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Viscoelastic  Behavior of Computer Tape Subjected to 
Periodic  Motion 

Abstract: The purpose of this  study  was to develop a theoretical  means  for  predicting  the  longitudinal  motion of computer tape in a 
high-performance  tape  drive. In  particular,  this  paper  treats  the  motion  that is  governed by traveling velocity-stress wave  reflections, 
attenuations, and  interactions in the length of tape  between  the  tangency  point  at  the  capstan  and  the  tangency  point  at  the  stubby  column 
in the  drive. 

The motion of the  tape  was  determined  by  solving  the classical,  damped,  one-dimensional  wave  equation  subject  to  the  appropriate 
boundary  conditions. J .  C. Snowdon's  low-damping constitutive model  was  used to  describe  the  viscoelastic  behavior of the  tape.  The 
solutions for simple boundary conditions  were  experimentally verified by mechanical  impedance  techniques. More complex  boundary 
conditions,  such  as  those  for  vacuum  columns,  were  experimentally  studied to determine the true mathematical  boundary  conditions. 

This paper also discusses simple  unreflected  harmonic waves, simple reflected  harmonic  waves,  and  general  periodic  reflected  waves 
as examples.  The  significance of the wave interactions in the  design of tape  drives  is  considered. 

Introduction 
In typical  high-performance computer  tape  drives  such 
as  the IBM 2420-7 or  the more recent  3420-7,  the mag- 
netic  tape moves at a steady  speed of a  few  hundred 
inches  per second. It must start  and  stop in one  or  two 
milliseconds, and  complete a full reversal in three  to five 
milliseconds. The control  unit  frequently requires  these 
tape  drives  to  start and stop (shoeshine) about  once 
every 20 to  60 milliseconds. Controlling the motion of 
tape running at a steady  speed is  well understood.  Not 
so well understood is the  process of bringing the  tape  to 
operating speed  and holding it there  under  start-stop  and 
shoeshine motion. 

In  the above-mentioned tape  drives,  the  read/write 
head is located at a point along roughly a foot of tape 
between a capstan  and a stubby vacuum  column.  Ex- 
cursions and  velocities of the tangency  point at  the  stubby 
column are small as  compared,  respectively, with the 
relevant length of tape and the  tape velocity. The  sonic 
velocity of IBM Series/SOO tape is about 6500 ft/s.  The 
time required  for motion to  propagate from the  cap- 
stan  to  the  stubby column and back is of the  order of 
0.3 ms (about 1/5 of the specified start time), or  from  60 
to 200  times  longer than  for  the  start-stop  and shoeshine 
motions  already  mentioned. If there is little or no damp- 
ing in the  stubby column, at  the  head,  or in the  boundary 
layer of air adjacent  to  the  tape,  then  the internal  damp- 
ing in the  tape  determines  the length of the  startup  or 
reversal  transients,  and  thus  determines  the motion of 
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Wave  and constitutive equations 
The one-dimensional wave  equation is obtained from  the 
momentum equation  for a continuum, 

where p is the mass density, u is the velocity in an iner- 
tial Eulerian frame, T is the  stress  tensor,  and f is the 
summation of all body  forces  (per unit  mass). If trans- 
verse velocities and body forces  are ignored,  and  only 
pure  tension is allowed in the  stress  tensor,  the momen- 
tum equation in one dimension becomes 

du d u  
p z = d x '  (2) 

where (T is the tensile stress, u is the longitudinal velocity 
component, and x is the longitudinal coordinate.  In gen- 
eral, a linearized  relation between uniaxial stress  and  the 
strain  component along that  axis  can be written  as u = 
E*€,  where E is the  strain  and E* is a  real (or complex) 
elastic modulus. Also, du/dt is given by du/dt + u(du/ax). 
If the  ratio  between u and  the  sonic velocity  (or the 
propagation  velocity of a small disturbance) is small, 
then  the  convective  term  can  be ignored. Therefore,  to 
the first order, du/dt = du/dt. Finally, if the strain is 
small everywhere,  then  the relationship between veloc- 
ity and strain, &/at  = duldx, is correct  to first order. 

If we  use  the  above relations in the momentum  equa- 
tion,  the one-dimensional  wave equation is obtained: 
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s - 0  
lim P = -1 ,  

and 
In its  most general  linear form, E* can be rewritten as 

E* = E / ( n * j 2 ,  (4) 

where E is the (real) elastic modulus and n* is a complex 
number,  both possibly  functions of a  harmonic wave 
frequency.  For  convenience,  the time and spatial  coordi- 
nates and the velocity  can  be converted  to dimensionless 
parameters  as follows: 

x = x//; 

where e is a characteristic length of tape and uo is a  refer- 
ence velocity in the  tape.  In dimensionless form,  the 
wave  equation  becomes 

( n * )  
2a'u d'u 

aT2 - ax2' 

The modulus E* can also be written  as E ( l  + j S ) ,  where 
6 is a real number and j = f i .  Now E and 6 may be 
functions of frequency. Snowdon [ I ]  observed  that  for 
many materials, neither E nor 6 varies  with frequency 
below some critical frequency (and above some minimum 
frequency).  Snowdon's low-damping constitutive model 
was  used in this project, and was experimentally verified 
for  computer tape. (One might note  here  that  computer 
tape is not simply a  polymer  web, but  rather a  sandwich 
of 25 percent iron oxide particles in a  polymer binder sys- 
tem. The damping may therefore  not  be  the  same  as  that 
in the polymer substrate.)  From  the  above, (n*)'= 
1 / (1  + j S ) .  Two new  variables, P and q, were defined by 
Snowdon,  such  that n* = P + jq .  From algebra, we can 
obtain 

P =  " 
[2(1 + a 2 )  (m- 1 ) y .  

A small-6 approximation  for P and q can  help us see 
the effect of attentuation and phase velocity on wave 
propagation.  Experimentally, the value of S was always 
found to  be  between 0.05 and 0.01. When 6 << 1 ,  we 
can  use  the limiting values of P and q as 6 -+ 0. These 
values are given by 

6 
lim q = -, 
6-0  2 

and  are used  throughout  this paper. 

Reflected  and unreflected  simple waves 
The simplest  one-dimensional  wave in a  viscoelastic 
material is the propagation of a  harmonic  train in a semi- 
infinite member, such  as a semi-infinite piece of comput- 
er  tape. Reflections do  not  occur in this  member. An 
understanding of reflected waves  can be obtained from 
the  study of this  case. 

The velocity of the  tape,  determined by solving the 
wave  equation, is written in exponential form  as 

where  the imposed  end  velocity is simply 

U ( 0 , T j  = BeJw7: 

Substituting n* = P + j q  gives 

U ( X , T )  = B(,-WX i o ( P X d  11 
(J ' (13) 

The  wave velocity is generally considered  the velocity at 
which an  observer moves such  that a  traveling  distur- 
bance  appears unchanged in time. In undamped  materi- 
als (Le., q = 0) the  wave solution is 

U ( X , T j  = Bcjw(PXIT1 (14) 

The dimensionless wave velocity is -l/P. However,  the 
harmonic wave train attenuates as it propagates. To 
avoid  ambiguity, the velocity -l/P will be called the 
phase velocity, for both damped  and undamped  waves. 

If  materials are considered in which 6 << 1, then  the 
values 

P = -1 and q = - 
6 
2 ( 1  5 )  

can be  substituted  to give 
u(x T )  ~ ~ - 6 w X / 2 ~ j a ( 7 " X I  

In this case,  the dimensionless phase velocity is simply 
f l ,  and  the  wave amplitude envelope is given by 

For 6 << 1, this envelope  becomes  exp (- $SOX) .  The ra- 
tio of the amplitudes over two successive spatial  periods 
(i.e., when OX has  increased by 27r) is then exp(-rS j ,  
which is approximated by 1 - 7r6 for small values of 6. 
For 6 constant in frequency,  the spatial attenuation  per 
wavelength is independent of the spatial frequency. 
Also, if 6 does not exceed 0.05, the maximum attenua- 
tion per wave length is about 15 percent. 21 5 
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Figure 1 Theoretical plots of mechanical  impedance 
(magnitude) vs frequency  for a constant complex elastic modu- 
lus. End of tape rigidly clamped. 6 = (a) 0.040; (b) 0.032; (c) 
0.024. 

Figure 2 Experimental plot of mechanical  impedance vs fre- 
quency  for IBM Series/SOO tape, 64 in. long. End of tape rigidly 
clamped. 

5 10 100 I oon 
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In general, the segments of tape  under  study  are less 
than a  few  wavelengths long. In  cases like these, a  trav- 
eling wave  reaches  the terminating  point and is reflected 
in some manner. Thus,  waves generally propagate in 
both directions  along the  tape.  Snowdon's solution to  the 
wave  equation  that  describes this  propagation is 
u ( X , T )  = B !  [ e - i n " w X +  (Re,!'") . / r l * w x ]  (18) 

R e  is a reflection coefficient that  describes how the 
wave is reflected. If the driven end of the  tape  is defined 
by X = 1 and  the  other  end by X = 0, a rigidly clamped 
end (i.e., I/ = 0 at X = 0) corresponds  to Rej*= "1. If 
the velocity of the  driven  end is given by U (1,T) = 
B E , then the velocity of the  tape is 

In analyzing the vibration of continuous  systems,  the 
concept of mechanical impedance is frequently used to 
describe  the  dynamic  response of a system,  and is applied 
as a laboratory  method of experimentally  determining the 
dynamic  properties of materials. This  impedance  is de- 
fined for  our  purposes  as  the  ratio  between  the  stress  and 
the velocity at  the  driven end of the tape.  If the  tape  has a 
constant  preload, this impedance  can  be defined as  the 
ratio  between  the time-varying stress  and  the velocity. 
The time-varying component of stress, ut, can  be  shown 
to  be 

--U,,B' e ( e  

The  impedance, 2, is then  found to be 

-;n*ox + e , I I * w x  

I n * .  (20) 

The dimensionless  impedance Z ,  is defined as Z / m  
and is given by 

zoo = [ 1 / ( P 2  + 4'11 
X { [ ( q  sinh w q  cosh oq - P sin wP cos w P )  
+ j ( P  sinh wq cosh wq + q sin wP cos of) 1 
f (sinh2 wq + sin2 w P ) } .  (22) 

The following magnitude  and phase angle can be obtained 
by algebraic  manipulation: 

'0 - 171 - sinh' w q  + sin' wP 

1 

sinh' w q  cosh2 w q  + sin' wP cos' of ] ; (23 
P2 + qp 

8 = tan-'[ [ sin wP cos wP 
20 sinh w q  cosh wq - (;I] 

+ [ 1 + (  
sin wP cos wP 
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Figure 1 shows  the first  function  plotted for a  few  values 
of 6. (Note:  The stiffness lines are impedance plots,  one 
decade  apart in magnitude, for  pure springs. The mass 
lines are  the  same  for  pure  masses, and the horizontal 
lines are  the  same  for  pure, linear dampers.  The  scales 
are logarithmic, except  for  the  phase angle, for which the 
vertical scale is linear. These  comments apply to all 
plots of impedance and  transfer functions.) Figure 2 
shows an experimental  plot of both the magnitude and 
the  phase angle. The theoretical and  the  experimental 
plots are similar,  but the  antiresonance  frequencies  and 
the magnitudes of the  resonance and the  antiresonance 
impedance are in considerable  disagreement. The  antires- 
onance magnitudes diminish along a  spring  line,  where- 
as  the  resonance magnitudes increase along a  mass line. 
At  antiresonance,  the inertial and  the spring forces  are in 
equilibrium at  the  driven  end, so that only the dissipative 
stresses remain. In this test the tape is rigidly clamped at 
one  end,  and  the  other  end is fastened  to a  shaker-driven 
impedance head. The impedance  head is merely  a force 
transducer  and  an  accelerometer.  The  total mass of the 
instrument  driven through the  force  transducer is two  to 
three times the  total mass of the tape. This mass can be 
partially canceled out electronically. However, it cannot 
be exactly canceled out  at all frequencies,  and small er- 
rors in cancellation cause  gross  errors in resonance 
magnitudes and  frequencies,  as well as significant errors 
in the  antiresonance magnitudes. Consequently, me- 
chanical  impedance was  not used to  determine E and 6 
for  computer tape. 

The  concept of a transfer function is also used to 
study  the vibration of continuous  systems, both to de- 
scribe  system  response  and  to experimentally determine 
the  properties of materials. This  transfer function, which 
is similar to  the impedance, is defined as  the ratio of the 
time-varying stress  at  the rigidly clamped  end of the  tape 
to  the velocity at  the  driven  end.  The  ratio  between  the 
varying stress  at  the clamped end and that  at  the driven 
end, denoted by r, is simply 

I' = 2 ( p ' w  + p a w  ) -'. 

Note  that  the dimensionless transfer  function,  denoted by 
A, can thus be  written as A = TZ,,. If we recall the ex- 
pression  calculated for  the impedance Z,,  we can per- 
form the  necessary manipulations to  show  that 

A = -[ ( P  sinh oq cos oP + q sin OP cosh oq) 

( 2 5 )  

+ j ( P  sin W P  cosh w q  - q sinh oq cos w P ) ]  
+ [ (sinh' oq + sin' oP) (P' + $) 1. (26) 

After more  manipulation, the magnitude and the  phase 
angle are found to  be  the following: 

IAl = [sin2 W P  + sinh2 oq) (P' + q2)]-1'2 (27) 

and 

180" 

90" 

- 90" 

Figure 3 Theoretical  plots of transfer  function  (magnitude) vs 
frequency for constant  complex  elastic  modulus. End of tape 
rigidly clamped. 6 = (a) 0.040; (b) 0.032;  (c)  0.024. 

HA = tan- 
, q sinh wq cos oP - P sin oP cosh oq 

P sinh w q  cos oP + q sin W P  cosh oq' (28) 

The first function is plotted for values of 6 of 0.024, 
0.032, and 0.040 (see Fig. 3). A  few  actual  experimental 
plots of [AI and 0 are shown in Fig. 4. Although the im- 
pedance  measurements had errors in canceling the in- 
strument mass, the transfer-function measurements  are 
free of these  inherent  measurement  errors.  Over  the fre- 
quency range of 100 Hz  to 5 kHz,  the  sonic velocity 
was  found to vary  less  than k2.5 percent  (corresponding 
to k S  percent variation in E,,), and 6 was  found to vary 
less than k0.0025. The excellent  agreement  between the 
theoretical  and the experimental  plots shows  the validity 
of Snowdon's  constitutive model with constant E and 6. 
This  method  was used to  determine 6 and E for  the 
computer  tape  and  the  substrate material  only. 

A final experiment  was designed to verify the consti- 
tutive model. The ultimate objective of this  project was 
to  determine  the  response of the  computer  tape  to a gen- 
eral  periodic excitation. Snowdon's constitutive  equation 
leads to a  linear wave equation. The  next  step is to con- 
struct  the periodic  excitation by a Fourier series and 21 7 
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Figure 4 Experimental plots of transfer function vs frequency 
for tape and substrate; end of tape rigidly clamped. (a) IBM 
Series/500 tape, 23 in. long; (b)  Mylar (8 E. I. DuPont  de  Ne- 
mows Co.) substrate; (c) IBM Series/SOO tape, 56.5 in. long. 

sum the  responses of the  tape  to  the  several  Fourier 
components. 

The  constitutive  equation, being linear,  implies inde- 
pendence  between  two  or  more  wave  trains simultane- 
ously  traveling in the  same  or in opposite directions. To 
verify this independence,  the driven end of the  tape was 
simultaneously  excited at  two  frequencies.  One  frequen- 
cy was held constant while the  other  was  swept from 
100 Hz to 5 kHz.  The  force  response was viewed 
through  a  narrow-band  tracking filter that followed the 
sweep frequency.  These plots of transfer  functions  were 
made  without  a constant signal, as well as with contstant 
signals of 1 ,  2, 3,4,  and 5 kHz. The lack of a detectable 
difference between  any  two plots verified the linear con- 
stitutive model, and this supports  the  use of the  linear, 

21 8 damped wave  equation. 
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Series of reflected  waves 
The  natural  route  to a  solution of this  problem is through 
Fourier analysis.  If the periodic  excitation  velocity is 
restricted  to satisfy the Dirichlet  conditions, it can be 
expanded in a Fourier series. The velocity at  the driven 
end of the  tape  can be represented by 

U ( 1 , T )  = + x ( a ,  cos no,T + b, sin nw,T) , (29) 
U m  

2 n=1 

where 

u = /“’“‘f( T ’ )  cos no,, T‘ dT’, (30) 
n -  

Here, o,, is defined to  be 2rrlperiod. 
The wave equation in complex  notation is 

( 1  + sj) a‘u/axz = a2U/aT’. 

If U is understood  to  be of the form  this  complex 
form is equivalent to 

Recalling the relationship aulax = aElat, we can solve 
the  wave  equation only if two combinations of U and E 

are  known  at X = 0 or 1. Since  we want to  study  the 
tape  response  to  an imposed  velocity, U(  1 , T )  will be one 
boundary condition. In a modern tape  drive,  one end of 
the  tape  terminates in a stubby vacuum column,  and  the 
read/write head is at  some  intermediate point. The  tape 
velocity at  the  head is the primary concern. If longitudi- 
nal forces  at  the  head  are ignored, and if the stiffness, 
the damping, and  the inertial  effects of the  stubby col- 
umn are negligible, the  second  boundary condition will 
be a time-invariant stress  at  the  end of the vacuum 
column. Most generally, of course,  the  stress  at  the end 
would be described in terms of the end  velocity by some 
function of frequency.  This will be discussed later in this 
paper. 

The total  solution to  the  wave  equation  can  be  written 
in trigonometric and  exponential  functions  as 
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The  boundary condition u' = 0 at X = 0 determines  that 

,,A, = ,Al,  ,A, = ,,A2. (35) 

Then  from  the condition 

U (  1,T) + x (a, cos nw,T + 6 ,  sin nw,T), (36) 

we  get A ,  = a0/2,  (37) 

a m  

2 n = 1  

b, cos nw,P cosh nooq + a, sin nw,P sinh nw,q 
2(  1 + sinh, no,q - sin2 nw,P) (38) 

and 

n 4  = 
a, cos no,P cosh no,q - b,  sin no,P sinh nwoq 

2 ( 1  + sinh' nwoq - sin2 nw,P) 
(39) 

Therefore, we need  only to  sum  the solutions on n to 
obtain  the  total  response of tape  at  any point X in time 
T .  Figure 5 shows plots of these  responses  for  even rec- 
tangular,  trapezoidal  and uneven rectangular waves, and 
for a  combination of these. 21 9 
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Figure 6 Experimental  plots of mechanical  impedance  vs  fre- 
quency for tape in a  vacuum  column. (a)  Glass-beaded column, 
20.5 in. of water vacuum, 34 in. of tape;  (b) machined  column, 
10.8 in. of water vacuum, 34 in. of tape; (c) machined  column, 
11.2 in. of water  vacuum, 9 in. of tape. 

The solution contains  waves traveling  in the +X and 
-X directions,  attenuating  as  they  travel. Note  that  the 
attenuation coefficients are exponential and  the  attenua- 
tion of a wave  over  the length of tape is exp(-m,q). If 
the  ratio of wavelength to  tape length for  the  lowest 
harmonic is 10 or 100 (Le., oo is very small), the  lowest 

220 harmonic then  travels  and is reflected in an essentially 
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undamped  manner. If the  lowest harmonic has a wave- 
length equal  to  the  tape  length, all harmonics of order 
n>10  are diminished to  less  than eight percent of their 
original amplitude  after traveling the length of tape and 
back twice (for 6 = 0.02). In  the  tape  drives  described 
in the  introduction, motion periods of 30ms  occur  for 
corresponding propagation  times of 0.15 ms. In this case, 
the  100th harmonic is attenuated only about  two  percent 
after traveling the length of tape  and back five times,  or 
in other  words,  after traveling for  1.5 ms (again for 6 = 
0.02). 

Thus, in the  cases  for which the lowest harmonic fre- 
quency is of order  one,  the  wave  attenuation  and  phase 
lag ( P X )  dominate  the motion of the tape. On  the  other 
hand,  for  cases in which the  lowest harmonic is of order 
0.01,  the wave interactions  greatly  dominate  the  tape 
motion in the  absence of external damping forces.  In this 
problem, we should also  account  for  the slight increase 
with frequency in the  phase velocities of waves shown 
by the  measurements of the  transfer functions. This 
effect can  cause substantial changes in the waveform 
during  propagation. 

Experimental measurements of vacuum-column 
forces  on tape 
In  the analytical  prediction of tape  response in  a tape 
drive,  the  boundary condition at  the undriven end was 
assumed  to be zero  stress. If a  totally unstiff vacuum 
column with an infinite frequency  response  were  used, 
no  dynamic spring forces, damping forces,  or inertial 
forces could exist  at  that end of the  tape.  The possibility 
of acoustical resonance in the column  leads one  to con- 
sider spring and inertial forces.  The  concept of volumet- 
ric displacement and  corresponding flow into  and  out of 
the column  leads one  to  consider viscous pressure 
forces.  Actual  measurements of these effects are neces- 
sary  to verify the foregoing  analysis. 

A test  setup  was  constructed in which one  end of a 
piece of tape was fastened rigidly to a  vacuum-column 
wall; the  other  end  was  fastened  to a shaker-driven im- 
pedance head. A loop of tape  was  then formed in the 
column,  just  as in a tape  drive,  and  the impedance  was 
measured at  the  driven  end of the  tape  for  two different 
vacuum  levels, and  for  both a smooth, machined-column 
wall and a glass-beaded wall. Plots of impedance vs fre- 
quency  are  shown in Fig. 6. 

Unfortunately,  the length of the  tape  and  the length of 
the vacuum  column corresponded  to approximately the 
same first antiresonance  frequency in each.  However, 
the  antiresonant  frequency  ratios  for  the  free-ended 
tape  (the  assumed model) are given  by the  odd integers 
1 ,  3, 5 ,7 ,  . . ', whereas  the  antiresonant  frequency ratios 
for a closed-end  column are simply all integers 1, 2 ,  3, 
4, . . .. In  the plot for  tape with high vacuum and beaded- 
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column  walls, the first antiresonance is rather  broad  and 
occurs  at nearly 600 Hz (see Fig. 6). The  second  and 
third are  extremely  sharp  and  occur at about 1800 and 
3000  Hz, showing tape  antiresonance  and  tape damping. 
In  the plots with high or low vacuum and machined- 
aluminum  column  walls, the first antiresonance frequen- 
cy is about 600 Hz. However,  the  next  two  antiresonant 
frequencies  are  about 1300 and 3000 Hz.  The  1300-Hz 
disturbance  therefore  seems  to  be  acoustical,  whereas 
the  3000-Hz  antiresonance is probably caused by com- 
bined  acoustical and mechanical  effects. 

One  other effect is shown in the plots.  Adding the 
glass beads  to  the wall brought about a  frequency-inde- 
pendent  drop in impedance. If we  consider a viscous 
laminar air film between  the  tape  and  the column wall, 
the impedance of such a film  will be constant with  fre- 
quency if the  tape  geometry remains constant.  However, 
large protrusions,  such  as glass beads, could force  the 
film to  be thick  enough that  the  viscous  shear would be 
reduced  or eliminated. Such a film could therefore  have 
caused this  difference in the plots. 

The  results of these  experiments clearly  point out  the 
need for experimentally  obtained reflection coefficients 
(as a function of frequency)  to  be used in any  theoretical 
predictions of motion when  end conditions are unknown. 
In addition, these impedance  plots  can help the designer 
choose modifications of the  tape  path  to  change  the damp- 
ing of the  tape  at critical  locations  in the  drive. Ulti- 

mately, these  experiments should  enable the mechanical 
designer to  understand  the  nature of waves in tape  and 
the propagation of tape motion in a drive,  and  to under- 
stand how the  parts of the  drive  interact with these waves. 
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