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Nonsupervised Crop Classification through
Airborne Multispectral Observations

Abstract: Current methods of terrain classification by means of airborne multispectral observations are reviewed with emphasis on the
selection of training sets for determination of the categorizer parameters, A method of selecting sample regions for assigning identities
to the spectral signatures on the basis of statistically determined similarities, rather than on a priori considerations, is suggested. This
method has been tested on data collected on two flights with the University of Michigan scanner over an agricultural region in Califor-
nia. We have found that a simple clustering algorithm, modified to take into account specific features of the crop-census problem, can
be used to obtain the desired homogeneous regions with relatively little computation and that very sparse sampling of these regions is
sufficient to assign the appropriate category to each cluster. Viewed as a two-stage sampling procedure, clustering improves the second
stage classification on 15 crops from 20 to 50 percent over a random selection of the primary sampling units. The accuracy increases
to 73 percent when only five classes are considered, with further improvement to 88 percent when a majority decision based on known

field boundaries is used.

Introduction

The only currently operational satellite survey system in
the United States is the weather satellite program of the
National Oceanographic and Atmospheric Administra-
tion[1]. This program has already paid large dividends in
better forecasts, including tornado warnings, resulting
from routine cloud analysis over vast areas. The quality
of the imagery remains, however, insufficient for most
other prospective applications.

The first of the two unmanned Earth Resources Tech-
nology Satellites, ERTS-A, is scheduled to be launched
in 1972[2,3]. This satellite, in a 500-mile near-polar or-
bit, is to be equipped with three boresighted high-reso-
lution return-beam vidicon cameras sensitive to the red,
green, and infrared regions of the electromagnetic spec-
trum and a four-channel electromechanical scanner with
a transverse sweep. The field of view of both types of
sensors will correspond to an area 100 miles square on
the earth and will have a resolution of approximately
200 feet per picture element.

The manned satellite project (SKYLAB) is due for
completion in 1973 [4]. In addition to a ten-channel mul-
tispectral scanner, SKYLAB will be equipped with sev-
eral aerial cameras, permitting high resolution multispec-
tral film coverage of selected targets.

Examples of proposed applications are crop inventory
and forecasting, including blight detection, in agricul-
ture[S]; pasture management in animal husbandry[6];
species identification and inventory in forestry[7]; wa-
tershed management and snow coverage measurement in
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hydrology[8]; ice floe detection and tracking in oceanog-
raphy[9]; demarcation of lineaments and other geomor-
phological features in geology[10]; and cartography[11].
In many of these applications the possibility of detecting
changes in the natural vegetation, soil moisture content,
cultivation, environmental pollution, etc. through synop-
tic, repetitive satellite surveillance appears to be as im-
portant to potential users as the generation of reliable
land-usage maps([3,12].

It is too early to predict which of the proposed appli-
cations will prove workable. Certainly few applications
have emerged to date in which satellite surveillance has
been conclusively demonstrated to have an economic
edge over alternative methods; it is only through the
benefits accruing from many projects that this undertak-
ing may eventually be justified.

In the United States much of the work in automatic
multispectral classification has been concentrated in ag-
riculture, where it has been shown that certain groups of
crops may be identified by means of distinctive, remote-
ly observed spectral characteristics, or signatures. The
object of this paper is to review some of the current
methods for signature analysis and to present a class of
alternative techniques that offer some advantages. Since
satellite multispectral scanner data are not yet available,
only a small-scale experimental verification of the pro-
posed methodology, based on low-altitude airborne mui-
tispectral scanner data, has been possible. Some of the
problems experienced in the application of nonsuper-
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vised classification to ERTS and SKYLAB data are
briefly considered, but the larger issues involved in the
integration of satellite information-gathering platforms
into an economically viable earth resources management
system cannot be adequately dealt with here.

Current approach

The typical multispectral classification experiment is
conducted as follows[13-22]. The data, collected in a
single region under favorable conditions by airborne or
spaceborne sensors, are examined in their entirety by
the experimenter, who decides which areas are most
representative of the region as a whole. The samples
from these areas are assembled to form a training set,
which is characterized by ground-truth information de-
lineating the terrain types of interest. A statistical cate-
gorizer, or decision box, is constructed on the basis of
the statistical parameters extracted from the training set.
The classification performance is then evaluated on an-
other portion of the data (the test set) for which the loca-
tion and extent of the different types of ground cover are
also known to the experimenter.

The details of the various experiments differ with re-
spect to the sources of data, the methods of labeling the
training and test sets, the terrain types to be identified,
the number of spectral bands, the degree of statistical
sophistication of the categorizer, and the methods of
evaluating the results, but the general scheme of classi-
fying samples of the test set according to their similarity
to a preselected training set is the same.

Extrapolation of the performance levels evaluated in
this manner to an operational satellite data gathering
system is suspect on two counts. First, in most experi-
ments both the training sets and the test sets are selected
on the basis of visual inspection of the available data.
Terrain classes without large uniform representation are
frequently deleted from consideration, as are regions of
abnormally high variability. The data are divided into
training and test sets in such a way as to enhance the
probability of successful classification. Even in as well
conceived an experiment to extend the spatial recogni-
tion range as that described by Hoffer[18], an intruding
cloud required complete reassignment of the intended
training region! In view of the amount of information to
be collected by the satellite systems, of the order of 102
bits per year, it seems unlikely that a considerable frac-
tion of this data can be visually screened in time to allow
modification of the required decision parameters. If, on
the other hand, interactive systems are developed to a
sufficient degree to allow human analysis of much of the
imagery, then the whole concept of automatic terrain
classification becomes superfluous.

Second, the extrapolotion of performance levels is
also suspect because the very idea of “representative”
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samples becomes meaningless in relation to the immense
variability that will be encountered in satellite muitispec-
tral data. Major components of this variability are ex-
pected to be 1) occurrence of cloud shadows and un-
monitored changes in the moisture content and other
constituents of the atmosphere, which affect its scatter-
ing and transmission properties; 2) drift and noise in the
sensor system, recording devices, analog-to-digital con-
version equipment, and communication links; and 3)
variations inherent in the appearance of the ground
cover itself, due to the different types of vegetation, the
changes in season and crop maturity, soil characteristics,
ground water content, crop row spacing, wind direction
and velocity, etc. A catalogue encompassing a majority of
the spectral signatures of eventual interest would have
to contain statistical characterizations corresponding to
every possible combination of these conditions.

Proposed approach

The point of departure from standard statistical classifi-
cation techniques advocated in this paper lies in the ap-
plication of an unsupervised learning approach, by
means of clustering algorithms[23], to circumvent the
difficulties of collecting representative training sets. Ap-
plications of clustering techniques to other aspects
of remote sensing, such as data compaction, mode de-
termination in supervised classification, and edge de-
tection, have been reported by Haralick[24-26], Anu-
ta[19,22,27], and Fu[17,28], but to our knowledge this
is the first attempt to simulate the acquisition of ground-
truth information on the basis of unsupervised classifica-
tion of the data.

In our procedure the clustering algorithm is used to
divide the data into groups of sample points of similar
(according to some well-defined criterion) spectral char-
acteristics. The region on the ground corresponding to
each cluster may then be examined by a ground crew (or
maps and aerial photographs of the area can be consult-
ed) to determine the correct label or category to be asso-
ciated with each cluster.

The classifier is allowed, in effect, to designate the
appropriate areas for the collection of identifying infor-
mation on the basis of the actual data, rather than on a
priori considerations. The necessary ground-truth infor-
mation is collected after the analysis rather than before,
thus reducing the risk that the areas sampled may not be
typical of significant fractions of the data. Since this pro-
cedure is equivalent to a two-stage statistical sampling
design[29], one possible criterion of evaluation is to com-
pare the effectiveness of the primary sampling units se-
lected automatically on the basis of spectral information
with that of an equal number of randomly chosen units.

The successful United States weather satellite pro-
gram already operates in a somewhat similar manner,
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the information derived from the satellite imagery being
used mainly to guide meteorologists in the detailed eval-
vation of other atmospheric measurements[1]. Ground-
sampling on the basis of satellite observations has also
been applied to the timber census[30], and a successful
“manual” clustering method for terrain mapping is de-
scribed by Smedes[31]. In none of these projects, how-
ever, are the regions to be sampled determined automati-
cally.

Perhaps closest in spirit to our work is a clustering
experiment by Steiner[32] on 59 densitometric samples
of aerial photographs, where the similarity of ground-
truth collection on the basis of clustering results to con-
ventional photointerpretation techniques is explicitly
mentioned. The clustering algorithm in this experiment
performed a within-group distance minimization on an
iteratively calculated similarity matrix, a procedure
which may be too time consuming for use with larger
data sets. Another small clustering experiment of this
type (2500 digitized samples of aerial photography) is
described in Ref. 21, but since the study is oriented to-
ward other objectives, the clustering results are not eval-
uated in detail.

In addition to facilitating the collection of ground-
truth information, unsupervised classification offers the
possibility of objective change detection through com-
parison of the boundaries of automatically generated
homogeneous regions. The procedure would be unaffect-
ed, in principle, by seasonal changes, variations in illu-
mination, or atmospheric effects as long as the catego-
ries of interest remain distinguishable from one another.
Experimental examination of this aspect of the problem
has been deferred, however, because of a lack of multi-
temporal coverage in our data set.

In general, unsupervised classification techniques tend
to be more time consuming than supervised techniques
of equivalent statistical sophistication, but two special
features of the crop-census problem can be exploited to
reduce the required amount of computation.

First, examination of digitized multiband satellite pho-
tography[19,22] indicates that, variegated as the satellite
multispectral scanner data are likely to prove, they will
probably include extensive segments of sample points of
uniform, though a priori unknown, characteristics. Such
segments may include widely cultivated crops in regions
with uniform weather and soil conditions, forests, large
bodies of water, desert areas, etc., all surveyed at satel-
lite speed in time periods relatively short in comparison
to atmospheric changes and drifts in the data collection
equipment. The procedure described below exploits this
feature by assembling adjacent sample points into homo-
geneous segments and performing the classification only
once for each segment rather than once for each sample
point,
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Second, in any given region a small number of types
of ground cover is likely to predominate. Thus, it is ad-
vantageous to examine first the resemblance of a given
segment to clusters that contain many other points. If a
match is found, the search may be terminated; if other-
wise, nothing is lost. Such a scheme has already proved
its worth in supervised classification[33].

An advantage of unsupervised methods is that small
clusters of anomalous points, due to isolated spots with
abnormal reflection characteristics, are assigned a low
priority in the search scheme. In supervised schemes the
inadvertent inclusion of such points in the training set
for some category may cause a classification problem far
out of proportion to their frequency of occurrence.

Once each sample in the data has been assigned to a
cluster, it is necessary to determine which points should
be inspected in order to label the cluster with the correct
category information. The required sample size could be
minimized by sequential sampling procedures[34], but
we have implemented instead a simpler second-stage
procedure. This procedure consists of the selection of an
equal fraction of randomly located sample points from
each cluster.

In practice, the selection of test sites for ground ob-
servation or low-altitude overflights necessarily includes
additional programmed constraints pertaining to eco-
nomic (or political) considerations, accessibility, and
prevailing weather. In the experiments to be described,
however, ground-truth information laboriously collected
within a week of the overflight was available for the
whole region. Hence the sampling scheme could be sim-
ulated on a digital computer in lieu of having to send a
ground-crew into the field once the boundaries of the
test site were known.

Direct comparison of unsupervised and supervised
techniques is not feasible, since with a supervised tech-
nique it is always possible to reach arbitrarily high rec-
ognition rates through the simple expedient of iteratively
including some of the misclassified areas in the training
set[20,22,35]. Experienced investigators can, in fact,
usually make an excellent initial choice. For instance, in
Ref. 15 the training sets are the central portions of se-
lected fields, whereas the test sets are the surrounding
regions of the same fields. The extrapolation of the clas-
sification to more distant regions is, however, a hazard-
ous matter, as reported in Refs. 17, 18, and 19, with suc-
cess dependent on the degree of cooperation provided
by nature in, for example, the constancy of atmospheric
and illumination conditions.

Clustering algorithm

The clustering algorithm used to sort the observations
into relatively homogeneous groups is a variant of Bon-
ner’s ‘“‘chain” proceduref36], in which the samples are
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examined one at a time and either attached to already
existing clusters or used to initiate new clusters. The
particular version adopted for the multispectral vectors
can be described as follows.

Each sample or observation is considered to be a
point in the ten-dimensional feature space defined by the
spectral components (Table 1). A distance measure is
defined on this space to allow measurement of the simi-
larity between any two points or groups of points. An
observation is assigned to a cluster only if its distance to
the cluster center is less than a preset (positive) constant
0., the cluster threshold. If there are several cluster cen-
ters within a distance 6., the observation is assigned to
the cluster with the closest center. If there are none, a
new cluster is started.

The distance measure used is either the sum of the
component-by-component separations of the two points
being compared or the Euclidean distance measure. The
latter takes longer to compute and gives only slightly
improved results.

The cluster center is the centroid, or average value, of
all the observations assigned to that cluster. Whenever
an observation is assigned to a cluster, the centroid is
updated by adding the new vector to the vector sum of
all the previous vectors. The distance computation ac-
tually uses this sum rather than the true average.

Aside from the specification of the distance measure,
the only prior information used is the value of 8.. This
reflects a hypothesis on the expected differences in the
spectral representation among the various crop catego-
ries of interest. The number of clusters created turns out
to be a sensitive function of the cluster threshold, but
the recognition accuracy remains stable within wide lim-
its on §,.

This process may also be viewed as a method of esti-
mating the modes of a multimodal probability distribu-
tion function[37]. The cluster threshold defines a win-
dow about the current value of the estimate for each
mode. Whenever a sample falls within this window, the
estimate is updated to take into account the new infor-
mation. Only one pass is made through the data since a
relatively coarse level of classification suffices for guid-
ing the collection of ground-truth information. The ad-
ditional computational cost of iteration with some of the
identification information already in hand would proba-
bly yield a higher return in crop classification, but this
interesting aspect of the problem is beyond the scope of
our study.

o Sequential search

The expected distance between cluster centers is at least
0. because a new cluster can be initiated only if the ob-
servation under consideration is at least a distance 6.
away from all of the existing cluster centers. Hence, if
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Figure 1 Example of a sequential search in assigning data
samples to clusters.

Table 1 Multispectral scanner channels.

Zero-zero
Channel response
number band (um)

0.40-0.44
0.46-0.49
0.49-0.54
0.51-0.56
0.54-0.60
0.56-0.64
0.60-0.69
0.64-0.76
0.69-0.84
0.76-1.06
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an observation falls within 46, of some cluster center, it
may be assigned to the corresponding cluster with rea-
sonable certainty that no subsequently examined cen-
troid will be closer. This assumption may be used to
decrease significantly the number of distance computa-
tions required.

Accordingly, the procedure was modified to test
against 36, the distance of every new sample from each
of the existing cluster centers. If a smaller distance is
found, the search is halted and the observation is as-
signed to the tested cluster. If no value smaller than this
modified threshold is found by the time all of the dis-
tances have been calculated, the smallest distance found
is compared to 4.. If this test is satisfied, the observation
is assigned to the closest cluster. If, however, no dis-
tance smaller than @, is found, a new cluster is started.

The clusters are tested in decreasing order of popula-
tion to take advantage of the varying a priori probability
of occurrence of the different categories. The assignment
of observations satisfying the various tests is shown for
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Figure 2 Strip formation; correspondence between feature
space and geometric space.

a two-dimensional example in Fig. 1. The clusters are
numbered in order of decreasing population; X denotes
the cluster centroid. Samples A, B, and C are to be clas-
sified. Since A is not within distance 36, from CI, it
would be assigned to C2; B is not within distance 36,
from any of the four clusters but it is within distance 6,
from three of them (an unusual situation), and would be
assigned to the closest, C4; C is not within distance 6. of
any of the existing clusters and would become the first
point and current cluster center of a new cluster, C5.

Since in a vast region the overall distribution of class-
es may not be relevant to local conditions, we have also
experimented, with comparable results, with the rate of
increase in cluster population to guide the order of
search. On a larger sample this would be equivalent to
forgetting a no-longer-adequate signature in a changing
environment.

o Strip formation

Another possibility for decreasing the amount of compu-
tation is provided by the likelihood of similarity between
geometrically contiguous observations. Rather than as-
sign the observations to a cluster one at a time, which
typically requires dozens of distance computations per
point even with the sequential scheme described, we
assemble the observations into strips which, as entities,
are assigned to clusters (Fig. 2).

The ten-dimensional vectors in each scan line are
examined in the order they were recorded. In this exam-
ple the first seven points of the scan line are close to-
gether in feature space and are assigned to the same
strip, which is then assigned in a single operation to the
appropriate cluster. The strips are allowed to grow until
the addition of another point would raise the internal
scatter of the strip above a designated strip threshold 6,
(comparable to 6.). This test requires one computation
for each vector. Thus the next five points in the example
are also tested as a group, but in this case they are as-
signed to a different cluster. This correlation of spectral
similarity and spatial proximity is used only along the
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scan lines rather than in two dimensions, to avoid keeping
track of numerous small regions of arbitrary shape and
size.

® Debris collection
The presence of many anomalous observations in the
data creates an unmanageable number of small clusters.
Since it would be wasteful to send a ground party to
identify such ground-cover irregularities, a threshold
value 6, is specified to lump together all the insignificant
clusters. Since the clusters are already ranked in order
of population, the least populated ones, comprising less
than 6, percent of the samples, can be readily eliminated.
In our experiments, eliminating five percent of the
samples typically reduced the number of clusters by 75
to 85 percent. This reduction has relatively little effect
on the computing time since, in the sequential scheme,
these smaller clusters are seldom consulted in any case.
As implemented, debris collection was executed only at
the end of each run, but on larger quantities of data it
should be done periodically to delete inactive cluster
centers.

o Cluster identification

Once all of the sample points have been assigned to
clusters, the appropriate crop category for each cluster
must be determined. It is acceptable to assign several
clusters to one crop category, but only one crop may be
assigned to each cluster. The object is to produce a land-
usage map where the configuration of the various re-
gions is based on the established cluster structure and
the labels are determined by judicious sampling of the
available ground-truth information.

The rule for assigning a cluster to a crop category is to
count the number of observations representing each
crop within the sample selected from the cluster and
choose the crop with the largest representation. Sup-
pose, for instance, that cluster 1 contains 1253 points.
With one-percent sampling we would select at random 13
picture elements among the 1253 and determine their
identities by reference to the ground-truth map. If six
of these elements occur in beet fields, four in barley, and
three are bare soil, we would assign the label ‘“‘beets” to
all of the 1253 points in C1. Performing the same opera-
tion in turn on each of the clusters, we develop a land-
usage map within the computer.

To evaluate the efficacy of the combined clustering
and sampling process, we compare the land-usage map to
the map produced from the ground-truth information and
determine the number of points of disagreement. It is
also possible to prepare a confusion table (see section on
experiments) that shows which types of ground cover
are most likely to be mistaken for one another by this
procedure.
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The important parameters of the overall classification
process are the cost of computation, the ground-truth
information required, and the error rate. The experimen-
tally determined relations among these parameters can
be described in terms of the average number of distance
computations per point, the number of significant clus-
ters generated, the fraction of observations included in
the ground sample, and the number of observations mis-
classified according to several different criteria obtained
by merging some of the given crop categories (see sec-
tion on ground-truth information).

Data collection

The University of Michigan AN/AAS-5(xe-2) multi-
spectral scanner used for data collection is an electro-
optical device for imaging radiation in a fixed set of
spectral windows from an array of radiating or reflecting
elements on the ground (Fig. 3). The instrument is oper-
ated in an unpressurized C-47 airplane flying as straight
and level a course as possible.

The transverse component of the scan pattern is gen-
erated by a rotating axe-blade-mirror assembly with a
field of view limited to 40° on either side of nadir. The
longitudinal component is obtained directly from the
forward motion of the aircraft. During the period that
the axe-blade mirror is not collecting light from the
ground, it views calibration sources that are used to
normalize the data after the flight.

The detector assembly consists of a photomultiplier
spectrometer with ten channels between 0.4 and 1.0 um.
The wavelength distribution of the spectral windows is
listed in Table 1. The response of the photomultipliers is
recorded on 14-track, one-inch tape at 60 inches per
second.

Three calibration sources are viewed by the spectrom-
eter during the 280° dead period of the scan. 1) The
spectral calibration is provided by a quartz-iodine lamp
filtered to match the solar spectrum as closely as possi-
ble. 2) The skylight reference is an opal-glass plate at the
top of the aircraft, which integrates the diffused light. 3)
The black reference is the dark interior of the scanner.
These calibration signals are recorded on FM tape with
time marks and synchronization signals generated by a
gyro-stabilized roll indicator.

After a flight the analog signal containing the ten-chan-
nel measurements is corrected for roll angle, digitized,
unskewed, and normalized with respect to the calibra-
tion signals. The final output is stored on seven-track,
200 bpi magnetic tape with eight bits for each spectral
component.

In addition to the channels in the visible and near-in-
frared regions of the spectrum, the aircraft is equipped
with a number of sensors designed to monitor ultraviolet
and thermal infrared radiation. Nine aerial cameras can
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Figure 3 Multispectral data collection.

also be mounted to chart the exact course of the aircraft
and to gather imagery to serve as the basis for collecting
ground-truth information. The instrumentation and data
processing facilities are described in a report by Nalep-
ka[38], which also contains references to numerous
other investigations in this area; current operations are
described in Ref. 39. Some of the difficulties encoun-
tered in attempting to register multispectral data with
respect either to a standard cartographic frame of refer-
ence or to data obtained at other times are discussed in
Ref. 27.

e McCabe Road flights

Data provided by the Infrared and Optics Laboratory of
the Institute of Science and Technology of the Universi-
ty of Michigan were collected under NASA auspices[40]
in conjunction with the flight of Apolio 9 over the Im-
perial Valley agricultural test site in California on
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Figure 4 Oscilloscope traces of multispectral channel mea-
surements.

March 12, 1969. The two flight lines selected for the
experiments were over McCabe Road, near the town of
El Centro, California, at altitudes of 5000 and 10,000
feet. The area covered by the 5000-ft flight is approxi-
mately 4000 acres and by the 10,000-ft flight, 10,000
acres. After deleting some of the scan lines in order to
retain an aspect ratio of 1:1, the lower altitude flight data
included 345 scan lines and the higher, 200 scan lines,
each scan line having 200 pixels (picture elements).
Since each pixel is a ten-dimensional vector and eight
bits are necessary for each component, about 107 bits
were retained for processing. A single scan, showing
the variations encountered both within crop fields and
across crop fields, is shown in Fig. 4. The five traces
represent the first five spectral components of the scan.
The three large spikes are due to defects in the analog-
to-digital conversion equipment; the smaller spikes usu-
ally occur at field boundaries. The dependence of the
average signal strength on the scan angle is quite evi-
dent.

For an indication of the statistical characteristics of
the imagery, we computed several simple parameters of
the distributions of the component values. The mean
values of the ten spectral components ranged from 34 to
79 (units of relative intensity) when averaged over the
entire data set, but the scan-angle averages were subject
to an approximately 25 percent variation due to the non-
lambertian response of the ground cover to oblique illu-
mination. The standard deviations of the spectral com-
ponents ranged from 9 for channel S to 22 for channel 1
(10,000-ft data). The pairwise deviations between the
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vector components of adjacent pixels on a scan line
show that only about ten percent of the overall statistical
variance can be explained by the different reflectances of
the various crops, and the remainder must be attributed
to fluctations due to other sources[41].

The correlation between adjacent pixels is about 20
percent greater within a given scan line than between
successive scan lines, an effect which is probably due to
the large effective field-of-view of the scanner. A further
breakdown of the pairwise variances according to scan
line and scan angle shows, as expected, greater reliability
for small scan angles (the region directly below the plane)
and little change along the flight line.

The most noticeable feature, about which we had been
duly forewarned by the Infrared and Optics Laboratory,
was the presence of noise spikes resulting from some
quirk of the analog-to-digital conversion equipment. To
keep within the eight-bit range of the clustering program,
isolated spikes having peak values above 255 were trun-
cated to 255. Visual inspection also revealed the exist-
ence of numerous smaller uncorrected abnormal values,
including zeros, in the data.

e Ground-truth information

The ground-truth data were gathered during the week
following the overflight and made available to us as a list
(Table 2; the field code is given in Table 3) of fields,
crops, fractional ground cover, and crop height keyed to
a print of the analog signal{38]. One hundred seventy-
two fields, comprising 15 types of ground cover, were
included in the survey. The distribution was quite
skewed, with some categories appearing in only two or
three fields. The ground-cover descriptions in Table 2
show that one could hardly expect 100 percent correct
classification, especially, for example, on fields 19, 22,
and 23.

We used a graphic tablet connected to an IBM 1800
processor to enter this information into the computer.
The coordinates of the corners of each field were en-
tered by pointing a stylus to the appropriate location on
a picture superimposed on the tablet. The field numbers,
through which the complete description, including crop
type, was keyed to each field, were also entered through
the tablet by means of a small keyboard. The program
permitted entry of an arbitrary number of vertices for
each field, making it possible to approximate any desired
shape by a polygon.

The geometry of an unrectified multispectral array
differs considerably from that of an aerial photograph of
the corresponding area, because of unmonitored changes
in the speed, course, and attitude of the aircraft (mainly
crabbing) and the cosine distortion introduced by the
rotating mirror. Consequently, instead of an aerial pho-
tograph we used a scaled-down version of a computer
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Table 2 Ground-truth information collected for evaluation of the classification of the McCabe Road overflight data.

Estimated Estimated
average average
crop ground
Field Field? Row height cover
number code direction (in.) (percent) Comment
1 A+R N-S 3-4 90 Recently cut
2 B N-S 30-36 60 Large patches of bare soil in eastern portion of field
3 R N-S 3-8 70
4 R N-S 3-8 80
5 A+B E-W 4-6 70
6 A N-S 6-12 60 30 percent weed cover
7 A+B E-W 6-8 90 Recently pastured
8 A+B N-S 10-~34 80 Pastured
9 A+B N-S 2-6 90 Pastured
10 A N-S 2-4 100 Recently cut
i1 CR N-S 6-12 60 10 percent weed cover; field partially cut
12 A N-S 8§-10 90
13 L N-S 4-6 80
14 A N-S 2-6 90
15 B N-S 24-30 90
16 B N-S 2-6 90 Recently cut
17 A N-S 12-16 100
18 B N-S 20-30 100 Heading stage
19 B N-S 12-20 80 20 percent weed cover; pastured; large portions of bare
soil in southern portion of field
20 R N-S 10-16 80
21 R N-S 2-6 90
22 R E-W 2-4 90 Pastured; patches of bare soil with white salt deposits
23 R N-S 4-8 80 Scattered areas of salt deposits and weeds at eastern end
24 A N-S 2-8 70 10 percent weed cover; pastured
2See Table 3

printout on which the field boundaries were clparly vis-
ible.

Table 3 Field key.

The field descriptions were subsequently keypunched Field Ground cover
and stored on disk in the form of an annotated map of code
the area[Fig. 5(a)]. The boundaries of the 172 fields ¥¥Ai Alfalfa
were entered via the tablet in less than 30 minutes, even A+B Alfalfa and barley
though each vertex was entered several times, depend- A+R Alfalfa and rye
ing on the number of fields to which it belonged. An ad- gs gziezoﬂ
dition to the program allowed the combination of speci- CR Carrots
fied classes to form new classes without keypunching { }i‘:’tuce
again all of the field labels. If, for instance, the feed ON Onions
crops barley, oats, and rye were to be considered a sin- PS Pasture
gle class, one additional card would cause the program R Rye
. . . SB Sugar beets
to make the three labels equivalent in computing the SF Safflower
various performance statistics. SFT Salt flat
R+U Roads and unclassified patches

Experiments and resuits

The experimental programs designed to test the classifi-
cation method were run in two steps to avoid repeating
the time-consuming clustering process for different eval-
uation procedures:

1. The cluster generation routines divided the sample
points into groups of homogeneous (though generally
not contiguous) regions and constructed a cluster
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map [Fig. 5(b)] on disk. In this example most of the
fields were assigned rather uniformly to a single clus-
ter. An exception is field 50 (outlined), seen from the
ground truth map to contain lettuce with 40 percent
weed cover, which is partitioned in about equal pro-
portions between clusters 3, 9, and E. All but 28 of
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Legend Fig. 5(a) Figure 5 Symbolic maps corresponding
to an area about one mile square, including
16 fields. (a) Ground-truth map. Each

Crop Ground

Field Field Row height cover Comment "
number codea direction (in.) (percent) type of ground cover is represented by a
" letter: A, alfalfa; D, barley; E, bare soil;

%2 S E% 12:;‘2 38 Trregular cover I, lettuce; and P, roads. (b) Cluster map.
35 A N-S 16-18 90 Pastured Each symbol corresponds to a different
36 A E-wW 24 80 Recently cut; yellow-green stubble cluster, not all of which are different
49 I N-S 6-8 60 Yellow mottling ground-cover types. (c) Error map, legend
g? [i 11:112 1?;‘-{; 4 gg 40 percent weed cover as in (a). The dots represent correctly as-
5 D EW 2430 100 signed points and the letters, the true
60 D N-S 2436 100 categories of crops that had been incor-
61 E rectly classified.
62 D N-S 20-24 90
76 E
77 E
78 E Bedded for cotton
79 D N-S 24-30 100
80 D N-S§ 24-30 100

?See figure caption.

the clusters were eliminated by the significance at component selection, and an investigation of the effect

threshold. of different distance measures, have been reported in
2. The cluster evaluation routines assigned each cluster Ref. 26 and are not repeated here. In all cases only very

to a crop by sampling the cluster points and prepared small fluctuations in the recognition performance were

an error map [Fig. 5(c)] by comparing the resulting observed.

classification to the previously entered ground-truth Most of the programs were written in FORTRAN and

map. For example, the large A region at the top of pL/1 and executed on an IBM 360/91 under MVT-
Fig. 5(c) is alfalfa, which had been assigned to a clus- 08/360. A flowchart of the program logic for assigning
ter dominated by barley, and the E region at the bot- multispectral samples to clusters and creating a cluster
tom is barley (“bedded for cotton”), which had been map is shown in Fig. 6.

assigned to a bare-soil cluster.

The programs were run on both the 5000-ft and the s Speed of operation
10,000-ft flight altitude data. Some of the earlier results, The effect of the speed-up techniques of strip formation
146 including a comparison of the two flights, some attempts and sequential search on the number of distance compu-
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Last scan line?

Yes Eliminate least populated
clusters with significance threshold

:

Time to update

Update priority list priority list?

Read next scan line

Output cluster map

Store one line
of cluster map

End of scan line?

Advance pointer
to next pixel

Can next pixel be
included in strip?

Update mean and
variance of strip

Search priority list for
first cluster within
Y2 8, of strip

Assign strip to cluster;
update population and centroid

Cluster found?

Is nearest cluster
within 8, of strip?

Yes

Create new cluster

Figure 6 Partial flowchart of the program logic.

tations required to partition the data into a given number
of clusters is shown in Table 4. The thresholds were set
to produce about 100 significant clusters in each case.
Strip formation and sequential search are about equally
effective and in combination provide a roughly fivefold
reduction in computation without significant deteriora-
tion in the final cluster configuration. Strip formation
also seems to improve the recognition performance
slightly.

The time required for each distance computation de-
pends on both the distance measure used and the num-
ber of spectral components. Although most of our calcu-
lations were made with the Euclidean norm and all ten
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Table 4 Effect of speed-up techniques on amount of compu-
tation.

Relative number of Recognition
distance computations accuracy
Algorithm per point (percent)
Unmodified chain 1.00 52
Chain with sequential
search 0.60 51
Chain with strip
formation 0.30 56
Chain with sequential
search and strip
formation 0.19 54
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100~ —350
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Classification accuracy (percent)

0 | | 0
20 25

Threshold 8,

Figure 7 Effect of threshold value on number and classifica-
tion of clusters.

spectral components, we determined for comparison that
using the absolute distance measure and only six compo-
nents could save about two thirds of the computation
time without noticeable loss in performance. Under
these latter circumstances the computation required 3
ms per sample point on a 360/91 computer; with opti-
mized machine language code and a minimum of diagnos-
tic output, we estimate this could be reduced to about
100 ws. In comparison, Eppler’s optimized supervised
classification program requires about 300 us per six-
dimensional sample on a 360/44 computer[33]. More
complicated decision rules, such as the maximum likeli-
hood ratio[17], would reduce the number of clusters
required to represent the data, and might result in fur-
ther improved speed of operation.

e Cluster formation

The dependence of the number of clusters on the cluster
threshold is shown as curve A in Fig. 7. The number of
clusters decreases rapidly with increasing threshold, but
the classification accuracy (curve B) is a much less sen-
sitive function of the threshold. Hence the selection of
an appropriate threshold is not a problem.

The rate of formation of clusters decreased to virtual-
ly zero after the first 100,000 sample points had been
assigned. It will be important to investigate the rate of
cluster formation over much longer flights to confirm
that the number of ground samples required increases
only slowly with the size of the area surveyed.

e Cost matrix and confusion table

The performance of the clustering algorithm may be
gauged from inspection of the three maps of Fig. 5, but a
much better understanding of the contributions of the
individual clusters to the recognition of each crop may
be obtained from the “‘cost” matrix of Table 5. The en-
tries in the cost matrix are the numbers of samples
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(picture elements) in each cluster assigned to the various
ground-cover categories. The row and column totals are
indicative of the area covered by each cluster and by
each crop (one picture element corresponds to about
0.02 acres). The last two rows of the table refer to the
number of correctly assigned samples.

With 100 percent sampling, the crop selected for each
cluster is determined by the maximum value in each line,
which is repeated in the second-last column of the table.
The ratio of this number to the total number of points in
the cluster is a measure of the usefulness of that cluster,
and the sum of the areas shared by each crop and all the
clusters assigned to it, shown in the second-last line, is a
measure of how well that crop is recognized. The por-
tion of the pixels correctly classified in this experiment
was 52 percent.

The confusion among the various categories is shown
in Table 6. The entries along the main diagonal are the
numbers of sample points shared by each crop category
and the clusters assigned to it. The off-diagonal entries
are the numbers of misassigned points. The upper por-
tion of the table is computed on per-point assignment,
the bottom portion is based on the per-field rule (see sec-
tion on per-field classification). As expected, the feed
crops are not fully distinguishable from one another
whereas bare soil does stand out, as indicated by the re-
lative ratios of diagonal to off-diagonal elements in the
table.

e Merged crops

To compare our recognition results with those obtained
elsewhere, we have to reduce the number of crop cate-
gories to the usual five or six. For instance, by preas-
signing all of the data to only five classes, it is possible
to raise the recognition rate to 73 percent. In this mode
all of the available data points are still classified, but
misassignments occurring between equivalent classes are
no longer counted as errors.

® Per-field classification

A further improvement in accuracy (to 88 percent cor-
rect recognition) can be achieved by assigning each field
to a crop category on the basis of a majority decision of
all the elements in the field. This result is indicative of
the performance to be expected if reliable automatic
methods for detecting closed field boundaries can be
developed.

It should be noted that in our experiments every point
in the data was assigned to some crop category. Superior
recognition results could be demonstrated in all cases if
only the central regions of the fields (the easily recog-
nized portions) were included in the evaluation.

Other gains may be expected from improved signal
normalization and noise elimination. Since one of the

IBM J. RES. DEVELOP.




Table 5 Cost-matrix presentation of the classification results.

Field code®

Cluster A A+4+B A+R B BS CR 1 L ON PS R SB SF SFT R+U Total Maximum Percent
1 761 48 0 4111 S 0 0 0 0 0 45 845 0 3 310 6128 4111 67
2 2201 5S35 10 1427 0 0 1 0 0 11 317 276 0 7 26 4811 2201 45
3 963 0 0 1368 37 13 0 0 o 7 51 1322 9 1 63 3834 1368 35
4 0 0 0 26 688 0 0 517 0 0 2 0 0 0 2 1235 688 55
5 922 0 18 671 1 0 1 20 0 9 1753 2 3 21 32 3453 1753 50
6 77 1 0 75 2233 1 0 20 0 5 73 11 2 28 38 2564 2233 87
7 49 0 3 32 1 2 20 1 0 2 2071 4 11 0 26 2222 2071 93
8 329 325 8 196 1 0 1 16 0 3 227 2 14 7 100 1229 329 26
9 807 244 150 296 27 14 16 4 0 S50 794 146 189 2 78 2817 807 28

10 39 49 1 36 2117 1 1 14 0 0 65 6 3 S 221 2558 2117 82
11 872 171 19 142 24 0 7 209 1 128 632 13 107 18 253 2596 872 33
12 244 0 2 31 6 2 33 797 10 10 227 16 38 2 13 1431 797 55
13 16 20 0 26 744 0 0 58 0 0 89 0 0 1 80 1034 744 71
14 436 804 8 137 82 0 0 9 0 0 141 1 0 4 107 1729 804 46
15 2 0 0 1730 4 2 0 0 0 0 1 282 0 0 6 2027 1730 85
16 1537 0 0 480 0 0 0 0 0 0 72 17 0 0 27 2133 1537 72
17 202 315 0 39 S 1 28 478 40 1 209 7 33 9 41 1408 478 33
18 3 0 1 0 0 4 545 0 1 0 1 13 1667 0 0 2235 1667 74
19 509 1 7 96 s 5 721 1 0 36 516 39 21 6 19 1982 721 36
20 844 128 1 181 23 0 3 54 0 8 184 8 27 40 75 1576 844 53
21 145 115 9 99 218 3 36 8 0 6 72 11 84 39 287 1132 287 25
22 0 0 0 1 31 0 0 0 0 0 0 0 0 0 10 42 31 73
23 421 196 2 36 9 1 7 49 16 13 527 11 12 6 25 1331 527 39
24 27 9 2 24 230 1 5 0 0 0 12 10 1 7 81 409 230 56
25 460 0 74 175 4 0 0 4 0 2 179 11 13 2 24 948 460 48
26 54 0 0 173 14 144 1 o 2 0 2 550 11 0 S 956 550 57
27 267 91 0 13 0 10 155 52 4 53 206 10 59 4 13 937 267 28
28 185 61 6 29 9 3 5 5 0 17 529 23 82 2 44 1000 529 52
29 115 274 0 53 10 3 28 21 0 0 69 16 15 16 157 777 274 35
30 55 500 0 75 12 0 23 0 0 3 44 11 16 21 33 793 500 63
31 66 42 1 54 354 2 0 2 0 0 127 5 3 3 47 706 354 50
32 32 26 3 68 298 1 16 0 1 2 11 1 15 82 127 683 298 43
33 73 76 0 74 97 0 12 10 1 0 66 24 5 27 60 525 97 18
34 0 0 0 699 0 0 0 0 0 0 1 0 0 0 16 716 699 97
35 14 7 1 10 39 0 1 0 0 0 21 2 17 7 226 345 226 65
36 76 43 1 47 28 0 16 12 0 7 123 13 33 4 37 440 123 27
37 65 47 6 82 11 0 12 5 0 10 122 7 13 2 57 439 122 27
38 0 0 0 15 379 5§ 3 0o 2 0 0 5 319 3 434 379 87
39 0 0 0 9 104 O 0 0 1 0 6 0 1 244 118 483 244 50
40 123 37 0 182 0o 0 0 0 0 1 46 30 1 3 25 448 182 40
41 9 1 1 48 106 1 12 4 1 3 2 13 33 88 33 355 106 29
42 16 11 0 5 12 0 12 0 0 0 23 1 4 1 212 297 212 71
43 56 126 0 16 11 5 5 15 14 0 64 5 8 11 17 353 126 35
44 34 33 2 24 35 2 16 2 0 0 78 18 10 17 33 304 78 25
45 6 1 0 17 150 0 3 0 0 0 3 1 1 140 S 327 150 45
46 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 100
47 16 2 0 13 15 0 7 2 0 0 18 10 13 8 70 174 70 40
48 4 0 0 0 0 0 4 0o 0 0 0 0 0 0 0 8 4 50
49 7 202 0 12 0 0 1 (V] 0 6 7 6 15 2 258 202 78
50 30 7 0 17 22 0 5 2 0 2 33 7 15 10 46 196 46 23
51 21 S 0 5 11 1 8 3 0 0 13 4 2 3 36 112 36 32
52 17 11 0 13 3 0 5 1 0 0 40 26 14 7 50 187 50 26
53 12 0 1 19 6 0 9 1 0 0 15 6 5 2 84 160 84 52
54 532 75 8 820 197 24 45 41 25 14 411 332 130 54 670 3378 820 24

Total 13751 4643 345 14027 8418 251 1829 2437 119 403 10339 4180 2749 998 4170 68659 36239 52

Correct 7317 1910 0 8910 7427 0 725 1275 O 0 5203 550 1667 244 1011 36239

Percent 53 41 0 63 88 0 39 52 0 0 50 13 60 24 24 52

2Use Table 3 to identify the ground cover.
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Table 6. Confusion matrices for the classification results in Table 5.

Field code

Field

code? A A+B A+4R B BS CR 1 L ON PS R SB SF SFT R+U
A 7317 669 0 2381 345 0 513 446 0 0 1752 54 3 0 271
A+B 1494 1910 0 160 225 0 1 315 0 0 380 0 0 0 158
A+R 262 8 0 8 8 0 7 2 0 0 38 0 1 0 11
B 2910 293 0 8910 464 0 96 70 0 0 921 173 0 9 181
BS 79 115 0 243 7427 0 5 11 0 0 94 14 0 104 326
CR 24 8 0 39 12 0 5 3 0 0 8 144 4 0 4
1 183 57 0 45 52 0 725 61 0 0 77 1 545 0 83
L 339 45 0 41 625 0 1 1275 0 0 94 0 0 0 17
ON 5 14 0 25 5 0 0 50 0 0 16 2 1 1 0
PS 255 3 0 22 10 0 36 11 0 0 58 0 0 0 8
R 2611 324 0 555 450 0 516 436 0 0 5203 2 1 6 235
SB 483 40 0 2811 76 0 39 23 0 0 78 550 13 0 67
SF 409 45 0 140 66 0 21 71 0 0 164 11 1667 1 154
SFT 80 67 0 61 400 0 6 11 0 0 52 0 0 244 77
R+U 596 316 0 1090 707 0 19 54 0 0 254 5 0 118 1011
A 10192 0 0 850 0 0 0 0 0 0 2709 0 0 0 0
A+B 1073 3566 0 0 0 0 0 0 0 0 0 0 0 0 0
A+R 0 0 0 0 0 0 0 0 0 0 345 0 0 0 0
B 2594 0 0 10759 0 0 0 0 0 0 674 0 0 0 0
BS 0 0 0 0 8418 0 0 0 0 0 0 0 0 0 0
CR 0 0 0 0 0 0 0 0 0 0 0 251 0 0 0
1 0 0 0 0 0 0 0 0 0 0 978 0 851 0 0
L 0 0 0 0 635 0 0 1802 0 0 0 0 0 0 0
ON 0 119 0 0 0 0 0 0 0 0 0 0 0 0 0
PS 403 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 864 0 0 0 0 0 0 0 0 0 9475 0 0 0 0
SB 1830 0 0 1720 0 0 0 0 0 0 0 630 0 0 0
SF 0 0 0 0 0 0 0 0 0 0 567 0 2182 0 0
SFT 376 0 0 0 0 0 0 0 0 0 0 0 0 622 0
R+U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4170

aUse Table 3 to identify the ground cover.

Table 7 Dependence of classification accuracy on fraction of
data sampled using the clustering algorithm.

objects of this study was to demonstrate that the method
advocated is relatively insensitive both to irregularities
in the signal and to lack of uniformity in the reflected

Percentage .
of points Percentage of pixels correctly assigned spectra of the different types of ground cover, there was
samPlef 0 P 0.000-1 figh no need to attempt to experiment with the preprocessing
in eac 5000-ft flight 10,000-ft flight . . . . _
cluster 38 clusters 109 clusters 29 clusters 125 clusters techniques described in the literature[42-44].
100 49 53 44 50 o Sampling
f 49 32 :3 The percentage of correctly assigned picture elements is

Table 8 Dependence of classification accuracy on fraction of
data sampled randomly.

given in Table 7 as a function of the percentage of points
sampled in each cluster. There is no deterioration in per-
formance down to five percent, and only a slight de-
crease at one percent. In other words, a handful of pic-
ture elements suffices most of the time to determine the
dominant crop identity in each cluster.

Percentage . .
of points Percentage of pixels correctly assigned ) ]
sampled e Comparison sampling
in each 5000-ft flight 10,000+t flight One way to evaluate objectively the performance of the
cluster 38 clusters 150 clusters 30 clusters 150 clusters clustering algorithm in producing homogeneous collec-
100 20 21 21 22 tions of points is to compare the classification results
f 13 18 20 17 produced by sampling the clusters with those obtained in

150 an identical manner from randomly generated clusters.
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Such a comparison is shown in Table 8, for both a large
number and a small number of clusters. Comparison of
this table with the Table 7 shows that the performance
with random clusters is far below that achieved by the
clustering algorithm. The margin of superiority of the
distance-based algorithm for defining primary sampling
units over random assignment increases slightly, as ex-
pected, at low sampling percentages.

If, instead of random clusters, the whole area covered
by the observations is divided into as many equal-sized
rectangular regions as there are fields, with edges paral-
lel to the field boundaries, the classification results are
comparable to those achieved by the clustering algo-
rithm, which also seeks to establish a field structure.

Summary

The principal object of this paper is to demonstrate an
improved method of selecting ground samples for terrain
classification on the basis of airborne multispectral ob-
servations. Although an attempt has been made to evalu-
ate the method in as objective a manner as possible, the
generalizability of the results is limited by the specific
size and nature of the particular test area.

It has been shown that the inherently fast processing
capability of the single-pass chain algorithm could be
further augmented by taking into account the expected
similarity of adjacent sample points and the distribution
of terrain types in the area under consideration. With
these speed-up techniques, a processing rate of 3 ms per
sample point has been achieved; we estimate that in an
operational system on a general purpose computer of the
same capacity, this time could be reduced to 100 us.

The classification performance we obtained is clearly
too low for practical applications. Improvements in rec-
ognition accuracy can be obtained by preconditioning
the data to take into account the relation between sun an-
gle and observation angle[42-44], additional normali-
zation based on back-scattering measurements{45], elim-
ination of egregious instrument noise (spikes)[44], more
sophisticated distance measures based on the statistical
correlation among the spectral channels[17], and per-
field classification[19,22] with, eventually, automatically
extracted boundaries. Each of these items is subject to
extensive research elsewhere and was not considered
germane to the major issue in this paper.

The appropriateness of the method of evaluation de-
pends on the importance attached to the efficient collec-
tion of ground-truth information. That our classification
method is efficient in this sense is shown by the fact that
a surprisingly sparse amount of ground sampling, of the
order of one percent of the overflight area, proved suffi-
cient to indicate the dominant identity of each cluster.

The scheme used for sampling the ground cover is not
realistic in the sense that it would require the ground
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crew to check the identity of isolated points. In particu-
lar, a considerable amount of work is necessary to incor-
porate suitable constraints in the selection of the appro-
priate patches to be tested in each cluster. We learned,
however, that the number of clusters developed at a giv-
en threshold levels off with the amount of data generated
during a few miles of flight, in the absence of sharp re-
gional disparities.

Since discrimination among crop types is based at
least as much on the relative amount of ground-cover as
on the other factors mentioned previously, any agricul-
tural census will have to be based on repeated observa-
tions throughout the growing season. The scant amount
of detail discernible with the proposed satellite instru-
mentation will require intermediate-level observations
with both high-altitude and low-altitude aircraft before
final reference to ground observations or to existing rec-
ords can be made[30,46]. It is, in fact, not unlikely that
such airborne observations will constitute the bulk of the
data collection effort for some time to come. The con-
cepts we have described may serve to reduce the amount
of data that must be collected at these intermediate levels.
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