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Tien Chi Chen

Automatic Computation of Exponentials,
Logarithms, Ratios and Square Roots*

Abstract: It is shown how a relatively simple device can evaluate exponentials, logarithms, ratios and square roots for fraction argu-
ments, employing only shifts, adds, high-speed table lookups, and bit counting. The scheme is based on the cotransformation of a num-
ber pair {x,y) such that the F (x,y) = f(x,) is invariant; when x is driven towards a known value x_, y is driven towards the result. For an
N-bit fraction about N/4 iterations are required, each involving two or three adds; then a termination algorithm, based on an add and
an abbreviated multiply, completes the process, for a total cost of about one conventional multiply time. Convergence, errors and simu-

lation using APL are discussed.

Introduction

The present paper shows a hardware technique to eval-
uate we”, w + In x, wix and w/x%, where w and x are given
numbers. Each function is evaluated in about one con-
ventional multiply time, using a unified apparatus based
on adds, shifts, bit counting and the use of a table of
In (1 +27™). This technique is the subject of a recently
issued patent [1].

The scheme is based on the iterative cotransformation
of a number pair (x,y) such that a bivariate function F(x,y)
remains invariant. In doing so, x is directed towards x_,
where the corresponding y_ is the desired result. When
x is sufficiently close to x_, a termination algorithm using
an add and an abbreviated multiply completes the evalu-
ation. The iteration aims to remove the leading one bit
in the fraction |x, — x|, and zero bits are automatically
ignored.

Our divide algorithm resembles the IBM System/360
Model 91 scheme [2], which cotransforms the dividend
and divisor by limited multiplications, until the divisor
is close to unity. For In x and ¢”, the use of decimal digit-
by-digit schemes dates back to Briggs three centuries
ago [3]. Meggitt’s unified study of pseudo division and
pseudo multiplication methods [4] includes the mechan-
ization of Brigg’s scheme, square roots and trigonometric
functions, each costing about three conventional multi-
plication times. A recent study by Sarkar and Krishna-
murthy [5] showed that a further improvement in speed
is possible.

“A brief version of this work was presented at the IEEE Computer Society Sym-
posium on Computer Arithmetic, University of Maryland, May 15-16, 1972.
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Walther [6] recently showed a unifying algorithm con-
taining the CORDIC schemes first proposed by Volder.
The elementary functions treated include ratios and
square roots; included also are exponentials and loga-
rithms, as inferred from hyperbolic functions. The
scheme is based on stepwise rotations in any of three co-
ordinate systems (circular, linear, and hyperbolic) and
usually employs shift sequences that are ascending in-
tegers. For hyperbolic functions a basic shift sequence
needs to be invoked repeatedly.

The unified automatic evaluation of logarithms and
exponentials of binary numbers has been considered in
1962 by Cantor, Estrin, and Turn [7], within the context
of the “fixed-plus-variable” binary computer design. The
method requires rather large tables (at least several hun-
dred words for each function) to transform the argument
into the vicinity of 1 and 0, respectively.

Specker [8] suggested the use of a table of In(1 +27™)
for the evaluation of In x and ¢”, and commented on the
possible advantage of hardware implementation. The use
of a given table entry here depends on the outcome of a
comparison against |x, — x|

Very recently, de Lugish [9] discussed the unified
mechanization for multiply, divide, In x, ¢”, square root
and trigonometric functions. His technique is based on
the redundancy recoding technique in fast division al-
gorithms, and involves the systematic one-bit left shift
of x or (1 —x) at every iteration. The shifted quantity,
matched against two comparands, determines a value
sy =—1,0 or +1; (1 +5,27) is then used to transform
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(x,, v,). There is no termination algorithm. To guarantee
convergence with the steady left shift of x, an initiation
scheme is often invoked. The redundancy recoding does
diminish the number of add-type operations (to about one
for every three bit positions); and although one shift and
two comparisons are required for every bit position, the
de Lugish unified method can be quite advantageous
when the add time is the overriding cost factor.

In contrast to the other techniques, the present method
relies heavily on automatic bit-counting to avoid redun-
dant actions. It also uses a terminal linear approximation
which speeds up the computation and, incidentally,
halves both the rounding errors and the table require-
ments.

Theory

Our algorithm to evaluate z, = f{(x,) is based conceptually
on the introduction of a parameter y to form a two-vari-
able function F(x,y) such that

1) There is a known starting value y = y, with F(x,,y,)
=2,

2) There are convenient, known mechanisms to cotrans-
form the number pair (x,.y,), kK = 0, into (x,, ;¥ )
leaving F invariant, namely F(x, .y, ) = F(.y).

3) The sequence of x-transformations tends to a known
goal x=x_; the corresponding y-transformations
then tends to y =y, . F is so defined that F(x .y ) = y,.

4) The iterative part of the algorithm is essentially the
repeated application of the cotransformation proced-
ure, carried out in the absence of detailed knowledge
about the value z,,.

In terms of solid coordinate geometry, F is easily repre-
sented by a curve confined to the z = z, plane and passing
through P (x,,y,,z,) as shown in Fig. 1. We have

Fx,y) =z,=f(x,) (1)

and the transformation invariance is merely the require-
ment that if the point P,(x,,y,.z,) is on the curve F, then
80 is P, (x,, ¥, 112 Clearly, then,

flxy) =zo=F(x,y,) = F(x,v,) =+ - -=F(x.5,). )

Requirement 3) means that F passes through the point
O(x,.y,,z,). To ascertain this, we adopt the functional
form

Fx,y) =yg(x) + h(x) (3a)
with
glx,) =1, h(x,) =0 (3b)
then
Flx,.y)=y. (4a)

even if (x,y,z,) does not lie on the curve F in Eq. (1).
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Figure 1 Evaluation of z, = f (x,).

The invariance, Eq. (2), then guarantees that Q(x .y .z,)
indeed lies on F, and

zo=F(x,y,) =Y, (4b)

and the iterative transformations of the number pair (x,y)
in 2) is just a methodology to move a point along the
curve F, starting from P, through P, P,, etc., towards Q.

We shall limit the transformations to those based only
on the current values of (x,y), thus

xk+1 =¢(xk’yk) (Sa)
and
Virr = W(xny,) . (5b)

The choice of ¢ is dictated mainly by cost and effi-
ciency considerations. It is convenient to specify ¢ to
be a function of x, alone, operative for x, being in some
closed interval [a,b]; the x-transformation should yield
an x,,, much closer to x_ than x, is, and further should
lie in the same interval, to facilitate further transforma-
tions.

Equation (5b) follows Eq. (5a), such that P, (x,, ,,
Vi 02 stays on the curve F. The function  can be de-
rived from Eq. (1) and Eq. (3a). In order that P, and
P, _, both lie on I, we have

Verr 80 ) =y 8(x) =—~h(x ) + hix)
hence

Ve = e (x) + Ax) — M (xy NHe(d (x,.5,))
(5¢)

is a known function of (x,.,y,), independent of the un-
known z,. The point P, will be a step closer than P,
to the destination Q(x_,y,.z,)-
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It will be seen in the next section that the actual choices
of ¢ and ¢ are quite straightforward. In any case, start-
ing from (x,y) = (x,.y,), the repeated use of Egs. (5a) and
(5b) should show a steady displacement along the curve
F towards the point Q:

2o = f(x)) = F (xg,3,)

=F(x,y,)=Fx,y,) ="+ =Flx.y)="""

=F(x,y,) =Y. (6)

if the x-process converges to x,. The corresponding y,,
should then equal z,.

In reality, it may be difficult or impossible to reach x
exactly, and extrapolation by a Taylor series would be
desirable, if F(x,y) is differentiable with respect to x near
x,, . Thus,

F(x,= py,) =F(x,.y,) =p oFlox], +O0(u) D
~y, aF/ax]Iw, using Eq. (4a).

For an N-bit fraction, if |u| < 2-¥, just the first term
will usually be adequate.

On the other hand, both the iteration cost and roundoff
error can be halved by including the term linear in w,
with || =< 2-¥2. Within this termination algorithm, the
multiplication (if any) involves a half-precision number
() as one of the operands, costing half of a standard
multiply time; high-performance multipliers elsewhere in
the same machine can now be exploited.

In what follows, we shall assume that linear extrapola-
tion will be used when || < 2-¥2 with N~ N > 1 .

Specific cases
The functions being considered here are

wet ,0=x<In2=0.69314" - -,

with F = ye”, x,=0;
w+lnx,1/2=x<1, withF=y+Inx, x,=1;
wlx for 1/2=x < 1, with F=y/x, x,=1;
w/x% for1/4=x<1, with F=y/x%, x,=1.

Binary and hexadecimal floating-point arguments can
easily be mapped onto the ranges given (the algorithms
below actually work for 0 < x < 1, but the convergence

1 .
may be slower). We note that x2 can be obtained by set-
ting w = x in the inverse square root case.
e Exponential. (0 = x < In2)
Zy= we™0 = yoex“

_ xo—-lnag Lo L L

= () €70 0=y et =

=y, e~y tyu.

382 Initiation: Yo=w.
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Function: F(x,y) =ve .

Transformations: x,., =x, —Ina,, y., , =y, q,.
Termination: X, =HK;5Z~ Yy, Ty, x,.

Relative error: 0 =< e = u?/2(1 +2p/3) < 27",

s Logarithm. (112 =x < 1)
Zg=w+Inx,=y,+Inx,
= (y,—Ina) +Inxa,=y, +Inx =---
=y, tIn(l—p)~y, —u.
Initiation: Yo =w.
Function: F(x,y)=y+Inx.
Transformations: x,., =xa,,y,., =y, —Ina,.
Termination: l~x,=p;zy~y,— (1—x,).

Absolute error: 0= 8 = —p*/2(1 — 2u/3) ~ —21

& Ratio. (1/12 = x < 1)
z, = Wix, = y,/x,
= (y,a,) [ (x,0,) =y, Ix; ="+
=y /(1—p)~y, +yu.
Initiation: Vo= W
Function: F(x,y)=ylx.
Transformations: x, , = x4, , Y., = Yy -

Termination: l=x,=p;z,~y, +y,(1—x,).

Relative error: 0 =< e= [.LZ/(I — ,u.Z) ~27",

s Inverse square root. (1/4 = x < 1)
2y = w/x(,% = }’o/xo‘lz
= (y4,)/ (xoa{,z)% —yfxT=
=y (1= )i~y + ypf2.
Initiation: Vo=w.
Function: Flxy) = y/x%.
Transformations: x,,, = x,a,”, V.., = Y0 -
Termination: l—x,=pn;zy~y, +y,{1 —x)/2.
Relative error: Ofe=—1+1/(1—p.)%(1 + 1f2)
=378 <27,
Choice of a,
We select g, to be of the form (1 + 2™™, such that mul-
tiplications by a, can be replaced by a shift and an add.
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Table 1 Summary of the algorithms.

Range of x, f(x,) F(x,.y,) X Xkv1

Vi X, Termination algorithm

{0,ln 2) we™® vk 27"+ p
3

[1/2,) wH+lnx, y,+inx, 1—Q2 "+p) x+2"x, ~1—p
m o
1—Q27"+p) x,+2"x, ~1—p

1=2027"4p) x, (1+2™)2~1—2p ¥ +27"vk 1—p

[1/2,1) w/xI yk/xkI
[1/4,1) wix2 Vielx 2

5= +27) ~p ¥y +27",

0=<pu<2™ ye~y, +yn
ve—In(1+2™™) 1—p Yol —p) ~y, —p
Y+ 27"y, 1—pu v, /(1 —/-b)1~ Y T ym
vl (1—=p)7 ~y, +yul2

The value m is usually chosen as the position number*
of the leading 1-bit in |x, — x_| ; but an increase by 1 is
needed for the inverse square root.

1) For we”, m is the position number of the leading 1-bit

in x, . We have thus
x=2"+p, 0=p<2™™. (8

Here p represents the bit pattern after the mth bit. The
latter, among all bits in x, , is responsible for over half of
the value of |x, — x|, and is the leading candidate for
removal. With the help of a small table {T,, =—In(1 +
2™™}, we have

X =0Q2"+p)—In(1+27")
=2 "+p) Q@ " =27"2 4273 -
=p+002™, (9a)

where the most objectionable bit is replaced by a second-
order disturbance, and p is largely intact. The y-transfor-
mation is done by a right shift of m places, and then by
adding to the unshifted y,

Ve =Ye + 27", (9b)

The iteration requires a table lookup, a shift and two
adds. With m varying from 1 to N/2 , one needs a total of
N/2 tabular entries; even if N =60, the table require-
ment is only 30 words.

2) For w + In x, m is selected to be the position number
of the leading 1-bit in (1 — x,) ; here we have
x,=1—-02"+p), 0=<p<2™ (10)
and
X =%+ 27",
=1—p—-2""27"+p) (11a)
=1-p+0Q2™",

again the most objectionable bit is replaced by a second-
order disturbance. Also,

Ve =Y —In(14+27"), (11b)

using the same tabular values in 1).

*The kth bit after the binary point is said to have position number equaling 4.
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3) For w/x, the x-transformation, hence the bit pattern
preservation, is the same as in 2); the y-transformation is
the same as in 1).

Xy =% +27"%, (122)
Viwr =Y T 27" (12b)

1
4) For w/x2, m is chosen as 1 + the position number of
the leading 1-bit in (1 —x,).

x=1=22"+p), 0=p<2™ (13)
then
te=1x,+2"x, (13a)

Xy =1+ 2_mtk
2734227
1-2[p+0027™]. (13b)

=1-2p(1+2-27"+27"") —

If

The y-transformation is the same as in 1), namely
Vit =Vt 27 (13c)

The explicit algorithms are summarized in Table 1.

Convergence and accuracy

Our simple choice g, = 1 + 27” thus transforms the most
significant 1-bit in |x; — x_| to zero, leaving the remaining
bit pattern largely unaffected. The larger the value of m
(i.e., the greater the position number of the most signifi-
cant bit) the more negligible is the perturbation on p.

Thus, the number of iterations required to convert the
leading N /2 bits of x to zero is measured by the number of
1 bits in |x,— x| .

Statistically, half of these N/2 bits are zeros; hence, the
average number of iterations is about N/4, and the
average advance of m between two successive iterations
isAm~ 2.

A convenient measure of convergence is the relative
reduction of the distance to x

r=(xg,, —x ) (x, —x,}. (14)

The sequence {x,} converges if |r| = r, < 1 for large k.
Using the results of the previous section, it is easy to
show that 0 < r = r, <1 and thus the sequence con-

verges from the same side, with x,,, lying in (x, ,x ).
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This one-sided convergence is extremely desirable for
the smooth applications of iterative transformations re-
quiring {x,} to be suitably bounded. Here {x,} all lie in
(x, .x,) . the latter being a valid interval for the x-trans-
formations.

From the previous section one easily obtains

r=plQ2"+p)+002™™. (15)

Substituting the bounds 0 = p < 2™, and the average

m~1

value (p) =2 ", we obtain

124002 >rz=002™, (16)
and

(n~1/3. a7n

A detailed analysis in the Appendix shows that (r) ~ 1
~In 2 =0.307.

The truncation errors have been given in specific cases
in the third section. Should these be deemed too large, an
extra iteration could be taken. Better still, as these
errors bear a definite sign, one could reduce roughly half
of the maximum error by adding one bit to . Thus,

Yult ~ Yyt Y (427077 e = 27V (18)
Vot —p) ~y, = (u+27%, 5 =27% (19)
vl (l=p) ~y 4y, (w27 Jel =270 (0
W=y Ty w27 e =27 @)

For |e] = 27V N never needs to exceed N, and N = N
will be assumed below.

A major source of inaccuracy is rounding error, which
can be controlled by using longer intermediate results,
rounded tabular vaiues, rounded arithmetic, fewer arith-
metic steps, or combinations of all of these. Using J
guard bits in the fraction, the total absolute rounding
error in computing y, is

p=i(j+k)277, (22)
where
i = the number of iterations,

72V =the rounding error due to each tabular or
shifted operand,

and

k27" = the rounding error due to an add (or subtract)
operation.

We have
Jj = 1/2 if operands in question are all rounded,

= 1 if unrounded;

TIEN CHI CHEN

k = 1/2 if the add (subtract) operations include rounding,
= 1 if unrounded arithmetic is practiced.

The total absolute error in computing u is the same as p
in Eq. (22) except for the inverse square root case, where
2p is used because of the extra work required. lgnoring
the rounding error generated by the termination al-
gorithm, the total absolute rounding error is bounded by
p(1 + an/ax]xm) with g = 2 for the inverse square root,
and g = 1 otherwise.

It turns out that i, expected to be about N/4 , is never
known to exceed N/2, and the choice J = 6 should en-
sure p = 27 for N = 64, using rounded operands
and rounded operations, or for N = 32 , using unrounded
operands and unrounded operations.

Nonstandard choices for m

The standard choices of m for this paper have been given
in the fourth section. They are closely related to the left-
zeros count of the fraction |x, — x_| , thus

m = 1 + (the left-zeros count of x,) for we” (23)
m =1+ [the left-zeros count of (1 —x,)]
for w + Inx, w/x (24a)

m =12 + [the left-zeros count of (1 —x, )] for w/x%.
(25)

The counting of left-zeros being a regular activity in
normalized floating-point arithmetic, the implementabil-
ity of a “standard m-finder” is not an issue.

However, nonstandard integer choices, #iz , may be de-
sirable for added efficiency and/or algorithm simplicity.
We remark here that the choice of /m > m may increase
the number of jterations and hence the rounding error,
but the algorithm nevertheless still converges. Converse-
ly, the choice of i1 < m may speed up the convergence in
some cases, yet may lead to divergence if carelessly
applied. The standard choices on the other hand are
simple and reliable, and are asymptotically optimum (for
m— ),

The convergence for the inverse square root algorithm
is slow for x, below 4/9=(0.111000 - - -),; several
iterations are often needed to make the leading fraction
bit of x, into a 1. A brief study reveals that for x, in (1/4,
4/9) the optimum choice is not m = 2 (standard choice)
but m = 1; with it x,, , is guaranteed to be at least 0.56.

In Eqgs. (24a) and (25) the standard m is formed from
(1 —x,), calling for a complementation process. Al-
ternatively, one could count the left-ones in x, directly.
Instead of Eq. (24a) we now have

m = g + (the left-ones count of x, ) (24b)

with g =1 if p # 0 and g = 0 otherwise. To simplify
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controls, one could persist in using ¢ = 1 ; even for the
unlikely event of p = 0, where g = 0 would be an unus-
ually good choice, with g = 1 rapid convergence is still
guaranteed. A similar situation occurs for the inverse
square root, with (1 + ¢) in place of ¢.

A unified apparatus

The four iteration algorithms can be handled by one uni-
fied apparatus (see Fig. 2), consisting of an adder A, a
shifting mechanism S, and an N/2-word fast memory M
holding {—In(1 +27™)}, 1 < m < N/2. A memory word
has N + J fraction bits. Internal computation is also done
using N +J fraction bits, plus one integer bit to handle
the range 0 = y, < 2; this is so because y, can exceed
unity, but need not exceed 2 if w is properly prenor-
malized, say to within [0,1]. The apparatus is capable of
the following elementary operations; these, of course, do
not consume equal time:

a) Load C(X) (the contents of register X), into T.

b) Deduce m from C(T), store it in V.

c) Use m as address to fetch C(m) from M; add C(m)
and C(T).

d) Store the sum in X.

e) Load C(Y) into T.

f) Shift C(T) to the right by m places, put result into U;
add C(T) and C(U).

g) Store the sumin Y.

h) Go to step a) if m < m, else enter the termination
algorithm,

Starting by putting x, in X, w(= y,) in Y, the sequenc-
ing for the evaluations are:

we™ 0 {abcdefgh) ; then C(Y) + C(Y) X C(X)

x,
~ we 0.

w+ Inx,: (abfdecgh) ; then C(Y) + 1 — C(X)

~w+Inx,.
wix,,  (abfdefgh) ; then C(Y) + C(Y)
x [1=C(X)]
~ wix, .
wix,Z:  (abfdafdefgh) ; then C(Y) + C(Y)
X [1=C(X) 12 ~ wix,?.

The apparatus invokes the termination algorithm by ship-
ping C(X), C(Y) away, to be processed by more con-
ventional equipment. For details of the sequencing see
Table 2. If self-contained operation is desired, the itera-
tions can be allowed to run until g < 27" It would then
be necessary to double the table size and add one more
guard bit for accuracy.
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A
m = m P .
To termination algorithm

COon)=—In(1+27™)

Figure 2 The unified apparatus.

The adder, the shifter, and the sequential bit-counter
are within the state of art. A small high-speed memory is
needed for we” and (w + Inx); this is easily achieved
using modern memory devices in an integrated circuit
memory technology compatible with computation hard-
ware. Also, this apparatus need not stand alone and can
share equipment with other parts of the same system.

To derive a rough timing estimate we equate memory
access time with shift time, and note that a conventional
multiplier takes time 7 = N shift-add times. The ex-
pected N/4 iterations involve 3N/4 shift-adds for the
inverse square root and N/2 for the other three functions;
the time estimate is, therefore, 37/4 and T/2, respec-
tively. To these one has to add the timing cost of the
terminal algorithm.

For logarithms the complement-add required adds
little to the iteration cost. The total timing cost is still
measured by 7/2 .

For exponentials, ratios, and inverse square roots a
half-multiply is needed. If this is done with a conventional
multiplier, the cost would again be T'/2 for a total cost of
T (exponential, ratio) and 1.25T (inverse square root).
However, if a powerful fast multiplier is invoked here, the
half-muitiply may cost little more time than an add.

APL simulation

The algorithms have been simulated by a nest of inter-
locking subroutines written in APL, which handles the
bit-pattern manipulations with clarity and precision. The
results of a run on the IBM ApL terminal system is re-
ported here.
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Table 2 Sequencing operations.

a) For we” b) For w + In x ¢) For wix &) For wix!
PREP C(X) < x, PREP  C(X) < x, PREP  C(X) < x, PREP C{X) <« x,
C(Y) «—w C(Y) «n C(Y) «—w C(Y) «w

xNow C(T) « C(X)
C(V) < m computed from C(T)
C(X) <« C(T) +C(m)

xNow C(T) « C(X)
C(V) < m computed from C(T)
C(U) « 27" x C(T)
C(X) « C(T)+C(U)

xNow C(T) « C(X)
C(V) < m computed from C(T)
C{U) « 27" x C(T)
C(X) « C(T) + C(U}

xNow C(T) « C(X)
C(V) « m computed from C(T)
C(U) < 27" % C(T)
C(X) « C(T) + C(U)
C(T) « C(X)
C(U) < 27" x C(T)
C(X) < C(T) +C(U)

yNow C(T) « C(Y)
C(U) « 27" X C(T)
C(Y) « C(T) + C(U)

YNow C(T) « C(Y)

yNow C(T) « C(Y) yNow C(T) « C(Y)
C(Y) <« C(T) +C(m)

C(U) « 27" x C(T) C(U) «< 27" x C(T)
C(Y) — C(T) + C(U) C(Y) « C(T) + C(U)

if m = 11 go to xNOW
Answer <~ C(Y) + 1 — C(X)

if m = 1 go to xNow
Answer < C(Y) + C(Y) X C(X)

if m = 1 go to xNOW if m = 1 go to XNOw
Answer «— C(Y) + C(Y) X [1 —C(X)] Answer — C(Y) + C(Y) x 27" x [1 = C(X)]

Table 3 Iteration counts for test cases (quantities in parentheses are errors).

x, we™o w + Inx, wix, w/xolz
0.0555 5555 5(=2 % 107%) (out of range) (out of range) (out of range)
0.1555 5555 5(=2x107%) (out of range) (out of range) (out of range)
0.2555 5555 4(—1x 107" (out of range) (out of range) 10(5 x 107%)
0.3555 5555 6(—2x 107%) (out of range) (out of range) 8(—3 x 107)
0.4555 5555 10(=3 X 107%) (out of range) (out of range) 6(—2 x 107%)
0.5555 5555 5(1x107% 6(—3x107%) 6(4 x 107" 7(—6 x 107%)
0.6555 5555 8(—2x 107 7(—2x 107%) 7(=2%x107%) 5(=3x107%)
0.7555 5555 (out of range) 7(=2 % 107%) 7(=2x107% 6(5x 107"
0.8555 5555 (out of range) 6(—2 % 107" 6(—1 x 107%) 5(1x 1079
0.9555 5555 (out of range) 5(=2x 107 5(=2x107% 58 x 107"
Average count: 6.2 6.2 6.2 6.5
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The test values of x are N-bit binary representations
of (0.0555 5555+ 0.1n), where n assumes all integer
values permissible under the range restrictions given in
the third section. The run assumed N =24 (S/360-
370 floating-point fraction size), 6 guard bits and un-
rounded arithmetic; also N =N, hence m =12. The
left-ones count is used to find m to avoid complementa-
tion. Iteration continued until the computed m exceeded
m , then the terminal algorithm was invoked with the er-
ror-halving measure. The correctness of the algorithms
and the accuracy of the result are both amply verified by
the tests. No failure due to the algorithm has ever been
found. The average Am was indeed close to 2 after one or
two iterations.

The results are summarized in Table 3; the number of
iterations varies from three to ten, the mean being rather
close to 6.3.

For two values of x,, the x-transformations are dis-
played in Fig. 3. The automatic sequential bit-counting
mechanism is seen to be extremely worthwhile; it allows
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both the skipping over of unimportant bits and, no less
important, the use of the same m for more than one intera-
tion. In Fig. 3(c), for example, we encounter a case with
Am = 0 in one iteration, then Am = 8 in the next. Without
the bit counting technique one would have to employ
costly trial and error comparison schemes, and/or severe
limitations on the arguments to guarantee Am = 1.

Conclusion
We have shown how the four functions of x can be eval-
uated by using shifts, adds, limited table look-ups, and
sequential bit counting. The timing cost is low, being of
the order of a conventional multiply time and sometimes
less. The implementation by a unified piece of hardware
is entirely within the state of the art. The possible draw-
backs are a) the word-length incompatibility with the rest
of the system because of the special guard bits required;
and b) the variable timing.

Short of actual implementation, the hardware can be
emulated by a nest of interrelated microsubroutines for
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ITERATION 1 X= 5,0010011720110110901010011010100
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ITERATION 3 Y= 0.0N0N000AN1100120101001021001601
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RATION 1 X= 0,110101000117011001100110002161 M=
RATION 2 X= 0.111011111100011112011001046111 /=
RATION 3 X= 0.1111111100000000400001008110101  [i=
RATION & X¥= 06,111111110121111110910100114081 M=
FERATION 5 X= 0.1111311211111111101100190190001 M=

(¢) w/)col/2

Figure 3 Typical runs using.x, = 0.5555 5555 and 0.6555 5555.

microprogrammable machines. The algorithms can also
be written as conventional subroutines; but then the
compactness of the table will not be a major advantage,
and the manipulations may be difficult using conven-
tional instructions.
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Appendix. Convergence of the iterations
We shall study Am, the average advance of m , and give
some detailed estimates for r.

s Average advance of m
We shall denote by Z(a) as the number of leading zero
bits in a binary fraction «. Then

ZQRa)=Z(a)— 1 fora < 1/2. (A1)
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In terms of this notation we can write for all four al-
gorithms

m=Z(x,—x,) +q, g=1lor2. (A2)
The average advance of m between two iterations is

(Am) = (Z(|x,, — x,1) = Z(Jx, — x|))

~{Z(gp)) — Z[q(2™" + p)] 0=p<2™™
~(Z(p))—Z2T"+p)
~{Zp))—(m—1). (A3)

Z(p) is a step function of p:
Z(p)=m  forpin 2"—=27".27"7,
(2" cases) ;
=m+1forpin 27" =277, 277,

(27 cases) ;

=m+i forpin 27" —27", 27y,
(2™ cases) ;

N~1f0rp=2_N,

fl

(one case) ;
=N forp=20, (one case) .

Hence we have for all 2™ cases, assuming each to be
equally probable:

<Z(p)>=?[m-2"‘*‘+(m+1)2""2+---]
=m+[0-27"+1-27"42-27+- -]
+lw'2_i—m+l-2—m+l
m 2%:1 = 5 .
Hence (Am) ~{(Z(p))—(m—1)=2.

* Asymptotic estimate of r
In the fifth section on convergence and accuracy an in-
tuitive estimate of r ~ 1/3 was obtained. A better esti-
mate is possible using p > p > 0, with p=2" 4279,
Q equals (N +J) usually, but is (N +J + 1) for the in-
verse square root. We have

s=1~—r
= (o — X)) / (5 — x,)

272"+ )+ 002

then

()= @"p) [ dp/ @ +p) +02™)

=I2+2"%n2-1/2) +027") + O (2"

~mn2,.
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Hence
(r)~1—1In2=0.30685"--.
* Detailed analysis
We shall develop, for the four algorithms, bounds for r
as well as average values.
1) For the exponential we have
s=1[n(1+2"]/x,= Q" =27"2+4+27"3—- )
=2 ™+p)>12 2" <1224+ 273,
and
()~ [In(1+2™} - 2"In2~IIn2—-2""
~0.693 —27"7";
hence
1>12+2"2>r>2""(1/2-27"3) >0,
with
(rH~ 0307 +27"";

further, r < 5/8 for the worst case value of m=1.

2) For both (w +1n x) and (w/x),

s=2"x/(1—x,)=2""[1/Q27"+p)— 1]
>12=-2"=1-2",

and

() ~In2—2"";

hence

1>12+42">rz2"">0,

with

(P~ 0307 +27".

Second-order convergence is achieved whenever x, =
1—27", where x,,, =1 —2"""and r = 27" Elsewhere
for the worst case of m =2, we have r < 3/4.

When simple left-ones counting is used (see the sixth
section), we may have x, =1~— 2™™ but choose 1=
m+ 1, hence a,=1+2"""". For this unlikely occur-
rence we also have r=1/2 + 27" < 3/4.

3) For the inverse square root, x,=1—2(2""+p),
and m = 2,
s=2"2+2™x./(1—x,)
=272 +27")[12Q"+p)—11>12—-7 27"
—27"=0
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=1—-3-27"" -2 <
(s)y~In2—2""(2—(1/2)n2+27")
=In2—-2""(1.654+27")

thus
1Z1247-27"2427">,=3-27""427" >0
with

(N~ 0307 +27"(1.654 +27™") .

The minimum convergence speed cannot be readily
deduced from the upper bound of r, but x, /(1 — x,)
monotonically increases with x,, , and

s= 272 4+27™(1/4)/ (3/4) = 3/16 (when m = 2)

and r = 13/16 = 0.813. As commented in the sixth sec-
tion, ‘“Nonstandard choices for m,” the range (1/4, 4/9)
can be mapped into (1/2, 1) in one iteration, using
m = 1. Using this device, the smallest x, becomes 1/2,
henceforward r =< 7/16.
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