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Automatic  Computation of Exponentials, 
Logarithms,  Ratios  and  Square  Roots* 

Abstract: I t  is shown  how a relatively  simple  device  can  evaluate  exponentials,  logarithms,  ratios and square  roots  for  fraction argu- 
ments,  employing  only shifts,  adds, high-speed table lookups,  and bit counting.  The  scheme is based on the  cotransformation of a num- 
ber pair ( x , y )  such  that the F ( x , y )  = f ( x o )  is invariant; when x is  driven  towards a known  value xu, y is driven towards  the  result. For an 
N-bit  fraction  about N / 4  iterations are  required,  each involving two  or  three adds; then a termination  algorithm,  based on an add  and 
an  abbreviated multiply, completes the process,  for a total cost of about one  conventional multiply time.  Convergence,  errors and  simu- 
lation  using APL are  discussed. 

Introduction 
The  present  paper  shows a hardware technique to eval- 
uate we", w + In x ,  wlx and wlx;, where w and x are given 
numbers. Each function is evaluated in about  one  con- 
ventional multiply time, using a unified apparatus based 
on  adds,  shifts, bit counting  and the  use of a table of 
In (1 + 2-"). This  technique is the  subject of a recently 
issued patent [ 1 1 .  

The  scheme is based on  the iterative cotransformation 
of a  number  pair (x,>>) such  that a  bivariate  function F(x ,y )  
remains  invariant. In doing so, x is directed towards xw, 
where  the corresponding yw is the desired  result.  When 
x is sufficiently close to x", a termination algorithm using 
an add  and an abbreviated multiply completes  the evalu- 
ation. The iteration  aims to  remove  the leading one bit 
in the  fraction lxk - xwl, and zero bits are automatically 
ignored. 

Our divide algorithm resembles the  IBM  System/360 
Model  9 1 scheme [2],  which cotransforms  the dividend 
and divisor by limited multiplications, until the divisor 
is close to unity. For In x and e", the  use of decimal digit- 
by-digit schemes  dates back to Briggs three  centuries 
ago [3].  Meggitt's unified study of pseudo division and 
pseudo multiplication methods [4] includes the mechan- 
ization of Brigg's scheme,  square  roots  and trigonometric 
functions, each costing about  three conventional multi- 
plication  times. A recent  study by Sarkar and Krishna- 
murthy [5] showed  that a further  improvement in speed 
is possible. 
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Walther [6] recently showed a unifying algorithm  con- 
taining the CORDIC schemes first proposed by Volder. 
The  elementary functions treated include  ratios  and 
square  roots; included also  are exponentials  and loga- 
rithms, as  inferred  from  hyperbolic  functions. The 
scheme is based on  stepwise  rotations in any of three co- 
ordinate  systems (circular,  linear,  and  hyperbolic)  and 
usually employs  shift sequences  that  are ascending in- 
tegers.  For hyperbolic  functions  a  basic  shift sequence 
needs  to be  invoked  repeatedly. 

The unified automatic evaluation of logarithms  and 
exponentials of binary numbers  has been  considered in 
1962 by Cantor,  Estrin, and Turn [7],  within the  context 
of the "fixed-plus-variable" binary computer design. The 
method requires  rather large tables  (at  least several hun- 
dred  words  for  each function) to transform the argument 
into the vicinity of 1 and 0, respectively. 

Specker [8] suggested the  use of a table of  In( 1 + 2-") 
for  the evaluation of In x and e", and commented on  the 
possible advantage of hardware implementation. The use 
of a  given  table entry  here  depends  on  the  outcome of a 
comparison against /xk  - x" 1 .  

Very recently, de Lugish [9] discussed the unified 
mechanization for multiply,  divide, In x ,  e", square root 
and  trigonometric  functions. His  technique is based on 
the  redundancy recoding technique in fast division al- 
gorithms,  and  involves the  systematic one-bit left shift 
of x or (1 - x) at every iteration. The shifted quantity, 
matched  against two  comparands,  determines a value 
sk = - 1 ,  0 or + l ;  (1 + sk2-") is then  used to transform 
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(.xk, yk). There is no termination  algorithm. To  guarantee 
convergence with the  steady left shift of x, an initiation 
scheme is often  invoked. The redundancy  recoding does 
diminish the number of add-type  operations  (to  about  one 
for  every  three bit positions);  and although one shift and 
two comparisons  are required for every bit position, the 
de Lugish unified method can  be  quite advantageous 
when the add  time is the overriding cost factor. 

In contrast  to  the  other  techniques,  the  present method 
relies heavily on  automatic bit-counting to avoid redun- 
dant  actions.  It  also  uses a terminal linear  approximation 
which speeds up the computation and, incidentally, 
halves  both the rounding errors and the  table require- 
ments. 

Theory 
Our algorithm to  evaluate z,, =f(x,) is based  conceptually 
on the introduction of a parameter y to form a two-vari- 
able function F(x,y)  such  that 

1 )  There is a  known  starting  value y = yo  with F(x,,,y,,) 

- zn. 
2 )  There  are  convenient, known  mechanisms to  cotrans- 

form the number  pair (xk ,yk) ,  k 3 0, into (x, + l,y, + 

leaving F invariant, namely F ( x ,  + ,,yk + = F(x,,y,). 
3) The  sequence of x-transformations tends  to a known 

goal x = x,; the corresponding  y-transformations 
then tends  to y = yo. F is so defined that F(x,,y,) = y,. 

4) The iterative part of the algorithm is essentially the 
repeated  application of the  cotransformation proced- 
ure,  carried out in the  absence of detailed  knowledge 
about  the value 2,). 

In terms of solid coordinate  geometry, F is easily repre- 
sented by a curve confined to  the z = 2, plane  and passing 
through P,,(x,,,y,,,z,,) as  shown in  Fig. 1. We  have 

F ( x , v )  = z,, =f(x , )  (1) 

and  the transformation  invariance is merely the require- 
ment that if the point P,(x,,y,,z,) is on  the  curve F ,  then 
so is Pk+I(xk+l,~k+l,zo). Clearly, then, 

f(x,,) = z ,  = F ( x , , y o )  = F ( x , , y , )  = . . . = F (x,,yk). ( 2 )  

Requirement 3) means that F passes through the point 
Q(xwry,,z0). To ascertain  this,  we  adopt  the functional 
form 

F ( x , y )  = Y R ( X )  + h ( x )  (3 a) 

with 

- 

R(X,) = 1 ,  /?(x,) = 0 (3b) 

then 

F (X,,Y) = Y. ( 4 4  

even if (xw,y,z,,) does not lie on the  curve F in Eq. ( I ) .  
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Figure 1 Evaluation of z ,  =,f(x,,). 

The invariance, Eq. ( 2 ) ,  then  guarantees  that Q(x,,y,,z,) 
indeed lies on F ,  and 

z ,  = F (x,,~,) = Y,; (4b) 

and  the  iterative  transformations of the  number pair ( x , y )  
in 2) is just a  methodology to move a point along the 
curve F ,  starting from P,,, through P , ,   P , ,  etc.,  towards Q. 

We shall limit the  transformations  to  those  based only 
on  the  current values of (x,y), thus 

x, + 1 = 4 (X,>Yn. 1 ( 5 4  

and 

Yk + 1 = 4J (X,,Y,) . (5b) 

The choice of 4 is dictated mainly by cost  and effi- 
ciency  considerations. I t  is convenient  to specify C#J to 
be a function of x, alone, operative  for x, being in some 
closed  interval [a,h] ; the x-transformation  should yield 
an x,+, much closer  to x, than x, is, and further should 
lie in the  same interval, to facilitate further transforma- 
tions. 

Equation (5b) follows Eq. (5a), such  that Pk+I(x,+l,  
stays  on  the  curve F .  The function 4J can  be  de- 

rived from Eq. ( 1 )  and Eq. (3a). In  order  that P, and 
P, + both lie on F ,  we  have 

Y,+l R ( X , + l )  - y ,  Ax,) =+(x,+,) +/?(x,) 

hence 

Yk+l = {Y,R(X,) + h ( x J  - /?(4(xk,Yk))}/~(4(xk,~~k)) 
(5c) 

is a  known  function of (xk ,yk) ,  independent of the un- 
known z,. The point P,+, will be a step  closer than P,  
to  the  destination Q(x,,y,,z,,). 381 
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It will be  seen in the  next  section  that  the actual  choices 
of + and $ are  quite straightforward. In any case,  start- 
ing from (x,y) = (x,,,~,,), the  repeated use of Eqs. (Sa) and 
(5b)  should  show a steady displacement along the  curve 
F towards  the point Q: 

z ,  = f ( x o )  = F(x,,y,) 

= F(xl,yl)  = F ( x , , y , )  = . . . = F(x , , y , )  = . . .  

= F (x,,~,) = Y,. (6) 

if the  x-process converges to xw. The  corresponding y ,  
should then equal z,. 

In reality, it may be difficult or impossible to reach xw 
exactly, and  extrapolation by a Taylor series would be 
desirable, if F(x , y )  is differentiable with respect  to x near 
x, . Thus, 

F ( x ,  -t- p,y,) = F(xw,y,) * p dF/dxlXw + O($) (7) - y ,  -C p d F /  dxlXw , using Eq. (4a). 

For  an  N-bit  fraction, if \pi < 2FV,  just  the first term 
will usually be  adequate. 

On the  other  hand, both the iteration cost and roundoff 
error can  be halved by including the  term linear in p, 
with 1pl 5 2-1VP2. Within this  termination  algorithm, the 
multiplication (if any) involves a half-precision  number 
(p) as  one of the  operands, costing half of a standard 
multiply time; high-performance multipliers elsewhere in 
the  same machine  can  now  be  exploited. 

In what  follows, we shall assume  that linear  extrapola- 
tion will be used when lpl < 2-,<i2 with N- N >> 1 . 

Specific cases 
The functions being considered here  are 

~ w " , O 5 x < l n 2 = 0 . 6 9 3 1 4 . . . ,  
with F = y e " ,  xw = 0 ; 

w + I n x , 1 / 2 5 x <  I ,  w i t h F = y + I n x ,  x w = I ;  

w/x for  1/2 5 x < 1, with F = y / x  , xw = I ; 

w/x$ for 1/4 5 x < 1 , with F = y / x T ,  xw = 1 . 

Binary and hexadecimal floating-point arguments  can 
easily be mapped onto  the ranges given (the algorithms 
below  actually work for 0 < x < I ,  but the  convergence 
may be slower). We  note  that x i  can be obtained  by  set- 
ting w = x in the  inverse  square root  case. 
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Function: F (x ,y )  = ye" .  

Transformations: x,+1 = x, - In a, , Y,+~ = y ,  a, . 
Termination: x, = p ; z ,  - y, + y ,  x,. 

Relative error: 0 5 E 5 p2/2 ( 1  + 2p/3) < 2"'" . 

Logarithm. (1/2 5 x < 1) 

z ,  = + lnx, = yo + lnx, 

= ( y , - I n a , ) + I n x , a , = y , + I n x , = ~ ~ ~  

= y , + I n ( l  - p )  - y , - p .  

Initiation: y , = w .  

Function: F ( x , y )  = y + l n x .  

Transformations: x,+l = xkak , Y , + ~  = y k  - In a,. 

Termination: 1 - x, = p ; z,, - y ,  - ( 1  - X,) . 
Absolute  error: 0 3 6 3 -p2/2( 1 - 2p/3) - -2-.'-] 

Ratio. (1/2 5 x < 1)  

z,, = wlx, = yo/xo 

= ( ~ o a o )  / (xoao) = Y I  1x1 = . . . 
= Y,/(l - P )  - Y, + Y,P. 

Initiation: y o = w .  

Function: F (x,y = Y / X  . 
Transformations: x,+, = x,a, ,  y,+] = y,a, . 

Termination: 1 - x, = p ; z ,  - y ,  + y,( 1 - x,) . 
Relative error: 0 5 E = $/( 1 - p') - 2-". 

Inverse square root. (1/4 5 x < 1)  
1 1 

z,, = 1v/xo~ = yo/x,z 
2 1  - 

- ( Y O U O )  / (X#(, ) = y1 /x1; = . . . 
1 

= Y,/(l - pP- y, + y,p/2.  

Initiation: Y,, = w .  

Function: F ( x , y )  = y/xT . 

Transformations: x,+l = x ,ak2 ,  ykil = y,a, . 
Termination: 1 - x, = p ; z ,  - y ,  + y,( 1 - x,)/2 

Relativeerror: 0 5 ~ = - 1 + 1 / ( 1 - p . ) ~ ( 1 + p / 2 )  

1 

< - 3p2/g  < 2-1'" 

Choice of ak 
We  select ak to  be of the  form ( 1  + 2-"), such  that mul- 
tiplications by a, can  be replaced by a shift and  an add. 
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Table 1 Summary of the algorithms, 

The value  m is usually chosen  as  the position  number* 
of the leading 1-bit in lxk - xwl ; but an  increase by 1 is 
needed for  the  inverse  square  root. 

1) For wes, m is the position number of the leading 1-bit 
in xk . We have  thus 

X, = 2-" + p , 0 5 p < 2-" .  (8) 

Here p represents  the bit pattern  after  the mth bit. The 
latter,  among all bits  in  xk , is responsible  for  over half of 
the value of Ixk - xwl , and is the leading candidate  for 
removal. With the help of a small table { T ,  = -In( 1 + 
2-") }  , we  have 

= (2-" + p )  - In( 1 + 2-,) 

= (2-" + p )  - (2-" - 2-2m/2 + 2-"/3 - . . .) 
= p + O(2"") , ( 9 4  

where  the most  objectionable bit is replaced by a second- 
order  disturbance,  and p is largely intact. The y-transfor- 
mation is done by a right shift of m  places, and then by 
adding to  the unshifted yk  

y k + l  = yk + 2 - m Y k .  (9b) 

The iteration requires a table lookup, a  shift and two 
adds. With m  varying from 1 to  N/2 , one  needs a total of 
N / 2  tabular  entries;  even if N = 60 , the table  require- 
ment is only  30  words. 

2)  For w + In x, m is selected to be the position number 
of the leading 1-bit in ( 1  - xk) ; here we have 

x k =  1 - ( 2 - , + p ) ,  0 5 p < 2-" (10) 

and 

xk+l = Xk + 2-"Xk 

= 1 - p - 2-"(2-" + p )  

3) For  w/x,  the x-transformation, hence  the bit pattern 
preservation,  is  the  same  as in 2) ;  the y-transformation is 
the  same  as in 1) .  

1 

4) For w/xZ, m is chosen  as 1 + the position number of 
the leading 1-bit in ( 1  - xk)  . 

X k  = 1 - 2(2-" + p )  , 0 5 p < 2-, 

t ,  = Xk + 2-"Xk (134  

xk+l = t ,  + 2-,t, 

(13) 

then 

= 1 - 2p(  1 + 2 . 2-" + 2?") - 2?(3 + 2 . 2-") 

= 1 - 2[p + 0 ( 2 - y ] .  (13b) 

The y-transformation is the  same  as in 1),  namely 

yk+l = Yk + 2-my, . ( 1  3c) 

The explicit  algorithms are summarized in Table 1. 

Convergence and accuracy 
Our simple  choice uk = 1 + 2-" thus  transforms  the  most 
significant 1-bit in /xj - xwl to  zero, leaving the remaining 
bit pattern largely unaffected. The larger the value of m 
(i.e., the  greater  the position  number of the most signifi- 
cant bit) the  more negligible is the  perturbation  on p .  

Thus,  the  number of iterations required to  convert  the 
leading N 12 bits of x to  zero is measured by the number of 
1 bits in Ix,, - xwl . 

Statistically, half of these N / 2  bits are  zeros;  hence,  the 
average number of iterations is about N / 4 ,  and the 
average  advance of m  between two  successive iterations 
is Am N 2 .  

= 1 - p  + 0 ( 2 " " ) ,  A convenient  measure of convergence is the relative 
reduction of the  distance  to x" 

again the most  objectionable bit is replaced by a second- 
order  disturbance. Also, r = (x,,, - xw)/(xk - xw) . (14) 

Y*+l = Y k  - h ( 1  + 2-") 3 
(1 1b) The  sequence {x,} converges if IrI 5 r,, < 1 for large k .  

Using the  results of the previous section, it is easy  to 
using the  same  tabular values in 1). show that 0 < r f r,, < 1 and thus  the  sequence con- 

*The kth bit after  the binary  point  is  said to have position  number equaling k .  verges from  the  same side, with xk+l lying in (xk ,xo) . 383 

JULY 1972 AUTOMATIC  COMPUTATION OF FUNCTIONS 



This one-sided convergence is extremely  desirable for 
the  smooth applications of iterative transformations re- 
quiring {x,} to be  suitably bounded.  Here {x,} all lie in 
(x,, ,xw), the  latter being a valid interval for  the  x-trans- 
formations. 

From  the previous  section one easily obtains 

y = p /  (2-” + p )  + 0 ( 2 - 7  . (15) 

Substituting the  bounds 0 5 p < 2-" , and  the  average 
value (p )  = 2-”“ , we obtain 

1/2 + 0(2 -” )  > Y 1 0 ( 2 - ” )  , (16) 

and 

(Y) - 1/3. (17) 

A  detailed  analysis in the Appendix  shows that ( Y )  - 1 
-In 2 = 0.307. 

The  truncation  errors  have been given in specific cases 
in the third  section.  Should these be deemed too large, an 
extra iteration could be taken.  Better still, as these 
errors  bear a definite sign, one could reduce roughly half 
of the maximum error by adding one bit to p. Thus, 

)’,P - y, + y n ( p  + 2-”’-7 , /El 5 (1 8) 

I 

Y J ( 1  - P ) 2 - Y n + i Y , ( p + -  ) ,  / E l -  - . (21) , -.%2 < 7-.\”2 

For / E /  5 2-’”-’ , N never  needs to exceed N ,  and N = N 
will be assumed below. 

A major source of inaccuracy is rounding error, which 
can  be controlled by using longer  intermediate results, 
rounded  tabular values,  rounded arithmetic,  fewer  arith- 
metic steps,  or combinations of all of these. Using J 
guard  bits in the  fraction,  the total absolute rounding 
error in computing y ,  is 

p 5 i ( j  + k )  2-”-.’ , (22) 

where 

i = the number of iterations, 

j-2?-” = the rounding error  due  to  each  tabular  or 
shifted operand, 

and 

k.”’-’’= the rounding error  due  to an add  (or subtract) 
operation. 

We have 

.j = 1/2 if operands in question  are all rounded, 

k = 112 if the  add  (subtract)  operations include  rounding, 

= 1 if unrounded  arithmetic is practiced. 

The total absolute  error in computing p is the  same asp 
in Eq. (22) except  for  the inverse square  root  case,  where 
2p is used because of the  extra work  required. Ignoring 
the rounding error  generated by the termination al- 
gorithm,  the total absolute rounding error is bounded by 
p (  1 + y d F / d x ] ,  w ) with q = 2 for  the  inverse  square  root, 
and q = 1 otherwise. 

It  turns  out  that i, expected  to  be  about N / 4 ,  is never 
known to  exceed N / 2 ,  and  the  choice J = 6  should  en- 

for N 5 6 4 ,  using rounded operands 
and rounded  operations,  or for  N 5 32 , using unrounded 
operands and  unrounded operations. 

sure 5 2“’”” 

Nonstandard choices for m 
The  standard  choices of rn for  this paper  have been  given 
in the  fourth section. They  are closely  related to  the left- 
zeros  count of the fraction /x, - xw/  , thus 

rn = 1 + (the left-zeros count of x,) for weS (23) 

rn = 1 + [the left-zeros count of ( 1 - x,)] 

for M, + Inx , w/x (244 
I 

m = 2 + [the left-zeros  count of ( I  - x,)] for w/x?. 
(25) 

The counting of left-zeros being a regular  activity in 
normalized floating-point arithmetic,  the implementabil- 
ity of a “standard m-finder” is not  an issue. 

However,  nonstandard integer choices, #I, may be de- 
sirable for added efficiency and/or algorithm simplicity. 
We remark here  that  the choice of m > rn may increase 
the number of iterations and hence  the rounding error, 
but  the algorithm nevertheless still converges. Converse- 
ly, the choice of m < rn may speed up the  convergence in 
some  cases,  yet may lead to divergence if carelessly 
applied. The  standard  choices on the  other hand are 
simple and reliable,  and are asymptotically  optimum (for 
111 + m) . 

The  convergence for the  inverse  square  root algorithm 
is slow for x,, below 4/9 = (0.1 11000 . . . ) 2  ; several 
iterations  are often  needed to  make  the leading  fraction 
bit of x, into a 1. A brief study reveals that  for xk in (1/4 , 
4/9)  the optimum  choice is not rn = 2 (standard choice) 
but & = 1 ; with it x,+, is guaranteed  to be at  least 0.56. 

In  Eqs. (24a) and  (25) the  standard rn is formed  from 
( 1  - xk) , calling for a  complementation process. Al- 
ternatively,  one could count  the left-ones in x, directly. 
Instead of Eq.  (24a) we now have 

rn = q + (the left-ones count of x,) ( 2 4 ~  

with 4 = I if p # 0 and q = 0 otherwise. To  simplify 384 = 1 if unrounded; 
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controls,  one could persist in using q = 1 ; even for  the 
unlikely event of p = 0 ,  where q = 0 would be  an unus- 
ually good choice, with q = 1 rapid convergence is still 
guaranteed. A similar  situation occurs  for  the inverse 
square  root, with ( 1  + 4) in place of q. 

A unified  apparatus 
The  four iteration  algorithms  can  be  handled by one uni- 
fied apparatus  (see Fig. 2),  consisting of an adder A, a 
shifting  mechanism S, and  an  N/2-word  fast memory M 
holding {-In ( 1 + 2-") } , 1 5 rn 5 N/2 .  A memory word 
has N + J fraction  bits.  Internal computation is also  done 
using N + J fraction  bits, plus one integer bit to handle 
the range 0 5 y,, < 2 ; this is so because yk  can  exceed 
unity, but need  not  exceed 2 if vv is properly  prenor- 
malized, say  to within [0.1]. The  apparatus is capable of 
the following elementary operations:  these, of course,  do 
not consume equal  time: 

a) Load C(X) (the  contents of register X), into T. 
b) Deduce rn from C(T) , store it in V. 
c)  Use rn as  address  to  fetch C(m) from M: add C(rn) 

d) Store  the sum in X. 
e) Load C ( Y )  into T. 
f )  Shift C(T)  to  the right by rn places, put result into U ;  

add C(T) and C(U) . 
g) Store  the sum in Y .  
h) Go to  step  a) if rn 5 r A ,  else enter  the termination 

and C(T) . 

algorithm. 

Starting by putting xI, in X ,  w(= yo) in Y ,  the  sequenc- 
ing for  the evaluations are: 

wes": (abcdefgh) ; then C ( Y )  + C ( Y )  X C.(X) - wexO . 

11' + In x,,: (abfdecgh) ; then C ( Y )  + 1 - C (X )  - 11' + In x". 

wlx,,: (abfdefgh) : then C (Y ) + C ( Y )  

x - C ( X ) l  - "/.X,, . 
I 

I V / X ~ , ~ :  (abfdafdefgh) ; then C ( Y )  + C ( Y )  

x [ 1 - C ( X ) ] / 2  - w/xok. 
The  apparatus invokes the termination algorithm by ship- 
ping C(X) , C ( Y )  away,  to be processed by more con- 
ventional  equipment. For details of the sequencing see 
Table 2. If self-contained  operation is desired,  the itera- 
tions can be allowed to run until p 5 2"'. It would then 
be necessary  to  double  the  table size  and  add one more 
guard bit for  accuracy. 
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Figure 2 The unified apparatus. 

The  adder,  the shifter, and the sequential  bit-counter 
are within the  state of art. A small high-speed memory is 
needed for wes and (w + Inx) ; this is easily  achieved 
using modem memory devices in an integrated  circuit 
memory  technology  compatible with computation  hard- 
ware. Also, this apparatus need  not  stand alone and can 
share  equipment with other  parts of the  same  system. 

To  derive a rough timing estimate  we  equate memory 
access time with shift  time, and  note  that a  conventional 
multiplier takes time T = N  shift-add  times. The  ex- 
pected N / 4  iterations  involve 3 N / 4  shift-adds for  the 
inverse  square  root and N / 2  for  the  other  three  functions; 
the time estimate  is,  therefore, 3T/4 and T / 2  , respec- 
tively. To these  one  has  to  add  the timing cost of the 
terminal algorithm. 

For logarithms the complement-add  required adds 
little to  the iteration cost.  The total timing cost is still 
measured by T / 2 .  

For exponentials, ratios, and  inverse square  roots a 
half-multiply is needed. If this is  done with a conventional 
multiplier, the  cost would again  be T/2  for a  total cost of 
T (exponential,  ratio) and 1.25T (inverse square  root). 
However, if a powerful fast multiplier is invoked here,  the 
half-multiply may cost little  more  time  than an  add. 

APL simulation 
The algorithms have been  simulated by a nest of inter- 
locking subroutines written in APL, which handles the 
bit-pattern  manipulations with clarity  and  precision. The 
results of a  run on  the IBM APL terminal system is re- 
ported here. 385 

AUTOMATIC  COMPUTATION OF FUNCTIONS 



Table 2 Sequencing operations. 

if m 5 A go to XNOW 
Answer t C ( Y )  + C ( Y )  x C(X)  Answer C ( Y )  + I - C ( X )  A n s w e r + C ( Y ) + C ( Y ) x [ I - C ( X ) ]  A n s w e r t C ( Y J + C ( Y J X Z ~ ' X [ l - C ( X J I  

if m 5 A go to XNOW if m 5 m go to x ~ o w  if m 5 A go to XNOW 

Table 3 Iteration  counts for test  cases (quantities in parentheses  are  errors). 

0.0555 5555 
0.1555 5555 
0.2555 5555 
0.3555 5555 
0.4555 5555 
0.5555 5555 
0.6555 5555 
0.7555 5555 
0.8555 5555 
0.9555 5555 

5 (-2 x 1 o-s) 
5(-2 X io-') 
4(-1 X lo-') 
6(-2 X IO-*) 

10 (-3 x 1 0-') 
5(-1 X to-') 
8 (-2 X IO-") 
(out of range) 
(out of range) 
(out of range) 

(out of range) 
(out of range) 
(out of range) 
(out of range) 
(out of range) 
6(-3 X IO-*) 
7(-2 X lo-") 
7(-2 x 10-8) 

5(-2 x 10-8)  
6(-2 X IO-') 

Average count: 6.2 6.2 

The  test values of x are  N-bit binary representations 
of (0.0555 5555 + 0 . 1 1 ~ )  , where IZ assumes all integer 
values  permissible under  the range restrictions given in 
the third section. The run assumed N = 24 (S/360- 
370 floating-point fraction  size), 6 guard  bits and un- 
rounded  arithmetic;  also 6/ = N , hence m = 12 . The 
left-ones count is used to find m to avoid  complementa- 
tion. Iteration continued until the  computed m exceeded 
k ,  then  the terminal algorithm was  invoked  with the er- 
ror-halving measure.  The  correctness of the algorithms 
and  the  accuracy of the result are  both amply verified by 
the  tests. No failure due  to  the algorithm has  ever been 
found. The  average Am was indeed close  to 2 after  one  or 
two iterations. 

The  results  are summarized in Table  3;  the  number of 
iterations  varies from  three to ten,  the mean being rather 
close  to 6.3. 

For  two values of x o ,  the x-transformations are dis- 
played in Fig. 3. The  automatic sequential  bit-counting 

386 mechanism is seen  to  be extremely worthwhile; it allows 
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(out of range) 
(out of range) 
(out of range) 
(out of range) 
(out of range) 

6(4 x lo-') 
7 (-2 x 1 0-') 
7 (-2 x lo-") 

5(-2 x 10-8) 
6(-1 X IO-') 

(out of range) 
(out of range) 

lO(5 x lo-') 
8 (-3 X lo-') 
6 (-2 x 1 O - * )  
7 (-6 X 1 0-9) 
5(-3 x 10-7 

6(5 X lo-") 
5 (1  x lo-') 
5(8 X lo-') 

6.2 6.5 

both the skipping over of unimportant bits and,  no less 
important,  the  use of the  same m for  more  than  one intera- 
tion. In Fig. 3(c), for  example,  we  encounter a case with 
Am = 0 in one  iteration, then Am = 8 in the next.  Without 
the bit  counting technique  one would have  to employ 
costly trial and  error  comparison  schemes,  and/or  severe 
limitations on  the arguments to  guarantee Am 3 1 . 

Conclusion 
We  have  shown how the  four  functions of x can  be eval- 
uated by using  shifts, adds, limited table look-ups, and 
sequential bit counting. The timing cost is low, being of 
the  order of a  conventional multiply time  and sometimes 
less. The implementation by a unified piece of hardware 
is entirely within the  state of the  art.  The possible draw- 
backs  are a) the word-length  incompatibility with the  rest 
of the  system  because of the special  guard  bits required; 
and b) the variable timing. 

Short of actual implementation, the  hardware  can be 
emulated by a nest of interrelated  microsubroutines for 
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( a )  wexo 

Figure 3 Typical runs usingx, = 0 . 5 5 5 5  5 5 5 5  and 0.6555 5 5 5 5 .  

microprogrammable machines. The algorithms can also 
be written as conventional subroutines; but then the 
compactness of the table will not be a major advantage, 
and the manipulations may be difficult using conven- 
tional instructions. 
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Appendix. Convergence of the iterations 
We shall study A m ,  the average advance of m , and give 
some detailed estimates for r . 

Average advunce of m 
We shall denote by Z(a)  as the number of leading zero 
bits in a binary fraction a. Then 

Z ( 2 a )  = Z ( a )  - I for a < 112. (A11 

In terms of this notation we can write for all four al- 
gorithms 

m = z ( IXk - xw I ) + q 9 

( A m ) =  (z(lxk+l -xwl )  -Z(lx,-xwl)) - ( Z ( q p ) )  - Z[q(2-" + P ) 1  - ( Z ( P ) )  - z(2-" + P )  - ( Z ( P ) )  - ( m  - 1 ) .  

q =  1 o r 2 .  (A21 

The average advance of m between two iterations is 

0 5 p < 2-" 

(A31 

Z ( p )  is a step function of p :  

~ ( p )  = m for p in (2-" - 2-.", 2-"-') , 

(2"-' cases) ; 

= m + 1 for p in (2-"-' - 2 P ,  2-"-') , 

(2"-' cases) ; 

* - N ,  2 - m - i - l )  
= m + i for p in - 

(2m-i - l  cases) ; 

(one case) ; = N - 1 for p = 2-", 

= N  f o r p = 0 ,  (one case) . 
Hence we have for all 2m cases, assuming each to be 
equally probable: 

1 
2 

( Z ( p ) )  =; [ m  . 2"-' + ( m  + 1)  2"-2 + .  . .I 

= m + [0 . 2-1 + 1 . 2-2 + 2 . 2-3 + . . .] 

- m + - . 2 = m + l .  1 "  
N m + y ~  i 2F-  

1 
2 

Hence (Am) - ( Z ( p ) )  - ( rn  - 1 )  = 2 .  

Asymptotic estimate of r 
In the fifth section on convergence and accuracy an in- 
tuitive estimate of r - 113 was obtained. A better esti- 
mate is possible using p 1 p > 0 ,  with p = 2-" + 2-Q. 
Q equals ( N  + J )  usually, but is (N + J  + 1 )  for the in- 
verse square root. We have 

s ~ 1 - r  

= ( x k - x , + , ) / ( x k - x w )  

= 2-"/ (2-" + p )  + 0(2-*)  

then 
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( r )  - 1 - In 2 = 0.30685 . . . . 

Detailed  analysis 
We shall develop, for  the  four algorithms,  bounds for  r 
as well as average  values. 

1) For  the exponential  we have 

s = [In ( 1 + 2 - " ) ]   / x k  = (2-" - 2-"/2 + 2-'"/3 - . . .) 
+ (2-" + p )  > 1/2 - 2-m-2 < 1 - 2-"/2 + 2-'"/3 , 

and 

(s) - [In ( 1 + 2-") 1 . 2% 2 - In 2 - 2"'" - 0.693 - 2-m-' ; 

hence 

1 > 112 + 2-"-' > r > 2 - " ( 1 / 2  - 2-"/3) > 0 ,  

with 

( r )  - 0.307 + 2-"" ; 

further, r < 5/8  for  the  worst  case value of m = 1 . 

2) For both (w + In x) and ( w / x )  , 

s = 2 - m x , / ( l - X k ) = 2 - m [ l / ( 2 - m + p ) - l l  

> 1 p  - 2-" 5 1 - 2 - " ,  

and 

(s) - In 2 - 2-" ; 

hence 

1 > 1/2 + 2-" > r 2 2-" > 0 ,  

with 

( r )  - 0.307 + 2-".  

Second-order convergence is achieved whenever xk = 

1 - 2-", where x,+] = 1 - 2-'" and r = 2-" . Elsewhere 
for the worst  case of m = 2 ,  we  have r 314. 

When simple left-ones counting is used (see  the sixth 
section),  we may have x ,  = 1 - 2-" but choose m = 

m + 1 , hence ak= 1 + 2-"" . For this unlikely occur- 
rence we also  have r = 1 / 2  + 2-"" < 314. 

3) For the  inverse square  root, x ,  = 1 - 2(2-" + p )  , 
and m 2 2 , 

with 

( r )  - 0.307 + 2-"( 1.654 + 2-") . 

The minimum convergence  speed cannot  be readily 
deduced from the upper bound of r , but x,/ (1 - x k )  
monotonically increases with xk , and 

s 2 2-"(2  + 2 - m )  (1/4) / (3/4) 1 3/16  (when m = 2 )  

and r P I3/ 16 = 0.8 13 . As commented in the sixth  sec- 
tion, "Nonstandard choices  for m ," the range (1/4 , 4/9) 
can  be mapped into (1/2 , 1 )  in one iteration, using 
rn = 1 . Using this device, the smallest x ,  becomes 1/2,  
henceforward r 5 7/ 16 . 
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