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Experiments on Page Size,  Program  Access 
Patterns,  and  Virtual  Memory Performance 

Abstract: The  assumption  about  virtual  memory  systems  that  as  overhead  (time for access and software  page  management) decreases 
page size  should  be  reduced  is  not  always a good  one.  Recent  experiments  indicate that  larger  page  sizes  can  provide  better  performance 
for programs that make highly localized  use of memory space. 

Introduction 
One  parameter  that affects the  performance of memory 
hierarchies is the  size of the block of data (e.g., the page) 
transferred  between  the memories. We  are specifically 
interested in determining the  best page size  for a  virtual 
memory system. 

Key  factors influencing the  choice of page size  are  the 
time  required to  transfer a page between memories and 
the  patterns of use of memories made by  programs. There 
is a penalty  involved in using large  pages, since much of 
the  data  transferred may never  be used. There  is  also a 
penalty for using small pages,  which results  from  the 
time  involved in separately transferring  many small pages 
that may be  used together during  program execution. 
Consideration of these penalties  leads to one working 
hypothesis about page  size: as  overhead (times for hard- 
ware  access and software page  management) decreases, 
page  size  should  also be  decreased; as overhead ap- 
proaches  zero, a smaller  page is always better  than a 
larger page[ 1 -51.  Investigations of the  access  patterns 
of programs  indicate that this hypothesis  is  not always 
good and  that  the problem of determining the  best page 
size may not  have a  simple  solution. 

The work  described  in  this paper is an  extension of 
some  recent  experiments  to investigate the effectiveness 
of automatic repacking of programs and program  pieces 
into pages of virtual  memory so as  to  reduce  the page  ex- 
ceptions generated by instruction  or  data  references 
across page  boundaries [6].  In this paper, we first de- 
scribe relevant  portions of the  procedures used in the 
earlier study. We then  consider  more thoroughly the 
usual  basis for choosing  page  sizes and  compare  that 
with our experimental  results. 58 
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Paging simulators 
In  order  to  compare  the effectiveness of different  place- 
ments of the  same  set of programs (or  subroutines, con- 
trol sections, common arrays,  data  areas,  etc.), paging 
simulators were  developed  that  accurately mimicked [ 71 
the  software  and,  whenever  necessary,  the  hardware as- 
sociated with actual page replacement algorithms. The 
paging simulators were  accurate  for a single user paging 
against himself in either a fixed amount of space  or  space 
that  vaned dynamically in response  to his varying  re- 
quirements.  Simulator input  was a sequence of page  re- 
quests  generated by processing a full instruction trace 
of a real  program  running under a real  operating system. 
More precisely, since all the  studies  were performed on 
the  IBM  System/360 model 67,  the  sequence  was  one of 
page sets.  For  an  instruction  to  be  processed  on  the mo- 
del 67, all addresses involved must be in physical  memory 
at  once. If the  instruction and data  are  both in the  same 
page,  only one page is needed;  but if the  instruction  cross- 
es  one page  boundary  and the  data  cross  another,  three 
or  four pages are required. The  instruction images from 
the  trace  were  examined sequentially, and  when  the  set 
of pages  required for  an  instruction changed, the  current 
set  was recorded  and  replaced  by the new set.  Instruc- 
tions that used a subset of the pages in the  current  set 
did not  cause  the  set  to  be  recorded  and replaced by the 
subset,  since  for a single user  no page exception could 
result from  the  requirements of the  subset[8]. 

The  sequence of page sets was processed by a page 
management  simulator, which was given either  static  or 
dynamic  constraints  on  the  number of page frames avail- 
able to  the program  during its  execution.  Since only  a se- 
quence of sets of virtual  page numbers is supplied to  the 
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simulator, it needs  no information about page  size  and in 
fact  is  independent of page  size. 

The page  size  must  be specified in the  process of gener- 
ating  page-set sequences  from  the full instruction  trace. 
Each instruction or  data  address  from  the  trace is mapped 
into  the corresponding address  for  the specific placement 
into pages of programs, subroutines,  and  data  areas.  This 
address is then divided by the page  size to give the page 
number.  Therefore, a page-set sequence can be  generated 
for  any desired  page  size. 

Our initial reason  for looking at different page sizes for 
different placements  was to  determine  whether improve- 
ments in performance  (fewer  page exceptions  for a fixed 
memory constraint) gained by packing for  one page  size 
would also apply to double-  and half-size pages without 
further repacking. Since  the packing algorithm uses  the 
page  size as well as  the size of the program and  data  areas 
to be packed,  it was  not  obvious that  the overall  place- 
ment of programs  and data  derived from packing for a 
particular page size would prove effective for  other page 
sizes. 

Because of the  great likelihood that page sizes are some 
power of 2,  the half-page and the double-page were first 
examined.  Results  were gratifying in terms of our original 
objectives, in that placements made  on  the assumption 
of 4096-byte pages  proved to be good placements for 
2048- and  8192-byte pages as we11[9]. But more inter- 
esting  was the comparison of page exceptions  for page 
sizes of n/2 and n bytes,  where n in the  cases examined 
took on  the values of 2048, 4096,  8192,  and 16,384. 

Expected results 
Before examining the actual  results, here is a summary 
of the  results  expected based both  on  our intuition  and on 
the  literature [ 1 - 51. If a program is divided into pages of 
size n and then into pages of size 4 2 ,  execution of the 
program with the smaller  size  pages would seem  to imply 
less data  transfer resulting from page exceptions.  The 
reason  for this is that we would not  expect  the program to 
always use  both halves of the larger  size  pages. If only 
half of the larger  size pages were always used,  the length 
of the  sequence of pages for both  page  sizes would be the 
same.  Hence a request  for large page  i would correspond 
to a request  for  either small page 2i or small page 2i - 1. 
If the  correspondence from  large to small pages  always 
involved the  same half of the large  page i, the  request se- 
quence would be exactly  the  same  except  for renumber- 
ing, and  the  same number of exceptions would result for 
the  same  number of page  frames.  But the  same  number of 
page frames implies half the  space, so that  for  the  same 
amount of space  the number of exceptions should  be ap- 
preciably  less. And  the time for  data  transfer would  also 
be  less,  since  each page is half as long. This situation 
clearly favors  the smaller  page size. 

At  the  other  extreme (i.e., both  halves of a larger page 
are always used)  every time  large page i is requested,  the 
corresponding sequence of small pages needed would be 
2i - 1, 2i. Then  the overall sequence of small pages 
would be  exactly  twice as long as the  sequence of large 
pages;  for  the  same  amount of real memory space,  there 
would be  exactly  twice the  number of small page  ex- 
ceptions as large page exceptions. But again,  since the 
small pages are only half as long, the total number of bits 
transferred would be the  same. Any extra  overhead  for 
small pages would be due  to  access time plus software 
time  associated with updating and searching page tables. 

In addition, we had assumed  that  an effective upper 
bound on small page exceptions is twice the number of 
large page exceptions, and that,  as  the density of use 
within large  pages decreases,  the ratio of small page  ex- 
ceptions to large page exceptions  decreases also. Of 
course  one would expect  the  advantage of the small page 
size to  increase  as  the  amount of space available  de- 
creased. 

Experimental results 
Some  measurements  on a program that  we  characterized 
as having low-density  memory use (program  A in Fig. 1) 
generally confirmed these  expectations.  The vertical  axis 
in the figure represents real  memory space  and  the verti- 
cal line8 represent memory  usage. The horizontal  axis 
represents execution time. Figure 2 shows  the  curves of 
page exceptions  versus available space  for  2K-byte pages 
(solid line) and  4K-byte pages  (dotted  line). The page 
replacement algorithm was first-in, first-out (FIFO). The 
dashed line gives the ratio of exceptions  for  2K-byte 
pages to  exceptions  for  4K-byte pages. The horizontal 
line at  1000  exceptions indicates a ratio of one-to-one, 
and  the line at  2000  exceptions indicates a ratio of two- 
to-one. Over most real memory sizes,  the  2K-byte pages 
give fewer  exceptions  than  the  4K-byte pages.  Only when 
the program has all the  space it needs  does  the ratio  ap- 
proach two-to-one. The height at which the dashed line 
stops indicates the ratio of the total number of 2K-byte 
pages  needed to  the  total number of 4K-byte pages 
needed. 

When  this  program was repackaged to  increase  the 
localization of memory use by placing together in mem- 
ory  space program parts used  close together in time (see 
Fig. 3), the  number of exceptions  for  both 2K- and  4K- 
byte pages was  fewer  than in the previous case.  The in- 
creased localization was indicated  by: fewer page refer- 
ences (for both  2K  and  4K) required for completion of 
the  program; a smaller  working set size, measured  over 
2500-, 5000-, 7500-, and 10,000-instruction intervals; 
and an increase in the ratio of program instruction and 
data  transfers within pages to those  transfers  from  one 
page to  another.  However,  the ratio  was much  less favor- 59 
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Figure 1 Memory usage by program A. 

able  to  the smaller  page  size,  especially  in the right half 
of the  curve, which is the region of moderate  to low pag- 
ing activity and  therefore clearly the  most desirable  re- 
gion (Fig. 4). In  fact,  throughout most of this  region, the 
exception  ratio  was  above  what we refer  to as the  break- 60 

D. J .  HATFIELD 

9vailable memory 

Figure 2 Page  exceptions  for program A. 

even level for  the  hardware-software  environment within 
which the  experiments  were run. 

The break-even  level is determined  as follows: the 
time to  process a page exception is composed of the time 
for  data  transfer,  the  access time for  the  device  where 
the page resides,  and  the  software time  involved in han- 
dling the page exception  interruption  and finding a  page 
to replace. Under  the  assumptions  that  the  device  speed 
and  the overall paging load are  the  same  for  both page 
sizes, the  access time a will be  the  same  for  both  the large 
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Figure 3 Memory usage by program A after repackaging. 

and  the small page size. The  transfer time will be p for 
the large  page  size  and p/2 for  the small. The  software 
overhead  to replace  a  page is difficult to  determine as a 
function of page size. There  are potentially  more small 
pages to look through,  but  the condition for which the 
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Figure 4 Page exceptions for program A after repackaging. 

search is made may be  distributed in the  same  manner 
through small and large pages, so that  the  depth of search 
would be the  same.  Since it is  easy  to stipulate  conditions 
that would favor  either size, the software overhead 6 was 
assumed to be the  same  for  both  cases. 

The  number of small page exceptions  that  can  be pro- 
cessed in the time it  takes  to  process  one large  page ex- 
ception is 

a + P + G  
61 
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Figure 5 Memory usage by program B. 

For  CP-67 version 3 on  the model 67 with an IBM 2301 
paging drum, this number is 1.14,  largely because a is 
large compared  to /3 and 6. 

For devices with access time reduced with respect  to 
transfer  time, this number is closer  to 2.0. On  the  other 
hand, if the I/O operation time is totally  overlapped  with 
program execution,  the  ratio  reduces  to S,/S,,2. The value 
of this  ratio is dependent  on  the program, the page  size, 
and  the page  replacement  algorithm, and will not be dis- 
cussed  further in this  paper. 

Given a  break-even  level of 1.14, it is clear that  the re- 
packed  program favored  the larger  page  size  throughout 
most of the desirable performance region. For programs 
with greater localization of heavily used  memory,  the bias 
to  the large  page  size is also  greater (Figs. 5 and 7). Both 
of these programs have a more stable working set  and 
show a sharper bend in the page  exception curve  than  do 
either  the original or the repackaged  version of the first 
program. And in the page exception  graphs (Figs.  6 and 
8) the smaller  page  size  often  resulted  in more  than  twice 
the  exceptions,  contrary  to  our intuitive expectations. 
After checking our page  replacement  simulators and find- 
ing no logical errors,  we tried to find models that would 
predict ratios in excess of two  :one [ 51. 62 
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Figure 6 Page  exceptions for program B. 

It  was  not difficult to find examples of page request 
sequences giving two,  three,  and  four times the  number of 
exceptions  for  the smaller  page  size. The examples in 
Fig. 9 are simple sequences  that parallel the activity of 
real  programs  in an  environment involving more real 
pages  and  longer  strings of requests  between page excep- 
tions. The vertical boxes  at  the left represent  an initial 
stack of pages ordered  for removal when a page  excep- 
tion occurs.  The  bottommost  member of the  stack is to be 
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Figure 7 Memory usage by program C. 

removed first. Corresponding  to  two  requests  for large 
page i are  two  requests  for  either  one  or  both  halves of 
the page as some  combination of the  numbers 2i and 2i - 
1. Page  requests  that  cause page exceptions  are under- 
lined in both  cases.  In  the first and second  and  the  fourth 
and fifth examples,  the  request  sequence  and exception 
pattern can  cycle indefinitely. This  is  because  the removal 
stack  at  an earlier  position in the  sequence is reestab- 
lished later in the  sequence, defining a cycle  that will 
regenerate itself as many times as desired. In  these  cases, 
the  number of exceptions given is that  for  one  cycle (all 
examples are  for single page sequences,  but  can be 
broken into  sets without  destroying the phenomenon). 

I t  should  be  emphasized that  these  sequences  are  the 
result of the accessing patterns of programs  and not an 
artifact resulting from  an instruction or a word of data 
spanning a half-page boundary. The  occurrence of an 

2000 

1000 

.- 2 

B 
B 

k 
0 

I I I I I I 
40K 80K 120K 160K 200K 240K 

.vailable memory 

Figure 8 Page exceptions for program C. 

instruction or data  reference spanning a half-page bound- 
ary was less  than  one  percent in the real  programs  ex- 
amined. In  other  words, if we  consider a  string of pro- 
gram instructions  translated  into page references (@ne 
or  more page references  per instruction)  first for pages of 
size n and  then for pages of size n/2, the page  reference 
strings for n and n/2 are essentially the  same length. 
Note  that  such a reference string is not  the  same length 
as  the  compressed string of page sets given to  the page 
management  simulator. For  the single-user case, how- 
ever,  both  the full and  the  compressed  string contain the 
same information. 

These examples all have  some things in common. Most 
of the time, both halves of the large page are used. Page 
exceptions  for  the large page are  far enough apart so that 
between  the corresponding  small page exceptions  there 
are more  than  enough  changes of state  to significantly re- 
order  the  stack.  On  the  other  hand,  between  the times of 
the large  page exceptions,  the  stack is not significantly 
reordered. The large  page that  causes a  page  exception 
usually corresponds  to  two small page requests,  and  both 
usually cause a page exception.  These conditions would 63 
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be expected  from  programs  characterized as high-density 
users of memory,  and for  those programs only when the 
paging rate  for the large page size is relatively low (i.e., 
the righthand side of the graphs). In addition, the stipula- 
tion  that the removal  stack for  the large page size  not  be 
reordered by the time a page exception occurs would im- 
ply that  the phenomenon is more likely to  occur with 
FIFO than with least  recently  used (LRU) replacement. 
This follows because  the FIFO stack can change only 
at page exception time, while the  LRU  stack  can change 
with every instruction. This  has been observed experi- 
mentally, with the  LRU algorithm seldom giving an ex- 

64 ception  ratio greater  than 2: 1 for real programs. Figure 10 

65 21..  .16 exceptions 

Figure 9 Examples of page request sequences. 

shows LRU replacement  applied to  the program shown in 
Fig. 7 for  FIFO. As yet we have  been  unable to  prove 
that  there is a replacement algorithm using only  the  past 
history of page requests  that  cannot  generate more  than 
twice  the  exceptions with half size pages. Figure 11 
shows the program displayed in Fig. 5 passed by a re- 
placement algorithm that selects a page for removal by 
examining a single "used" bit for  the page. It  can easily be 
shown that the MIN algorithm, which gives the minimum 
number of page exceptions for  any  request string, cannot 
produce  more than twice the exceptions for  the half page 
size[ 111. But for  other algorithms, especially those in 
use  today,  there  seem  to be no  guarantees. 
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Figure 10 LRU replacement for program C .  

One  other not obvious  characteristic of the page ratio 
curves should  be  noted. Instead of progressively  favoring 
the smaller page size  as available space is reduced,  the 
curves (for as  far  as  we  have  measured  them)  reach a 
minimum near  the middle of the available space range, 
with the minimum growing sharper  and shifting to  the left 
as usage  density increases.  Several modes of page re- 
quest behavior  could account  for this, but we have not 
yet been able  to specify  analytically the  degree  to which 
real programs resemble  these models. 

For  instance,  the  amount of memory space involved in 
a  memory  cycle can be the determining factor. If a pro- 
gram is cycling through r pages and  has only r - 1 page 
frames available, both LRU and F IFO replacement al- 
gorithms will generate a page  exception  for  every page 
request.  If the  same program is run on pages half as large, 
the  cycle may involve far  fewer than 2r small pages. Any 
cycle using 2(r - 1) or  fewer small pages will generate 
no page exceptions,  compared with one  exception  per 
page request with large pages. But if the available space 
is  further  constricted so that  the  cycle  does  not fit for 
either large or small  pages, both  cases will generate  one 
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Figure 11 “Used bit” replacement for program B. 

exception  per  request,  and  the large  size page will be- 
come competitive again with respect  to  the small. The 
curve representing the  ratio of small to large  page  excep- 
tions will climb as  the available space is reduced. 

The effect of more  than doubling the  exceptions  for  the 
half-size page has been  noted for a large size page of 
16,384, 8192, 4096 and 2048 bytes. It is a characteristic 
of programs that make highly localized use of memory 
and  that  therefore perform well on systems using reloca- 
tion hardware  for  address translation  and is  also a char- 65 

LNCE JANUARY 1972 VIRTUAL MEMORY PERFORl 



acteristic of those programs  in the region of low paging 
activity. It seems  to affect all implementable replacement 
algorithms,  especially those  that seldom  permanently 
alter  the removal stack  between exceptions. Because  it  is 
related  to  the page request string and  not  the page  size, 
it can apply to small pages (of 64 and 32 bytes) as well as 
large ones,  and so can  be  encountered in machines with 
caches  as well as  those using relocation hardware. 

The  question of page size (usually termed  slot size) for 
a cache is usually more  complex than  that of page size 
for main memory.  Typically the  replacement algorithms 
used for  caches  are only locally LRU. The ratio of re- 
trieval  time for  slots of n and n/2 bytes  depends  on  more 
than  the  addressing  and  data  transfer time from memory. 
In addition, the  degree of interleaving of memory mod- 
ules determines how many bytes can be  sent  to  the  cache 
at  once.  For  the  System/360 model 85, a  16-byte draw 
and a 4-way interleaving implies that 64 bytes can be 
brought into  the  cache  just  as quickly  as 32 bytes.  For 
each module of an interleaved  memory, the memory  de- 
sign can  determine  whether  successive  accesses  can  be 
attempted  as  soon  as  the  addressing and transfer hard- 
ware  are  ready, or whether a  memory cycle must elapse 
between  one  access and another. Individual system  de- 
signs are complex  enough so that  the  ratio of retrieval 
times for n and n / 2  bytes  can  range  anywhere  from  one  to 
a little more than two. 

It  is not really surprising that more  localized use of 
memory would favor larger  pages, since if a program 
stayed uniformly within one large  block, the optimal  page 
size would be  the size of the block. The possible degree of 
mismatch between page  size and  memory use pattern, 
however, implies that careful study  is required in order 
to decide the  best performing page size  for a program or 
a programming system,  and  that  the  assumption,  “the 
smaller the page  size the  fewer  wasted 1 / 0  transfers,”  is 
not always correct.  The relation between page reference 
patterns  and page replacement algorithms gives rise  to 
behavior  that is not yet well understood and may require 
stricter definitions of program  locality. 
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