nonlinear 
algebraic equations. 

We now describe a finite algorithm,  which we call 
“A4,” for achieving the  same  purpose  much more effi- 
ciently. It  consists of two  steps.  First, instead of solving 
(46) exactly,  we show that  an approximation,  obtained 
via cubic extrapolation of previous data [ 161 followed 
by a single Newton-Raphson  step  around this  “predic- 
tion,” is sufficient to maintain the validity of the  theorem 
in the  second section. Second, only one  approximate 
solution is calculated in this way;  the  other  two-more 
precisely  approximations thereof-  are calculated from 
linearizations around  the first  one. 

Step  1,finite  Newton-Ruphson  approximation 
Starting with initial data with error  at most O(h5) ,  we 
calculate the  approximate solution x+ , at t+  = (n  + I)h , 
from  previous data  as follows. Let x be the  Newton solu- 
tion at t = nh , then compute a “predicted” value X+ as 
follows: 

i + = x + A i ,  

A i  = Vx + V’x + f x  . (47) 

The  correction Ox+ is obtained from linearizing N about 
X+ and is defined by 

~ * [ x ] = [ ~ - ~ c ~ ~ ~ ~ ] ~ x ’ + { A i - h [ c ~ +  ( 1 - c ) f  

+ (* - c )Vf  

+ (& - c + r ) V ’ f +  (2 - c + s)VRfl}  = 0 ,  (48) 343 

JULY 1972 A-STABLE  INTEGRATION  METHOD 



where f'= f ( x )  , f" = f(i') etc. Define 

x + = x + A x ,  Ax = AX + Ox" . (49) 

We now derive  an  equation governing the global dis- 
cretization error c = x - y at  an  arbitrary point t = nh . 
To this effect we calculate N * ( y ) ,  where y is the  exact 
solution of ( l ) ,  denoting again by the symbol 'k" that 
we are neglecting errors which are O(hJ). The notation 
& , 4' , etc. denotesf(>?) , f ( y + )  , etc.  First, let 

y'= ( 1  + V + V 2 + V B ) y "  [ l  + D + + D 2 + i D " - ~ D 4 ] y .  

(50)  

Then 

A ~ N  C - D i  -@D4 y K i I I  A 1 1 (51) 

and hence 

he$+ hc+ + he+(,, [ D y  + 3D2y + BD'y] 

+ Bhc &c2)[ (Dy) '"  + ( D y )   ( D 2 y ) ]  + Qhc &,:, ,(Dy)':3' .  

Using the differential equation,  one  obtains 

- +  hc& E e x -  (i- l ) !  
4 1  Diy 

i= 1 

Also 

h [ ( l  - c )  + ( 4 - c ) V +   ( A - c + r ) V 2 +  ( i -c+s)V"& 

[ ( l  -cC)D+ ( 3 - c ) D 2 +  ( & - 3 c + r ) D " +  

(A - Qc - r + s ) D 4 ] y .  (53) 

From (51), (52 ) ,  and (53) the { j in N * ( y )  is given by 

{ j N - rh'y'') - ( 1 - r + s h4y'4' . (54) 

By definition B y +  = y+ - 9' N h4y'4J , and  therefore 

[ 1 - hc&+,,,]Oy+ " h4y'4'. (55 )  

From (54) and (55) one  gets 

N* ( y )  E - rh'y('' - (s - r)h4y'4'.  (56) 

Write  equation (48) in the  form 

[ I  - h ~ 7 ( , ) ] O x +  - h M ( x ,  OX') = - A i ,  ( 5 7 )  

where M is some nonlinear  difference operator.  Then 

[ I  - hc$+,,,]Oy+ - h M ( y ,  By+) - A j  - rh'y':" 

- (s - r)h4y'4).  (58) 

Subtracting, one gets 

& + = - A S  + O(h')  = O ( h 3 ) ,  (59)  

where we have used the  fact  that E = O ( h 2 )  since  the 
344 global error c" for 0 5 v 5 n , is 0 (h') . This  latter  fact is 
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a consequence of the stability  and the second order  ac- 
curacy of N* (see,  for  example, Spijker [ 171). Now,  since 
Ox' = By+ + Oc' and By+ is O(h4) by ( 5 9 ,  it follows that 

OX+ = 0 ( h 3 )  . (60) 

Subtracting (56)  from (48) and using (60) and  the relation 

A C = A C + O E + ,  (61) 

one is led to 

[I - ~ c $ + ~ , , ] A c  - h [ ~ $ + ( , ) c  + (1 - C ) + , , ) E  

+ (4 - C)V ( & ( , ) E ) ]  rh:Jy(S) + (S - ~ ) h ~ y ' ~ ' ,  (62) 

which is similar to  the Eq. (24) governing the global 
error  between y and  the  exact solution N ( w )  = 0 . It is 
now clear  that if the  approximate solution x+ is used - in 
place of the  exact solution of N = 0 - in forming the 
linear  combination ( l i) ,  then  the global error, being a 
linear  homogenous  function of the  parameters r ,  s be- 
cause of (62), will be of 0 ( h 4 )  , as  asserted. 

The  above conclusion could have been  arrived at in an 
indirect  manner. Since N* is of second-order  accuracy, 
one  has initially, with sufficiently accurate starting  values 
f o r x a n d w , I w + - y + / = O ( h 3 ) a n d I i t - y + I = O ( h 4 ) .  
Then, IX+ - w+l = O ( h 3 )  and thus Ix+ - w+I = O ( h 7 )  
(Liniger, [ 181). The stability of N* then  shows  that 
Ix+ - t v  = 0 ( h 6 )  globally. Therefore,  to 0 (h4) , one 
may use x in lieu of the  exact solution w of N = 0 in 
forming the averaged  solution ( 1  7). 

Step II, perturbution clbout one  solution 
Let x = x, be the solution of (48) corresponding to  the 
point ( r ,  , s,) and f=f, , etc. Let x p ,  p = 2 ,  3 ,  be the 
solutions defined by N * p  [ x , ]  = 0 in an obvious  notation. 
We note  that 

1. if t,, = x, - x , then tP = 0 (h')  globally, and 
2. the curly bracket in (48) is O(h')  - see (59); hence 

one can  replace the  termF(, , ,  in N * ,  b y p , , ,  as this 
causes  an  error O ( h " )  in the solution. 

Linearizing N*,(xp)  = 0 around x and using the  fact 
that,  on any  sufficiently  smooth function, V j  raises  the 
order by j , one  thus  obtains 

[ I  - hc71,,]Ox+, + A i  + A i p  - h{cJ'+ + cf+(,)Fp 
+ ( 1  - e l f +  ( 1  - c)&& 

+ (3 - c)Vf+ (B - c)V[f ; , )~ , l  + (7% - c + $)V'f 

+ ( 3  - c + sP)v:jfj 0 , (63) 

where g', = X+p - X+ , A i p  = A i p  - A i ,  etc. 

Subtracting (63) from  the  corresponding  equation  for 
OX+,  we get 
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[ I  - hc.T(lJ@+p + ACP - h{cJ.+(,) F ,  + ( 1  - c)f(,)E, 

+ G- c)V(f;,,E,) 

+ ( r P  - r I ) v Z f +  (s, - s,)V"f)  0 .  (64) 

Solving (64) for Ot+,, defining e', = i, + O [ + P  and 
x+P = x+ + E', , and using (l4b), one finds that  the 
averaged  solution is given by 

z+ = x+ + v'[+2 + v:jt+3. (65)  

Two  further  remarks  are  appropriate here: 

1 .  The updating of the differences VJx , V'x , . . . is par- 
ticularly simple. In fact, by using the definition of i+ , 
one finds that 

VJX+ ex+ + v 3 x  ; (66) 

thus V'x updates  the  same way as x itself. The  other 
differences are obtained by "integrating," i.e., 

vzx+ = VLx + VIx+ , 

vx+ = vx + v2x+ . (67) 

Similar  relations hold for  the E,, , p = 2, 3 . Up- 
dating the differences in this manner may help  re- 
duce  the effect of rounding errors. 

2. Each of the differences off is computed from  lower 
order differences, rather than  from the values of f 
themselves, which reduces  the  storage requirements. 

We conclude this  section by summing  up the  results in 
the form of the finite algorithm A4. Similar algorithms, 
designated A2 and A3, have been  derived in conjunction 
with R, , 0, (36) and (37). They  correspond, in the nota- 
tion of the  second  section,  to  the  case m = d = l and 
produce solutions  with global errors of orders  two and 
three, respectively. All three algorithms were  tested bn 
the problems of the  next section. 

Algorithm A4 
Given (rl  , s,) , (r, , s z )  , (r3,  s:j) , representing three non- 
collinear  points in the A-stability domain of Fig. 3, let 
v, , v p  , v3 satisfy ( 1  4). Given [ 191 z ; x , Vx , V'x , V:'x ; 

p = 2 , 3 :  
f 3 V f ,  V'f 9 ff; E, > VE,, V'E, 3 V 3 E p  ; (.f&J , vt.f X P  E ) ' 

Predict first solution: 

A i = V x + V 2 x + V V : ' x ,   i f = x + A i ,  f + = = f ( - +  x ) ,  

F X  =J,(X') . (68) 

Compute  Newton correction by solving 

( I  - hcF,)fIx' =- A i  + h [ c F  + ( 1  - c)f+ (t - c)Vf 

+ (& - c + r l  (% - c + s, )v"f] . (69) 

Correct first solution: 

x+ = x+ + 0,y' , 1 Vix + ox+,  V"+ = VZx 

+ Vjx' , VX' = vx + vzx+. (70) 

Predict  perturbations: 

A i p  = VED + VZ[, + V 3 t p  , 2+P = gP + Ai,, , 

p = 2 , 3 .  (71) 

Compute  Newton  corrections by solving: 

( I  - hclf"f,)@+,=- A t P  + h[~f+, t+, ,  + ( 1  - c ) f , [ ,  

+ (4 - c)V(f,E,) 

+ (r, - r ,)  v Y +  ( sP - s, )V l f ] ,  

p = 2 , 3 .  (72) 

Correct  perturbations: 

E , = t + et+, , = V%[, + e(+P , V2(+, = v'sp + -+ 

+ V 3 E + p ,  VE+, = V[, + v2'$+P. (73) 

f2+, > V(f,E,) + - fxE ,  ; p = 2 ,  3 .  (74) 

f +  = . f ( x + ) ,  Vf'=f ' - f ,   V2f+ = Vf'- Of ,  

Update auxiliary  quantities: Compute 

Reevaluate "derivatives": 

v"f + = V,f + - V'f, (75) 

and  update  the averaged  solution 

z+ = x +  + V & + ,  + v 3 [ + 3 .  (76) 

Numerical results and  remarks 
The algorithms A 2 ,  A3 , A4 were used to  solve  the fol- 
lowing two  test problems PI  and P2: 

PI : x = - 2000x + 1oooy + 1000, 

y = x - y .  (77) 

This is the (slightly rescaled) first example in the sur- 
vey paper of Bjurel [ 1 ], section 4, p. I ,  and Example A 
of Ref. 20. It is a  linear  problem with constant coef- 
ficients having the eigenvalues A, = -2000.500125 , 

A, = - 0.499875 with a "stiffness ratio" of 4000. The 
exact solution of this  problem with x(0) = y(0)  = 0 is 
x = I - 0.49975,OOOOO e-h1t - 0.50025,00000 e-hp1 ; y = 

1 + 0.00024,99374,688 e-h1t - 1.00024,99374,688 e-h2t .  
TO stay  away from the boundary  layer [ 161 of amplitude 
0.5 in the x-component  at t = 0 ,  the integration by 
A2-A4 was carried out  from t = 1 to t = 4 ,  using the 
exact solution  values near t = 1 as  starting values in the 
multistep methods.  The  results  are plotted on  the doubly 
logarthmic  graph of Fig. 4. Specifically, the maximum rel- 
ative accumulated truncation  error in absolute value in 345 
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Figure 4 Accumulated  truncation  error for test problem P1. 

the y-component is shown  (the  results  for  the  other com- 
ponent follow very  closely the  same  curves)  as a  func- 
tion of h or of the total  number of steps.  The lower parts 
of the  curves  show straight-line behavior with  slopes 
approximately  as  predicted  by the  theory (-2, -3 , or 
-4 , corresponding to  the  orders 2 , 3 ,  and 4, respectively). 
The  “kinks” in the  upper  parts of the  curves for A2 and 

346 A4 are  due  to a sign reversal in the  error.  The (large) 

Figure 5 Accumulated  truncation  error for test problem P2. 

q-value, q, = X,h , is 2 to 3 orders of magnitude  larger - 
and thus so is h - than what one could  use, for  example, 
with standard  Runge-Kutta  methods. 

P2: x = 0.01 - [ l  + (x + 1000) (x + l ) ]  (0.01 

+ X + Y )  

y = 0.01 - (1  + y”) (0.01 + x  + y )  . (78) 
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This is problem no. 2 in the  paper by Liniger [ 2 1 ] and 
stems  from an application in chemical  kinetics. Again 
there is a boundary  layer effect near t = 0 ,  and near 
t = 100 the eigenvalues begin to vary rapidly. Therefore, 
an interval of integration was  chosen in the “smooth 
part,” from t = 1 to t = 81 . A numerically exact solution 
was  computed by the  standard  fourth-order  Runge-Kutta 
method  with an  extremely small step, h = 0.002, using 
40,000  steps  on this  interval.  Appropriately spaced 
values of this solution near t = 1 were  used to  start  the 
integration by A2-A4.  The eigenvalues  range  from A,  M 

-981, A 2 R 5 ” 2 X  at t =  1 to  A,M--185, A,% 
at t = 8 I . Thus the stiffness ratio ranges from 

M 5 X 1 0 7 a t t = 1  t o M 2 x 1 0 5 a t t = 8 1 . N o t e t h a t h =  
0.002 for  Runge-Kutta is just barely stable with respect 
to  the eigenvalue A, M 1000 , since the stability limit is 
q = Ah M 2.78. 

In Fig. 5, the  errors, defined as in P I ,  are plotted and 
show  the  same general  qualitative  behavior. The  error 
in the y-component  only of (78) is shown,  since  the  error 
in the x-component is very  nearly the same. 

Some remarks about  the choice of parameters can be 
made. Thus  far,  such a  choice is restricted  only by a)  the 
requirement of the dimensionality of the  space spanned 
by the  parameter points to  insure  the unique  solvability 
of (14) for  the weights up , and  b) the A-stability  require- 
ments. This leaves one with a  lot of freedom, and other 
criteria could be used in selecting these  parameters; e.g., 
maximizing the possible  damping of solutions  at q = 30 or 
minimizing the local truncation error in some  sense.  In 
the  above problems, when using A4,  the  parameter points 
were ( r , ,  s,) = (7,2) ; ( r2,  S J  = ($2) and ( r3 ,  s3) = (7 , l ) .  
The  secondary  parameter was chosen as c = 4 ,  which is 
a  compromise giving a  reasonably large A-stability do- 
main without too adversely affecting the local truncation 
error  constant. 

We  conclude  by  commenting on the  “amount of work” 
involved in one  “pass” of algorithm A4 and  comparing 
it to a similar algorithm. Two function  evaluations (p 
in step 1 andf+ in step 8),, one  Jacobian evaluation ( f ,  
in step 1) and one  L\U matrix  factorization (that of 
(I - h c p , )  in step 5) are needed [22].  The algorithm 
A4 is rather similar to implicit Runge-Kutta  methods of 
Rosenbrock  type [23]. Specifically, if we compare it to 
case no. 9 of the three-level, fourth-order methods of 
Allen-Pottle [9], we find this latter method requires  three 
function  evaluations [ f ( x )  , f ( x  + b,k)  , f ( x  - h,k + 4 4 1  , 
one  Jacobian  evaluation, and two  L\U matrix  factori- 
zations [those of ( I  - hu,f,) and ( I  - hu,f,)] . The rela- 
tively low number of operations  per  pass in A4 is due  to 

I .  The use of one single Newton-Raphson  step in com- 

2. The introduction of an auxiliary parameter c ,  which 
puting the basic  solution [24]. 

makes the  Adams formula slightly longer than would 
be necessary  for  accuracy  purposes, but can be  used 
to improve the stability  properties and  to fix the co- 
efficient matrix in step 5 when calculating the  other 
two solutions,  thereby saving two L \ U  factoriza- 
tions. 

3. The application of a perturbation  method, which en- 
ables one  to  use  the function  and Jacobian evaluations 
associated with the first solution in computing solu- 
tions  2 and 3. 

Aside  from the major items of computation mentioned 
thus  far  there is, in A4, more data handling of other  types 
than in the Allen method,  but we expect  that this  should 
not have a great influence on  the relative performance 
of the two  methods. 
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