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Removal of Numerical Instability in the 
Solution of Nonlinear  Heat  Exchange  Equations 

Abstract: Current relaxation methods used by most lar&-scale thermal-computation  programs for solving, steady-state  temperature 
distributions are subject  to numerical instability when radiation is present in the  system  under  study.  The instability is usually due  to 
the  linearization of the numerical  formulation of the governing equations  and manifests itself as an  oscillatory or divergent  solution. 
A new method of solution is presented, which takes advantage of the diagonal dominance of the coefficient matrices of the  linear  and 
nonlinear transfer modes and uses a Gauss-Seidel  system  relaxation  method together with a Newton-Raphson root-evaluation tech- 
nique. System solution appears similar to  that  for a diagonally dominant linear system  for all magnitudes of radiation. Test  cases show  the 
method to  be monotonicallv  convergent over  the  entire range of the  radiation parameter  considered, while previous methods were  found - 
to fail at  certain magnitudes of the  nonlinear  term. 

Nomenclature 
Conduction coefficient matrix 
Surface  area of node k 
Element of matrix A 
Radiation coefficient matrix 
Element of matrix B 
Heat generation matrix 
Spatial  increment 
Overall  radiation factor between  nodes i a n d i  
Summation of all heat fluxes into node k 
Thermal conductivity 
Radiant heat flux 
Volume rate of heat generation 
Heat generation 
Conduction  resistance 
Radiation resistance 
Temperature of adjacent  node point 
Temperature of central node  point 
Radiation sink temperature 
Stefan-Boltzmann constant 
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Figure 1 Node point distribution for conduction and radiation. 

Introduction 
In  the high temperature applications of modern  technol- 
ogy,  thermal  radiation has  become  an  important mode of 
heat  transfer. Whether it be heat rejection from a space- 
craft  surface  to  deep  space  or from a hot  electronic 
component  on a printed  circuit card  to a container  struc- 
ture, radiation is quite often an  important effect which 
should be taken  into  account during  design.  When  radia- 
tion is present,  the thermal  energy  equation appears  as 

div ( K  grad T )  - div qr + e"'= 0, ( 1 )  

where qp is the radiative flux vector. 
A standard  procedure  for obtaining a numerical solu- 

tion to  Eq. ( 1 )  is to  approximate  the gradient terms by 
finite differences  and the nonlinear  radiation terms by 
small areas of uniform temperature.  The resulting sys- 
tem of algebraic equations is then  solved for  the temper- 
ature values.  Without the radiation terms,  the solution is 
quite simple; with them, computational difficulties may 
arise if the magnitude of radiation is comparable  to  that 
of conduction. 

Consider a general case with radiation  and conduc- 
tion.  Assuming that  the mesh or  node point I is  in ther- 
mal contact with two  adjacent nodes  and  with deep 
space  (see Fig. 1) and,  for simplicity here, assuming that 
the overall  radiation coefficients Fj+J are all equal,  we 
can reduce  the finite difference form of Eq. (1) to 277 
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Now, instead of needing to  solve a system of linear 
algebraic equations as is the  case  for  conduction only, 
the problem is one involving nonlinear  algebraic  equa- 
tions. It is this nonlitiearity that  presents  the difficulty in 
obtaining  a  solution to  Eq. (1) by relaxation  methods. 
One of the most frequently used methods [ 1-31  for 
solving systems of nonlinear equations in thermal analy- 
sis consists of a linearization of the nonlinear terms with 
a Gauss-Seidel [4] solution of the resulting system.  The 
finite difference  form of Eq. (1) may be written  as 

+ Qkgen = 0, (31 

where  the subscript k corresponds  to  the  node point  be- 
ing solved for and mi refers to  an  adjacent node  point. 

With use of the electrical  analogy, thermal  resistances 
are defined as 

R,,cond = ~ 

Ax 
K A  

and 

The coefficient of the left  side of Eq. (4) is clearly 
dominant  over  those of the right side, a  condition that is 
necessary  to  insure  convergence in a Gauss-Seidel 
method of solution. A problem arises,  however, in that 
the radiation resistances R,! rad are  functions of the 
temperature T,. Since  the radiation resistance is propor- 
tional to  the  inverse  cube of the  temperature, small er- 
rors in calculated  values of T, cause a  larger error in the 
corresponding  radiation resistance.  This  tends  to  cause 
an oscillatory system  response  that may or may not  be 
damped out, depending on  the relative  magnitudes of the 
radiation and  conduction terms. 

Another way [2] of handling the general case with 
radiation and conduction is to classify each node as ei- 
ther  conduction  or radiation  dominant. The  conduction 
dominant  solution is similar to  that of the linearized 

278 method whereas  the radiation  dominant  solution deter- 
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mines  a new value of temperature from only the radia- 
tion term.  In  the  latter  case  the conduction term is in- 
cluded but is based on  the  last calculated  value.  As 
would be  expected,  the dominant-mode  method  works in 
cases with extreme ratios of conduction to radiation. 
There  are usually regions with conduction  and  radiation 
of the  same  order of magnitude, however,  where this 
method  fails. 

The work described in this paper was undertaken  to 
find an  approximate method of solution for  Eq. (1) that 
completely removes  the numerical  instabilities  associ- 
ated with previous methods of solution. The require- 
ments  seemed to suggest that  the full nonlinear terms 
would have  to be  kept  and  dealt with. One  approach 
might have been to  use a  generalized Newton's method 
of solution [5];  however,  the diagonal dominance of the 
coefficient matrices of both the  conduction and  radiation 
terms indicated that a Gauss-Seidel method  should 
work, which was the case. It was felt that a tangible 
reward for  success in this effort would be a great de- 
crease in the  amount of computation time necessary  for 
solution, while intangible gains would include  increased 
user confidence in final results. 

The  rest of this paper includes  a presentation of the 
new technique,  the several  levels of tolerance required 
for  system  convergence, and the initial data require- 
ments.  Results of several test  cases  are  presented, which 
compare  the new  method of solution with previous ones. 

Solution technique 
With the motivation that  the full nonlinear terms should 
be retained,  the radiation resistances  are redefined as 

R,,rad = A , ) - ' .  

Equation (3) is then recast as 

Rearrangement gives 

1 1 
T; 

Equation (6) may be written in matrix  form  as 

AT + BT4 = C, (7) 

where A and B are coefficient matrices of the  conduction 
and  radiation terms,  respectively,  and C is a vector 
composed of the  components of heat generation. From 
examination of Eq. (6), the A and B matrices are diago- 
nally dominant, satisfying, respectively, 
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lbiil 2 x b i j L  
j # i  

with the  strict inequality holding for  at  least  one mesh 
point. 

These  matrix  properties indicate that a Gauss-Seidel 
method of solution will work, solving not for  the single 
variable  unknown T ,  but  for a polynomial in T ,  given by 
Eq. (6): 

The right side of Eq. (6) is known from  input or previous 
calculations  and is treated  as  constant.  Thus  the  conduc- 
tion and radiation resistances  are ail now constant,  and 
Eq. (6) can now be given  more simply as 

a ~ , + p ~ : - - = o ,  (8) 

where 

1 (y= ___ $. Rnicond’ 

1 

‘ = 7 R,,cond + F Rnirad 
‘mi T‘i + Q,gen. 

It remains now to  obtain  the  proper  root of the poly- 
nomial expression  for Tk. Define  a heat input  function as 

~ ( T , ) = ~ T , + ~ T ~ - - = o .  (9) 

Equation (9) is sketched in Fig. 2. Of the  four  roots of 
Eq. (9), two  are  real  and two are a complex  conjugate 
pair. We are  interested in the  one real  positive root, 
which is the only  possible interpretation  for  absolute 
temperature. 

The function AT,) is always concave upward as is 
seen by taking the  second  derivative 

f ” ( T k )  = 12 p(T,)’. 

This  type of function  yields nicely to root  evaluation 
by a Newton-Raphson technique. Expandingf(T,) in a 
Taylor  series  around  the most  recently  calculated  value 
and  truncating  higher order  terms, we obtain 

f(Tk,i+l)  Eff(Tk,i)  +f’(Tk,i)(T/c,i+l- ‘/t,i)~ 

where i corresponds  to  the ith iteration for T,.  

tion) gives, after  rearrangement, 
Requiring thatf(T,,i+ equal zero (as it must for solu- 

i l  
Figure 2 Graphical  form of heat inpdt function. 

Equation (10) is  evaluated repetitively until the differ- 
ence  (Tk,i+ - T,,i) is less  than some prescribed  value of 
tolerance. Once this  condition is satisfied, the  next equa- 
tion is solved in a similar manner by using the  latest in- 
formation  available for  the evaluation of the  “constant” 
5. The net  result is that  the nonlinear system of equa- 
tions approximating Eq. ( 1 )  is solved with a solution 
response similar to  that  for a linear system.  At  each 
mesh point the  root of each  equation is evaluated  several 
times to satisfy tolerance  requirements.  This  procedure 
requires more  time  than does  the solution of a  linear sys- 
tem,  but overall the solution is in general more rapid 
than  other methods we have  considered,  and is much 
more stable. 

Initial conditions 
To define an  appropriate  range of initial temperature 
values in starting the relaxation process, we again cod- 
sider  Eq. (10). No problems are  encountered  as long as 
f’(T,)’is  nonzero,  since it appears in the  denominator. 
Three  cases  warrant consideration: 1)  no  conduction 
(a = 0);  2) no radiation (p = 0); 3)  both conduction and 
radiation present (a # 0, p # 0). 

For all of the  cases  considered,  the positive real root 
of Eq. (9) will be  approached with the  Newton-Raphson 
method if all the initialized temperature values are  great- 
er  than O”R. This  presents  no limitation because  the  user 
can usually provide fairly  good representative values of 
temperature based on  experience and  knowledge of the 
particular  application. 

Tolerances 
The  temperature value of each  node is iteratively  calcu- 
lated to within some  tolerance,  say  DELTA 1 on  each 
system pass. The  system of equations is then said to 
converge when each nodal value changes by  less than 279 
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Figure 3 Comparison of new and linearized methods for  radiation fin problem. (Tm = 0"R; Qigen = 100 Btu/hr; required  tolerance on 
successive passes - Ti,n 5 0.001 O R . )  

DELTA 2 (another  tolerance)  on  successive  system 
passes.  Values of root evaluation tolerance  DELTA 1 
should be significantly smaller than  the final required 
system  tolerance  DELTA 2 .  Test  cases indicate that a 
good empirical rule is to  require a root evaluation  toler- 
ance  about  ten times  smaller than  the  system  tolerance. 
It  has been  found that  computation time can be mini- 
mized by using several corresponding pairs of values for 
root evaluation  and system tolerances. 

Initially,  guessed  values of temperature  for all node 
points  must  be  provided as input to the program. This 
results in the "constant" 5 being calculated rather  crude- 
ly in the  early stages of the solution. However,  as  the 
relaxation process  continues  the  value of 5 becomes 
more  accurate.  What this implies is that initially the val- 
ue of DELTA 1 should  not  be as small as  later in the 
solution. It is not  useful to calculate roots of the poly- 
nomial very accurately until all temperature values have 
relaxed to a fairly good degree of accuracy. 

As  an  example, let DELTA 1 = 0.1.  Since several 
values of tolerance  are  used, this quantity should  be in- 
dexed.  Thus  DELTA 1  (1) = 0.1. Select  DELTA 2 (1) 
= 1.0 [notice that DELTA 1 (1) is ten times  smaller 
than  DELTA 2 (l)].  The  system solution will proceed 
until the  value  DELTA 2 (1) is satisfied by ail nodes. At 
that point, both  Dl3LTA 1 and DELTA 2 are  updated. 

280 Next  select  DELTA 1 ( 2 )  = 0.0001  and  DELTA 2 ( 2 )  
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= 0.001. These  tblerances  are  then used until final sys- 
tem  solution is achieved. From  test  cases, it appears  that 
little or no further saving in computation time is 
achieved  by using more  than  two levels of tolerance. 

Results of test cases [ 6 ]  
First,  consider a  radiation fin that  conducts  heat along 
its longitudinal axis and radiates  heat  to its  surroundings 
at a uniform temperature Tm. Fifty node points were 
used to thermally describe  the fin, each of which had  an 
assigned  quantity of heat generation. The ratio of radia- 
tion to conduction resistance was  varied over  several 
orders of magnitude to  show  both  the utility and  the lim- 
itations of the linearized method, as well as  the  supe- 
riority of the new  method of solution. 

Results  are  shown in Fig. 3. Notice  that  the linearized 
method  works  satisfactorily for large values of 
RradlRcond (conduction  dominant). For values of 
RradlRcond  less  than  about 145 X lo8, however,  no 
solution  was  possible for this  example  with the linear- 
ized  method. The new  method of solution, on the  other 
hand,  was  completely stable  over all ranges of input 
data.  For this particular example  the  number of itera- 
tions for  system solution continues  to  decrease  as  the 
conduction  resistance is increased. This is because  the 
increased conduction  resistance  tends  to isolate each 
node from adjacent nodes  and  allows the final tempera- 
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ture  at a node  to  be fixed by the  thermal radiation  envi- 
ronment. 

Second,  an example is included for a three-node, con- 
duction-radiation  situation (see Fig. 4), which illustrates 
the  damped oscillation characteristics of the linearized 
method. Each node  point  radiates to  space (Tm). Node 2 
generates  heat and nodes 1 and 3 are  connected  to node 
2 by conduction.  For this  example the ratio of conduc- 
tion to radiation  heat transfer is about 1.3 for node 2. 
The numerical  results are plotted in Fig. 5. Our method 
of solution satisfied the  convergence  requirements in 18 
system passes while the linearized  method  required 82 
passes to satisfy the  same tolerance. Note  the  monoton- 
ic convergence of the new method, which is also a char- 
acteristic of the linear system. 

Finally, an example is presented  to illustrate an at- 
tempt to classify  each node point as  either conduction or 
radiation  dominant. The problem  involves 1000 node 
points, with each node conducting and radiating to  each 
of its adjacent nodes in three dimensions. Each node has 
an assigned  quantity of heat .generation.  Results  are 
presented in Fig. 6 and,  as would be expected,  the domi- 
nant-mode  method  works for  extreme ratios of radiation- 
to-conduction resistance. The significance of the  results 
is that  the regions of dominant-mode  solution do  not 
overlap. There  exists a region (3 < RradIRcond X 

< 27) where neither of the dominant-mode methods of 
solution will solve the problem. The new method, how- 
ever, provides stable  convergence in this region. In 
fact, we expect  that solution is possible with the new 
method over  the semi-infinite region 0 5 RradIRcond 
< E. 

Summary 
Numerical  instability  associated with the  steady-state 
solution of nonlinear  thermal systems can  be  eliminated 
by use of a two-level iteration  procedure.  Because of the 
diagonal dominance of the coefficient matrices, it is intu- 
itive that this  method insures stability  and  convergence. 
Test  cases  substantiate this  conclusion,  but it remains to 
be  proved in a  rigorous  manner. Due  to  the monotonic 
behavior of the system response, a  solution can be  ob- 
tained in general  much  more  quickly  than with previous 
methods. This  characteristic  reduces computation  time 
and increases  the  user's confidence that  the final results 
are in fact a real solution to his problem. The  method 
can be applied to many types of steady-state heat trans- 
fer analyses. 
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Figure 4 Nodal  arrangement  for three-point  problem. 

Figure 5 System  response with damped oscillation. (Fi+j,4, 
= 1.0 ft'; Rcond = 0.2 "R/Btu/hr;  Qgen, node 2 = 1000 Btu/hr.) 
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Figure 6 Comparison of new and  dominant-mode methods of 
solution. (1000-node parallelepiped; Qigen = 1000 Btu/hr.) 
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IBM System 360/75. 
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