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Model for Time-dependent Raindrop Size Distributions;
Application to the Washout of Airborne Contaminants

Abstract: We have developed a model for computing time-dependent behavior in raindrop size distributions for a variety of initial con-
ditions. The model permits the inclusion of a spatially varying atmospheric profile and takes evaporation and coalescence of raindrops
into account on a dynamic basis. We have applied this model to the washout process by rain, whereby small airborne particles are scav-
enged below a rain cloud. In comparing our results with those of previously published time-independent models, we found that the time-

dependent effects greatly altered washout at lower elevations.

Introduction
There are two methods by which small airborne particles
can be removed from the atmosphere and returned to the
ground by precipitation: 1) cloud scavenging, known as
rainout, in which particles mix with water droplets and
ice crystals in the clouds, and 2) scavenging below the
cloud level by falling raindrops, snowflakes, etc., called
washout. Only washout by rain is considered here.

Previously published models of washout have assumed
that the raindrop size distribution and the atmospheric
conditions are the same at ground level as at the cloud
base and do not vary with time. In this model we include
a spatially varying atmospheric profile and take into ac-
count the evaporation and coalescence of raindrops, ef-
fects which may greatly alter the washout at lower ele-
vations. In modeling a rainstorm, we assume that the
size distribution of raindrops at any position r and time
t can be characterized by a continuous function N(a,r,?)
such that Nda is the number of drops per unit volume of
air in the radial interval a to a + da. Several authors[1]
have studied the modification (due to evaporation and
coalescence) of this distribution function, assuming either
one-dimensional steady state conditions or spatially ho-
mogeneous conditions. In either case, the distribution
histories can be computed by numerical integration of the
equations that describe the coalescence and evaporation
processes.

Neither steady state nor spatially homogeneous con-
ditions are usual in nature. Strong variations in raindrop
concentration often occur in both space and time. Within
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a sample of raindrops collected on the earth’s surface,
one may find drops that left the cloud base as much as
ten minutes apart. Since significant changes may occur at
the cloud base during such a time span, it is important to
include both space and time dependence in modeling the
coalescence and evaporation processes for a falling rain-
drop size distribution calculation.

We have chosen a model that includes radius of the
raindrop, altitude, and time as independent variables
in order to obtain a more realistic simulation of natural
rain. The basic assumptions included are that

1. the atmosphere is constant in time and one-dimen-
sional in that the ambient temperature, pressure, and
relative humidity are functions of only the altitude,
and vertical and horizontal winds are assumed zero;

2. the raindrops fall vertically at their terminal velocities,
and their water vapor and heat transfer rates are gov-
erned by the differential equations given by Best[1(c)];
and

3. the transient evaporation and coalescence processes
are considered simultaneously.

A numerical method was developed to determine the
raindrop size distribution function N(a,z,f) and the rain-
drop temperature T(a,z,t) for radii, altitudes, and times of
interest, assuming that one can specify

1. the temperature, pressure, and relative humidity pro-
files of the atmosphere [6(z), p(z), and f(z), respec-
tively] and

91

RAINDROP SIZE SPECTRUM




92

T

Altitude (km)

| | ]
1.25 1.50 175 2.00

2.0 /
1.6
12
0.8
0.4
0 | ]
0.25 050 0.75 1.00

0

Waterdrop radius (mm)

Figure 1 Evaporation histories for 16 water drops.

2. the raindrop size distribution function and raindrop
temperature at the cloud base [ N(a,z¢n,f) and T(a,z¢p,1),
respectively].

With these assumptions we can define a scavenging
rain process. When the dynamic (in the sense of coales-
cence and evaporation) drop falls through the atmo-
sphere and strikes an airborne particle, we assume that
the target efficiency and collision efficiency are identical.
Every particle hit by a drop remains with that drop until
the drop evaporates or hits the ground. Whenever a drop
evaporates before reaching the ground, it releases the
particle into the air at the height at which evaporation
occurs. Agglomeration of particles within the raindrop is
ignored. We also assume that no change in drop diameter
or terminal velocity occurs at the time of capture of a
particle. Any drop small enough to experience an appre-
ciable diameter change on coalescence would have a low
target efficiency and, furthermore, would undoubtedly
evaporate before reaching the next lower level (within the
constraints of the numerical model as described below).
Thus the evaporation and coalescence equations are inde-
pendent of whether the drop contains a particle.

Evaporation of a single raindrop

The evaporation of a falling waterdrop is determined by
the rates of transfer of heat and water vapor between the
drop surface and the surrounding air. The molecular dif-
fusion of vapor and of heat for an evaporating waterdrop
in a (stagnant) medium can be expressed by the following
equations:

dm _ —4mDa [PS(T) _fPS(G)]

(1)

dt R, T )
and
dH|dt = 4mka (6 — T), (2)

where m is the mass of the drop, D is the diffusivity of
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water vapor in air, R,, is the gas constant for one gram of
water vapor, P(T) and P,(#) are the saturation vapor
pressures at temperatures T and 6, respectively, f is the
relative humidity, 6 is the ambient air temperature, T is
the surface temperature of the drop, H is the heat re-
ceived by the drop through conduction, £ is the thermal
conductivity of air, and a is the radius of the drop.

The rate dQ/dt at which heat is received by a drop is
equal to the algebraic sum of the rates at which heat is
transferred to the drop by conduction, evaporation, and
radiation:

4 3

dQldt = 3 wa’ pC,dT|dt

= G Ldm|dt + G,dH|dt + 4ma’eo (6" — T*). (3)
Here L is the latent heat of vaporization, € is the Stefan-
Boltzmann constant, C,, is the specific heat of liquid wa-
ter at constant pressure, and o is the emissivity of the
waterdrop (taken as unity). If there is significant relative
motion between the drop and the surrounding medium,
ventilation affects the rates of diffusion of heat and vapor.
This effect has been taken into account through the em-
pirical ventilation coefficients, G, for mass transfer and
G, for heat transfer, as defined by Kinzer and Gunn(2].

Using V, the terminal velocity of the drop, which is a
function of the drop size, and a = dT/dz, the height vari-
ation of the temperature of the drop, we can replace
dT/dt by aV. The heat balance equation (3) then re-
duces to

DL [PS(T) _fPs(G)]

2 — pu— —_—
aa’VpC,=3k(6—T) G, R. T 2

+ 3ac(6* — T%). 4)
We can also write Eq. (1) with ventilation in the form

dz Ry, Vp [ T ) ]

Equations (4) and (5) are the two fundamental equa-
tions that we integrate numerically to determine a and T
as functions of z for a specified atmosphere. [The nu-
merical Runge-Kutta method used to solve Eqgs. (4) and
(5) is explained in detail in Appendix A.] Figure 1 shows
sixteen individual raindrop histories computed in this
manner. The atmospheric conditions for this example are
T =15°C, f= 100 percent relative humidity, and p =
700 mbar at the cloud base and T = 35°C, f= 25 percent
relative humidity, and p = 898 mbar at ground level.

)

Evaporation and coalescence of a distribution of
drops

* Steady state evaporation
We sample the given continuous raindrop size distribu-
tion at the cloud base (Fig. 2) at an integral number / of
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selected radii and assume that a set of I adjacent rectan-
gles provides an adequate representation of the distri-
bution. (We postpone temporarily the questions of how
narrow the rectangles must be for an adequate approxi-
mation and whether unequal spacing of the sample points
might be advantageous.) The sample radii and rectangles
(hereafter called “‘bins”’) are numbered from largest to
smallest, as shown in Fig. 2. The bin widths are de-
fined by

Aa, = (a, — az)’,

Aa;=4(a,_, —a,),

Aa,=%(a,+a,_); i=23, -, 1—1 (6)

For the special case in which the radii are sampled at
uniform increments, all of the bin widths are equal. The
bins change in position and size on the a axis (abscissa)
as the drops evaporate.

We next compute an individual raindrop evaporation
history for each of the sampled radii, using the Runge-
Kutta method described by Abraham and TeSelle[3]
(see Appendix A). This calculation yields the radius a,
terminal velocity V, exposure time 7, and temperature T
of each bin as functions of altitude.

By definition, each drop stays in its own bin and a con-
tinuity relation holds for the number of drops X, per unit
volume of air in each bin except the smallest bin, which
is being depleted by evaporation. (An approximate meth-
od for treating the exceptional bin that suffers depletion
through evaporation is given in Appendix B.) For other
than these exceptional cases, we have from Eq. (B1) the
steady state continuity relation

VdX Jdz + XdV/dz=0, i=12,---1—1, (7

where X, = N, Aa,. Separating variables and integrating
from the cloud base to another altitude, we find that

Xi(Z) =Xi(Zcb) Vj(Zcb)/Vi(Z)’ i=102,---,1—J,

(8)
where J is the number of bins that suffer depletion of their

populations due to complete evaporation. Writing this
equation in terms of the distribution function, we obtain

Vi(ZCb) Aai(zcb)
Viz) Aa(z)’

i=12,-1—J.
9)

Ni(Z) = N{(Zch)

Equation (9) describes the modification of a raindrop
size distribution due to evaporation under steady state
conditions.
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Figure 2 Continuous size distribution sampled at selected radii.

¢ Transient evaporation

The extension of the steady state solution to the time-
dependent case consists merely of introducing an appro-
priate time delay in the process. For this purpose it is
convenient to label altitudes from the cloud base down-
ward, since that is the direction of numerical integration;
thus altitude z, is greater than z,,,. If we assume that it
requires 7, seconds for a drop in bin i to fall from altitude
z, to altitude z,,, ,, the fall time is defined by

n+12
n+1

n=[Taavie, =12 (10)
*n

The distribution function at altitude z, , at time ¢ de-

pends on the distribution function at altitude z, at time

t — 7,. This time delay is the only feature of the transient

problem that is not accounted for in the steady state case.
The transient solution for the number of drops in each

bin is

Vi(z,)
Hilonat) = X et T')Vi(z,m)’

or
Vi(z,) Aalz,)
Vilz,.,) Aa,(z,,,)

i=12,:--,1—J. (11)

N(z,.,t) =N, (z,t — 7))

n’

The solution (11) must satisfy the time-dependent con-
tinuity relation (except for the exceptional cases already
mentioned)

aXjot +VaXjoz+ X, dV/dz=0, i=12, - - 1—J.
This is shown to be the case in Appendix C.
e Steady state coalescence

Coalescence takes place when two falling drops collide
and unite, giving rise to a larger drop. Under steady state 93
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Figure 3 Transient modification of the raindrop distribution
function due to time-varying concentration at the cloud base
(2 km), evaporation, and coalescence. The distribution function
was initialized at the cloud base using the Marshall-Palmer distri-
bution law with a precipitation rate of 3.5 mm/h and is shown at
two altitudes after eight minutes of rain.

conditions, the coalescence process may be described
by either a single nonlinear partial differential equation
or a system of nonlinear ordinary differential equations,
depending on whether the size distribution is continuous
or discrete[Hidy and Lilly, 1(b)]. If we continue to use
drops at sampled radii to represent the distribution, the
system of ordinary differential equations is appropriate.

The number C s of collisions per unit volume of air and
unit time between drops with radii a; and q; is

— 2 j—
Cy=mla,+a) | V,—V,| XX, (12)

if the collection efficiency is taken as unity. The rate of
depletion of drops with radius a; is

I
dxj/dz=—; c,lv; (13)

The combined drop will have radius a.= (a+ ajg)l/ 8
and terminal velocity V, after accumulation. The accumu-
lation of drops with this radius as a function of altitude is
determined by the conservation of mass equation

dX ldz = (aC}; + a’C}) [aSV. (14)

This rate of accumulation may be divided between the
nearest neighbor bins (radii a,_, to a. and a, to a,) by the
equations
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kaH _ ( a;ca _ ac33> ch (15)
dz @ =G,/ dz

and

i& _ (acz - ak-HZ) d_‘X_c' (16)
dz a, —a,,,’ dz

The sum of the rates of depletion and accumulation for
each bin yields the net rate of change of concentration
for that bin.

~ Transient coalescence

The coalescence rate at any radius depends only on the
distribution function and the drop velocities at the time
in question. Under these circumstances, we can treat
time as a parameter in the rate equations and replace the
ordinary derivatives in Eqgs. (13) through (16) with partial
derivatives (see Appendix D).

» Comparison of transient and steady state equations
We have found that the fundamental equation describing
evaporation in a raindrop size distribution differs from
the steady state equation only by a simple time delay.
Since this time delay is easily incorporated into a com-
puter solution, it is only slightly more difficult to calculate
distribution histories with three independent variables
than with two such variables. Implementation of the
three-variable program results in Fig. 3, in which the
logarithm of the concentration of drops is plotted as a
function of drop radius. The atmospheric conditions as-
sumed are 15°C, 100 percent relative humidity, 700 mbar
at the cloud base and 35°C, 25 percent relative humidity,
898 mbar at ground level.

The distribution function at the cloud base at time zero
was initialized by using a Marshall-Palmer distribution
law[4] with a precipitation rate of 3.5 mm/h [Fig. 3(a)].
After a time of 8 min, the calculated modification to the
distribution function is shown for cases considering (b)
only evaporation effects and (c) evaporation and coales-
cence effects. The curves for altitudes of 1 and 2 km in-
tersect at a drop radius of 1.25 mm. This is due to the
coalescence of drops as they fall to the 1-km level.

Washout »

As an illustration of the raindrop spectrum model, we
considered the washout of large aerosol particles from
the atmosphere by rain. For convenience, we limited the
computation to particles for which the Langmuir efficien-
cies[9] may be used.

Our model requires that all of the airborne particles
be of uniform size and density. The particles should be
small enough (20 xm or less in diameter) that their ter-
minal velocity is negligible, and large enough (at least
2um) that the possible electric charges on drops and par-
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ticles may be ignored. We have assumed that the particles
have the same density as water. If they do not, a good
approximation can be made by replacing the radius a by
alp,lp,)'”, where p, is the density of the particles and p,
is the density of water. The value of a(pllpz)'/ ? should be
between 2 and 20 pum.

If no falling drop that originated at the cloud base dis-
appears (evaporates completely) before reaching the
ground, every airborne particle that is captured is actually
removed from the atmosphere. However, if drops do dis-
appear, any particles that they have picked up are re-
leased back into the atmosphere at the height at which
these drops evaporate. First consider the case in which
none of the drops disappears. Then at each height inter-
val the contamination y; left at time ¢, is[5]

Xi = Xi_, exp[—(t;—1,_) A]. o an

The washout coeflicient A is computed as
A=J’ NVEAda, (18)
o

where for radius a, N represents the concentration
(drops/cm*) of the raindrops in the air at that height
level; V is the terminal velocity (cm/min) of the drops;
E is the collision (target) efficiency of drops against par-
ticles of prescribed diameter (the program uses a linear
interpolation of the Langmuir efficiencies); and A4 is the
cross-sectional area of the drops.

Now consider the case in which some of the drops
whose cloud-base radius is a disappear when they reach
the height of a given bin. The contamination at this level
at time ¢, is increased by x;, where ¥; is the contamination
carried by these evaporating drops. For the moment, we
ignore the effect of drop coalescence. The increment ¥,
is the sum over all heights z from the cloud base to the
height z, of the concentrations of contaminants that are
picked up by thesé drops between times ¢, , and ¢,. The
time ¢, is a function of z and is the time at which a drop
with initial radius @ was at height z if it reached height
z,, between times ¢, | and r,, Thus we have the average
values

NVEA(1,2)

. r,2) — x(f_.2)1. (19
A [x(t,2) — x(t,_,,2) 1. (19)

X, =x{tpz,) = >
Z<2h
We next investigate the effect of coalescence on ;.
Consider that a drop which initially had radius a coales-
ces with another drop. Since coalescence increases the
final radius, the raindrop will not evaporate at height z,
and hence will not release any contaminant into the air
at that height. To take coalescence into account, we sim-
ply revise the above calculation of x; to

-3 NVEA(1,2)
Xi=>
A(t,z)

Z<2h

[x(1p2) — x(t,_,2) 1 @ (,2), (20)

MARCH 1972

where ®(t,z) is a correction factor due to coalescence,
namely, the fraction of drops that coalesce.

Once the release of contaminant begins to take effect,
the total concentration of contaminant at a given height
at time ¢, is

Xi = ii + Xi—l eXp [—(tl - ti—l) A]a (21)

instead of Eq. (17).

As has been mentioned, our model uses a discrete set
of raindrop sizes (bins) rather than a continuous distribu-
tion. Now consider the computational formulation of the
washout coefficient A. At any particular elevation, the
parameters V, E, and A are functions of only the number
of bins, NB. The drop concentration N depends on the
time as well as on the particular bin. The concentration
of contaminant left at time 7, depends on the distribution
of raindrops throughout the time interval ¢, | to ¢, This
distribution is computed only at specified times—the
same times for which the washout results are to be com-
puted. An average of N at times ¢, and ¢,_, is used as an
estimate of N over that time interval. Once this estimate
is made, we can compute A for the time interval as

A =f NVEAda
0

N
= > #[N(t) + N(t,_,)] VEAA(NB), 22)
NB=1
where A(NB) represents the width of the bin at the height
of interest.

To reformulate Eq. (20) for the computer program, we
took the height z in 50-m intervals. Since N, A, x, and ®
are calculated only at specified times, we do not neces-
sarily know their values at ¢, and must use whichever of
the specified times is closest to, but not greater than, ¢,.
Furthermore, in the model the drops may evaporate only
at discrete heights whereas, in reality, the drop evapora-
tion heights should be a continuum. We approximate the
continuum by distributing the contaminant throughout
the entire bin if the drop evaporates in that bin.

Results
Our calculations were tested using Best’s rain spectra
data[1(c)]. We compared the washout at the cloud base
(taken as 600 m, which is the height at which the spectra
were measured) for two rainfall intensities and three
particle sizes with the washout predicted by Chamber-
lain[6], who also based his calculations on Langmuir’s
collision efficiencies and Best’s spectra. Using Table 1,
one sees that the agreement between our computations
and Chamberlain’s predictions is excellent. Since Cham-
berlain did not take the effect of evaporation into account,
comparisons at lower elevations were not made.

Several computations were made to determine how the
concentration of contaminant depends on factors such
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Table 1 Comparison of washout calculations at the cloud base
(600 m).
f)
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Figure 4 (a) Concentration of contaminant particles in air as a function of rain duration. Rainfall intensity at the cloud base (2 km) is
3.5 mm/h, ambient temperature 15°C, relative humidity 100 percent, pressure 700 mbar; at ground level, ambient temperature 35°C,
relative humidity 25 percent, pressure 898 mbar. Note that few small particles get washed out, only 17 percent after 60 min, and that
the concentration is still increasing at ground level after one hour. (b) Humidity at ground level increased to 75 percent, other conditions
the same as in (a); washout is increased. (c) Rainfall intensity at the cloud base doubled, other conditions the same as in (a); washout
is increased, but even after one hour the concentration at ground level is still about the same as it was originally for the 2-um particles.

as elevation, humidity profile, particle size, and rainfall the effect of humidity, while the comparison of 4(a) with
intensity. Figure 4 shows the concentration of contami- 4(c) illustrates the expected relation to rainfall intensity.
nants in the air at different altitudes over a period of time. Even though the constant ambient conditions represent
The relation of particle size to washout can be inferred an unrealistic model for a rainstorm (especially the 25
96 from Fig. 4(a). The comparison of 4(a) with 4(b) suggests percent relative humidity case), the ambient extremes
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clearly demonstrate the importance of these conditions
on the washout phenomenon. A logical extension of this
model would be the updating of the ambient conditions
during the rain.

Initially, the concentration at all altitudes was set at
1.00 (arbitrary units). At the cloud base, washout begins
immediately, but at lower altitudes there is a delay until
the first large drops arrive and begin to collect the air-
borne particles. There is another delay before the first
small drops (whose terminal velocity is less) reach the
height at which they evaporate and release the particles
they carry. Inspection of Fig. 4 shows that less contam-
ination is washed out at low levels than at high levels.

There are two reasons for this. First, all drops decrease
in size as they fall, and hence their collision efficiencies
are decreasing; that is, they pick up fewer and fewer par-
ticles as they descend. Second, those particles that evap-
orate completely only transport particles from higher
elevations to lower ones. In some cases this second effect
completely overshadows the scavenging effect of larger
drops, and the concentration of particles in the air may
actually be increasing with time at the lower levels. How-
ever, given enough time, or great enough rainfall intensity,
the contaminant concentration eventually decreases.

As an example, consider the concentration of 20-um
airborne particles at a height of 10 m in Fig. 4(a). The ef-
fect of washout is observable only after a time of approx-
imately 5 min because of the delay of the onset of pre-
cipitation. Washout proceeds for about 5 min, after which
the rate of change of concentration begins to decrease.
The concentration of particles starts to increase at 12
min. This is due to particles from higher levels being car-
ried to lower levels by evaporating raindrops. Particulate
concentration reaches a maximum at 40 min and de-
creases thereafter.

The humidity profile from ground level to the cloud
base was assumed to be linear. The calculations for Fig.
4(b) were based on higher humidity at all elevations than
the case in Fig. 4(a). Thus 4(b) indicates that the drops
evaporate relatively slowly and fewer drops disappear
completely. Since large drops have greater collision ef-
ficiencies than small ones, more particles are picked up.
Also, since fewer drops disappear, fewer drops release
particles at lower elevations. These effects contribute to
the removal of a greater percentage of contamination
from the air for the 75 percent relative humidity case.

Because the collection efficiency for all raindrop sizes
is greater for larger contaminant particles, a greater per-
centage of large particles is removed during a rainstorm.
Also, the greater the rainfall intensity, the faster the par-
ticles are washed out. At the cloud base, the washout co-
efficient is roughly proportional to the rainfall intensity,
although this relation does not hold at lower levels where
contamination is being released by evaporating drops.
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Summary

This model has successfully simulated the rain-washout
process whereby small airborne particles are removed
from the atmosphere and returned to the ground by pre-
cipitation. The model includes a spatially varying atmo-
spheric profile and takes evaporation and coalescence
of raindrops into account explicitly. We have assumed
that the atmosphere is constant in time and one-dimen-
sional in that the ambient temperature, pressure, and rela-
tive humidity are functions of altitude only, while vertical
and horizontal winds are assumed zero. We have further
assumed that the raindrops fall vertically at their terminal
velocities. The model treats transient evaporation and
coalescence simultaneously. It tracks a distribution of
sizes of drops as a function of time. The scavenging of
airborne particles by the drops is inserted as the last step
in the calculation.

The results clearly show the value of computer simu-
lation in studying the scavenging process of airborne
particles. An excellent survey of this developing field can
be found in the proceedings of a symposium on precipi-
tation scavenging held at Richland, Washington, in June
1970[10].

Appendix A—Evaporation of a single raindrop

In this appendix we present the details of a computer-
oriented method for finding the evaporation histories of
single raindrops falling through atmospheres of nonuni-
form temperature and humidity.

The formulation of the appropriate equations for the
evaporation of falling waterdrops presents little difficulty.
However, an exact analytical solution of the equations is
not possible. Best[1(c)] replaced awkward expressions
in the equations by expressions having simpler forms
in order to permit integration of the equations. The
simpler forms were derived by evaluating the awkward
expressions and fitting simpler formulas to them by em-
pirical methods.

We use a numerical Runge-Kutta method[7] with
variable step size[8]. The basic Runge-Kutta scheme for
the solution of two simultaneous equations is shown be-
low. This method is of fourth-order accuracy, since it
can be shown to agree with the Taylor series expansion
through the (Az,)" term.

The two differential Eqs. (5) and (4) can be rewritten as

db  —2DG, [P(T) fP(6)

dz R.Vp [ T 0 ] A
and

dT 3 oodb o ]

kSN — P —Th|.
dz _ bVCyp [k02(0 T) +3LpV o+ blo (6 )

(A2)

where b = a®. We make the following definitions relating
the equations to the increment Az:
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b(z,) =b,=a’;

dbldz = F(z,b,T);

T(z,) =T,

dT/dz = G (2,b,T);

ko= AzF(z,b,T));

k, = AzF (z,+ 3z, b, + 3k, T, +31,);
k,=AzF (z, + Az, b, + 3k, T, + 31 ,);
ky=AzF(z;+ Az, b, + k,, T, + 1,);

1,=AzG (2,0, T));

I,=AzG (z,+ $Aa, b, + %k, T, +3,);
I,=AzG (z; +3Az, b, + 3k, T, +31,); and
I,=AzG(z,+ Az, b, + ky, T, +1,). (A3)

The Runge-Kutta solutions[7] can then be written as

1
by, =b; + g (ko + 2k, + 2k, + k3) (Ad)
and

1
Ti+1=Ti+g(10+211+212+13), (AS)

1/2
where a,_, = (b,, )"

An error function is used to determine whether the ac-
curacy of the solution is within our (arbitrary) limits of
allowable error and, if not, to adjust the increment size
Az for use in the next iteration. We make the additional
definitions

k4 = AZF(Zi+1r le' Ti+1)
and
14 = AZG (Zi+1' bi+l’ Ti+1)' (A6)

The error functions are defined by[8]

E =ky—2(k, + k;) + 3k, (A7)
and
E,=1,—2(,+1,)+3I, (A8)

To use the error functions we define an upper and a
lower limit, U and L, respectively, against which the er-
ror functions are checked. If the solution is not accurate
enough, the increment Az is halved for the next iteration.
If the solution is “‘too accurate,” i.e., if the increment is
smaller than necessary, then Az is doubled for the next
iteration. Each of the limits consists of an absolute term
and a relative term. Thus, for a generalized solution y, of
(A1) and (A2), the logic of the error routine is
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E <L+ Lialy | = Az=2Az,
E>Ups+ U |y, | = Az=13Az, and
Laps + Lt | ¥, | SE= U+ Ura | ¥, |
— Az unchanged. (A9)

Appendix B—Total depletion of bins by evaporation
At any altitude and time during the distribution history
calculations, there is only one bin (the smallest one) for
which the concentration does not obey the continuity
relation. A typical bin structure is shown in Fig. 2. The
smallest drops in this bin are “disappearing.” Since there
is no exact solution for the rate at which these drops dis-
appear, we have developed an approximate treatment.

Given the concentrations in all the bins at an upper al-
titude, we want to determine the concentration of drops
in bin i at the next lower altitude. If we ignore the deple-
tion of the population of the smallest bin due to evapora-
tion, i.e., if we assume that the continuity relation holds,
we have

X, (z—ht) = X,(zt — ) V(DIV(z— h). (B1)

The actual concentration in bin i will be somewhat small-
er than this value because drops are evaporating. There-
fore we modify Eq. (B1) to

Vi(z) Aai(z - h)
Viz—h) Aa(z)

X(z—ht) = X,(zt — 7)) (B2)

In terms of the distribution function, Eq. (B2) becomes
Ni(z_hyt) :Ni(z;t_Ti) Vl(z)/V,(Z—h) (B3)

Thus our approximation consists of assuming that
for small drops the distribution function is modified pri-
marily by variations in the rerminal velocity, rather than
by variations in the bin width.

Appendix C—Nonequilibrium continuity equation
The nonequilibrium continuity equation, which relates
the variation of raindrop concentration to terminal ve-
locity of the drops, is

ax, ax, av,
<_) + V.( ) + X, =0,
ar /, \dz/, tdz

i=12,---,1—1,
(c1n

where X; = X(z,t) and V, = V(2). A separate homoge-
neous equation is written for each bin since, in the ab-
sence of coalescence, there is no mass transfer between
the bins.

For a drop falling from altitude z, to altitude z, the pro-
posed solution of the continuity equation is

Xi(Zyt) = Xi(Zo,[ - Ti) Vi(zo)/Vi(Z)a (CZ)

where
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2 df
Vi@
Evaluating the partial derivatives and using Q(z,5) =
t — 7,(z) for convenience, we have

7,(2) = C3

() -3, 69) -3,
and
5~ (G2, = G, G2,

—— X,2) 5% - (%) %
and from Eq. (C3)
drjdz= 1]V ,(2). (C6)

Substituting these latter three equations into the con-
tinuity equation (C1), we have

Vile) 4V, _
Vi(z) dz =

+ X,(240)) €7

which verifies that the proposed solution (C2) conserves
the total population.

Appendix D—-Derivation of numerical difference
equations

When transient evaporation and coalescenge effects are
considered simultaneously, the equation of continuity
can be written as

aX Jot + V, 90X Joz + X, dV Jdz
=V.fla(2),V(2),X(z1)], (D1)

where the rate f, of change of concentration due to co-
alescence in the ith bin is obtained from Eqs. (12) through
(16). Bars are used on the right-hand side of Eq. (D1) to
emphasize that the coalescence rate of bin / depends on
the radii, velocities, and concentrations of all the bins.
Considering V(z) and a(z) as known functions, which
are obtained by numerical integration of the water vapor
and heat transfer differential equations for a single rain-
drop, we seek a solution of Eq. (D1) with the initial con-
dition
X (zent) = X"(1), (D2)

where X°(¢) is an assigned value. Equation (D1) repre-
sents a first-order, nonlinear, partial differential equation
which can be reduced to a first-order ordinary differential
equation by a change of coordinates.

MARCH 1972

We define a new variable I' such that the new indepen-
dent variables are

[

I'=u(zt) =t—f délv(¢) and s=z (D3)
2ch

Using the chain rule for differentiation, we have

(/o) = (ular), (3/al), (D4)
and
(8/9z), = (8/os)y + (oufoz), (8/oT'),; (D5)

and we find that Eq. (D1) transforms into
[0(XV)/6s], = V,F,[a(s) ¥ (s) X(s.0)]. (D6)

Since (D6) is an ordinary differential equation, it can be
solved by standard techniques.

We solved Eq. (D6) numerically using difference equa-
tions much like the Runge-Kutta difference equations.
The only distinction between the usual Runge-Kutta
algorithm and the one used here is due to the time de-
lays. In the difference equations, altitudes are indexed
from the cloud base downward and the altitude step size
is h; 7,/ is the time for a drop in bin i to fall from altitude
z, to altitude z, — $h; 7', from z, — $htoz, — h;and 7",
from z, to z,,,. (Note that 7,/ =7/ + 7,/".)

The numerical solution of Eq. (D6) from altitude z, to
altitude z,,,, proceeds as follows:

1. Compute the coalescence rates at altitude z,:
filzpt) = fila(z,),V(z,), X (z,.1) ]
i= 1329 st 71a = tl»tp tt '7tm5 T "tM (D7)

(These same iterations on radius and time are implicit
in the next four steps.)

2. Compute the concentrations and coalescence rates at
altitude z, — 3h:

X,z — tht) = X, (zyt — 77) )
i\, 72} = AL, 7 V.(z, — h)
+3h fi(z t —7); (D8)
filz,=tht) =flalz, —h),V(z, — ). X (z, — $h0)).

(D9)

3. Compute the corrected concentrations and coales-
cence rates at altitude z, — 3h:

Xz, — tht) = X,(z,0 — 7)) %
+ %h fi(z, — th,t); (D10)
[z, — h,t)
=fla(z, — %h) V(z, — $h) X°(z, — $h,1)]. DI11)
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4. Compute the concentrations and coalescence rates at
altitude z, — &:

V.(z,)

X(z,— ht) = X,(z0 — 7,"") e

(2, — ht) = X,(z,t — 7, )Vi(zn_h)
+hf(z,—tht—1""); (D12)

filz,— ht) = fla(z,— h),V(z,— h),X(z,— h,t)]. (D13)

5. Compute the corrected concentrations at altitude
z,— h

4 e Vi(zn)

X (z,— ht) =X (gt —7"") Vi, — k)
Hhlf(z ot — 7)) + 2f,(z,— $ht— 1)
+2f(z, =t —1/") +fi(z, — h1)]. (D14)

The cycle 1 through 5 is repeated after increasing the
index »n on altitude by one, and continues until altitude
zero is reached. To begin the next cycle, set

X,(z,,00) = X£(z,— ht). (D15)

n+1’
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