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G. W. Baumann

Viscoelastic Behavior of Computer Tape Subjected to

Periodic Motion

Abstract: The purpose of this study was to develop a theoretical means for predicting the longitudinal motion of computer tape in a
high-performance tape drive. In particular, this paper treats the motion that is governed by traveling velocity-stress wave reflections,
attenuations, and interactions in the length of tape between the tangency point at the capstan and the tangency point at the stubby column

in the drive,

The motion of the tape was determined by solving the classical, damped, one-dimensional wave equation subject to the appropriate
boundary conditions. J. C. Snowdon’s low-damping constitutive model was used to describe the viscoelastic behavior of the tape. The
solutions for simple boundary conditions were experimentally verified by mechanical impedance techniques. More complex boundary
conditions, such as those for vacuum columns, were experimentally studied to determine the true mathematical boundary conditions.

This paper also discusses simple unreflected harmonic waves, simple reflected harmonic waves, and general periodic reflected waves
as examples. The significance of the wave interactions in the design of tape drives is considered.

Introduction

In typical high-performance computer tape drives such
as the IBM 2420-7 or the more recent 3420-7, the mag-
netic tape moves at a steady speed of a few hundred
inches per second. It must start and stop in one or two
milliseconds, and complete a full reversal in three to five
milliseconds. The control unit frequently requires these
tape drives to start and stop (shoeshine) about once
every 20 to 60 milliseconds. Controlling the motion of
tape running at a steady speed is well understood. Not
so well understood is the process of bringing the tape to
operating speed and holding it there under start-stop and
shoeshine motion.

In the above-mentioned tape drives, the read/write
head is located at a point along roughly a foot of tape
between a capstan and a stubby vacuum column. Ex-
cursions and velocities of the tangency point at the stubby
column are small as compared, respectively, with the
relevant length of tape and the tape velocity. The sonic
velocity of IBM Series/500 tape is about 6500 ft/s. The
time required for motion to propagate from the cap-
stan to the stubby column and back is of the order of
0.3 ms (about 1/5 of the specified start time), or from 60
to 200 times longer than for the start-stop and shoeshine
motions already mentioned. If there is little or no damp-
ing in the stubby column, at the head, or in the boundary
layer of air adjacent to the tape, then the internal damp-
ing in the tape determines the length of the startup or
reversal transients, and thus determines the motion of
tape at the read/write head.
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Wave and constitutive equations
The one-dimensional wave equation is obtained from the
momentum equation for a continuum,

p%=V-T+pf, )
where p is the mass density, u is the velocity in an iner-
tial Eulerian frame, T is the stress tensor, and f is the
summation of all body forces (per unit mass). If trans-
verse velocities and body forces are ignored, and only
pure tension is allowed in the stress tensor, the momen-
tum equation in one dimension becomes

du oo
P e (2)
where o is the tensile stress, u is the longitudinal velocity
component, and x is the longitudinal coordinate. In gen-
eral, a linearized relation between uniaxial stress and the
strain component along that axis can be written as o =
E*e, where € is the strain and E* is a real (or complex)
elastic modulus. Also, du/dt is given by du/dt + u(du/dx).
If the ratio between u and the sonic velocity (or the
propagation velocity of a small disturbance) is small,
then the convective term can be ignored. Therefore, to
the first order, du/dt=du/dt. Finally, if the strain is
small everywhere, then the relationship between veloc-
ity and strain, de/dt = du/dx, is correct to first order.

If we use the above relations in the momentum equa-
tion, the one-dimensional wave equation is obtained:
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p==E" — (3)

In its most general linear form, E* can be rewritten as

E* = E/(n*)’, 4

where E is the (real) elastic modulus and #* is a complex
number, both possibly functions of a harmonic wave
frequency. For convenience, the time and spatial coordi-
nates and the velocity can be converted to dimensionless
parameters as follows:

t

T=——F7—;
/IVE|p
X =x/{;
U = ulu,, (5)

where ¢ is a characteristic length of tape and u, is a refer-
ence velocity in the tape. In dimensionless form, the
wave equation becomes

LU U
#2027 =
oT*  ax ©)

(n
The modulus E* can also be written as E(1 + j8), where
8 is a real number and j = V—1. Now E and & may be
functions of frequency. Snowdon [1] observed that for
many materials, neither E nor § varies with frequency
below some critical frequency (and above some minimum
frequency). Snowdon’s low-damping constitutive model
was used in this project, and was experimentally verified
for computer tape. (One might note here that computer
tape is not simply a polymer web, but rather a sandwich
of 25 percent iron oxide particles in a polymer binder sys-
tem. The damping may therefore not be the same as that
in the polymer substrate.) From the above, (n*)’=
1/(1 4 j8). Two new variables, P and g, were defined by
Snowdon, such that n* = P + jq. From algebra, we can
obtain

rz_ 1/2
:{M] -
2(1 489

and

-8
P= )
[2(1+8) (V1+8—1]"

(8)

A small-8§ approximation for P and g can help us see
the effect of attentuation and phase velocity on wave
propagation. Experimentally, the value of 8 was always
found to be between 0.05 and 0.01. When &6 << 1, we
can use the limiting values of P and g as § — 0. These
values are given by
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lim P=—1, &)

and
li _3 (10)
sy 9= 2

and are used throughout this paper.

Reflected and unreflected simple waves
The simplest one-dimensional wave in a viscoelastic
material is the propagation of a harmonic train in a semi-
infinite member, such as a semi-infinite piece of comput-
er tape. Reflections do not occur in this member. An
understanding of reflected waves can be obtained from
the study of this case.

The velocity of the tape, determined by solving the
wave equation, is written in exponential form as

U(X,T)=Be™"*T) (11)
where the imposed end velocity is simply

U(0,T) = Be'". (12)

Substituting n* = P + jq gives
U(X,T) = Be ®@¥p/oPX 1) (13)

The wave velocity is generally considered the velocity at
which an observer moves such that a traveling distur-
bance appears unchanged in time. In undamped materi-
als (i.e., ¢ = 0) the wave solution is

U(X,T) = Be/PXtT) (14)

The dimensionless wave velocity is —1/P. However, the
harmonic wave train attenuates as it propagates. To
avoid ambiguity, the velocity —1/P will be called the
phase velocity, for both damped and undamped waves.

If materials are considered in which 8 << 1, then the
values

P=—1 andq~% (15)

can be substituted to give
U(X,T) = Be*¥ZeioT%), (16)

In this case, the dimensionless phase velocity is simply
+1, and the wave amplitude envelope is given by
%f eywX 17
For § << 1, this envelope becomes exp(—38wX). The ra-
tio of the amplitudes over two successive spatial periods
(i.e., when wX has increased by 27) is then exp(—m3§),
which is approximated by 1 — 78 for small values of 8.
For 8 constant in frequency, the spatial attenuation per
wavelength is independent of the spatial frequency.
Also, if 8 does not exceed 0.05, the maximum attenua-
tion per wave length is about 15 percent.
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Figure 1 Theoretical plots of mechanical impedance
(magnitude) vs frequency for a constant complex elastic modu-
lus. End of tape rigidly clamped. & = (a) 0.040; (b) 0.032; (¢)
0.024.

Figure 2 Experimental plot of mechanical impedance vs fre-
quency for IBM Series/500 tape, 64 in. long. End of tape rigidly
clamped.
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In general, the segments of tape under study are less
than a few wavelengths long. In cases like these, a trav-
eling wave reaches the terminating point and is reflected
in some manner. Thus, waves generally propagate in
both directions along the tape. Snowdon’s solution to the
wave equation that describes this propagation is

UX,T)=B'[e ¥+ (Re'®) & ¥ ] T (18)

Re is a reflection coefficient that describes how the
wave is reflected. If the driven end of the tape is defined
by X = 1 and the other end by X = 0, a rigidly clamped
end (i.e., U =0 at X = 0) corresponds to Re’*=—1. If
the velocity of the driven end is given by U(1,T) =
Be™, then the velocity of the tape is
[ —rreX _jrteX
UX,T)= Bef‘”<€e—“’>. (19)

% —F
—in*am jnfe
— ¢

In analyzing the vibration of continuous systems, the
concept of mechanical impedance is frequently used to
describe the dynamic response of a system, and is applied
as a laboratory method of experimentally determining the
dynamic properties of materials. This impedance is de-
fined for our purposes as the ratio between the stress and
the velocity at the driven end of the tape. If the tape has a
constant preload, this impedance can be defined as the
ratio between the time-varying stress and the velocity.
The time-varying component of stress, ¢’, can be shown
to be

—VEpuB' e (e TN X 20)

The impedance, Z, is then found to be

\/7 . )ﬁmn*‘~ Jjon*
Z= E”( : ¢ ) 1)

- n* ()i/’wn""’_()jwn:’:

The dimensionless impedance Z, is defined as Z/\/Ep
and is given by

ZJi=[1(P"+q"]
X {[ (g sinh wg cosh wg — P sin wP cos wP)
+j (P sinh wq cosh wg + g sin wP cos wP)]
+ (sinh® wg + sin® wP)}. (22)

The following magnitude and phase angle can be obtained
by algebraic manipulation:

ZO

J

1
~ sinh® wq + sin® oP

1/2

| e

y [sinh2 wg cosh® wq + sin® wP cos® wP
P+q

_i[] sin wP cos wP q
6, = tan {[—————— (—)]
0 sinh wqg cosh wqg \P

. [1 + ( sin wP cos wP > q)]}
' sinh wq cosh wq (P ) (24)
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Figure 1 shows the first function plotted for a few values
of 8. (Note: The stiffness lines are impedance plots, one
decade apart in magnitude, for pure springs. The mass
lines are the same for pure masses, and the horizontal
lines are the same for pure, linear dampers. The scales
are logarithmic, except for the phase angle, for which the
vertical scale is linear. These comments apply to all
plots of impedance and transfer functions.) Figure 2
shows an experimental plot of both the magnitude and
the phase angle. The theoretical and the experimental
plots are similar, but the antiresonance frequencies and
the magnitudes of the resonance and the antiresonance
impedance are in considerable disagreement. The antires-
onance magnitudes diminish along a spring line, where-
as the resonance magnitudes increase along a mass line.
At antiresonance, the inertial and the spring forces are in
equilibrium at the driven end, so that only the dissipative
stresses remain. In this test the tape is rigidly clamped at
one end, and the other end is fastened to a shaker-driven
impedance head. The impedance head is merely a force
transducer and an accelerometer. The total mass of the
instrument driven through the force transducer is two to
three times the total mass of the tape. This mass can be
partially canceled out electronically. However, it cannot
be exactly canceled out at all frequencies, and small er-
rors in cancellation cause gross errors in resonance
magnitudes and frequencies, as well as significant errors
in the antiresonance magnitudes. Consequently, me-
chanical impedance was not used to determine E and &
for computer tape.

The concept of a transfer function is also used to
study the vibration of continuous systems, both to de-
scribe system response and to experimentally determine
the properties of materials. This transfer function, which
is similar to the impedance, is defined as the ratio of the
time-varying stress at the rigidly clamped end of the tape
to the velocity at the driven end. The ratio between the
varying stress at the clamped end and that at the driven
end, denoted by I, is simply

[=2(7"+ ™) (25)

Note that the dimensionless transfer function, denoted by
/\, can thus be written as A =1'Z. If we recall the ex-
pression calculated for the impedance Z, we can per-
form the necessary manipulations to show that

A =—[(P sinh wg cos wP + g sin P cosh wg)
+ j (P sin wP cosh wg — ¢ sinh wq cos wP)]
+ [(sinh® wg + sin®* wP) (P* + ¢°)]. (26)

After more manipulation, the magnitude and the phase
angle are found to be the following:

|A| = [sin® P + sinh® wgq) (P* + ¢°)]1 " Q7

and
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Figure 3 Theoretical plots of transfer function (magnitude) vs
frequency for constant complex elastic modulus. End of tape
rigidly clamped. 8 = (a) 0.040; (b) 0.032; (c) 0.024.

_, g sinh wg cos wP — P sin wP cosh wg

6, = tan 28)

P sinh wq cos wP + g sin wP cosh wq’

The first function is plotted for values of & of 0.024,
0.032, and 0.040 (see Fig. 3). A few actual experimental
plots of |A] and 6 are shown in Fig. 4. Although the im-
pedance measurements had errors in canceling the in-
strument mass, the transfer-function measurements are
free of these inherent measurement errors. Over the fre-
quency range of 100 Hz to 5kHz, the sonic velocity
was found to vary less than 2.5 percent (corresponding
to =5 percent variation in E ), and 8 was found to vary
less than +=0.0025. The excellent agreement between the
theoretical and the experimental plots shows the validity
of Snowdon’s constitutive model with constant E and é.
This method was used to determine & and E for the
computer tape and the substrate material only.

A final experiment was designed to verify the consti-
tutive model. The ultimate objective of this project was
to determine the response of the computer tape to a gen-
eral periodic excitation. Snowdon’s constitutive equation
leads to a linear wave equation. The next step is to con-
struct the periodic excitation by a Fourier series and
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Figure 4 Experimental plots of transfer function vs frequency
for tape and substrate; end of tape rigidly clamped. (a) IBM
Series/500 tape, 23 in. long; (b) Mylar (® E. I. DuPont de Ne-
mours Co.) substrate; (c) IBM Series/500 tape, 66.5 in. long.

sum the responses of the tape to the several Fourier
components.

The constitutive equation, being linear, implies inde-
pendence between two or more wave trains simultane-
ously traveling in the same or in opposite directions. To
verify this independence, the driven end of the tape was
simultaneously excited at two frequencies. One frequen-
cy was held constant while the other was swept from
100 Hz to 5 kHz. The force response was viewed
through a narrow-band tracking filter that followed the
sweep frequency. These plots of transfer functions were
made without a constant signal, as well as with contstant
signals of 1, 2, 3,4, and 5 kHz. The lack of a detectable
difference between any two plots verified the linear con-
stitutive model, and this supports the use of the linear,
damped wave equation.
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Series of reflected waves

The natural route to a solution of this problem is through
Fourier analysis. If the periodic excitation velocity is
restricted to satisfy the Dirichlet conditions, it can be
expanded in a Fourier series. The velocity at the driven
end of the tape can be represented by

U1, 270 i (a, cos nw,T + b, sin no,T), (29)
n=1
where
(1)0 7/ wg
a, =—f AT') cos nw, T' dT’, 30)
—7fwy
and
@, [0 N
b,=— AT') sin nw, T' dT". an
—'rr/wo

Here, w, is defined to be 27/period.
The wave equation in complex notation is

(1+38) o°Ulox"= QU lsT".

jnot

If U is understood to be of the form ¢’ ", this complex

form is equivalent to

2 3 2
U 8 U _ U

: == (32)
X*  nw, 8X°8T  oT"

Recalling the relationship 9u/ox = d€/9t, we can solve
the wave equation only if two combinations of U and €
are known at X =0 or 1. Since we want to study the
tape response to an imposed velocity, U(1,T) will be one
boundary condition. In a modern tape drive, one end of
the tape terminates in a stubby vacuum column, and the
read/write head is at some intermediate point. The tape
velocity at the head is the primary concern. If longitudi-
nal forces at the head are ignored, and if the stiffness,
the damping, and the inertial effects of the stubby col-
umn are negligible, the second boundary condition will
be a time-invariant stress at the end of the vacuum
column. Most generally, of course, the stress at the end
would be described in terms of the end velocity by some
function of frequency. This will be discussed later in this
paper.

The total solution to the wave equation can be written
in trigonometric and exponential functions as

UX,1) =3 U (X.T) +4,, (33)

n=1
where
U, (X,T) = e[ A, sin no (T — PX)
+ A, cos no (T — PX)]
+ "X [, A, sin nw (T — PX)

+ A, cos noy (T + PX) ). (34)

IBM J. RES. DEVELOP.




(a) o /

(b) o] N\

1,.
(c) 0 /

1 M
(d) o

(e) 0

(fy o

0.67
(g) o [/

1 A/\/\/\/\/\/\/\A/\/\/\M/\W\/\N\N\
(hy o -

T I 1
100 150 200

Figure 5 Motion plots with truncated Fourier representations of U(X,T). (a) U(1,T) vs T for a rectangular wave; (b) U(0.7,T) vs T for
a rectangular wave; (¢) U(1,T) vs T for a trapezoidal wave; (d) U(0.7,T) vs T for a trapezoidal wave; (e) U(1,T) vs T for an impulsive
wave; (f) U(0.7,T) vs T for an impulsive wave; (g) U(1,T) vs T for the sum of the three waves; (h) U(0.7,T) vs T for the sum of the

three waves.

The boundary condition o’ = 0 at X = 0 determines that
WAy = A WAy =4, (35)

Then from the condition

a

U(LT) =2+ 3 (a, cos nw,T + b, sin nw,T),  (36)
n=1
we get A, = a,/2, 37
b, cos ney P cosh nw g + a, sin no P sinh nw g
o 2(1 + sinh, nw,q — sin® nw,P) (3,8)
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and

__a, cos nw,P cosh nw,qg — b, sin nw P sinh nwyq

nv2 . 2 o) 2 .
2(1 + sinh™ nw,q — sin” nw,P) 39)

Therefore, we need only to sum the solutions on n to
obtain the total response of tape at any point X in time
T. Figure 5 shows plots of these responses for even rec-
tangular, trapezoidal and uneven rectangular waves, and
for a combination of these.
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Figure 6 Experimental plots of mechanical impedance vs fre-
quency for tape in a vacuum column. (a) Glass-beaded column,
20.5 in. of water vacuum, 34 in. of tape; (b) machined column,
10.8 in. of water vacuum, 34 in. of tape; (c) machined column,
11.2 in. of water vacuum, 9 in. of tape.

At this point, the solution can be rewritten as follows:
= A,[e “ovi¥sin no, (T — PX)
+ ™ sin nw (T + PX)]

U,X.T)=

+ A, Le " cos nw (T — PX)
+ "% cos nw, (T + PX)1. (40)

The solution contains waves traveling in the +X and
—X directions, attenuating as they travel. Note that the
attenuation coefficients are exponential and the attenua-
tion of a wave over the length of tape is exp(—nw,g). If
the ratio of wavelength to tape length for the lowest
harmonic is 10 or 100 (i.e., w, is very small), the lowest
harmonic then travels and is reflected in an essentially
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undamped manner. If the lowest harmonic has a wave-
length equal to the tape length, all harmonics of order
n>10 are diminished to less than eight percent of their
original amplitude after traveling the length of tape and
back twice (for 6 = 0.02). In the tape drives described
in the introduction, motion periods of 30 ms occur for
corresponding propagation times of 0.15 ms. In this case,
the 100th harmonic is attenuated only about two percent
after traveling the length of tape and back five times, or
in other words, after traveling for 1.5 ms (again for § =
0.02).

Thus, in the cases for which the lowest harmonic fre-
quency is of order one, the wave attenuation and phase
lag (PX) dominate the motion of the tape. On the other
hand, for cases in which the lowest harmonic is of order
0.01, the wave interactions greatly dominate the tape
motion in the absence of external damping forces. In this
problem, we should also account for the slight increase
with frequency in the phase velocities of waves shown
by the measurements of the transfer functions. This
effect can cause substantial changes in the waveform
during propagation.

Experimental measurements of vacuum-column
forces on tape

In the analytical prediction of tape response in a tape
drive, the boundary condition at the undriven end was
assumed to be zero stress. If a totally unstiff vacuum
column with an infinite frequency response were used,
no dynamic spring forces, damping forces, or inertial
forces could exist at that end of the tape. The possibility
of acoustical resonance in the column leads one to con-
sider spring and inertial forces. The concept of volumet-
ric displacement and corresponding flow into and out of
the column leads one to consider viscous pressure
forces. Actual measurements of these effects are neces-
sary to verify the foregoing analysis.

A test setup was constructed in which one end of a
piece of tape was fastened rigidly to a vacuum-column
wall; the other end was fastened to a shaker-driven im-
pedance head. A loop of tape was then formed in the
column, just as in a tape drive, and the impedance was
measured at the driven end of the tape for two different
vacuum levels, and for both a smooth, machined-column
wall and a glass-beaded wall. Plots of impedance vs fre-
quency are shown in Fig. 6.

Unfortunately, the length of the tape and the length of
the vacuum column corresponded to approximately the
same first antiresonance frequency in each. However,
the antiresonant frequency ratios for the free-ended
tape (the assumed model) are given by the odd integers
1, 3,5,7, - -, whereas the antiresonant frequency ratios
for a closed-end column are simply all integers 1, 2, 3,
4, - - -. In the plot for tape with high vacuum and beaded-
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column walls, the first antiresonance is rather broad and
occurs at nearly 600 Hz (see Fig. 6). The second and
third are extremely sharp and occur at about 1800 and
3000 Hz, showing tape antiresonance and tape damping.
In the plots with high or low vacuum and machined-
aluminum column walls, the first antiresonance frequen-
cy is about 600 Hz. However, the next two antiresonant
frequencies are about 1300 and 3000 Hz. The 1300-Hz
disturbance therefore seems to be acoustical, whereas
the 3000-Hz antiresonance is probably caused by com-
bined acoustical and mechanical effects.

One other effect is shown in the plots. Adding the
glass beads to the wall brought about a frequency-inde-
pendent drop in impedance. If we consider a viscous
laminar air film between the tape and the column wall,
the impedance of such a film will be constant with fre-
quency if the tape geometry remains constant. However,
large protrusions, such as glass beads, could force the
film to be thick enough that the viscous shear would be
reduced or eliminated. Such a film could therefore have
caused this difference in the plots.

The results of these experiments clearly point out the
need for experimentally obtained reflection coefficients
(as a function of frequency) to be used in any theoretical
predictions of motion when end conditions are unknown.
In addition, these impedance plots can help the designer
choose modifications of the tape path to change the damp-
ing of the tape at critical locations in the drive. Ulti-
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mately, these experiments should enable the mechanical
designer to understand the nature of waves in tape and
the propagation of tape motion in a drive, and to under-
stand how the parts of the drive interact with these waves.
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