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Nonsupervised  Crop  Classification  through 
Airborne  Multispectral  Observations 

Abstract: Current  methods of terrain  classification by means of airborne multispectral observations  are reviewed with emphasis on the 
selection of training sets  for  determination of the  categorizer  parameters. A method of selecting sample regions for assigning identities 
to  the spectral  signatures  on the basis of statistically determined similarities, rather than on a priori considerations, is suggested. This 
method  has  been tested on data collected on  two flights with the University of Michigan scanner  over  an agricultural region in Califor- 
nia. We  have  found  that a  simple  clustering  algorithm, modified to  take  into  account specific features of the  crop-census problem, can 
be used to obtain the desired  homogeneous regions with relatively  little computation  and  that very sparse sampling of these regions is 
sufficient to assign the  appropriate  category  to  each cluster.  Viewed as a two-stage sampling procedure, clustering  improves the  second 
stage classification on 15 crops from 20 to 50 percent  over a random selection of the primary sampling units. The  accuracy  increases 
to 73 percent when only five classes  are  considered, with further  improvement  to 88 percent when a majority  decision  based on known 
field boundaries is used. 

Introduction 
The only currently operational  satellite survey  system in 
the  United  States is the  weather satellite  program of the 
National  Oceanographic and Atmospheric Administra- 
tion [ 1 1. This program has already paid large dividends in 
better  forecasts, including tornado warnings,  resulting 
from routine cloud  analysis over  vast  areas.  The quality 
of the imagery remains, however, insufficient for  most 
other  prospective applications. 

The first of the  two unmanned Earth  Resources  Tech- 
nology Satellites, ERTS-A, is scheduled to  be launched 
in 1972[2,3].  This satellite, in a 500-mile near-polar  or- 
bit, is to  be equipped  with three boresighted  high-reso- 
lution  return-beam vidicon cameras  sensitive  to  the  red, 
green, and  infrared  regions of the electromagnetic spec- 
trum and  a  four-channel  electromechanical scanner with 
a transverse sweep. The field of view of both types of 
sensors will correspond  to  an  area 100 miles square on 
the  earth and will have a  resolution of approximately 
200  feet  per  picture element. 

The manned  satellite  project (SKYLAB) is due  for 
completion in 1973  [4].  In addition to a ten-channel mul- 
tispectral scanner,  SKYLAB will be equipped with  sev- 
eral aerial cameras, permitting high resolution  multispec- 
tral film coverage of selected  targets. 

Examples of proposed  applications are  crop inventory 
and forecasting, including blight detection, in agricul- 
ture [ 51 ; pasture management in animal husbandry [ 61 ; 
species identification and inventory  in forestry[7] ; wa- 
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hydrology [ 81 ; ice floe detection and  tracking in oceanog- 
raphy  [9] ; demarcation of lineaments and other geomor- 
phological features in geology [ 101 ; and cartography [ 1 1 1. 
In many of these applications the possibility of detecting 
changes in the natural  vegetation, soil moisture content, 
cultivation,  environmental  pollution, etc. through synop- 
tic,  repetitive satellite  surveillance appears  to  be  as im- 
portant  to potential users  as  the generation of reliable 
land-usage  maps [ 3,121. 

It is too early to predict which of the proposed  appli- 
cations will prove workable. Certainly few applications 
have emerged to  date in which  satellite  surveillance has 
been  conclusively demonstrated  to  have  an economic 
edge over  alternative  methods; it is only  through the 
benefits accruing from many  projects that this  undertak- 
ing may eventually  be  justified. 

In  the  United  States much of the work in automatic 
multispectral  classification has been concentrated in ag- 
riculture, where  it  has  been  shown  that  certain  groups of 
crops may be identified by means of distinctive, remote- 
ly observed  spectral  characteristics,  or signatures. The 
object of this paper is to review some of the  current 
methods  for signature  analysis and  to  present a class of 
alternative  techniques  that offer some advantages. Since 
satellite  multispectral scanner  data  are not yet available, 
only a small-scale  experimental verification of the pro- 
posed  methodology, based on low-altitude airborne mul- 
tispectral  scanner  data,  has been  possible. Some of the 
problems  experienced in the application of nonsuper- 
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vised classification to  ERTS and SKYLAB  data  are 
briefly considered,  but  the larger issues involved in the 
integration of satellite  information-gathering  platforms 
into an economically  viable earth  resources management 
system  cannot be adequately  dealt with  here. 

Current approach 
The typical  multispectral classification experiment is 
conducted  as follows [ 13 - 221. The  data, collected in a 
single region under  favorable conditions by airborne  or 
spaceborne  sensors,  are examined in their  entirety by 
the  experimenter, who  decides which areas  are most 
representative of the region as a whole. The samples 
from  these  areas  are assembled to form a training set, 
which is characterized by ground-truth information de- 
lineating the  terrain  types of interest. A statistical cate- 
gorizer, or decision box, is constructed  on  the basis of 
the statistical parameters  extracted  from  the training set. 
The classification  performance is then  evaluated on an- 
other portion of the  data (the test set) for which the loca- 
tion and  extent of the different types of ground cover  are 
also known to  the  experimenter. 

The details of the various experiments differ with re- 
spect  to  the  sources of data,  the methods of labeling the 
training and  test  sets,  the terrain types  to  be identified, 
the  number of spectral  bands,  the  degree of statistical 
sophistication of the categorizer,  and the  methods of 
evaluating the  results,  but  the general scheme of classi- 
fying samples of the  test  set according to  their similarity 
to a  preselected  training set is the same. 

Extrapolation of the performance  levels  evaluated in 
this manner  to  an operational  satellite data gathering 
system is suspect  on  two  counts.  First, in most  experi- 
ments both the  training sets  and  the  test  sets  are selected 
on  the basis of visual  inspection of the available data. 
Terrain  classes without large uniform representation are 
frequently deleted  from consideration, as are regions of 
abnormally high variability. The  data  are divided  into 
training and  test  sets in such a way as  to  enhance  the 
probability of successful classification. Even in as well 
conceived an  experiment  to  extend  the spatial recogni- 
tion range as  that  described by Hoffer [ 181, an intruding 
cloud  required complete reassignment of the intended 
training region! In view of the  amount of information to 
be  collected by the satellite systems, of the  order of 10l2 
bits per  year, it seems unlikely that a considerable  frac- 
tion of this data  can be visually screened in time to allow 
modification of the required  decision parameters. If, on 
the  other hand, interactive  systems  are developed to a 
sufficient degree to allow  human  analysis of much of the 
imagery, then  the whole concept of automatic  terrain 
classification becomes superfluous. 

Second,  the extrapolotion of performance  levels is 
also  suspect  because  the very idea of “representative” 
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samples becomes meaningless in relation to  the immense 
variability that will be encountered in satellite  multispec- 
tral  data. Major  components of this  variability are ex- 
pected  to  be 1) occurrence of cloud shadows and  un- 
monitored changes in the moisture content and other 
constituents of the  atmosphere, which affect its scatter- 
ing and  transmission properties; 2) drift and noise in the 
sensor  system, recording devices, analog-to-digital con- 
version equipment, and  communication  links; and 3) 
variations  inherent in the  appearance of the ground 
cover itself, due  to  the different types of vegetation, the 
changes in season and crop  maturity, soil characteristics, 
ground water  content,  crop row  spacing, wind direction 
and velocity, etc. A  catalogue  encompassing  a majority of 
the  spectral signatures of eventual  interest would have 
to  contain statistical characterizations corresponding to 
every possible  combination of these conditions. 

Proposed approach 
The point of departure from  standard  statistical classifi- 
cation  techniques advocated in this paper lies in the ap- 
plication of an unsupervised learning approach, by 
means of clustering  algorithms [23],  to  circumvent  the 
difficulties of collecting representative training sets. Ap- 
plications of clustering techniques  to  other  aspects 
of remote sensing, such as data  compaction, mode de- 
termination  in supervised classification, and edge de- 
tection,  have been reported by Haralick[24-261,  Anu- 
ta[19,22,27],  and  Fu[17,28],  but  to  our knowledge  this 
is the first attempt  to simulate the acquisition of ground- 
truth information on the basis of unsupervised classifica- 
tion of the data. 

In  our  procedure  the clustering algorithm is used to 
divide the  data  into  groups of sample  points of similar 
(according to  some well-defined criterion) spectral  char- 
acteristics. The region on  the ground corresponding  to 
each cluster may then  be  examined by a  ground crew  (or 
maps  and  aerial  photographs of the  area can be consult- 
ed)  to  determine  the  correct label or category to  be  amo- 
ciated with each cluster. 

The classifier is allowed, in effect, to designate the 
appropriate  areas  for  the collection of identifying infor- 
mation on  the basis of the  actual  data,  rather than on a 
priori considerations. The  necessary ground-truth  infor- 
mation is collected after  the analysis rather  than before, 
thus reducing the risk that  the  areas sampled may not be 
typical of significant fractions of the  data.  Since this  pro- 
cedure is equivalent to a  two-stage  statistical  sampling 
design [29],  one possible  criterion of evaluation is to com- 
pare  the effectiveness of the primary  sampling  units  se- 
lected automatically on  the basis of spectral information 
with that of an  equal number of randomly chosen units. 

The  successful  United  States  weather satellite pro- 
gram  already operates in a somewhat similar manner, 139 
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the information  derived  from the satellite imagery being 
used mainly to guide  meteorologists  in the detailed eval- 
uation of other  atmospheric  measurements [ 1 1. Ground- 
sampling on  the basis of satellite observations  has also 
been applied to  the timber census[30], and  a  successful 
“manual”  clustering  method for  terrain mapping is de- 
scribed  by Smedes[3 l] .  In  none of these  projects, how- 
ever,  are  the regions to be  sampled determined automati- 
cally. 

Perhaps  closest in spirit to  our  work is a  clustering 
experiment by Steiner[32]  on  59  densitometric samples 
of aerial photographs,  where  the similarity of ground- 
truth collection on  the basis of clustering results  to con- 
ventional photointerpretation  techniques is explicitly 
mentioned. The clustering algorithm in this experiment 
performed  a  within-group distance minimization on  an 
iteratively  calculated similarity matrix, a procedure 
which may be  too time  consuming for  use with larger 
data  sets.  Another small clustering  experiment of this 
type (2500 digitized samples of aerial  photography) is 
described in Ref.  21, but  since  the  study is oriented to- 
ward other  objectives,  the clustering results  are not  eval- 
uated in detail. 

In addition to facilitating the collection of ground- 
truth information, unsupervised classification offers the 
possibility of objective change  detection through com- 
parison of the boundaries of automatically generated 
homogeneous regions. The  procedure would be unaffect- 
ed, in principle,  by  seasonal  changes,  variations in illu- 
mination, or  atmospheric effects as long as  the catego- 
ries of interest remain distinguishable  from one  another. 
Experimental  examination of this aspect of the problem 
has been deferred,  however,  because of a lack of multi- 
temporal coverage in our  data  set. 

In general,  unsupervised classification techniques  tend 
to be  more  time  consuming than supervised techniques 
of equivalent  statistical  sophistication, but  two special 
features of the  crop-census problem can  be exploited to 
reduce  the  required  amount of computation. 

First, examination of digitized multiband satellite pho- 
tography [ 19,221 indicates that, variegated as  the satellite 
multispectral scanner  data  are likely to prove, they will 
probably  include extensive segments of sample  points of 
uniform,  though a priori unknown,  characteristics.  Such 
segments may include widely cultivated crops in regions 
with uniform weather  and soil conditions, forests, large 
bodies of water,  desert  areas,  etc., all surveyed at  satel- 
lite speed in time  periods  relatively short in comparison 
to  atmospheric  changes  and drifts in the  data collection 
equipment. The  procedure  described below  exploits  this 
feature by assembling adjacent sample  points into homo- 
geneous  segments and performing the classification  only 
once  for  each segment rather  than  once  for  each  sample 
point. 
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Second, in any given region a small number of types 
of ground cover is likely to predominate. Thus, it is ad- 
vantageous to examine first the resemblance of a  given 
segment to  clusters  that contain  many other points.  If  a 
match is found,  the  search may be terminated; if other- 
wise,  nothing is lost. Such a scheme  has already proved 
its worth in supervised  classification [ 33 1. 

An  advantage of unsupervised methods is that small 
clusters of anomalous  points, due  to isolated spots with 
abnormal reflection characteristics,  are assigned a low 
priority in the  search scheme. In supervised schemes  the 
inadvertent inclusion of such points in the training set 
for  some category may cause a  classification  problem far 
out of proportion  to  their  frequency of occurrence. 

Once  each sample in the  data  has been  assigned to a 
cluster, it is  necessary  to  determine which points  should 
be inspected in order  to label the  cluster with the  correct 
category  information. The required  sample  size  could  be 
minimized by  sequential sampling procedures [ 341, but 
we have implemented  instead a simpler  second-stage 
procedure. This  procedure  consists of the selection of an 
equal fraction of randomly located sample points  from 
each  cluster. 

In practice, the selection of test sites for ground  ob- 
servation  or low-altitude overflights necessarily  includes 
additional  programmed constraints pertaining to  eco- 
nomic  (or political) considerations, accessibility,  and 
prevailing weather.  In  the  experiments  to  be  described, 
however,  ground-truth information  laboriously  collected 
within a week of the overflight was  available for  the 
whole region. Hence  the sampling scheme could be sim- 
ulated on a digital computer in lieu of having to send  a 
ground-crew into  the field once  the boundaries of the 
test  site were  known. 

Direct  comparison of unsupervised  and  supervised 
techniques is not  feasible, since with a supervised tech- 
nique it  is always  possible to  reach arbitrarily high rec- 
ognition rates through the simple expedient of iteratively 
including some of the misclassified areas in the training 
set  [20,22,35].  Experienced investigators can, in fact, 
usually make  an excellent initial choice. For  instance, in 
Ref. 15 the training sets  are  the  central  portions of se- 
lected fields, whereas  the test sets  are  the surrounding 
regions of the  same fields. The extrapolation of the clas- 
sification to  more  distant regions is,  however, a hazard- 
ous matter,  as  reported in Refs. 17, 18, and  19, with  suc- 
cess  dependent  on  the  degree of cooperation  provided 
by nature in, for example, the  constancy of atmospheric 
and illumination conditions. 

Clustering algorithm 
The clustering  algorithm  used to  sort  the  observations 
into relatively  homogeneous groups is a variant of Bon- 
ner’s “chain”  procedure[36], in which the samples are 
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examined one  at a  time and either  attached  to already 
existing clusters  or used to initiate new clusters.  The 
particular  version adopted  for  the multispectral vectors 
can  be  described as follows. 

Each sample or  observation is considered to be  a 
point in the ten-dimensional feature  space defined by the 
spectral  components (Table 1). A distance  measure is 
defined on this space  to allow measurement of the simi- 
larity between any two points or groups of points. An 
observation is assigned to a cluster only if its distance  to 
the  cluster  center is less  than  a preset (positive) constant 
O,, the  cluster  threshold. If there  are several cluster  cen- 
ters within a distance O,, the  observation is assigned to 
the  cluster with the  closest  center. If there  are none,  a 
new cluster is started. 

The  distance  measure used is either  the  sum of the 
component-by-component  separations of the  two points 
being compared  or  the Euclidean distance  measure.  The 
latter  takes longer to  compute and gives only slightly 
improved  results. 

The  cluster  center is the  centroid,  or  average value, of 
all the  observations assigned to  that cluster. Whenever 
an observation is assigned to a cluster,  the centroid is 
updated by adding the new vector  to  the  vector sum of 
all the previous vectors.  The  distance  computation ac- 
tually uses this sum  rather than the  true average. 

Aside from the specification of the  distance  measure, 
the only  prior  information  used is the value of &. This 
reflects a hypothesis  on  the  expected differences in the 
spectral  representation among the various crop catego- 
ries of interest. The number of clusters  created  turns  out 
to be  a sensitive function of the  cluster  threshold, but 
the recognition accuracy remains stable within wide lim- 
its on 8,. 

This  process may also be viewed as a  method of esti- 
mating the modes of a multimodal probability distribu- 
tion function[37].  The  cluster threshold defines a win- 
dow  about  the  current value of the  estimate  for each 
mode. Whenever a  sample falls within this  window, the 
estimate is updated  to  take  into  account  the new infor- 
mation.  Only one  pass is made  through the  data  since a 
relatively coarse level of classification suffices for guid- 
ing the collection of ground-truth information. The ad- 
ditional  computational cost of iteration with some of the 
identification information  already in hand would proba- 
bly yield a higher return in crop classification,  but  this 
interesting aspect of the problem is beyond the  scope of 
our  study. 

Sequen t id  search 
The  expected  distance between cluster  centers is at least 
Or because a new cluster can  be  initiated  only if the ob- 
servation  under consideration is at  least a distance & 
away  from all  of the existing cluster  centers.  Hence, if 
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Figure 1 Example of a sequential search in assigning data 
samples to  clusters. 

Table 1 Multispectral scanner channels. 

Channel 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.40-0.44 
0.46-0.49 
0.49-0.54 
0.51-0.56 
0.54-0.60 
0.56-0.64 
0.60-0.69 
0.64-0.76 
0.69 - 0.84 
0.76- I .06 

an  observation falls within &-Ic of some  cluster  center, it 
may be assigned to  the corresponding cluster with  rea- 
sonable  certainty  that  no  subsequently examined cen- 
troid will be closer. This  assumption may be used to 
decrease significantly the  number of distance computa- 
tions  required. 

Accordingly, the  procedure was modified to  test 
against +8, the  distance of every new  sample from  each 
of the existing cluster  centers. If a  smaller distance is 
found,  the  search is halted and the observation is as- 
signed to  the  tested cluster. If no value  smaller  than  this 
modified threshold is found by the time all  of the dis- 
tances  have been calculated,  the smallest distance found 
is compared  to 8,. If this test is satisfied, the  observation 
is assigned to  the  closest  cluster. If, however,  no  dis- 
tance smaller  than 8, is found, a new cluster is started. 

The  clusters  are  tested in decreasing order of popula- 
tion to  take  advantage of the varying u priori probability 
of occurrence of the different  categories. The assignment 
of observations satisfying the various tests is shown for 141 
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IIntensity in channel ni Geometric space 

Figure 2 Strip formation: correspondence between feature 
space and geometric space. 

a  two-dimensional example in Fig. 1 .  The  clusters  are 
numbered in order of decreasing  population; x denotes 
the  cluster  centroid. Samples A, B,  and C  are  to be  clas- 
sified. Since A is not within distance +Oc from  C1, it 
would be  assigned to  C2; B is not within distance )e, 
from any of the  four  clusters but it is within distance Bc 
from  three of them  (an  unusual  situation),  and would be 
assigned to  the  closest,  C4;  C is not within distance Oc of 
any of the existing clusters  and would become  the first 
point  and current  cluster  center of a new cluster,  C5. 

Since in a vast region the overall  distribution of class- 
es may not be relevant to local conditions, we have also 
experimented, with comparable  results, with the  rate of 
increase in cluster population to guide the  order of 
search.  On a larger  sample  this would be equivalent to 
forgetting a no-longer-adequate  signature in a changing 
environment. 

Strip  formation 
Another possibility for decreasing the  amount of compu- 
tation is provided by the likelihood of similarity between 
geometrically  contiguous observations.  Rather than as- 
sign the  observations  to a cluster  one  at a  time, which 
typically requires  dozens of distance  computations  per 
point  even with the sequential scheme  described,  we 
assemble  the  observations  into  strips which, as  entities, 
are assigned to  clusters (Fig. 2). 

The ten-dimensional vectors in each  scan line are 
examined in the  order  they  were  recorded.  In this  exam- 
ple the first seven points of the  scan line are close to- 
gether in feature  space and are assigned to  the  same 
strip, which is then  assigned in a single operation  to  the 
appropriate cluster. The  strips  are allowed to grow until 
the addition of another point would raise the internal 
scatter of the  strip  above a  designated strip threshold Os 
(comparable  to OJ. This  test  requires  one  computation 
for each vector.  Thus  the  next five points in the example 
are also tested  as a group,  but in this case they are  as- 
signed to a  different cluster.  This correlation of spectral 
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scan lines rather than in two dimensions, to avoid  keeping 
track of numerous small regions of arbitrary  shape and 
size. 

Debris  collection 
The  presence of many anomalous  observations in the 
data  creates  an unmanageable number of small clusters. 
Since it would be wasteful to send  a  ground  party to 
identify such  ground-cover irregularities,  a  threshold 
value Og is specified to lump together all the insignificant 
clusters.  Since  the  clusters  are already ranked in order 
of population, the  least populated ones, comprising less 
than Be percent of the samples,  can  be readily eliminated. 

In  our  experiments, eliminating five percent of the 
samples  typically  reduced the number of clusters by 75 
to 85 percent.  This reduction has relatively  little effect 
on  the computing  time since, in the sequential scheme, 
these smaller clusters  are seldom  consulted in any case. 
As implemented, debris collection  was executed only at 
the end of each run,  but on larger  quantities of data it 
should be done periodically to  delete inactive cluster 
centers. 

Cluster  identiJcation 
Once all of the  sample  points have been  assigned to 
clusters,  the  appropriate  crop category for  each  cluster 
must  be determined.  It is acceptable  to assign several 
clusters  to  one  crop  category,  but only one  crop may be 
assigned to  each  cluster.  The  object is to  produce a  land- 
usage map where the configuration of the various re- 
gions is based on the established cluster  structure  and 
the labels are determined by judicious sampling of the 
available ground-truth information. 

The rule for assigning a cluster  to a crop  category is to 
count  the  number of observations representing each 
crop within the sample selected  from  the  cluster  and 
choose  the  crop with the largest representation. Sup- 
pose, for  instance,  that  cluster 1 contains 1253 points. 
With one-percent sampling we would select at random 13 
picture  elements among the 1253 and determine  their 
identities by reference  to  the ground-truth map. If six 
of these  elements  occur in beet fields, four in barley,  and 
three  are  bare soil, we would assign the label “beets”  to 
all of the 1253 points in C 1 .  Performing the  same  opera- 
tion in turn  on  each of the  clusters, we develop a land- 
usage  map within the  computer. 

To evaluate  the efficacy of the combined  clustering 
and  sampling process,  we  compare  the land-usage  map to 
the map produced from  the  ground-truth information and 
determine  the  number of points of disagreement. It is 
also  possible to  prepare a confusion table (see  section on 
experiments) that  shows which types of ground cover 
are most likely to  be mistaken for  one  another by this 
procedure. 
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The  important  parameters of the overall  classification 
process  are  the  cost of computation,  the  ground-truth 
information  required,  and the  error  rate.  The experimen- 
tally determined  relations  among these  parameters  can 
be described in terms of the  average  number of distance 
computations  per point, the  number of significant clus- 
ters  generated,  the fraction of observations included in 
the ground  sample, and  the  number of observations mis- 
classified according to several different criteria obtained 
by merging some of the given crop categories  (see sec- 
tion on ground-truth  information). 

Data collection 
The University of Michigan AN/AAS-S(xe-2) multi- 
spectral scanner used for  data collection is an electro- 
optical device  for imaging radiation in a fixed set of 
spectral windows from  an  array of radiating or reflecting 
elements  on  the ground  (Fig. 3).  The  instrument is oper- 
ated in an unpressurized C-47 airplane flying as straight 
and level a course  as possible. 

The  transverse  component of the  scan  pattern is gen- 
erated by a rotating  axe-blade-mirror  assembly  with  a 
field of view limited to 40" on  either side of nadir. The 
longitudinal component is obtained  directly  from the 
forward  motion of the aircraft. During  the period that 
the axe-blade  mirror is not collecting light from the 
ground, it views calibration sources  that  are used to 
normalize the  data  after  the flight. 

The  detector assembly consists of a  photomultiplier 
spectrometer with ten  channels  between 0.4 and 1 .O pm. 
The wavelength  distribution of the spectral  windows is 
listed in Table 1. The  response of the photomultipliers is 
recorded  on 14-track,  one-inch tape  at 60 inches  per 
second. 

Three calibration sources  are viewed by the  spectrom- 
eter during the 280" dead period of the  scan. 1) The 
spectral calibration is provided by a quartz-iodine lamp 
filtered to match the  solar  spectrum  as closely as possi- 
ble. 2) The skylight reference is an opal-glass plate at  the 
top of the  aircraft, which integrates the diffused light. 3) 
The black reference is the  dark  interior of the  scanner. 
These calibration  signals are recorded on FM  tape with 
time marks and synchronization signals generated by a 
gyro-stabilized roll indicator. 

After a flight the analog signal containing the ten-chan- 
ne1 measurements is corrected  for roll angle, digitized, 
unskewed, and normalized  with respect  to  the calibra- 
tion signals. The final output is stored on  seven-track, 
200 bpi magnetic tape with eight  bits for  each spectral 
component. 

In addition to  the  channels in the visible and near-in- 
frared  regions of the  spectrum,  the aircraft is equipped 
with a number of sensors designed to monitor  ultraviolet 
and thermal  infrared  radiation. Nine aerial cameras can 

mirror 
Calibration lamps 

Figure 3 Multispectral data collection. 

also  be mounted to  chart  the  exact  course of the aircraft 
and to  gather imagery to  serve  as  the basis for collecting 
ground-truth  information. The instrumentation  and data 
processing facilities are  described in a report by Nalep- 
ka[38], which also contains references  to numerous 
other investigations in this area;  current  operations  are 
described in Ref. 39.  Some of the difficulties encoun- 
tered in attempting to register  multispectral data with 
respect  either to a standard  cartographic  frame of refer- 
ence  or  to  data obtained at  other times are discussed in 
Ref. 27. 

McCabe Road flights 
Data provided  by the  Infrared and Optics  Laboratory of 
the  Institute of Science  and Technology of the Universi- 
ty of Michigan were collected under  NASA  auspices [40] 
in conjunction with the flight of Apollo  9 over  the Im- 
perial Valley  agricultural test  site in California on 143 
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Figure 4 Oscilloscope  traces of multispectral  channel mea- 
surements. 

March 12,  1969. The  two flight lines selected for  the 
experiments  were  over  McCabe  Road,  near  the town of 
El Centro, California, at altitudes of 5000  and 10,000 
feet.  The  area  covered by the 5000-ft flight is approxi- 
mately 4000  acres and by the 10,000-ft flight, 10,000 
acres.  After deleting  some of the  scan lines in order  to 
retain an  aspect ratio of 1 : 1,  the lower  altitude flight data 
included  345  scan  lines and  the higher, 200  scan lines, 
each  scan line having 200 pixels (picture  elements). 
Since  each pixel is a  ten-dimensional vector and eight 
bits are  necessary  for  each  component,  about lo7 bits 
were retained for processing.  A single scan, showing 
the variations encountered  both within crop fields and 
across  crop fields, is shown in Fig. 4. The five traces 
represent  the first five spectral components of the  scan. 
The  three large  spikes are  due  to  defects in the analog- 
to-digital conversion  equipment;  the smaller spikes usu- 
ally occur  at field boundaries. The  dependence of the 
average signal strength  on  the  scan angle is quite  evi- 
dent. 

For  an indication of the statistical characteristics of 
the imagery, we computed several  simple parameters of 
the distributions of the  component values. The mean 
values of the ten spectral  components ranged from 34  to 
79 (units of relative  intensity)  when  averaged over  the 
entire  data  set,  but  the scan-angle averages  were  subject 
to  an approximately 25 percent variation due  to  the non- 
lambertian response of the ground cover  to oblique illu- 
mination. The  standard deviations of the  spectral  com- 
ponents ranged from 9 for channel  5 to 22 for channel 1 
(10,000-ft data).  The pairwise  deviations between  the 144 
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vector  components of adjacent pixels on a scan line 
show  that only about  ten  percent of the overall  statistical 
variance  can be  explained by the different  reflectances of 
the various crops, and the remainder  must  be attributed 
to fluctations due  to  other  sources  [4 1 1. 

The correlation between  adjacent pixels is about 20 
percent  greater within a given scan line than between 
successive  scan lines, an effect which is probably due  to 
the large effective field-of-view of the scanner. A further 
breakdown of the pairwise variances according to  scan 
line and scan angle shows,  as  expected,  greater reliability 
for small scan angles (the region directly  below the plane) 
and little change along the flight line. 

The most  noticeable feature,  about which we had been 
duly forewarned by the  Infrared  and  Optics  Laboratory, 
was the  presence of noise  spikes  resulting  from some 
quirk of the analog-to-digital conversion equipment. To 
keep within the eight-bit range of the clustering  program, 
isolated spikes having peak  values above 255 were  trun- 
cated  to 255.  Visual  inspection also revealed the exist- 
ence of numerous smaller uncorrected abnormal values, 
including zeros, in the  data. 

Ground-truth informution 
The  ground-truth  data were gathered during the week 
following the overflight and made available to us as a list 
(Table  2;  the field code is given in Table 3) of fields, 
crops, fractional  ground cover,  and  crop height keyed to 
a  print of the analog signal [38].  One  hundred  seventy- 
two fields, comprising 15  types of ground cover,  were 
included in the  survey.  The distribution was  quite 
skewed, with some categories appearing in only two  or 
three fields. The  ground-cover  descriptions in Table 2 
show  that  one could hardly expect 100 percent  correct 
classification,  especially, for  example,  on fields 19,  22, 
and 23. 

We  used  a  graphic tablet  connected  to  an IBM 1800 
processor  to  enter this  information into  the  computer. 
The  coordinates of the  corners of each field were  en- 
tered by pointing a stylus  to  the  appropriate location on 
a  picture  superimposed on  the  tablet.  The field numbers, 
through which the  complete  description, including crop 
type, was  keyed to  each field, were  also  entered through 
the  tablet by means of a small keyboard. The program 
permitted entry of an  arbitrary number of vertices  for 
each field, making it possible to  approximate any  desired 
shape by a polygon. 

The geometry of an unrectified multispectral array 
differs considerably from  that of an aerial  photograph of 
the corresponding area,  because of unmonitored changes 
in the  speed,  course, and attitude of the aircraft (mainly 
crabbing) and  the  cosine distortion  introduced by the 
rotating  mirror. Consequently, instead of an aerial  pho- 
tograph we used a scaled-down  version of a computer 
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Table 2 Ground-truth information collected for evaluation of the classification of the McCabe Road overflight data. 

Field 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

~~~ 

Field" 
code 

A +R 
B 
R 
R 
A +B 
A 
A +B 
A +B 
A +B 
A 
CR 
A 
L 
A 
B 
B 
A 
B 
B 

R 
R 
R 
R 
A 

Row 
direction 

~~~~ 

N-S 
N-S 
N-S 
N-S 
E-W 
N-S 
E-W 
N-S 
N-S 
N-S 
N-S 
N-S 
N-S 
N-S 
N-S 
N-S 
N-S 
N-S 
N-S 

N-S 
N-S 
E-W 
N-S 
N-S 

Estimated 
average 

crop 
height 

( in . )  

3-4 
30-36 
3-8 
3-8 
4-6  
6-  12 

10-34 
6-8 

2-6 
2 -4 
6 -  12 
8-  10 
4-6 
2-6 

24-30 
2-6 

12- 16 
20-30 
12-20 

10- 16 
2-6 
2-4 
4-8 
2-8 

Estimated 
average 
ground 
cover 

(percent) 

90 
60 
70 
80 
70 
60 
90 
80 
90 

100 
60 
90 
80 
90 
90 
90 

100 
100 
80 

80 
90 
90 
80 
70 

~~ ~ 

Comment 
~~ 

Recently cut 
Large patches of bare soil  in eastern portion of  field 

30 percent weed cover 
Recently pastured 
Pastured 
Pastured 
Recently cut 
10 percent weed cover; field partially cut 

Recently cut 

Heading stage 
20 percent weed cover; pastured; large portions of bare 

soil  in southern portion of  field 

Pastured; patches of bare soil  with white salt deposits 
Scattered areas of salt deposits and weeds at eastern end 
10 percent weed cover; pastured 

"See Table 3 

printout on which the field boundaries were clearly vis- 
ible. 

The field descriptions were  subsequently keypunched 
and stored  on disk in the form of an  annotated map of 
the  area[Fig. 5(a)]. The boundaries of the 172 fields 
were entered via the  tablet in less  than 30 minutes, even 
though each  vertex was entered  several times, depend- 
ing on  the  number of fields to which it belonged. An ad- 
dition to  the program allowed the combination of speci- 
fied classes  to  form new classes without  keypunching 
again all of the field labels. If, for  instance,  the feed 
crops barley, oats,  and  rye were to be  considered  a  sin- 
gle class,  one additional card would cause  the program 
to  make  the  three labels  equivalent in computing the 
various performance statistics. 

Experiments and results 
The experimental  programs  designed to  test  the classifi- 
cation  method  were  run in two  steps  to avoid repeating 
the time-consuming  clustering process  for different  eval- 
uation procedures: 

1 .  The  cluster generation routines divided the sample 
points into  groups of homogeneous  (though  generally 
not  contiguous)  regions and  constructed a cluster 

Table 3 Field key. 

Field 
code 

Ground  cover 

A 
A +B 
A+R 
B 
BS 
CR 
I 
L 
ON 
PS 
R 
SB 
SF 
SFT 
R+U 

Alfalfa 
Alfalfa and barley 
Alfalfa  and rye 
Barley 
Bare soil 
Carrots 
Idle 
Lettuce 
Onions 
Pasture 
RY e 
Sugar beets 
Safflower 
Salt flat 
Roads and  unclassified patches 

map  [Fig. 5(b)]  on disk. In this example most of the 
fields were  assigned rather uniformly to a single clus- 
ter. An exception is field 50 (outlined), seen from the 
ground truth  map  to contain lettuce with 40 percent 
weed cover, which is partitioned  in about  equal pro- 
portions between  clusters 3, 9, and E. All but 28 of 145 
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Crop Ground 

number codea direction (in.) (percent) 
Field Field Row height cover Comment 

28 
34 
35 

49 
36 

50 
51 
52 
60 
61 
62 
76 
71 
7x 
79 
x0 

A 
D 
A 
A 
I 
I 
A 
D 
D 
E 
D 
E 
E 
E 
D 
D 

E-W 
E-W 18-24 

8-16 YO 

N-S 16-18 
90 
90 

E-W 2-4 
N- S 6-X 60 

x0 

N- S 
N- S 

6-X 
1 X-24 

40 
90 

E-W 24-30 100 
N-S 24-36 100 

N-S 20-24 90 

N-S 24-30 100 
N-S 24-30 100 

Irregular cover 

Pastured 
Recently cut; yellow-green stubble 
Yellow mottling 
40 percent wecd cover 

Bedded for cotton 

“See figure caption. 

the  clusters were  eliminated by the significance 
threshold. 

2. The  cluster evaluation routines assigned each  cluster 
to a crop by sampling the  cluster points and prepared 
an error map [Fig.  5(c)] by comparing the resulting 
classification to  the previously entered ground-truth 
map. For example, the large A region at  the  top of 
Fig.  5(c) is alfalfa, which  had  been  assigned to a clus- 
ter  dominated by  barley,  and the E region at  the  bot- 
tom is barley  (“bedded for  cotton”), which had been 
assigned to a  bare-soil cluster. 

The programs were  run  on  both  the 5000-ft  and the 
10,000-ft flight altitude  data.  Some of the earlier results, 
including a comparison of the  two flights, some  attempts 
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Figure 5 Symbolic maps corresponding 
to an area  about  one mile square, including 
16 fields. (a) Ground-truth map. Each 
type of ground cover is represented by a 
letter: A, alfalfa; D, barley; E, bare soil; 
I, lettuce;  and P, roads. (b) Cluster map. 
Each symbol corresponds  to a different 
cluster,  not all of which are different 
ground-cover  types. (c) Error map, legend 
as in (a). The  dots  represent  correctly as- 
signed  points and  the  letters,  the true 
categories of crops  that  had been  incor- 
rectly classified. 

at  component selection, and  an investigation of the effect 
of different distance  measures,  have been reported in 
Ref. 26 and  are not repeated here. In all cases only  very 
small fluctuations  in the recognition performance  were 
observed. 

Most of the  programs  were  written in FORTRAN and 
PL/1 and  executed  on  an  IBM  360/91  under  MVT- 
OS/360. A flowchart of the program logic for assigning 
multispectral  samples to clusters  and creating a cluster 
map is shown in Fig. 6. 

Speed of operation 
The effect of the  speed-up  techniques of strip formation 
and sequential search  on  the number of distance  compu- 
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clusters  with  significance  threshold 
Eliminate  least  populated 

No I 

Rcad  ncxt  scan  line 

I- 
b 1 

Store  one  line 
of cluster map 

Advance  pointer 
to  next pixel 1 

variance of strip 

Scarch  priority list for 
first cluster  within 

9’5 8, of strip I update  population  and  centroid 
Assign strip to  cluster; 

c 

Create  new  cluster * Create  new  cluster J 

e y e s  within 0, of strip? 1 
Figure 6 Partial  flowchart of the program logic. 

tations required to partition the  data into  a  given number Table 4 Effect of speed-up techniques  on  amount of compu- 
of clusters is shown in Table 4. The  thresholds were set tation. 
to  produce  about 100 significant clusters in each  case. 
Strip formation and sequential search  are  about equally 
effective and in combination  provide a roughly fivefold 
reduction  in  computation  without significant deteriora- 
tion in the final cluster configuration. Strip  formation 
also seems  to  improve  the recognition performance 
slightly. 

The time  required for  each  distance computation de- 
pends on  both  the  distance measure  used  and the num- 
ber of spectral  components. Although  most of our  calcu- 
lations were made with the Euclidean  norm and all ten 

Relative  number of Recognition 
distance  computations  accuracy 

Algorithm  per  point  (percent) 

Unmodified  chain 1 .oo 52 
Chain with sequential 

search 0.60 51 
Chain with strip 

formation 0.30 56 
Chain with  sequential 

search  and  strip 
formation 0.19 54 
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Figure 7 Effect of threshold  value on  number  and classifica- 
tion of clusters. 

spectral  components,  we  determined  for  comparison  that 
using the absolute  distance  measure  and only six compo- 
nents could save  about  two thirds of the  computation 
time  without  noticeable loss in performance. Under 
these  latter  circumstances  the computation  required 3 
ms per sample  point on a 360/91  computer; with opti- 
mized machine  language code and a minimum of diagnos- 
tic output,  we  estimate this  could be reduced to  about 
100 ps. In  comparison, Eppler’s  optimized  supervised 
classification program requires  about  300 ps per six- 
dimensional  sample on a 360/44  computer[33].  More 
complicated  decision rules,  such  as  the maximum likeli- 
hood ratio[ 171, would reduce  the  number of clusters 
required to  represent  the  data, and might result in fur- 
ther improved speed of operation. 

Cluster  formation 
The  dependence of the  number of clusters  on  the  cluster 
threshold is shown  as  curve A in Fig. 7. The  number of 
clusters  decreases rapidly with increasing threshold,  but 
the classification accuracy  (curve B) is a much less sen- 
sitive  function of the  threshold.  Hence  the selection of 
an  appropriate threshold is not a problem. 

The  rate of formation of clusters  decreased  to virtual- 
ly zero  after  the first 100,000 sample  points had been 
assigned. It will be  important  to investigate the  rate of 
cluster formation over much  longer flights to confirm 
that  the number of ground  samples  required increases 
only slowly with the size of the  area  surveyed. 

Cost mutrix and confusion  table 
The performance of the clustering  algorithm may be 
gauged from inspection of the  three maps of Fig. 5 ,  but  a 
much better understanding of the contributions of the 
individual clusters  to  the recognition of each  crop may 
be  obtained from  the  “cost” matrix of Table 5. The en- 
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(picture elements) in each  cluster assigned to  the various 
ground-cover categories. The  row  and column  totals are 
indicative of the  area covered by each  cluster  and by 
each  crop  (one  picture element corresponds  to  about 
0.02 acres).  The  last  two rows of the  table refer to  the 
number of correctly assigned  samples. 

With 100  percent sampling, the  crop selected for  each 
cluster is determined by the maximum  value in each line, 
which is repeated in the  second-last column of the table. 
The ratio of this number  to  the total  number of points in 
the  cluster is a measure of the usefulness of that  cluster, 
and the  sum of the  areas  shared by each  crop  and all the 
clusters assigned to it,  shown in the second-last  line, is a 
measure of how well that  crop is recognized. The por- 
tion of the pixels correctly classified in this experiment 
was 52 percent. 

The confusion  among the various  categories is shown 
in Table 6. The  entries along the main diagonal are  the 
numbers of sample  points shared by each crop  category 
and  the  clusters assigned to it. The off-diagonal entries 
are  the  numbers of misassigned points. The  upper  por- 
tion of the  table is computed  on per-point  assignment, 
the  bottom portion is based on  the per-field rule  (see  sec- 
tion on per-field classification). As expected,  the feed 
crops  are not fully distinguishable  from one  another 
whereas bare soil does  stand  out,  as indicated  by the re- 
lative ratios of diagonal to off-diagonal elements in the 
table. 

Merged crops 
To compare  our recognition results with those obtained 
elsewhere, we have to reduce  the number of crop  cate- 
gories to  the usual five or six. For  instance, by preas- 
signing all of the  data  to only five classes, it is possible 
to raise the recognition rate  to  73  percent.  In this  mode 
all of the available data points are still classified, but 
misassignments  occurring between equivalent classes  are 
no longer counted  as  errors. 

Per-Jield classijication 
A further improvement in accuracy  (to 88 percent  cor- 
rect recognition) can be  achieved by assigning each field 
to a crop  category  on  the basis of a majority decision of 
all the  elements in the field. This result is indicative of 
the performance to be expected if reliable automatic 
methods  for  detecting closed field boundaries can be 
developed. 

It should  be noted  that in our experiments every point 
in the  data was  assigned to  some  crop category. Superior 
recognition  results  could  be demonstrated in all cases if 
only the  central regions of the fields (the easily recog- 
nized portions) were included in the evaluation. 

Other gains may be expected from  improved signal 
normalization and noise  elimination. Since  one of the 
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Table 5 Cost-matrix presentation of the classification results 

Field code" 

Cluster A  A+B A+R B BS CR I L ON PS R SB SF SFT R+U Total Muximum Percent 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

76 1 
2201 

963 
0 

922 
77 
49 

329 
807 
39 

872 
244 

16 
436 

2 
1537 
202 

3 
509 
844 
145 

0 
42 1 

27 
460 

54 
267 
185 
1 I5  
55 
66 
32 
73 

0 
14 
76 
65 
0 
0 

123 
9 

16 
56 
34 
6 
0 

16 
4 
7 

30 
21 
17 
12 

532 

48 
535 

0 
0 
0 
1 
0 

325 
244 
49 

171 
0 

20 
804 

0 
0 

315 
0 
1 

128 
115 

0 
196 

9 
0 
0 

91 
61 

274 
500 
42 
26 
76 
0 
7 

43 
47 
0 
0 

37 
1 

11 
126 
33 

1 
4 
2 
0 

202 
7 
5 

11 
0 

75 

0 
10 
0 
0 

18 
0 
3 
8 

150 
1 

19 
2 
0 
8 
0 
0 
0 
1 
7 
1 
9 
0 
2 
2 

74 
0 
0 
6 
0 
0 
1 
3 
0 
0 
1 
1 
6 
0 
0 
0 
1 
0 
0 
2 
0 
0 
0 
0 
0 
0 
0 
0 
1 
8 

4111 5 0 
1427 0 0 
1368 37 13 

26 688 0 
671 1 0 
75 2233 1 
32 1 2 

196 1 0 
296 27 14 
36 2117 1 

142 24 0 
31 6  2 
26 744 0 

137 82 0 
1730 4  2 
480 0 0 

39 5 1 
0 0 4  

96 5 5 
181 23 0 
99 218 3 

1 31 0 
36 9  1 
24 230 1 

175 4 0 
173 14 144 
13 0 I O  
29 9  3 
53 10 3 
75 12 0 
54 354 2 
68 298 1 
74 97 0 

699 0 0 
IO 39 0 
47 28 0 
82 11 0 
15 379 5 
9 104 0 

182 0 0 
48 106 I 

5 12 0 
16 11 5 
24 35  2 
17 150 0 
0 0 0  

13 15 0 
0 0 0  

12 0 0 
17 22 0 
5 11 1 

13 3 0 
19 6 0 

820 197 24 

0 
1 
0 
0 
1 
0 

20 
1 

16 
1 
7 

33 
0 
0 
0 
0 

28 
545 
721 

3 
36 
0 
7 
5 
0 
1 

155 
5 

28 
23 
0 

16 
12 
0 
1 

16 
12 
3 
0 
0 

12 
12 
5 

16 
3 
0 
7 
4 
1 
5 
8 
5 
9 

45 

0 0 0  
0 0 11 
0 0 7  

517 0 0 
20 0 9 
20 0 5 

1 0 2  
16 0 3 
4 0 50 

14 0 0 
209 1 128 
797 10 10 

58 0 0 
9 0 0  
0 0 0  
0 0 0  

478  40  1 
0 1 0  
1 0 36 

54 0 8 
8 0 6  
0 0 0  

49 16 13 
0 0 0  
4 0 2  
0 2 0  

52 4 53 
5 0 17 

21 0 0 
0 0 3  
2 0 0  
0 1 2  

10 1 0 
0 0 0  
0 0 0  

12 0 7 
5 0 10 
0 2 0  
0 1 0  
0 0 1  
4 1 3  
0 0 0  

15 14 0 
2 0 0  
0 0 0  
0 0 0  
2 0 0  
0 0 0  
0 0 0  
2 0 2  
3 0 0  
1 0 0  
1 0 0  

41 25  14 

45 
317 
51 
2 

1753 
73 

207 1 
227 
794 
65 

632 
227 

89 
141 

1 
72 

209 
1 

5 I6 
184 
72 
0 

527 
12 

179 
2 

206 
529 
69 
44 

127 
11 
66 

1 
21 

123 
122 

0 
6 

46 
2 

23 
64 
78 
3 
0 

18 
0 
6 

33 
13 
40 
15 

41 1 

845 0 3 
276 0 7 

1322 9 1 
0 0 0  
2  3 21 

11 2 28 
4 11 0 
2 14 7 

146 189 2 
6 3 5  

13 107 18 
16 38 2 
0 0 1  
1 0 4  

282 0 0 
17 0 0 
7 33 9 

13 1667 0 
39 21 6 
8 27 40 

11 84 39 
0 0 0  

11 12  6 
10 1  7 
11 13 2 

550 11 0 
10 59 4 
23 82 2 
16  15  16 
11  16 21 
5 3 3  
1 15 82 

24 5 27 
0 0 0  
2 17 7 

13 33 4 
7 13 2 
5  3 19 
0 1 244 

30 1 3 
13 33 88 
1 4 1  
5 8 11 

18 10 17 
1 1 140 
0 0 0  

10 13 8 
0 0 0  
7  6 15 
7 15 10 
4 2 3  

26 14 7 
6 5 2  

332 130 54 

310 
26 
63 

2 
32 
38 
26 

100 
78 

22 1 
253 

13 
80 

107 
6 

27 
41 
0 

19 
75 

287 
10 
25 
81 
24 

5 
13 
44 

157 
33 
47 

127 
60 
16 

226 
37 
57 
3 

1 I8  
25 
33 

212 
17 
33 

5 
0 

70 
0 
2 

46 
36 
50 
84 

670 

6128 4111 
4811 2201 
3834 1368 
1235 688 
3453 1753 
2564 2233 
2222 2071 
1229 329 
2817 807 
2558 2117 
2596 872 
1431 797 
1034 744 
1729 804 
2027 1730 
2133 1537 
1408 478 
2235 1667 
1982 721 
1576 844 
1132 287 

42 31 
1331 527 
409 230 
948  460 
956 550 
937 267 

1000 529 
777 274 
793 500 
706 354 
683 298 
525 97 
716 699 
345 226 
440 123 
439 122 
434 379 
483 244 
448 182 
355 106 
297 212 
353 126 
3 04 78 
327 150 

4 4 
174 70 

8 4 
258 202 
196 46 
112 36 
187 50 
160 84 

3378 820 

67 
45 
35 
5.5 
50 
87 
93 
26 
28 
82 
33 
5 5  
71 
46 
85 
72 
33 
74 
36 
53 
25 
73 
39 
56 
48 
57 
28 
52 
35 
63 
50 
43 
18 
97 
65 
27 
27 
87 
50 
40 
29 
71 
35 
25 
45 

100 
40 
50 
78 
23 
32 
26 
52 
24 

Total 13751 4643 345 14027 8418 251 1829 2437 119 403 10339 4180 2749 998 4170 68659 36239 52 

I Correct7317 1910 0 8910 7427 0 725 1275 0 0 5203 550 1667 244 1011 36239 

Percent 53 41 0 63 88 0 39 52 0 0 50 13 60 24 24 52 
r 
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Table 6 Confusion matrices for the classification results in Table 5. 

Field  code 
Field 
code" A  A+B  A+R  B BS CR I L ON PS R  SB SF SFT R+U 

A 
A +B 
A+R 
B 
BS 
C R  
I 
L 
ON 
PS 
R 
SB 
SF 
SFT 
R+U 

A 
A +B 
A+R 
B 
BS 
C R  
1 
L 
ON 
PS 
R 
SB 
SF 
SFT 
R+U 

7317 
1494 
262 

2910 
79 
24 

183 
339 

5 
255 

261 1 
483 
409 

80 
596 

10192 
1073 

0 
2594 

0 
0 
0 
0 
0 

403 
864 

1830 
0 

376 
0 

669 
1910 

8 
293 
115 

8 
57 
45 
14 
3 

3 24 
40 
45 
67 

3 16 

0 
3566 

0 
0 
0 
0 
0 
0 

119 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2381 345 0 513 446 
160 225 0 1 315 

8 8 0  7 2 
8910 464 0 96 70 
243 7427 0 5 11 

39 12 0 5 3 
45 52 0 725 61 
41 625 0 1 1275 
25 5 0  0 50 
22 10 0 36 11 

555 450  0 516 436 
281 1 76 0 39 23 

140 66  0 21 71 
61 400  0 6 11 

1090 707 0 19 54 

850 
0 
0 

10759 
0 
0 
0 
0 
0 
0 
0 

1720 
0 
0 
0 

0 
0 
0 
0 

841 8 
0 
0 

635 
0 
0 
0 
0 
0 
0 
0 

0  0 0 
0  0 0 
0  0 0 
0  0 0 
0  0 0 
0  0 0 
0  0 0 
0  0 1802 
0  0 0 
0  0 0 
0  0 0 
0  0 0 
0  0 0 
0  0 0 
0  0 0 

0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  

0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  

1752 
3 80 

38 
921 

94 
8 

77 
94 
16 
58 

5203 
78 

164 
52 

254 

2709 
0 

345 
674 

0 
0 

978 
0 
0 
0 

9475 
0 

567 
0 
0 

54  3  0 
0  0  0 
0  1  0 

173 0  9 
14 0  104 

144 4  0 
1 545 0 
0  0  0 
2 1 1 
0  0  0 
2  1  6 

550 13 0 
11 1667 1 
0 0 244 
5 0 118 

0  0  0 
0  0  0 
0  0  0 
0  0  0 
0  0  0 

25 1  0  0 
0  851  0 
0  0  0 
0 0  0 
0  0  0 
0  0  0 

630 0  0 
0 2182 0 
0  0  622 
0  0  0 

27 1 
158 

11 
181 
326 

4 
83 
17 
0 
8 

235 
67 

154 
77 

1011 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4170 
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Table 7 Dependence of classification accuracy on fraction of objects of this study was to  demonstrate  that  the  method 
data sampled  using the clustering algorithm. advocated is relatively  insensitive  both to  irregularities 

in the signal and to lack of uniformity in the reflected 
Percentage 

of points  Percentage of pixels  correctly  assigned spectra of the different types of ground cover,  there was 
sampled no need to  attempt  to  experiment with the preprocessing 
in each 5OOO-ft~Yight 10,000-ftjight 
cluster 38 clusters  109  clusters 29  clusters  125  clusters techniques  described in the  literature [42 -441. 

100 49 53  44 50 Sampling 
5 49 52  44 
1 40 

The  percentage of correctly  assigned  picture elements is 
given in Table 7 as a function of the percentage of points 
sampled in each cluster. There is no  deterioration in per- 
formance  down  to five percent,  and only a slight de- 

Table 8 Dependence of classification accuracy on fraction of crease at One percent* In Other a Of pic- 
data sampled randomly. ture elements suffices most of the time to  determine  the 

dominant crop identity in each  cluster. 
Percentage 

of points  Percentage of pixels  correctly  assigned 
sarnuled Comparison  sampling 
in each  5OOO-jtjight  10,000-jtJIight One way to evaluate objectively the  performance of the 
cluster 38 clusters  150  clusters 30 clusters  150  clusters clustering algorithm in producing homogeneous collec- 

100 20 21 21 22 
5 19 18 20 17 

tions of points is to  compare  the classification results 

1 
produced by  sampling the  clusters with those obtained in 

17 an identical manner  from randomly  generated clusters. 150 
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Such  a comparison is shown in Table 8,  for both a large 
number and a small number of clusters.  Comparison of 
this table with the  Table 7 shows  that  the  performance 
with random clusters is far below that achieved by the 
clustering  algorithm. The margin of superiority of the 
distance-based algorithm for defining primary sampling 
units over random  assignment increases slightly, as ex- 
pected,  at low sampling percentages. 

If, instead of random  clusters,  the whole area  covered 
by the  observations is divided into  as many  equal-sized 
rectangular  regions as  there  are fields, with  edges  paral- 
lel to  the field boundaries,  the classification results  are 
comparable  to  those achieved by the clustering algo- 
rithm,  which  also seeks  to establish a field structure. 

Summary 
The principal  object of this paper is to  demonstrate  an 
improved  method of selecting  ground  samples for  terrain 
classification on  the basis of airborne multispectral  ob- 
servations. Although an  attempt  has been  made to evalu- 
ate  the method in as objective a manner  as possible, the 
generalizability of the  results is limited by the specific 
size and  nature of the particular test  area. 

It  has been  shown that  the inherently fast processing 
capability of the single-pass  chain  algorithm  could be 
further augmented by taking into  account  the  expected 
similarity of adjacent  sample  points  and  the distribution 
of terrain types in the  area  under consideration. With 
these  speed-up  techniques, a  processing rate of 3 ms per 
sample  point  has  been achieved; we estimate  that in an 
operational system  on a general purpose  computer of the 
same  capacity, this  time could be  reduced to 100 ps. 

The classification  performance we obtained is clearly 
too low for practical  applications. Improvements in rec- 
ognition accuracy can  be  obtained by preconditioning 
the  data  to  take  into  account  the relation  between  sun  an- 
gle and observation angle [42 - 441,  additional  normali- 
zation based  on back-scattering measurements [45], elim- 
ination of egregious  instrument  noise (spikes)[44],  more 
sophisticated distance  measures based on  the statistical 
correlation  among the spectral channels [ 171, and  per- 
field classification [ 19,221 with, eventually,  automatically 
extracted boundaries. Each of these items is subject to 
extensive  research  elsewhere  and  was not  considered 
germane to  the major issue in this  paper. 

The  appropriateness of the method of evaluation de- 
pends  on  the  importance  attached  to  the efficient collec- 
tion of ground-truth  information. That  our classification 
method is efficient in this sense  is  shown by the  fact  that 
a  surprisingly sparse  amount of ground  sampling, of the 
order of one  percent of the overflight area,  proved  suffi- 
cient to indicate the dominant  identity of each  cluster. 

The  scheme used for sampling the ground cover is not 
realistic in the  sense  that it would require  the ground 

crew  to  check  the identity of isolated  points. In particu- 
lar, a  considerable amount of work is necessary  to incor- 
porate suitable constraints in the selection of the  appro- 
priate patches  to be  tested in each  cluster. We learned, 
however,  that  the  number of clusters developed at a giv- 
en threshold  levels off with the  amount of data  generated 
during  a  few miles of flight, in the  absence of sharp re- 
gional disparities. 

Since discrimination  among crop  types is based  at 
least  as much on  the relative amount of ground-cover  as 
on  the  other  factors mentioned  previously, any agricul- 
tural  census will have  to  be based on repeated observa- 
tions throughout the growing season.  The  scant  amount 
of detail  discernible with the proposed  satellite  instru- 
mentation will require intermediate-level observations 
with both high-altitude  and  low-altitude  aircraft  before 
final reference  to ground observations  or  to existing  rec- 
ords can be  made[30,46].  It  is, in fact,  not unlikely that 
such  airborne  observations will constitute  the bulk of the 
data collection effort for some  time to  come.  The  con- 
cepts  we  have described may serve  to  reduce  the  amount 
of data  that must be collected at  these intermediate  levels. 
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