
D. J. Hatfield

Experiments on Page Size, Program Access
Patterns, and Virtual Memory Performance

Abstract: The assumption about virtual memory systems that as overhead (time for access and software page management) decreases
page size should be reduced is not always a good one. Recent experiments indicate that larger page sizes can provide better performance
for programs that make highly localized use of memory space.

Introduction
One parameter that affects the performance of memory
hierarchies is the size of the block of data (e.g., the page)
transferred between the memories. We are specifically
interested in determining the best page size for a virtual
memory system.

Key factors influencing the choice of page size are the
time required to transfer a page between memories and
the patterns of use of memories made by programs. There
is a penalty involved in using large pages, since much of
the data transferred may never be used. There is also a
penalty for using small pages, which results from the
time involved in separately transferring many small pages
that may be used together during program execution.
Consideration of these penalties leads to one working
hypothesis about page size: as overhead (times for hard-
ware access and software page management) decreases,
page size should also be decreased; as overhead ap-
proaches zero, a smaller page is always better than a
larger page[1 -51. Investigations of the access patterns
of programs indicate that this hypothesis is not always
good and that the problem of determining the best page
size may not have a simple solution.

The work described in this paper is an extension of
some recent experiments to investigate the effectiveness
of automatic repacking of programs and program pieces
into pages of virtual memory so as to reduce the page ex-
ceptions generated by instruction or data references
across page boundaries [6]. In this paper, we first de-
scribe relevant portions of the procedures used in the
earlier study. We then consider more thoroughly the
usual basis for choosing page sizes and compare that
with our experimental results. 58

D. J . HATFIELD

Paging simulators
In order to compare the effectiveness of different place-
ments of the same set of programs (or subroutines, con-
trol sections, common arrays, data areas, etc.), paging
simulators were developed that accurately mimicked [71
the software and, whenever necessary, the hardware as-
sociated with actual page replacement algorithms. The
paging simulators were accurate for a single user paging
against himself in either a fixed amount of space or space
that vaned dynamically in response to his varying re-
quirements. Simulator input was a sequence of page re-
quests generated by processing a full instruction trace
of a real program running under a real operating system.
More precisely, since all the studies were performed on
the IBM System/360 model 67, the sequence was one of
page sets. For an instruction to be processed on the mo-
del 67, all addresses involved must be in physical memory
at once. If the instruction and data are both in the same
page, only one page is needed; but if the instruction cross-
es one page boundary and the data cross another, three
or four pages are required. The instruction images from
the trace were examined sequentially, and when the set
of pages required for an instruction changed, the current
set was recorded and replaced by the new set. Instruc-
tions that used a subset of the pages in the current set
did not cause the set to be recorded and replaced by the
subset, since for a single user no page exception could
result from the requirements of the subset[8].

The sequence of page sets was processed by a page
management simulator, which was given either static or
dynamic constraints on the number of page frames avail-
able to the program during its execution. Since only a se-
quence of sets of virtual page numbers is supplied to the

IBM J . RES. DEVELOP.

simulator, it needs no information about page size and in
fact is independent of page size.

The page size must be specified in the process of gener-
ating page-set sequences from the full instruction trace.
Each instruction or data address from the trace is mapped
into the corresponding address for the specific placement
into pages of programs, subroutines, and data areas. This
address is then divided by the page size to give the page
number. Therefore, a page-set sequence can be generated
for any desired page size.

Our initial reason for looking at different page sizes for
different placements was to determine whether improve-
ments in performance (fewer page exceptions for a fixed
memory constraint) gained by packing for one page size
would also apply to double- and half-size pages without
further repacking. Since the packing algorithm uses the
page size as well as the size of the program and data areas
to be packed, it was not obvious that the overall place-
ment of programs and data derived from packing for a
particular page size would prove effective for other page
sizes.

Because of the great likelihood that page sizes are some
power of 2, the half-page and the double-page were first
examined. Results were gratifying in terms of our original
objectives, in that placements made on the assumption
of 4096-byte pages proved to be good placements for
2048- and 8192-byte pages as we11[9]. But more inter-
esting was the comparison of page exceptions for page
sizes of n/2 and n bytes, where n in the cases examined
took on the values of 2048, 4096, 8192, and 16,384.

Expected results
Before examining the actual results, here is a summary
of the results expected based both on our intuition and on
the literature [1 - 51. If a program is divided into pages of
size n and then into pages of size 4 2 , execution of the
program with the smaller size pages would seem to imply
less data transfer resulting from page exceptions. The
reason for this is that we would not expect the program to
always use both halves of the larger size pages. If only
half of the larger size pages were always used, the length
of the sequence of pages for both page sizes would be the
same. Hence a request for large page i would correspond
to a request for either small page 2i or small page 2i - 1.
If the correspondence from large to small pages always
involved the same half of the large page i, the request se-
quence would be exactly the same except for renumber-
ing, and the same number of exceptions would result for
the same number of page frames. But the same number of
page frames implies half the space, so that for the same
amount of space the number of exceptions should be ap-
preciably less. And the time for data transfer would also
be less, since each page is half as long. This situation
clearly favors the smaller page size.

At the other extreme (i.e., both halves of a larger page
are always used) every time large page i is requested, the
corresponding sequence of small pages needed would be
2i - 1, 2i. Then the overall sequence of small pages
would be exactly twice as long as the sequence of large
pages; for the same amount of real memory space, there
would be exactly twice the number of small page ex-
ceptions as large page exceptions. But again, since the
small pages are only half as long, the total number of bits
transferred would be the same. Any extra overhead for
small pages would be due to access time plus software
time associated with updating and searching page tables.

In addition, we had assumed that an effective upper
bound on small page exceptions is twice the number of
large page exceptions, and that, as the density of use
within large pages decreases, the ratio of small page ex-
ceptions to large page exceptions decreases also. Of
course one would expect the advantage of the small page
size to increase as the amount of space available de-
creased.

Experimental results
Some measurements on a program that we characterized
as having low-density memory use (program A in Fig. 1)
generally confirmed these expectations. The vertical axis
in the figure represents real memory space and the verti-
cal line8 represent memory usage. The horizontal axis
represents execution time. Figure 2 shows the curves of
page exceptions versus available space for 2K-byte pages
(solid line) and 4K-byte pages (dotted line). The page
replacement algorithm was first-in, first-out (FIFO). The
dashed line gives the ratio of exceptions for 2K-byte
pages to exceptions for 4K-byte pages. The horizontal
line at 1000 exceptions indicates a ratio of one-to-one,
and the line at 2000 exceptions indicates a ratio of two-
to-one. Over most real memory sizes, the 2K-byte pages
give fewer exceptions than the 4K-byte pages. Only when
the program has all the space it needs does the ratio ap-
proach two-to-one. The height at which the dashed line
stops indicates the ratio of the total number of 2K-byte
pages needed to the total number of 4K-byte pages
needed.

When this program was repackaged to increase the
localization of memory use by placing together in mem-
ory space program parts used close together in time (see
Fig. 3), the number of exceptions for both 2K- and 4K-
byte pages was fewer than in the previous case. The in-
creased localization was indicated by: fewer page refer-
ences (for both 2K and 4K) required for completion of
the program; a smaller working set size, measured over
2500-, 5000-, 7500-, and 10,000-instruction intervals;
and an increase in the ratio of program instruction and
data transfers within pages to those transfers from one
page to another. However, the ratio was much less favor- 59

JANUARY 1972 VIRTUAL MEMORY PERFORMANCE

J"

I : :

Execution time +
Figure 1 Memory usage by program A.

able to the smaller page size, especially in the right half
of the curve, which is the region of moderate to low pag-
ing activity and therefore clearly the most desirable re-
gion (Fig. 4). In fact, throughout most of this region, the
exception ratio was above what we refer to as the break- 60

D. J . HATFIELD

9vailable memory

Figure 2 Page exceptions for program A.

even level for the hardware-software environment within
which the experiments were run.

The break-even level is determined as follows: the
time to process a page exception is composed of the time
for data transfer, the access time for the device where
the page resides, and the software time involved in han-
dling the page exception interruption and finding a page
to replace. Under the assumptions that the device speed
and the overall paging load are the same for both page
sizes, the access time a will be the same for both the large

IBM 1. RES. DEVELOP.

8

6
2n

E

-

34 -

-
32 -'

7

30 ,--

28 -

I Execution time -
Figure 3 Memory usage by program A after repackaging.

and the small page size. The transfer time will be p for
the large page size and p/2 for the small. The software
overhead to replace a page is difficult to determine as a
function of page size. There are potentially more small
pages to look through, but the condition for which the

JANUARY 1972

200(

1.14

1000

2
3

P
6

.-

x

.vailable memory

Figure 4 Page exceptions for program A after repackaging.

search is made may be distributed in the same manner
through small and large pages, so that the depth of search
would be the same. Since it is easy to stipulate conditions
that would favor either size, the software overhead 6 was
assumed to be the same for both cases.

The number of small page exceptions that can be pro-
cessed in the time it takes to process one large page ex-
ception is

a + P + G
61

VIRTUAL MEMORY PERFORMANCE

. .
1 :

I

22

20

I8 -
I
I Execution time "+

Figure 5 Memory usage by program B.

For CP-67 version 3 on the model 67 with an IBM 2301
paging drum, this number is 1.14, largely because a is
large compared to /3 and 6.

For devices with access time reduced with respect to
transfer time, this number is closer to 2.0. On the other
hand, if the I/O operation time is totally overlapped with
program execution, the ratio reduces to S,/S,,2. The value
of this ratio is dependent on the program, the page size,
and the page replacement algorithm, and will not be dis-
cussed further in this paper.

Given a break-even level of 1.14, it is clear that the re-
packed program favored the larger page size throughout
most of the desirable performance region. For programs
with greater localization of heavily used memory, the bias
to the large page size is also greater (Figs. 5 and 7). Both
of these programs have a more stable working set and
show a sharper bend in the page exception curve than do
either the original or the repackaged version of the first
program. And in the page exception graphs (Figs. 6 and
8) the smaller page size often resulted in more than twice
the exceptions, contrary to our intuitive expectations.
After checking our page replacement simulators and find-
ing no logical errors, we tried to find models that would
predict ratios in excess of two :one [51. 62

D. J. HATFIELD

ivailable memory

Figure 6 Page exceptions for program B.

It was not difficult to find examples of page request
sequences giving two, three, and four times the number of
exceptions for the smaller page size. The examples in
Fig. 9 are simple sequences that parallel the activity of
real programs in an environment involving more real
pages and longer strings of requests between page excep-
tions. The vertical boxes at the left represent an initial
stack of pages ordered for removal when a page excep-
tion occurs. The bottommost member of the stack is to be

IBM J . RES. DEVELOP.

01

P
b

D
P-

IExecution time "-+

Figure 7 Memory usage by program C.

removed first. Corresponding to two requests for large
page i are two requests for either one or both halves of
the page as some combination of the numbers 2i and 2i -
1. Page requests that cause page exceptions are under-
lined in both cases. In the first and second and the fourth
and fifth examples, the request sequence and exception
pattern can cycle indefinitely. This is because the removal
stack at an earlier position in the sequence is reestab-
lished later in the sequence, defining a cycle that will
regenerate itself as many times as desired. In these cases,
the number of exceptions given is that for one cycle (all
examples are for single page sequences, but can be
broken into sets without destroying the phenomenon).

I t should be emphasized that these sequences are the
result of the accessing patterns of programs and not an
artifact resulting from an instruction or a word of data
spanning a half-page boundary. The occurrence of an

2000

1000

.- 2

B
B

k
0

I I I I I I
40K 80K 120K 160K 200K 240K

.vailable memory

Figure 8 Page exceptions for program C.

instruction or data reference spanning a half-page bound-
ary was less than one percent in the real programs ex-
amined. In other words, if we consider a string of pro-
gram instructions translated into page references (@ne
or more page references per instruction) first for pages of
size n and then for pages of size n/2, the page reference
strings for n and n/2 are essentially the same length.
Note that such a reference string is not the same length
as the compressed string of page sets given to the page
management simulator. For the single-user case, how-
ever, both the full and the compressed string contain the
same information.

These examples all have some things in common. Most
of the time, both halves of the large page are used. Page
exceptions for the large page are far enough apart so that
between the corresponding small page exceptions there
are more than enough changes of state to significantly re-
order the stack. On the other hand, between the times of
the large page exceptions, the stack is not significantly
reordered. The large page that causes a page exception
usually corresponds to two small page requests, and both
usually cause a page exception. These conditions would 63

VIRTUAL MEMORY PERFORMANCE JANUARY 1972

FIFO:

33 11 2 2 33 22 11 33 11 2 2 11 22 33 22 33 1 1 33

65 12 44 6 6 34 12 56

FIFO:
22 33 11 33 4 4 33 44 11 44 33 11 44 33 11 2 2 44 33 22 33 22 44 33 1 1 22 44. . . 3 exceptions

33 56 12 56 17 56 78 22 78 56 12 77 56 12 34 78 _56 34 56 34 7s 56 12 23 78.. . 14exceptions

* -

be expected from programs characterized as high-density
users of memory, and for those programs only when the
paging rate for the large page size is relatively low (i.e.,
the righthand side of the graphs). In addition, the stipula-
tion that the removal stack for the large page size not be
reordered by the time a page exception occurs would im-
ply that the phenomenon is more likely to occur with
FIFO than with least recently used (LRU) replacement.
This follows because the FIFO stack can change only
at page exception time, while the LRU stack can change
with every instruction. This has been observed experi-
mentally, with the LRU algorithm seldom giving an ex-

64 ception ratio greater than 2: 1 for real programs. Figure 10

65 21.. .16 exceptions

Figure 9 Examples of page request sequences.

shows LRU replacement applied to the program shown in
Fig. 7 for FIFO. As yet we have been unable to prove
that there is a replacement algorithm using only the past
history of page requests that cannot generate more than
twice the exceptions with half size pages. Figure 11
shows the program displayed in Fig. 5 passed by a re-
placement algorithm that selects a page for removal by
examining a single "used" bit for the page. It can easily be
shown that the MIN algorithm, which gives the minimum
number of page exceptions for any request string, cannot
produce more than twice the exceptions for the half page
size[111. But for other algorithms, especially those in
use today, there seem to be no guarantees.

D. J . HATFIELD 1BM J . RES. DEVELOP.

/Available memory

Figure 10 LRU replacement for program C .

One other not obvious characteristic of the page ratio
curves should be noted. Instead of progressively favoring
the smaller page size as available space is reduced, the
curves (for as far as we have measured them) reach a
minimum near the middle of the available space range,
with the minimum growing sharper and shifting to the left
as usage density increases. Several modes of page re-
quest behavior could account for this, but we have not
yet been able to specify analytically the degree to which
real programs resemble these models.

For instance, the amount of memory space involved in
a memory cycle can be the determining factor. If a pro-
gram is cycling through r pages and has only r - 1 page
frames available, both LRU and F IFO replacement al-
gorithms will generate a page exception for every page
request. If the same program is run on pages half as large,
the cycle may involve far fewer than 2r small pages. Any
cycle using 2(r - 1) or fewer small pages will generate
no page exceptions, compared with one exception per
page request with large pages. But if the available space
is further constricted so that the cycle does not fit for
either large or small pages, both cases will generate one

1001

501

... 2

3

k
D
K al

(Available memory

Figure 11 “Used bit” replacement for program B.

exception per request, and the large size page will be-
come competitive again with respect to the small. The
curve representing the ratio of small to large page excep-
tions will climb as the available space is reduced.

The effect of more than doubling the exceptions for the
half-size page has been noted for a large size page of
16,384, 8192, 4096 and 2048 bytes. It is a characteristic
of programs that make highly localized use of memory
and that therefore perform well on systems using reloca-
tion hardware for address translation and is also a char- 65

LNCE JANUARY 1972 VIRTUAL MEMORY PERFORl

acteristic of those programs in the region of low paging
activity. It seems to affect all implementable replacement
algorithms, especially those that seldom permanently
alter the removal stack between exceptions. Because it is
related to the page request string and not the page size,
it can apply to small pages (of 64 and 32 bytes) as well as
large ones, and so can be encountered in machines with
caches as well as those using relocation hardware.

The question of page size (usually termed slot size) for
a cache is usually more complex than that of page size
for main memory. Typically the replacement algorithms
used for caches are only locally LRU. The ratio of re-
trieval time for slots of n and n/2 bytes depends on more
than the addressing and data transfer time from memory.
In addition, the degree of interleaving of memory mod-
ules determines how many bytes can be sent to the cache
at once. For the System/360 model 85, a 16-byte draw
and a 4-way interleaving implies that 64 bytes can be
brought into the cache just as quickly as 32 bytes. For
each module of an interleaved memory, the memory de-
sign can determine whether successive accesses can be
attempted as soon as the addressing and transfer hard-
ware are ready, or whether a memory cycle must elapse
between one access and another. Individual system de-
signs are complex enough so that the ratio of retrieval
times for n and n / 2 bytes can range anywhere from one to
a little more than two.

It is not really surprising that more localized use of
memory would favor larger pages, since if a program
stayed uniformly within one large block, the optimal page
size would be the size of the block. The possible degree of
mismatch between page size and memory use pattern,
however, implies that careful study is required in order
to decide the best performing page size for a program or
a programming system, and that the assumption, “the
smaller the page size the fewer wasted 1 / 0 transfers,” is
not always correct. The relation between page reference
patterns and page replacement algorithms gives rise to
behavior that is not yet well understood and may require
stricter definitions of program locality.

66

D. J . HATFIELD

References and notes
1 .

2.

3 .

4.

5.

6.

7.

8.

9.

10.

M. Joseph, “Analysis of Paging and Program Behavior,”
Computer Journal 13, No. 1 , 49 (February 1970).
L. Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal 5, No. 2, 93-94
(1966).
B. Randell, “A note on storage fragmentation and program
segmentation,” Communications of the ACM 12, No. 7,

M. H. J. Baylis, D. G. Fletcher, and D. J. Howarth, “Paging
Studies Made on the ICT Atlas Computer,” Proceedings
IFIP Congress 1968 2, 835-836 (1968).
P. J. Denning, “Virtual Memory,” Computing Surveys 2,
No. 3, 169 (September 1970).
D. Hatfield and J. Gerald, “Program Restructuring for Vir-
tual Memory” IBM Systems Journal 10, 168 (1971).
The limit of this accuracy is the set of all events triggered by
changes in virtual memory or execution cycle requirements.
Timing considerations introduced by the speed of different
memory or data transfer devices were ignored, and to this
extent the simulation was not complete.
The average size of a page set for the programs we have ex-
amined varies between two and three pages. Naturally the
difference in performance between a sequence of single
pages and a sequence of sets becomes more critical as the
available paging space is reduced.
The improvements in the double page case were greater than
with the full page for which the repackaging was performed.
The repackaging programs strung together pages that com-
municated with one another and so created very well packed
double pages. Splitting the full pages in half destroyed some
of the effect of page packing and the improvements for the
half page case were not as great as with the full.
I am grateful for discussion of the problem and for some ex-
amples of sequences of page requests that give more than
twice the exceptions at the half page size to John Pomerantz,

365-366 (July 1969).

Department of Computer Science, University of Chicago.
1 1 . An algorithm can be devised that gives exactly twice the

number of exceptions for the half page sequence by looking
ahead in the request string, as does the MIN algorithm. The
MIN algorithm itself must do at least this well, so cannot
generate more than twice the page exceptions with half
pages. For a discussion of the extention of the MIN algo-
rithm to handle page sets, see L. A. Belady, “Use of the min-
imum page replacement algorithm to produce specified mem-
ory states,” IBM T. J. Watson Research Center Report.

Received August 26 , 1971

The aurhor is located at the IBM DPD Scientific Cen-
ter, Cambridge, Massachusetts 02139.

I B M J . RES. DEVELOP.

