J. W. White

Removal of Numerical Instability in the |
Solution of Nonlinear Heat Exchange Equations

Abstract: Current relaxation methods used by most largé-scale thermal-computation programs for solving steady-state temperature
distributions are subject to numerical instability when radiation is present in the system under study. The instability is usually due to
the linearization of the numerical formulation of the governing equations and manifests itself as an oscillatory or divergent solution.
A new method of solution is presented, which takes advantage of the diagonal domirance of the coefficient matrices of the linear and
nonlinear transfer modes and uses a Gauss-Seidel system relaxation method together with a Newton-Raphson root-evaluation tech-
nique. System solution appears similar to that for a diagonally dominant linear system for all magnitudes of radiation. Test cases show the
method to be monotonically convergent over the entire range of the radiation parameter considered, while previous methods were found

to fail at certain magnitudes of the nonlinear term.

Nomenclature

A Conduction coefficient matrix

A, Surface area of node &

a;; Element of matrix A

B Radiation coefficient matrix

b, Element of matrix B

C Heat generation matrix

Ax Spatial increment

Fisj Overall radiation factor between nodes i and j
AT,) Summation of all heat fluxes into node &
K Thermal conductivity

qr Radiant heat flux

Q' Volume rate of heat generation

Qgen Heat generation

R _.cond Conduction resistance
R _rad Radiation resistance

T, Temperature of adjacent node point
T, Temperature of central node point
T, Radiation sink temperature

o Stefan-Boltzmann constant

To /+1

Figure 1 Node point distribution for conduction and radiation.
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Introduction

In the high temperature applications of modern technol-
ogy, thermal radiation has become an important mode of
heat transfer. Whether it be heat rejection from a space-
craft surface to deep space or from a hot electronic
component on a printed circuit card to a container struc-
ture, radiation is quite often an important effect which
should be taken into account during design. When radia-
tion is present, the thermal energy equation appears as

div (Kgrad T) —divg,+ Q"' =0, 1)

where q, is the radiative flux vector.

A standard procedure for obtaining a numerical solu-
tion to Eq. (1) is to approximate the gradient terms by
finite differences and the nonlinear radiation terms by
small areas of uniform temperature. The resulting sys-
tem of algebraic equations is then solved for the temper-
ature values. Without the radiation terms, the solution is
quite simple; with them, computational difficulties may
arise if the magnitude of radiation is comparable to that
of conduction.

Consider a general case with radiation and conduc-
tion. Assuming that the mesh or node point / is in ther-
mal contact with two adjacent nodes and with deep
space (see Fig. 1) and, for simplicity here, assuming that
the overall radiation coefficients %, are all equal, we
can reduce the finite difference form of Eq. (1) to
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Now, instead of needing to solve a system of linear
algebraic equations ds is the case for conduction only,
the problem is one involving nonlinear algebraic equa-
tions. It is this nonlinearity that presents the difficulty in
obtaining a solution to Eq. (1) by relaxation methods.
One of the most frequently used methods [1-3] for
solving systems of nonlinear equations in thermal analy-
sis consists of a linearization of the nonlinear terms with
a Gauss-Seidel [4] solution of the resulting system. The
finite difference form of Eq. (1) inay be written as

KA
E(X;)k ) (T = Ty) + EOgl\ﬁmiAk (T:ni - T;:)

+ Q,gen =0, (3)
where the subscript k corresponds to the node point be-
ing solved for and mi refers to an adjacent node point.

With use of the electrical analogy, thermal resistances
are defined as

Ax
R, =—
acond .

and

Rnirad = [U‘%\—nm'Ak (Tfnz + Tl2c) (Tm1 + Tk)]_l'

Equation (3) then takes the form

1 1
+
(2 R cond ) Rm.rad> Ty

i i

Tmi Tmi

B ; R, .cond " Z R rad * Qpen. @
The coefficient of the left side of Eq. (4) is clearly
dominant over those of the right side, a condition that is
necessary to insure convergence in a Gauss-Seidel
method of solution. A problem arises, however, in that
the radiation resistances R, rad are functions of the
temperature T,. Since the radiation resistance is propor-
tional to the inverse cube of the temperature, small er-
rors in calculated values of T, cause a larger error in the
corrésponding radiation resistance. This tends to cause
an oscillatory system response that may or may not be
damped out, depending on the relative magnitudes of the
radiation and conduction terms.

Another way [2] of handling the general case with
radiation and conduction is to classify each node as ei-
ther conduction or radiation dominant. The conduction
dominant solution is similar to that of the linearized
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mines a new value of temperature from only the radia-
tion term. In the latter case the conduction term is in-
cluded but is based on the last calculated value. As
would be expected, the dominant-mode method works in
cases with extreme ratios of conduction to radiation.
There are usually regions with conduction and radiation
of the same order of magnitude, however, where this
method fails.

The work described in this paper was undertaken to
find an approximate method of solution for Eq. (1) that
completely removes the numerical instabilities associ-
ated with previous methods of solution. The require-
ments seemed to suggest that the full nonlinear terms
would have to be kept and dealt with. One approach
might have been to use a generalized Newton’s method
of solution [5]; however, the diagonal dominance of the
coefficient matrices of both the conduction and radiation
terms indicated that a Gauss-Seidel method should
work, which was the case. It was felt that a tangible
reward for success in this effort would be a great de-
crease in the amount of computation time necessary for
solution, while intangible gains would include increased
user confidence in final results.

The rest of this paper includes a presentation of the
new technique, the several levels of tolerance required
for system convergence, and the initial data require-
ments. Results of several test cases are presented, which
compare the new method of solution with previous ones.

Solution technique
With the motivation that the full nonlinear terms should
be retained, the radiation resistances are redefined as

Ryrad= (0%, . A)"".

k—mi

Equation (3) is then recast as

T,.— T, 7). — Ty
- + . + Q,gen = 0. 5
; R, cond 2 R, rad Que ©)

i

Rearrangement gives

>

i

1 1 4
— T+ —T
R,cond * ; R, rad *
T T,
- — + 4 en) =0. (6
(E R,cond 2;‘ R, rad Qg ©

i ni

Equation (6) may be written in matrix form as
AT + BT* =, @)

where A and B are coefficient matrices of the conduction
and radiation terms, respectively, and C is a vector
composed of the components of heat generation. From
examination of Eq. (6), the A and B matrices are diago-
nally dominant, satisfying, respectively,
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Iaiil = E laiji;

j#i
bl = S 1By,

J#1
with the strict inequality holding for at least one mesh
point. ]

These matrix properties indicate that a Gauss-Seidel
method of solution will work, solving not for the single
variable unknown T, but for a polynomial in T, given by
Eq. (6):

1 1 4 T,
— T + T = . mt
(2 Rm.cond) k <; Rm.rad> k Z R, cond
Thi
+> R 'r";d + Q,gen. (6)

The right side of Eq. (6) is known from input or previous
calculations and is treated as constant. Thus the conduc-
tion and radiation resistances are all now constant, and
Eq. (6) can now be given more simply as

ol + BTe— (=0, ®)
where

a=3

1
R, cond’

1
A= 2:‘ R, rad’

T . T4.

— mi + mi + ) .
¢ sz.cond ERm.rad Qugen

t

It remains now to obtain the proper root of the poly-
nomial expression for T,. Define a heat input function as

AT)=aT, +BT, ' —(=0. , 9)

Equation (9) is sketched in Fig. 2. Of the four roots of
Eq. (9), two are real and two are a complex conjugate
pair. We are interested in the one real positive root,
which is the only possible interpretation for absolute
temperature.

The function AT,) is always concave upward as is
seen by taking the second derivative

(1) =12 B(T)%

This type of function yields nicely to root evaluation
by a Newton-Raphson technique. Expanding f(T,)in a
Taylor series around the most recently calculated value
and truncating higher order terms, we obtain

f(Tk,i+ 1) %f(Tk,i) +f’(Tk,i)(Tk,i+ 1 Tk,i) »

where i corresponds to the ith iteration for T,.
Requiring that f(T kit equal zero (as it must for solu-
tion) gives, after rearrangement,
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Figure 2 Graphical form of heat inpdt function.

qki+1=Tki_f(Tk)i)' (10

’ (T

Equation (10) is evaluated repetitively until the differ-
ence (T ;,,— T, is less than some prescribed value of
tolerance. Once this condition is satisfied, the next equa-
tion is solved in a similar manner by using the latest in-
formation available for the evaluation of the “constant”
¢. The et result is that the nonlinear system of equa-
tions approximating Eq. (1) is solved with a solution
response similar to that for a linear system. At each
mesh point the root of each equation is evaluated several
times to satisfy tolerance requirements. This procedure
requires more time than does the solution of a linear sys-
tem, but overall the solution is in general more rapid
than other methods we have considered, and is much
more stable.

& [nitial conditions

To define an appropriate range of initial temperature
values in starting the relaxation process, we again con-
sider Eq. (10). No problems are encountered as long as
f ’(Tk)‘is nonzero, since it appears in the denominator.
Three cases warrant consideration: 1) no conduction
(& = 0); 2) no radiation (8 = 0); 3) both conduction and
radiation present (a # 0, 8 # 0).

For all of the cases considered, the positive real root
of Eq. (9) will be approached with the Newton-Raphson
method if all the initialized temperature values are great-
er than 0°R. This presents no limitation because the user
can usually provide fairly good representative values of
temperature based on experience and knowledge of the
particular application.

o Tolerances

The temperature value of each node is iteratively calcu-
lated to within some tolerance, say DELTA 1 on each
system pass. The system of equations is then said to
converge when each nodal value changes by less than
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Figure 3 Comparison of new and linearized methods for radiation fin problem. (T_ = 0°R; Q,gen = 100 Btu/hr; required tolerance on

successive passes T, —

T,,= 0.001°R.)

DELTA 2 (another tolerance) on successive system
passes. Values of root evaluation tolerance DELTA 1
should be significantly smaller than the final required
system tolerance DELTA 2. Test cases indicate that a
good empirical rule is to require & root evaluation toler-
ance about ten times smaller than the system tolerance.
It has been found that computation time can be mini-
mized by using several corresponding pairs of values for
root evaluation and system tolerances.

Initially, guessed values of temperature for all node
points must be provided as input to the program. This
results in the “constant” { being calculated rather crude-
ly in the early stages of the solution. However, as the
relaxation process continues the value of { becomes
more accurate. What this implies is that initially the val-
ue of DELTA 1 should not be as small as later in the
solution. It is not useful to calculate roots of the poly-
nomial very accurately until all temperature values have
relaxed to a fairly good degree of accuracy.

As an example, let DELTA 1=0.1. Since several
values of tolerance are used, this quantity should bé in-
dexed. Thus DELTA 1 (1) = 0.1. Select DELTA 2 (1)
= 1.0 [notice that DELTA 1 (1) is ten times smaller
than DELTA 2 (1)]. The system solution will proceed
until the value DELTA 2 (1) is satisfied by all nodes. At
that point, both DELTA 1 and DELTA 2 are updated.
Next select DELTA 1 (2) = 0.0001 and DELTA 2 (2)

= (.001. These tolerances are then used until final sys-
tem solution is achieved. From test cases, it appears that
littte or no further saving in computation time is
achieved by using more than two levels of tolerance.

Results of test cases [6]

First, consider a radiation fin that conducts heat along
its longitudinal axis and radiates heat to its surroundings
at a uniform temperature 7. Fifty node points were
used to thermally describe the fin, each of which had an
assigned quantity of heat generation. The ratio of radia-
tion to conduction resistance was varied over several
orders of magnitude to show both the utility and the lim-
itations of the linearized method, as well as the supe-
riority of the new method of solution.

Results are shown in Fig. 3. Notice that the linearized
method works satisfactorily for large values of
Rrad/Rcond (conduction dominant). For values of
Rrad/Rcond less than about 145 X 10°, however, no
solution was possible for this example with the linear-
ized method. The new method of solution, on the other
hand, was completely stable over all ranges of input
data. For this particular example the number of itera-
tions for system solution continues to decrease as the
conduction resistance is increased. This is because the
increased conduction resistance tends to isolate each
node from adjacent nodes and allows the final tempera-
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ture at a node to be fixed by the thermal radiation envi-
ronment.

Second, an example is included for a three-node, con-
duction-radiation situation (see Fig. 4), which illustrates
the damped oscillation characteristics of the linearized
method. Each node point radiates to space (7). Node 2
generates heat and nodes 1 and 3 are connected to node
2 by conduction. For this example the ratio of conduc-
tion to radiation heat transfer is about 1.3 for node 2.
The numerical results are plotted in Fig. 5. Our method
of solution satisfied the convergence requirements in 18
system passes while the linearized method required 82
passes to satisfy the same tolerance. Note the monoton-
ic convergence of the new method, which is also a char-
acteristic of the linear system.

Finally, an example is presented to illustrate an at-
tempt to classify each node point as either conduction or
radiation dominant. The problem involves 1000 node
points, with each node conducting and radiating to each
of its adjacent nodes in three dimensions. Each node has
an assigned quantity of heat, generation. Results are
presented in Fig. 6 and, as would be expected, the domi-
nant-mode method works for extreme ratios of radiation-
to-conduction resistance. The significance of the results
is that the regions of dominant-mode solution do not
overlap. There exists a region (3 < Rrad/Rcond x 107°
< 27) where neither of the dominant-mode methods of
solution will solve the problem. The new method, how-
ever, provides stable convergence in this region. In
fact, we expect that solution is possible with the new
method over the semi-infinite region 0 < Rrad/Rcond
< oo,

Summary

Numerical instability associated with the steady-state
solution of nonlinear thermal systems can be eliminated
by use of a two-level iteration procedure. Because of the
diagonal dominance of the coefficient matrices, it is intu-
itive that this method insures stability and convergence.
Test cases substantiate this conclusion, but it remains to
be proved in a rigorous manner. Due to the monotonic
behavior of the system response, a solution can be ob-
tained in general much more quickly than with previous
methods. This characteristic reduces computation time
and increases the user’s confidence that the final results
are in fact a real solution to his problem. The method
can be applied to many types of steady-state heat trans-
fer analyses.
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Figure 4 Nodal arrangement for three-point problem.

Figure 5 System response with damped oscillation. (#;_,;4,
= 1.0 ft*; Rcond = 0.2 °R/Btu/hr; Qgen, node 2 = 1000 Btu/hr.)
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Figure 6 Comparison of new and dominant-mode methods of
solution. (1000-node parallelepiped; Q,gen = 1000 Btu/hr.)
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