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Model  for Time-dependent Raindrop  Size Distributions; 
Application  to the Washout of Airborne  Contaminants 

Abstract: We  have  developed a model  for  computing  time-dependent  behavior in raindrop  size  distributions  for a variety of  initial  con- 
ditions.  The model  permits the  inclusion of a spatially  varying  atmospheric  profile  and  takes  evaporation  and  coalescence of raindrops 
into  account  on a dynamic basis. We  have  applied  this  model  to  the  washout  process  by  rain,  whereby  small  airborne  particles are  scav- 
enged  below a rain cloud. In comparing our results with those of previously published  time-independent  models,  we  found  that the time- 
dependent  effects  greatly altered washout at lower elevations. 

Introduction 
There  are two methods by which small airborne particles 
can  be  removed from  the  atmosphere and returned  to  the 
ground by precipitation: 1) cloud scavenging,  known as 
rainout, in which  particles mix with water  droplets  and 
ice crystals in the clouds,  and 2 )  scavenging  below the 
cloud level by falling raindrops,  snowflakes, etc., called 
washout. Only washout by rain is considered  here. 

Previously  published  models of washout  have  assumed 
that  the raindrop  size  distribution and  the  atmospheric 
conditions are  the  same  at ground  level  as at  the cloud 
base and do not  vary  with time. In this model we include 
a  spatially  varying atmospheric profile and take  into  ac- 
count  the  evaporation  and  coalescence of raindrops, ef- 
fects which may greatly alter  the  washout  at  lower ele- 
vations. In modeling a  rainstorm, we  assume  that  the 
size  distribution of raindrops at any  position r and time 
t can be characterized by a continuous  function N(a,r,t) 
such  that N d a  is the number of drops  per unit  volume of 
air in the radial interval a to a + da. Several  authors [ 11 
have studied the modification (due to  evaporation  and 
coalescence) of this  distribution function, assuming either 
one-dimensional steady  state conditions or spatially ho- 
mogeneous  conditions. In either case,  the distribution 
histories can be computed by numerical  integration of the 
equations  that  describe  the  coalescence  and  evaporation 
processes. 

Neither  steady  state  nor spatially  homogeneous  con- 
ditions are usual  in nature. Strong  variations in raindrop 
concentration often occur in both space and time. Within 

a  sample of raindrops  collected on  the earth’s surface, 
one may find drops  that left the cloud base  as much as 
ten minutes apart. Since significant changes may occur  at 
the cloud base during such a time span, it is important  to 
include both  space  and time dependence in modeling the 
coalescence  and  evaporation  processes  for a falling rain- 
drop size  distribution  calculation. 

We  have  chosen a model that includes  radius of the 
raindrop,  altitude,  and time as  independent variables 
in order  to  obtain a more realistic  simulation of natural 
rain. The  basic  assumptions included are  that 

1. the  atmosphere is constant in time  and  one-dimen- 
sional in that  the ambient temperature,  pressure, and 
relative  humidity are  functions of only the altitude, 
and vertical and horizontal  winds are  assumed  zero; 

2. the raindrops fall vertically at their  terminal  velocities, 
and their  water  vapor  and  heat  transfer  rates  are gov- 
erned by the differential equations given  by Best[ l(c)]; 
and 

3. the  transient  evaporation  and  coalescence  processes 
are considered  simultaneously. 

A numerical  method was  developed  to  determine  the 
raindrop size distribution function N(a,z , t )  and the rain- 
drop  temperature T(a,z,t) for radii, altitudes,  and times of 
interest, assuming that  one  can specify 

1. the  temperature,  pressure,  and relative  humidity  pro- 
files of the  atmosphere [O(z), &), and f ( ~ ) ,  respec- 
tively] and 91 
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I Waterdrop radius (mm) 

Figure 1 Evaporation histories for 16 water drops. 

2 .  the raindrop  size  distribution  function  and raindrop 
temperature at the cloud base [N(a,zcb,t) and T(a,zcb,t), 
respectively]. 

With these  assumptions  we  can define a  scavenging 
rain process.  When  the  dynamic (in the  sense of coales- 
cence  and  evaporation)  drop falls  through the  atmo- 
sphere  and  strikes  an  airborne particle, we  assume  that 
the  target efficiency and collision efficiency are identical. 
Every particle  hit by a drop  remains with that  drop until 
the  drop  evaporates  or hits the ground. Whenever a drop 
evaporates before  reaching the  ground,  it  releases  the 
particle  into  the air at  the height at which evaporation 
occurs. Agglomeration of particles  within the raindrop is 
ignored.  We  also assume  that  no change  in drop  diameter 
or terminal  velocity occurs  at  the time of capture of a 
particle. Any  drop small enough to  experience an appre- 
ciable diameter  change  on  coalescence would have a low 
target efficiency and,  furthermore, would  undoubtedly 
evaporate before  reaching the  next lower  level (within the 
constraints of the numerical  model as  described below). 
Thus  the  evaporation  and  coalescence  equations  are inde- 
pendent of whether  the  drop  contains a  particle. 

Evaporation of a single raindrop 
The  evaporation of a falling waterdrop  is  determined by 
the  rates of transfer of heat  and  water  vapor  between  the 
drop  surface and the  surrounding air. The molecular dif- 
fusion of vapor and of heat  for  an evaporating waterdrop 
in a (stagnant) medium can  be  expressed by the following 
equations: 

d m  -4rDa P,( T )  p s ( 0 )  
dt R ,  [ T 0 1 " ~ "~ - 

and 

dHldt = 4rka  (0 - T )  , ( 2 )  

where rn is the mass of the  drop, D is the diffusivity of 92 
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water  vapor in air, R ,  is the  gas  constant  for  one gram of 
water  vapor, Ps(T)  and Ps(0) are  the  saturation  vapor 
pressures  at  temperatures T and 0, respectively,fis  the 
relative  humidity, 0 is the  ambient air temperature, T is 
the  surface  temperature of the  drop, H is the  heat re- 
ceived  by the  drop through conduction, k is the thermal 
conductivity of air, and a is the radius of the  drop. 

The  rate dQldt at which heat is received by a drop is 
equal to  the algebraic sum of the  rates  at which heat is 
transferred  to  the  drop by conduction,  evaporation, and 
radiation: 

= G,Ldmldt + G,dHldt + 4 r a 2 ~ a ( 0 4  - T 4 ) .  ( 3 )  
Here L is the  latent  heat of vaporization, E is the Stefan- 
Boltzmann constant, C ,  is the specific heat of liquid wa- 
ter at constant  pressure, and u is the emissivity of the 
waterdrop (taken as unity). If there is significant relative 
motion between  the  drop  and  the surrounding  medium, 
ventilation affects the  rates of diffusion of heat  and vapor. 
This effect has been  taken  into  account through the em- 
pirical  ventilation coefficients, G, for mass transfer and 
G, for  heat  transfer,  as defined by Kinzer and Gunn[2]. 

Using V ,  the terminal  velocity of the  drop, which is a 
function of the  drop  size, and cr = dT/dz ,  the height vari- 
ation of the  temperature of the  drop,  we can  replace 
dTldt by aV. The  heat  balance  equation ( 3 )  then re- 
duces  to 

+ 3au(04 - T 4 ) .  (4)  

We can  also  write Eq. (1) with  ventilation in the form 

" 

0 '  1 
Equations (4) and (5) are  the  two  fundamental equa- 

tions that we integrate  numerically to  determine a and T 
as  functions of z for a specified atmosphere.  [The nu- 
merical Runge-Kutta method  used to solve Eqs. (4) and 
(5) is explained in detail in Appendix A.]  Figure 1  shows 
sixteen individual raindrop histories computed in this 
manner. The  atmospheric conditions for this example  are 
T = 1 5 T ,  f =  100 percent relative  humidity, and p = 

700  mbar  at  the cloud base  and T = 35"C,f= 25 percent 
relative  humidity, and p = 898 mbar  at ground level. 

Evaporation  and  coalescence of a distribution of 
drops 

Steady  state  evaporation 
We sample the given continuous raindrop  size  distribu- 
tion at the cloud base (Fig. 2 )  at  an integral number I of 
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selected radii and assume  that a set of I adjacent  rectan- 
gles provides an adequate  representation of the distri- 
bution.  (We postpone temporarily the  questions of how 
narrow  the rectangles  must be  for  an  adequate approxi- 
mation and  whether unequal  spacing of the sample  points 
might be  advantageous.) The sample  radii  and  rectangles 
(hereafter called “bins”)  are numbered from largest to 
smallest, as shown in Fig. 2. The bin widths are  de- 
fined by 

Au, = (a,  - a 2 ) ,  

ha, = +(a, + i = 2 ,3 ,  . . ., 1 - 1. (6) 

For  the special case in which the radii are sampled at 
uniform increments, all of the bin widths are  equal.  The 
bins change in position  and  size on  the a axis (abscissa) 
as  the  drops  evaporate. 

We next  compute  an individual raindrop evaporation 
history for  each of the sampled  radii, using the Runge- 
Kutta method  described by Abraham  and  TeSelle[3] 
(see Appendix A). This calculation yields the radius a, 
terminal  velocity V ,  exposure time T, and  temperature T 
of each bin as functions of altitude. 

By definition, each  drop  stays in its own bin and a con- 
tinuity relation  holds for  the  number of drops X i  per unit 
volume of air in each bin except  the smallest bin, which 
is being depleted by evaporation. (An  approximate meth- 
od for treating the exceptional bin that suffers depletion 
through evaporation is given in Appendix B.) For  other 
than these exceptional cases,  we  have  from  Eq. (Bl) the 
steady state continuity  relation 

VidXi/dz + XidVi/dz = 0,  i = 1,2, . . ., 1 - 1 ,  (7) 

where X i  = Ni Aai. Separating  variables and integrating 
from the cloud base  to  another altitude, we find that 

X i ( z )  = Xi(zch)   V i (zCb) /Vi (z ) ,  i = 1,2, . . ., I - J ,  
(8) 

where J is the number of bins that suffer depletion of their 
populations due  to  complete  evaporation. Writing this 
equation in terms of the distribution function,  we obtain 

Equation (9) describes  the modification of a raindrop 
size  distribution due  to  evaporation  under  steady  state 
conditions. 

\ Continuous distribution 

a3 a2 

Waterdrop  radius - 
Figure 2 Continuous size  distribution sampled at selected radii. 

Transient  evaporation 
The extension of the  steady  state solution to  the time- 
dependent  case  consists merely of introducing an  appro- 
priate time  delay in the  process.  For this purpose  it is 
convenient  to label  altitudes from  the cloud base down: 
ward, since that is the direction of numerical  integration; 
thus altitude z ,  is greater than z,+,. If we  assume  that it 
requires T~ seconds  for a drop in bin i to fall from  altitude 
z ,  to altitude z ,+~ ,  the fall time is defined by 

T i = /  d t / ~ , ( t ) ,  i =  1 , 2 , .  . . , I .  (10) 

The distribution  function at altitude z,+, at time t de- 
pends  on  the distribution  function at altitude z ,  at time 
t - T ~ .  This time  delay is the only feature of the transient 
problem that is not  accounted  for in the  steady  state  case. 

The  transient solution for  the number of drops in each 
bin is 

%n+ 1 

‘n 

or 

i =  1,2, * . *, I - J .  (1 1 )  

The solution (1 1 )  must  satisfy the  time-dependent con- 
tinuity  relation (except  for  the exceptional cases already 
mentioned) 

dXjdt  + VidXjdz + XidVi/dz = 0,  i = 1,2, . . ., I - J .  

This is shown to be the  case in Appendix C. 

Steady state coalescence 
Coalescence  takes  place  when  two falling drops collide 
and unite, giving rise to a larger  drop.  Under  steady  state 93 
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Figure 3 Transient modification of the  raindrop  distribution 
function due  to time-varying concentration  at the  cloud base 
(2 km), evaporation, and coalescence.  The distribution  function 
was initialized at  the cloud base using the  Marshall-Palmer  distri- 
bution law with a  precipitation rate of 3.5 mm/h and is shown at 
two  altitudes  after  eight  minutes of rain. 

conditions, the  coalescence  process may be  described 
by either a single nonlinear  partial differential equation 
or a system of nonlinear ordinary differential equations, 
depending on  whether  the size  distribution is  continuous 
or  discrete[Hidy and  Lilly, l(b)]. If we  continue  to  use 
drops  at sampled  radii to represent  the distribution, the 
system of ordinary differential equations is appropriate. 

The  number C, of collisions per unit  volume of air  and 
unit  time between  drops with  radii ai and aj is 

c, = T ( a i  + ajI2 I vi - vj I xixj, (12) 

if the collection efficiency is taken  as unity. The  rate of 
depletion of drops with  radius aj is 

I 

dXj ldz  = - 2 Cij /Vj .  
i=I 

The combined drop will have radius a, = (ai3 + ajjR)1'3 
and terminal  velocity I/, after accumulation. The accumu- 
lation of drops with  this  radius as a function of altitude is 
determined by the  conservation of mass equation 

dX,/dz  = (ai3Cji + aj3Cii) /a;V,. (14) 

This  rate of accumulation may be  divided between  the 
nearest neighbor bins (radii ak+, to a, and a, to ak)  by the 
equations 94 
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3 3  

-= dxk+l ( ak -a;;l3) 2. 
" dxk - (;;; 7 ;;;;) 2. 

dz ak3 - 

and 

dz 
(1 6) 

The  sum of the  rates of depletion  and  accumulation for 
each bin yields the  net  rate of change of concentration 
for  that bin. 

Transient  coalescence 
The  coalescence  rate  at  any radius depends only on  the 
distribution  function  and the  drop velocities at  the time 
in question.  Under  these  circumstances,  we can treat 
time as a parameter in the  rate  equations and  replace the 
ordinary  derivatives in Eqs. (1 3) through (1 6) with  partial 
derivatives  (see  Appendix D). 

Comparison of transient and steady  state  equations 
We  have found that  the fundamental equation describing 
evaporation in a raindrop size  distribution differs from 
the  steady  state  equation only by a simple time  delay. 
Since this time  delay is easily incorporated  into a com- 
puter solution, it is only slightly more difficult to calculate 
distribution  histories  with three  independent variables 
than with two  such variables. Implementation of the 
three-variable  program results in  Fig. 3, in which the 
logarithm of the  concentration of drops is plotted  as  a 
function of drop radius. The  atmospheric conditions  as- 
sumed  are 15"C, 100 percent relative  humidity, 700 mbar 
at  the cloud base  and 35"C, 25 percent relative  humidity, 
898  mbar  at ground level. 

The distribution  function at  the cloud base  at time zero 
was initialized by using a  Marshall-Palmer  distribution 
law[4] with  a  precipitation rate of 3.5  mm/h  [Fig. 3(a)]. 
After a time of 8 min, the calculated modification to  the 
distribution  function is shown  for  cases considering  (b) 
only evaporation  effects and  (c) evaporation  and coales- 
cence effects. The  curves  for altitudes of 1 and 2 km in- 
tersect  at a drop radius of 1.25 mm. This is due  to  the 
coalescence of drops as they fall to  the 1-km level. 

Washout 
As  an illustration of the  raindrop  spectrum model, we 
considered the  washout of large  aerosol particles  from 
the  atmosphere by rain. For  convenience,  we limited the 
computation to particles for which the Langmuir efficien- 
cies[9] may  be  used. 

Our model requires  that all of the  airborne particles 
be of uniform  size and density. The particles  should  be 
small enough  (20 pm  or  less in diameter)  that  their ter- 
minal velocity is negligible, and large  enough (at  least 
2pm)  that  the possible electric  charges  on  drops  and par- 
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ticles may be ignored.  We have  assumed  that  the particles 
have  the  same  density  as water.  If  they do  not, a  good 
approximation  can  be made by replacing the radius a by 
~ ( p ~ / p J ~ ’ ~ ,  where p1 is the density of the particles  and p2 
is the density of water. The value of a(p,/pJ1” should  be 
between 2 and 20 pm. 

If no falling drop  that originated at  the cloud base dis- 
appears  (evaporates completely) before reaching the 
ground,  every  airborne particle that is captured  is actually 
removed from  the  atmosphere.  However, if drops  do dis- 
appear, any  particles that they have picked up  are re- 
leased  back into  the  atmosphere  at  the height at which 
these  drops  evaporate.  First  consider  the  case in which 
none of the  drops  disappears.  Then  at  each height inter- 
val the contamination xi left at time ti is [ 5 ]  

xi = xi-1 exp[-(ti - ti-l) AI.  (17) 

The  washout coefficient A is computed as 

A = [ NVEAda, 
0 

where  for radius a, N represents  the  concentration 
(drops/cm4) of the  raindrops in the  air  at  that height 
level; V is the terminal  velocity  (cmlmin) of the  drops; 
E is the collision (target) efficiency of drops against  par- 
ticles of prescribed diameter  (the program uses a  linear 
interpolation of the Langmuir efficiencies); and A is the 
cross-sectional area of the  drops. 

Now consider the  case in which some of the  drops 
whose cloud-base  radius is a disappear when  they reach 
the height of a given bin. The contamination at this  level 
at time ti is increased  by xi, where xi is the contamination 
carried by these evaporating drops. For the  moment,  we 
ignore the effect of drop coalescence. The  increment xi 
is the sum over all heights z from  the cloud base  to  the 
height zh of the  concentrations of contaminants  that  are 
picked  up  by these  drops  between times ti-l  and t i .  The 
time  ti is a function of z and is the time at which a drop 
with initial radius a was  at height z if it reached  height 
z ,  between times t i- l  and t i .  Thus we have  the  average 
values 

We  next investigate the effect of coalescence  on xi. 
Consider  that a drop which initially had  radius a coales- 
ces with another  drop.  Since  coalescence  increases  the 
final radius,  the  raindrop will not  evaporate  at height zh 
and hence will not release  any  contaminant  into  the air 
at  that height. To take  coalescence into account,  we sim- 
ply revise the  above calculation of xi to 

where @ ( t , z )  is a correction  factor  due  to  coalescence, 
namely, the fraction of drops  that coalesce. 

Once  the  release of contaminant begins to  take effect, 
the total concentration of contaminant at a  given height 
at time t i  is 

- xi = xi + exp [ - ( t i  - t i - l )  AI, (21) 

instead of Eq. (17). 
As has been mentioned, our model uses a discrete  set 

of raindrop sizes (bins) rather  than a continuous distribu- 
tion. Now  consider  the computational  formulation of the 
washout coefficient A. At any particular elevation, the 
parameters V ,   E ,  and A are functions of only the  number 
of bins, N B .  The  drop  concentration N depends  on  the 
time as well as  on  the  particular bin. The  concentration 
of contaminant left at time t i  depends  on  the distribution 
of raindrops  throughout  the time  interval t i- l  to ti. This 
distribution is computed only at specified times -the 
same times for which the  washout  results  are  to be com- 
puted.  An  average of N at times t i  and t i - ]  is used  as an 
estimate of N over  that time  interval. Once this estimate 
is made, we can compute A for  the time  interval  as 

A = /: NVEAda 

N 

= + [ N O i )  + N ( t i - , ) 1   V E A A ( N B ) ,  (22 )  
N B = l  

where A(NB)  represents  the width of the bin at  the height 
of interest. 

To  reformulate Eq. (20) for the  computer program, we 
took the height z in 50-m  intervals. Since N ,  A, x, and @ 
are calculated  only at specified times, we  do not  neces- 
sarily  know their values at t i  and must use  whichever of 
the specified times is closest  to,  but  not  greater  than, ti .  

Furthermore, in the model the  drops may evaporate only 
at  discrete heights whereas, in reality, the  drop  evapora- 
tion  heights  should  be  a continuum. We approximate  the 
continuum by distributing the  contaminant  throughout 
the  entire bin if the  drop  evaporates in that bin. 

Results 
Our calculations were  tested using Best’s rain spectra 
data[  l(c)]. We compared  the  washout  at  the cloud base 
(taken as  600 m, which is the height at which the  spectra 
were measured)  for  two rainfall intensities and  three 
particle sizes with the  washout predicted  by Chamber- 
lain[6],  who  also  based his calculations on Langmuir’s 
collision efficiencies and Best’s spectra. Using Table 1, 
one  sees  that  the  agreement  between  our  computations 
and Chamberlain’s  predictions is excellent. Since  Cham- 
berlain did not take  the effect of evaporation  into  account, 
comparisons  at  lower elevations were not  made. 

Several computations  were  made  to  determine how the 
concentration of contaminant  depends  on  factors  such 95 
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Table 1 Comparison of washout calculations at  the cloud base 
(600 m). 

Relative  concentration 
Rainfull  Particle 
intensity  diameter Time Chamberlain 
(mmlh)   (pm)   (min)  Present work ( R e J 6 )  

4 4 0 1 .oo 1 .oo 
10 0.73 0.72 
30  0.38 0.37 
60 0.15 0.14 

_____- 

0 20 0 1 .oo 1 .oo 
10 0.61 0.60 
30 0.22  0.22 
60 0.050 0.047 
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z = l O m  

0.4 - 

0.3 - \ 
Particle diameter 'QooO 

0.2 

0.1 

- - 2 p m  '@\ 

" 4 Pm 1. - 
(C )  

-" 
B o  I I I I I 

0 10 20  30 40 50 60 

Rain  duration (min) 

Figure 4 (a) Concentration of contaminant particles in air as a function of rain duration. Rainfall intensity at  the cloud base  (2 km) is 
3.5 mm/h,  ambient  temperature 1 5 T ,  relative humidity 100 percent,  pressure  700  mbar;  at ground  level,  ambient temperature 35"C, 
relative humidity 25 percent,  pressure  898 mbar. Note  that  few small particles get  washed  out, only 17 percent  after 60 min, and  that 
the concentration is still increasing at ground level after one hour. (b) Humidity at ground  level  increased to  75  percent,  other conditions 
the  same as in (a); washout is increased.  (c) Rainfall intensity at  the cloud base doubled, other conditions the  same as in (a); washout 
is increased, but even  after  one  hour the concentration  at ground level is still about  the  same  as it  was originally for  the  2-pm particles. 

as elevation,  humidity profile, particle size, and rainfall the effect of humidity, while the  comparison of 4(a)  with 
intensity. Figure 4 shows  the  concentration of contami- 4(c) illustrates the  expected relation to rainfall intensity. 
nants in the air at different  altitudes over a period of time. Even though the  constant ambient  conditions represent 
The relation of particle size to washout  can  be inferred an unrealistic  model for a rainstorm  (especially the 25 
from Fig. 4(a). The  comparison of 4(a) with 4(b) suggests percent relative  humidity case),  the ambient extremes 96 
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clearly demonstrate  the  importance of these conditions 
on  the  washout  phenomenon. A logical extension of this 
model would be the updating of the ambient  conditions 
during the rain. 

Initially, the  concentration  at all altitudes  was set  at 
1.00 (arbitrary units). At  the cloud base,  washout begins 
immediately, but  at  lower altitudes there is a  delay until 
the first large drops  arrive  and begin to collect the air- 
borne particles. There is another  delay before the first 
small drops (whose terminal velocity is less) reach  the 
height at which they  evaporate  and  release  the particles 
they  carry.  Inspection of Fig. 4 shows  that  less  contam- 
ination is washed out  at low levels than  at high levels. 

There  are  two  reasons  for this. First, all drops  decrease 
in size  as  they fall,  and hence  their collision efficiencies 
are  decreasing;  that is,  they pick up  fewer and fewer par- 
ticles as they descend.  Second,  those particles that evap- 
orate completely  only transport particles from higher 
elevations to lower ones.  In  some  cases this second effect 
completely overshadows  the scavenging effect of larger 
drops,  and  the  concentration of particles in the  air may 
actually  be  increasing with time at  the lower levels. How- 
ever, given  enough time, or  great enough rainfall intensity, 
the  contaminant  concentration eventually decreases. 

As  an example, consider  the  concentration of 20-pm 
airborne particles at a height of 10 m  in  Fig.  4(a). The ef- 
fect of washout is observable only after a time of approx- 
imately 5 min because of the delay of the  onset of pre- 
cipitation. Washout  proceeds  for  about 5 min, after which 
the  rate of change of concentration begins to  decrease. 
The  concentration of particles starts  to  increase  at 12 
min. This is due  to particles from higher  levels being car- 
ried to  lower levels  by  evaporating  raindrops. Particulate 
concentration  reaches a maximum at  40 min and de- 
creases  thereafter. 

The humidity profile from  ground  level to  the cloud 
base  was  assumed  to be linear. The calculations for Fig. 
4(b) were based on higher humidity at all elevations  than 
the  case in Fig. 4(a). Thus 4(b)  indicates that  the  drops 
evaporate relatively slowly and fewer  drops  disappear 
completely.  Since large drops  have  greater collision ef- 
ficiencies than small ones, more  particles are picked up. 
Also,  since  fewer  drops  disappear,  fewer  drops  release 
particles at lower  elevations. These effects contribute  to 
the removal of a greater percentage of contamination 
from  the  air for the  75  percent relative  humidity case. 

Because  the collection efficiency for all raindrop sizes 
is greater  for larger contaminant  particles, a greater per- 
centage of large particles is removed  during  a rainstorm. 
Also, the  greater  the rainfall intensity,  the  faster  the  par- 
ticles are washed out. At  the cloud base,  the  washout co- 
efficient is roughly proportional to  the rainfall intensity, 
although  this  relation does not hold at lower  levels where 
contamination is being released by evaporating drops. 

Summary 
This model has successfully  simulated the rain-washout 
process whereby small airborne particles are removed 
from  the  atmosphere and returned  to  the ground by pre- 
cipitation. The model includes  a  spatially  varying atmo- 
spheric profile and takes  evaporation  and  coalescence 
of raindrops  into  account explicitly. We have  assumed 
that  the  atmosphere is constant in time and one-dimen- 
sional in that  the ambient temperature,  pressure, and rela- 
tive humidity are  functions of altitude  only,  while  vertical 
and  horizontal winds are  assumed  zero. We have  further 
assumed that  the  raindrops fall vertically at  their terminal 
velocities. The model treats  transient  evaporation  and 
coalescence simultaneously. I t  tracks a  distribution of 
sizes of drops  as a  function of time. The scavenging of 
airborne particles by the  drops is inserted as  the last step 
in the calculation. 

The  results clearly show  the value of computer simu- 
lation in studying the scavenging process of airborne 
particles. An excellent survey of this  developing field can 
be  found in the proceedings of a symposium on precipi- 
tation scavenging held at  Richland, Washington, in June 
1970[10]. 

Appendix A- Evaporation of a single raindrop 
In this  appendix we  present  the details of a computer- 
oriented method  for finding the  evaporation histories of 
single raindrops falling through atmospheres of nonuni- 
form  temperature  and humidity. 

The formulation of the  appropriate  equations  for  the 
evaporation of falling waterdrops  presents little difficulty. 
However,  an  exact analytical  solution of the  equations is 
not possible. Best[  I(c)] replaced  awkward expressions 
in the  equations by expressions having simpler forms 
in order  to permit  integration of the equations. The 
simpler forms were  derived  by  evaluating the  awkward 
expressions and fitting simpler formulas  to  them by em- 
pirical methods. 

We  use  a  numerical Runge-Kutta  method[7] with 
variable step  size[8].  The basic Runge-Kutta  scheme  for 
the solution of two simultaneous equations is shown be- 
low. This method is of fourth-order  accuracy,  since it 
can  be shown to  agree with the  Taylor  series expansion 
through  the (Az, )~  term. 
The  two differential Eqs. (5) and (4) can be  rewritten as 

and 

- - 3 [ k C , ( 0 - T ) + ~ L p V - + b ~ c r ( 0 4 - T 4 )  dT dz - bVC,,p db dz 1 . 
(A21 

where b = a'. We  make  the following definitions relating 
the  equations  to  the  increment Az: 97 
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b(z,) = b, = a:; 

dbldz = F ( z , b , T ) ;  

T ( z , )  = To; 

dT/dz  = G ( z ,b ,T)  ; 

k ,  = AzF(z,,bi,T,); 

k ,  = AzF ( z i  + $Az, bi + $k,, T i  + +I,,) ; 

k, = AzF(zi  + $Az, bi + $k,,  T i  + $ I , ) ;  

k,  = AzF(zi  + Az, bi + k,,  Ti  + I , ) ;  

I ,  = AzC  (zi,bi,Ti); 

I ,  = AzC (z i  + ~ A u ,  bi + ik,,,  T i  + $1 , ) ;  

I ,  = A z C ( z i  + ~ A z ,  bi + $k, ,  T i  + + I , ) ;  and 

I ,  = AzC ( z i  + Az, bi + k,, T i  + I , ) .  (A3 1 
The  Runge-Kutta  solutions[7]  can  then  be  written  as 

b,+, = bi + - ( k ,  + 2k, + 2k, + k,) 
1 
6 (A41 

and 

T i + ,  = Ti + - ( I ,  + 21, + 21, + I , ) ,  
1 
6 (A51 

where a,+, = (bi+,)liZ. 

An  error function is used to determine  whether  the ac- 
curacy of the solution is within our  (arbitrary) limits of 
allowable error  and, if not, to adjust  the  increment size 
Az for use in the  next iteration.  We make  the additional 
definitions 

k ,  = AzF(zi+,, bi+,, T i + , )  

and 

I ,  = AzC(z,+,, bi+,, T i + , ) .  (A61 

The  error functions are defined by[8] 

E,  = k ,  - 2 ( k ,  + k , )  + 3k, (A71 

and 

E, = I ,  - 2 ( I ,  + I , )  + 31,. (A81 

To use  the  error  functions we define an  upper  and a 
lower limit, U and L,  respectively, against  which the er- 
ror  functions  are  checked. If the solution is not  accurate 
enough, the increment Az is halved for  the  next iteration. 
If the solution is “too  accurate,” i.e., if the  increment is 
smaller than  necessary,  then Az is doubled  for  the  next 
iteration. Each of the limits consists of an  absolute  term 
and a  relative term.  Thus,  for a generalized  solution yi of 

98 (Al) and (A2), the logic of the  error  routine is 

E < Labs + Lrel I yi I + AZ = 282, 

E > Uabs + Urel I yi I + Az = $Az, and 

Labs + L e ,  I ~i I 5 E 5 u a b s  + ure l  I ~i I 
-+ Az unchanged. (A91 

Appendix B-Total depletion of bins by evaporation 
At  any altitude and time  during the distribution  history 
calculations, there is only one bin (the smallest one)  for 
which the  concentration  does  not  obey  the continuity 
relation. A typical bin structure is shown in Fig. 2. The 
smallest drops in this bin are “disappearing.” Since  there 
is no  exact solution for  the  rate  at which these  drops dis- 
appear, we have developed an  approximate  treatment. 

Given  the  concentrations in all the bins at an upper al- 
titude,  we want to  determine  the  concentration of drops 
in bin i at  the  next  lower altitude.  If we ignore the deple- 
tion of the population of the  smallest bin due  to  evapora- 
tion, i.e., if we assume  that  the continuity  relation  holds, 
we have 

Xi(Z - h,t)  = X,(z , t  - T i )  V,(Z)/V,(Z - h ) .  (B 1 )  

The  actual  concentration in bin i will be somewhat small- 
er than  this  value because  drops  are evaporating. There- 
fore we modify Eq. (Bl) to 

In  terms of the distribution function,  Eq. (B2) becomes 

N , ( z  - h,t) = N i ( z , t  - T ~ )  V i ( z ) / V i ( z  - h ) .  (B3) 

Thus  our approximation consists of assuming that 
for small drops  the distribution  function is modified pri- 
marily by variations in the terminal  velocity, rather than 
by variations in the bin width. 

Appendix C- Nonequilibrium continuity equation 
The nonequilibrium  continuity equation, which relates 
the variation of raindrop  concentration  to terminal ve- 
locity of the  drops, is 

where X i  = X,(z,t) and V i  = Vi(z). A separate homoge- 
neous equation is written  for  each bin since, in the ab- 
sence of coalescence,  there is no mass transfer between 
the bins. 

For a drop falling from altitude z ,  to  altitude z ,  the pro- 
posed  solution of the continuity equation is 

Xi(Z, t )  = Xi(Z,,t - T i )  Vi(Z,)/Vi(Z), (C2) 

where 
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Evaluating the partial derivatives and using Q,(z,r) = 

t - T ~ ( z )  for  convenience, we have 

and 

and  from  Eq.  (C3) 

d7,ldz = l / V i ( z ) .  (C6) 

Substituting these  latter  three  equations  into  the con- 
tinuity  equation (Cl),  we  have 

which verifies that  the proposed  solution (C2)  conserves 
the total  population. 

Appendix D- Derivation of numerical difference 
equations 
When transient  evaporation and  coalescenqe effects  are 
considered  simultaneously, the equation of continuity 
can be  written as 

aXilat + Vi aX,laz + Xi dV,ldz 

= Vi& [ii ( z )  , -v (z ,   ,X(z , t )  I ,  (D 1) 

where  the  rate fi of change of concentration  due  to co- 
alescence in the ith bin is obtained  from  Eqs. ( I  2) through 
( 1  6). Bars are used on  the right-hand side of Eq. (D 1) to 
emphasize  that  the  coalescence  rate of  bin i depends on 
the radii,  velocities, and  concentrations of all the bins. 

Considering v(z) and &(z) as known functions, which 
are obtained by numerical  integration of the  water  vapor 
and  heat  transfer differential equations  for a single rain- 
drop, we seek a solution of Eq. (Dl) with the initial con- 
dition 

F(z(Zch,t) =x"(t) ,  (D2) 

where xo(t) is an assigned  value. Equation (Dl) repre- 
sents a first-order,  nonlinear,  partial differential equation 
which can  be  reduced to a first-order ordinary differential 
equation by a change of coordinates. 
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We define a new variable r such  that  the new indepen- 
dent variables are 

r = u(z , t )  = t - LCh d [ / V i ( [ )  and s = z .  (D3) 

Using the chain rule for differentiation, we  have 

( a l a r ) ,  = (au lat ) ,  (alar), (D4) 

(alaz), = (alas), -t- (au/az), ( a m ) , ,  (D5) 

[ a ( ~ , v ~ ) l a ~ i ,  = V,F,[ii(s),l/(s),~(s,r)i. (D6) 

and 

and we find that  Eq. (Dl)  transforms into 

Since (D6) is an  ordinary differential equation, it can  be 
solved by standard techniques. 

We solved Eq. (D6) numerically using difference equa- 
tions much like the  Runge-Kutta difference equations. 
The only  distinction between  the usual  Runge-Kutta 
algorithm and  the  one used here is due  to  the time  de- 
lays.  In  the difference equations, altitudes are indexed 
from  the cloud base  downward  and  the altitude step size 
is h ;  T~' is the time for a drop in  bin i to fall from altitude 
z ,  to altitude z ,  - i h ;  T~", from z ,  - 3h to z ,  - h ;  and T~"', 
from z ,  to znil. (Note  that T~"' = T~' + T~".) 

The numerical  solution of Eq. (D6) from  altitude z ,  to 
altitude z,,, proceeds  as follows: 

1. Compute  the  coalescence  rates  at  altitude z,: 

f i ( Z , J )  = & [ ~ ( z , ) , ~ ( z , ) , X ( z , , t ) I ,  

i = 1,2, . . .,Z; t = t , ,t , ,  . . . . J , ~  (D7) 

(These  same  iterations  on radius  and  time are implicit 
in the next four steps.) 

2.  Compute  the  concentrations and coalescence  rates at 
altitude z ,  - 3h: 

3. Compute  the  corrected  concentrations and  coales- 
cence  rates  at altitude z ,  - #z: 
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4. Compute  the concentrations and coalescence rates at 
altitude z ,  - h:  

5. Compute the  corrected  concentrations at altitude 
Z ,  - h: 

+ 2fiC(z, - Bh,t - T ~ ” )  + f i ( z n  - h , t ) ] .  ( ~ 1 4 )  

The cycle 1 through 5 is repeated after increasing  the 
index n on alt i tude  by  one,   and  continues  unti l   al t i tude 
zero is reached. To begin the next cycle,  set 
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