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Efficient  Evaluation of Array  Subscripts of Arrays 

Abstract: The APL language allows  subscripted expressions  such  as A[I ; ] ;K] ,  where A is an array  and I , ]  and K may be  scalars,  vectors 
or  arrays of any size and  shape. We  describe  an efficient method of evaluating these  expressions.  The method is quite  general  and  yet  it 
does recognize all the special cases in which multiple subscripts  can  be reduced to a  simpler  form. We  show how the  same mechanism 
can  be used  to evaluate  other selection operations,  such as transpose,  and how selection operations may be combined. 

Introduction 
When  programs  written in a high-level language such  as 
FORTRAN or PL/l are run on  the  computer, they usually 
go through three  stages, namely  compilation,  program 
loading,  and  execution. At  each of these  stages certain  de- 
cisions about  data  structure  and  data  representation  have 
to be  made. In  the early languages such as FORTRAN 1,  

all of these decisions could be  made  at  the compiler 
stage. In more  modern  languages such  as PL/I , the com- 
piler can  determine most of the  structure  and  the  data 
representation,  but  some of the decisions have  to  be de- 
ferred until execution time;  for  example,  the memory ad- 
dress of an automatic variable is not fixed until the pro- 
cedure  that uses the variable is executed.  The  advantage 
of making an early  decision about  structure is that  the 
compiler  can  then  try to optimize the  object program. The 
advantage of making a late decision, on the  other  hand, is 
that  the programming language  can  be  more  powerful  and 
easier  to  use; in certain cases  the late  decision can lead 
to a more optimum  use of the  computer. 

APL\360[ 11 removes many of the restrictions of pre- 
vious  languages; it allows the  structure and the  represen- 
tation of a  variable to change at any  time  during execu- 
tion. APL is a powerful and  elegant  language (see  for ex- 
ample, Kolsky[2]) but the  construction of an efficient 
APL interpreter  does lead to  some complex  problems. In 
this paper we are particularly concerned with the evalua- 
tion of APL subscript  expressions.  At  the  present time, 
this  problem is peculiar to APL, but as new and  more 
powerful  languages are developed we would expect this 
type of problem to  arise in many other situations. 

Specification of the problem 
Consider first the problem of subscripts in FORTRAN. If 
the FORTRAN programmer  writes  a statement  such  as 
Z = A(I,J,K), then  A  must be a three-dimensional array, 
I,  J  and K must  be scalars,  and  the dimensions of A must 
be either  constants or simple scalar variables. It is com- 
paratively easy  to  generate  code which will extract  the 
relevant  element  from A and  put it in Z .  Although the sub- 
script evaluation is quite  straightforward, it is somewhat 
more difficult to  produce optimum code.  An optimizing 
compiler will evaluate  the  constant  parts of the  subscript 
at compile time, will try  to replace  any  multiplications  by 
additions, and will move parts of the  subscript evaluation 
outside any of the enclosing D O  loops,  see  Allen[3], 
Hopgood[4], Busam and  Edlund [ 5 ] ,  and  Lowry  and 
Medlock 161. 

PL/l allows scalar  subscripts and it also allows state- 
ments such  as Z = A(I,*,K).  In this case,  ifA has  dimen- 
sions  N I ,  N2,  N3, then  Z  must  be  a vector of N2 ele- 
ments  and  the  statement  sets  Z(J) = A(I,J,K)  for all valid 
values of J. The compiler has  to  produce  the  code  to 
perform 

DOJ = 1 TO N2; Z(J) = A(I,J,K);  END; 

and this is not difficult to do. 
Before  discussing APL subscripts, let us review some 

of the  terms used in APL. If A is any  variable,  then the 
size of A is a vector which gives the dimensions of A. The 
rank of A is the size of the size of A; it gives the number 
of dimensions. If A is a 5 X 6 matrix, then  the size of A is 
5 6, and the rank is 2. The ravel of A is a vector which 45 
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contains all the  elements of A. If A is a scalar, then the 
ravel of A is a one-element vector. If A is a vector,  then 
the ravel of A is the  same  as A. If A is, for example, a 
5 X 6 matrix, then  the ravel of A is a vector of 30 ele- 
ments  with  values A[O; 01, A[O; 1 3 , .  . . A[O; 5],A[1; 01, 
. . . A[4; 51. APL subscripts can begin at  either “0” or “ l” ,  
in this example,  and throughout the  rest of this paper,  we 
will use origin “0” and all subscripts begin at “0”. In 
A P L \ ~ ~ O  the “size of A” is written PA, and  the  rank is 
ppA. The ravel of A is written ,A. APL frequently  uses  one 
symbol for  two different operations.  For  example, if the 
item to  the left of “p” is a  variable (or a bracketed  ex- 
pression  or a function of no arguments)  then p stands  for 
reshape;  otherwise it stands  for size. The  statement 
C + B p A defines an  array C. The size of C is equal  to 
B and the  elements of C are  the  same  as  the  elements of 
A. If A is a 5 X 6 matrix, then C + (3 5 2) p A sets C 
equal  to  an  array of size 3  5  2 and C[O; 0; 01 = A [O; 01, 
C[O; 0; 11 = A[O; 11, C[O; 1;  01 = A[O; 21, and so on. If 
the item to the left of a “,” is a  variable, then  the  operator 
stands  for  catenate;  otherwise  it  stands  for ravel.  If A 
and B are  vectors,  then A,B is a vector consisting of the 
elements of A followed by the  elements of B. See Falkoff 
and  Iverson[ 11 for a complete description of APL. 

The APL statement Z + A[I; J ;  K] is much more com- 
plex than  the  corresponding FORTRAN or pL/l statement. 
The complexities of APL arise  from  the following causes. 
I, J and K need not  be  scalars;  they may be  scalars, vec- 
tors  or  arrays of any number of dimensions. An APL com- 
piler or  interpreter has no  prior knowledge of the proper- 
ties of Z; in fact Z is completely respecified by the  execu- 
tion of this statement.  The dimensions of A, I, J and K 
cannot  be determined until the  actual  execution of the 
statement.  In a pL/ l  program, the dimensions of A may 
vary  during execution,  but  the dimensions are fixed once 
the containing procedure  (or block) is  entered.  In APL 

the dimensions of A may even change  during execution of 
the  current  statement;  for  example, Z + ((P,Q,R)pX) 
[I; ]; K] is a valid APL statement which defines an  array 
of size P,Q,R and  then it immediately accesses  some of 
the  elements of this array. 

A  general APL subscript  expression  has  the  form 
Y[IO;  11; 12 . . . ; IK]. Any  number of subscripts  are al- 
lowed, but  the number of subscripts  must  be equal to  the 
rank of Y. Each of the  subscripts may be a constant, a vay- 
iable, an expression,  or it may be omitted. An omitted 
subscript  corresponds to the P L ~ I  use of * in a subscript 
position. I t  implies the  subscript in that position  should 
range over all valid values. As an example, M[3;] gives 
row 3 of matrix M. In  the  case of Z + Y [IO; 11; 12. . . ; IK] 
the size of Z is the  concatentation of the sizes of 10 
through IK, thus (pZ) = (pIO), (pll), . . ., (pIK). If the  Jth 
subscript position is empty,  then (pY)[J] should be used 

46 in place of PI]. Let /O denote  the ravel of IO, I1 denote  the 
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ravel of 11, and so on.  We will use IKMl (which stands 
for I K - 1) to  denote  the penultimate  subscript. The SUC- 

cessive elements of the  ravel of Z are 

Y[~O[OI; /1[01; . . . /KMl[O]; /K[O]] 
Y[10[01; /1 [OI; . . . /KM1 [O]; IK[l]] 

Y[/O[O]; 11 [O]; . . . IKMl [O]; IK[NK]] 
Y[/O[O]; 11 [O]; . . . jKM1 [ l ] ;  /K[O]] 

Y[_IO[NO]; 11 [Nl]; . . . /KM1 [NKMl];  lK[NKll. 

where NK stands  for  the  number of elements in LK minus 
1. All of the  subscripts used above must  be valid sub- 
scripts; this implies that  each  element of IO must be non- 
negative and  less  than (pY)[O]; similarly each element of 
I1 must  be nonnegative and  less  than ( p Y )  [ 1 1, and so on. 

Since this definition looks complicated we will examine 
some  cases.  Let A be a  three-dimensional array. If I, ] 
and K are  scalars,  then A[I; J ;  K] is a scalar and  this case 
is similar to  the FORTRAN or pL/l case. If I and J are  sca- 
lars  and K is a vector with elements 5  6 2, then A [I; 1; K] 
isavectorwithelementsA[I;J;5],A[I;J;6]andA[I;J;Z]. 
If I is a scalar with  value 4, J is a vector with elements 
2 9  8 3, and K is a vector with elements 5  6 2, then 
A[I; 1; K] is a 4 X 3 matrix  with the values 

A[4; 2; 51 A[4; 2; 61 A[4; 2; 2 )  
A[4; 9; 51 A[4; 9; 61 A[4; 9; 21 
A[4;  8; 51 A[4; 8; 61 A[4;  8; 21 
A[4; 3; 51 A[4; 3; 61 A[4; 3; 21. 

As a final example, the following program shows how 
a  general subscript  on a three-dimensional array  can be 
expressed in terms of simple scalar  subscripts  on a vector. 

Program  to  compute A[l; 1; K]: 
V Z EVAL3  A;  D; M; S; S1; S2; S3; R; 11; 12; I3 

[ 1  ] c NOTE THAT 0 ORIGIN IS USED 
[2] R + X/(Sl +- p,I), (S2 + p , ] ) ,  (S3 + p,K) 
[31 S + ( P I ) ,  (PI), PK 
[41 Z +“ Rpl T ,A 
[5] + NULL IF R = 0 
[61 D +-PA 
[7] M “1 
[8] I1 +O 
[ 9 ]   0 0 2 :  12 + 0 
[ l o ]   0 0 3 :  13 + 0 
[ l l ]  LOP: Z[M + M +  11 + (,A)[(,K)[I3]  +D[2] 

[ 121 -+ LOP IF S3 > I3 + I3 + 1 

[14] + DO2 IF S1 > I1 + I1 + 1 
[ 151  NULL: Z +- SpZ 

x ( m 2 1  + D D I  x ( , I ) ~ I I  

[131 -+ 003 IF s2 > r2 + 12 + 1 

V 
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V Z - A I F B  
[ l ]  Z t B I A  

V 

Notice  that  the major part of the calculation is inde- 
pendent of the  shape of I ,  I and K. The program produces 
a vector Z which contains  the  appropriate values, and 
then in the  last  statement it gives the  correct  shape  to Z.  

The environment 
We  assume  that  subscript evaluation is part of an emula- 
tor  or  interpreter.  The  features of the  environment  that 
are  relevant  to this  discussion are  as follows. The user’s 
programs are  written in APL. These programs are read 
into the  computer and  they are  translated  from  the ex- 
ternal APL form to  some suitable  internal form.  This pro- 
cess  does not  involve  compilation; there is a one-to-one 
correspondence  between  the  items of the  external  form 
and  the items of the internal form.  An  external  name  such 
as “A” is translated into an internal name a. In languages 
such  as FORTRAN, a would be the  address of the value 
of A. In this  implementation of APL, a is a number which 
is used to” access  the description and  the  value of A. Dur- 
ing execution,  the memory contains a table called the 
address table. The  address  table entry for a gives the ad- 
dress of a block of memory  which contains  data in one of 
the following formats: 

I )  B D a  
2 )  B D a data giving the value of A. 
3) B D a data giving the value of A and PA. 
4) B D a data giving the value of ,A, (PA),   (ppA) and p,A. 
5 )  B D a data giving the value of A[O], (A[1] - A[O]),  

PA. 

These five forms  correspond  to  the five cases of A having 
no value, A being a scalar, A being a vector, A being an 
array  and A being a vector  whose values form  an arith- 
metic  progression. The  latter  case is used to provide a 
compact  representation of vectors of the  form P + Q x 
L R. In  the  formats given above, B is a count of the num- 
ber of bytes in the block. D is a pattern of bits called the 
descriptor; it specifies whether A has a value,  and if so 
whether  the value is  character, logical, integer or real. 
D also specifies whether A is a scalar, a vector,  an  array, 
or an arithmetic  progression vector.  The  execution of the 
user’s program is controlled by an interpreter (we  use  the 
word interpreter  to  cover both interpreters and  emula- 
tors). The  interpreter  scans  the internal form of the APL 

program,  starting at  the right hand end of the  statement 
and moving to  the left. The  interpreter moves  items from 
the APL program onto  the  stack until it comes  to  the  stage 
when an  operation  can be performed.  A stack is simply 
a series of successive memory locations  which is used to 
hold a list; it  is used on a first-in, last-out  basis. If the in- 

terpreter  starts  to  execute  the  statement Z + A[I; I + 
B*C; K + D] then  it builds up  the  stack  as  far as 

(top of stack) - K + Dl . . . . 
We show  the  stack using external  names;  the real stack, 
however, will contain’ the internal representation of all 
names and operators. When the  stack  reaches  the  stage 
shown  above  and  the  interpreter  evaluates K + D, it gen- 
erates as temporary result  with the  name T1 and  sets  the 
stack  to  Tl]  and  continues  to  scan  the program. In a 
language such  as pL/l or ALGOL it would be possible to 
put  the  value of T1 on  the  stack; in APL this is not  usually 
feasible because T1 may be a large array.  This  array is 
stored in memory and its  internal name is put on  the 
stack. Eventually the  interpreter will come to the stage 
where  the  stack contains A[l; T3; T1 1, where T3 contains 
the value of I + B*C. At this  stage, the  interpreter will 
enter  the subscript-processing  routine. The  subscript 
routine will take  the  top item off the  stack (in this case it 
is the  name of “A”) and  then using this name, it can use 
the  address  table  to find the block which gives the  type, 
size and  value of A. 

Although the  interpreter  is usually written in assembly 
language, it could also  be  written in microcode. See Breed 
and Lathwell[7]  for an example of an  interpreter and 
Hassitt,  Lageschulte, and Lyon[8]  for  an  example of a 
microcoded APL emulator. We will describe  the subscript 
evaluation process using the APL language. It should be 
noted,  however,  that  these APL programs are  descriptions 
of machine  language  programs,  and consequently we will 
take  care  to  use only  simple operations. We assume  that 
the machine  (on  which the  interpreter will run)  can  move 
data  from  one  part of memory to  another,  that it can  do 
additions, subtractions and  multiplications,  and  condi- 
tional  branching; we do  not  assume  that  it  can  do noncon- 
ventional operations  such  as  the APL encode and decode. 
(We do  use  an  encode with base 2 but this  usage corre- 
sponds  to a simple IBM  System/360  test  under mask 
instruction). We  assume  that  the  interpreter will have a 
subroutine  that can  allocate  a block of memory and set 
up  the  appropriate  address  table  entry and the  data for- 
mats discussed earlier. 

The method 
No description is available in the  literature of the meth- 
ods used in the existing APL interpreters. We assume  they 
use a generalization of the method shown in the EVAL3 
function. Abrams[9]  describes a  method for  use on a 
theoretical APL machine, but his basic machine is so radi- 
cally different from conventional  machines that his tech- 
niques are  not directly  applicable. In  the APL emulator 
for  the IBM/360 model 25 [8], we used a microcode rou- 
tine for  scalar  and  vector  subscripts and an APL routine 
(which in turn called on  the microcoded  routines) to  do 
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the general case.  The method used in EVAL3 can  be modi- 
fied to  treat  the  case of a  general  N-dimension subscript. 
The  routine would have  to  be  reorganized;  instead of the 
three explicit  loops using 11, 12 and I3 there would be  a 
general iteration  vector I [0] , I [ 1 1, . . . IIN - 1 ]  which 
would control N implicit loops. These changes are non- 
trivial but they can be done.  There is however a funda- 
mental  objection to this method;  the method is quite 
inefficient in almost all cases.  The LOOP statement in 
€VAL3 uses  two multiplications,  and  this statement is 
repeated S1 X S2 X S3 times (see EVAL3 for  the defini- 
tion of S1, S2 and S3). The  method  to  be  discussed  here 
needs  at most S1 + S 2  + S3 multiplications.  Many APL 

subscripts  have  one  or  more  empty  subscript positions 
(see  Kolsky[2]  for many  examples). The  method pro- 
posed  here will recognize these special cases  and,  for 
example, if A is a 10 X 20 X 30 array, then the method 
will recognize that (,A[3; ;]) is the  same  as (,A) [ 1800 + 
~6001 and  it will use this fact  to optimize the evaluation. 

The method which we  use  to  evaluate APL subscripts 
is divided into  three stages. These  stages  are  described 
in  detail by three APL routines INDA, INDB and INDC. 
The subscript  calculation  begins at  the  stage  where  the 
stack contains  information of the  form 

(top of stack) - A[IO; 11; . . . ; IK1, 

where A is the internal name of a vector  or  array,  and IO, 
11, . . . IK are  the internal names of scalars,  vectors  or 
arrays;  some  or all of the  subscript positions may be 
empty.  In  the first stage  we  set  up a vector called L, which 
gives a convenient, and  usually concise description of the 
information  contained in IO through IK. In  stage 2 we look 
for  features  that  can be factored  out of the  subscript list, 
so as  to optimize the final calculation. In  stage 3 we show 
how the  vector L can be used to access  successive ele- 
ments of the final answer. 

Initialization 
We now consider  the  details of the first stage. Suppose 
the  stack  contains  the information shown  above.  We 
build up  the  vector L, which  contains K + 5 blocks of 
information, L = C, BO, B1, . . . BK,  V, S ,  T. C contains six 
integers,  namely C = 8 K + 1 6 X K + 1 u u u, where u 
denotes unused or undefined. These undefined slots will 
be  used at a later stage. Each of the B blocks contains six 
integers, with one B block corresponding to  each sub- 
script position. Each B has  one of the following formats: 

BIO 1 2 3 4 51 
I is scalar Bis 0 I u u  0 U 

I is AP vector B is 1 I[O] u u pI I[1] - I[O] 
I is missing Bis  5 0 u u  OS 1 
I is vector  or  array B is 2 u u u p,l OV 

Will be used to hold (pA) [I] T 
48 Will be used to hold weights 

If I is a scalar or an  arithmetic progression vector,  then 
the B block contains a complete description of I. If I is a 
general vector  or  array,  then  we  copy  the values of I into 
the block V and  use B [5]  to give the offset of these values. 
S gives the  shape information, S +- (pIO), (pll), . . . (pIK)  
and T + pS. If the  Ith  subscript is missing then a single 
element is used instead of (pll).  The offset OS will point 
to this element,  and  its value will be filled in later.  Some 
examples  should  clarify  this  description.  If the sub- 
scripted  example was A[3 2 4; 1 5 3 4; 21, then  the re- 
sultant L block is 

8 3 1 8 0 0  0 + C  
2 0 0 0 3 24 +-BO 
2 0 0 0 4 27 +B1 
0 2  0 0 0  0 +-B2 
3 2   4 1 5  3 4 t V  
3 4  +S 
2 +T 
If the subscript expression  was A[3 2 4; ; 21, then  the L 
block is 

8 3 1 8 0  0 0 
2 0  0 0  3 2 4  
5 0   0 0 2 8  1 
0 2  0 0  0 0 
3 2  4 
3 0  
2 

If the  subscript  expression is A[IO; 1 5 3 4; 21, where IO 
is 3 1 2 p 6 5 7 1 4 4, then the L block is 

8 3 1 8 0 0  0 
2 0  0 0 6 2 4  
2 0  0 0 4 3 0  
0 2  0 0 0  0 
6 5   7 1 4   4 1 5 3 4  
3 1   2 4  
4 

Finally if the  subscript  expression is A[2; ~ 9 ; ] ,  then L is 

8 3 1 8 0  0 0  
0 2  0 0  0 0  
1 0  0 0  9 1  
5 0  0 0 2 5 1  
9 0  
2 

Appendix I gives the APL description of the  method used 
to  compute L. The function INDA will compute  an L for 
any number of subscripts. 

A  possible  objection to  the  method used in INDA is that 
we copy  subscripts  into L and this procedure might waste 
time. One  advantage of the copying is that  we  can multi- 
ply the  copy by an  appropriate weight factor  and  store 
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the result in the  same  place; doing the multiplication at 
this stage effectively takes  the multiplication outside  the 
inner loop of the  subscript calculation. The APL language 
insists that  subscripts should have integer values, but 
there is no  guarantee  that they will have  an integer  repre- 
sentation. We  can check  for integer  values and  convert 
to  an integer representation  at  the time the copying is 
done.  In  practice many APL subscripts  are  either  scalars 
or  arithmetic progression vectors,  and in  this case  the 
copying takes a negligible amount of time. 

Analysis and compression 
The  next stage,  which is described in INDB, is to check 
the  value of the  subscripts,  insert  the weight factors,  and 
finally to  reduce  the number of subscripts, if possible. If 
IO, 11, . . . are  scalars,  then 

A[IO; r1; . . . IKI 
= (,A)  [(W[OI X IO) + (W[11 X 11) + .  . . W[K] x IK], 

where W[K] = 1 

and W[Il = W [ I +  11 X (pA)[I + 11 
f o r ] = K - l , K - 2 ,  . . .  0. 

If 11 is a vector  or  an  array, then each element of I] has 
to  be multiplied by W[]]. Of course in the  arithmetic 
progression case we use  the  fact  that 

( (WUl  X P )  + (WUl  X Q) X LR)  
= W[]] X ( P  + Q X LR) .  

As discussed earlier, L contains the blocks C, BO, B1, 
. . . BK, V, S, T. The  routine INDB implements the follow- 
ing rules. For  each block BI, set B ] [ 2 ]  = (PA)[]] and 
BJ[3] = W[]] and  then 

1)  If I] is a scalar,  then  check  that it is in range (that is 
nonnegative and  less than BI[2] and multiply it by the 
weight factor. 

2) If I] is an arithmetic progression vector,  then check 
that B[1] and B[1] +B[5]  X (B[4] - 1) are in range 
and multiply B [ 1 ] and B [5] by the weight factor 
which is in BJ[3]. 

3) If II was an empty  subscript, then fill the  rank infor- 
mation  into the  appropriate place in S, and now make 
this case look like the  arithmetic progression case. 

4) If I] is a  general vector  or  array, then  check that  each 
element is in range,  and multiply each element by the 
weight factor. The  elements  are conveniently  available 
in L(B[5]),  L(B[5] + 11, .  . . 

is the  sum  (not  the product) of the  number of multiplica- 
tions for  each item. 

If A is a 10 X 20 X 30  array, and we  consider  the first 
example shown  above (namely, A[3 2 4; 1 5 3 4; 21) then 
the results of the  above calculation would set L to 

8 3 18 0 0 0  
2 0 10  600 3 24 
2 0 20 30 4 27 
0 2 30 1 0 0  

1800 1200 2400 30 150 90 120 
3 4  
2 

Notice  that  the final result  could  now be obtained with- 
out any further multiplications. The  successive  elements 
of the result are  taken  from A[3; 1; 21, A[3; 5; 21, 
A[3; 3; 21 and so on. The final routine will access  these 
elements  as (,A)[1800 + 30 + 21, (,A)[1800 + 150 + 21, 
(,A)[1800 + 90 + 21, and so on. 

Part of INDB is concerned with  optimization. We can 
best illustrate  this by considering  a specific example.  Sup- 
pose  the  subscript  expression  were A [2 + ~ 3 ;  3 + 4 X 

~ 5 ;  61 and  that A has  size 10 20 30. After  the INDA stage, 
L will be 

8 3 1 8 0 0 0  
1 2   u u 3 1  
1 3   u u 5 4  
0 6  u u O u  
3 5  
2 

. 

and  after  the processing described  above it would be 

8 3 1 8  0 0  0 
1 1200 10 600 3 600 
1 90 20  30 5 120 
0 6 3 0   1 0  0 
3 5  
2 

The  successive  elements of the final result  are  to be 
taken  from A[2; 3; 61, A[2; 7; 61, A[2; 11; 61, A[2; 15; 61, 
A[2; 19; 61, A[3; 3; 61, A[3; 7 ;  61 and so on. Let R denote 
the ravel of A; then  these elements are  the  same  as 
R[1200 + 90 + 61, R[1200+ 90 + 120 + 61, R[1200 + 
90 + 240 + 61, R[1200 + 90 + 360 + 61, R[1200 + 90 + 
480 + 61, R[1200 + 600 + 90 + 61 R[1200 + 600 + 90 + 
120 + 61, and so on.  We notice  that this  can  be  written 
R[F],  R[F + 1201, etc., where F = 1200 + 90 + 6, is the 

Notice  that lNDB requires K - 1 multiplications to fixed part of each  expression.  In  the  routine INDB we 
compute  the weight factors,  but  that  it then  needs  only calculate  this constant.  In  the general case, if I] is a  sca- 
one multiplication for  each  scalar, two  multiplications lar, then  we can  add BI[ 1 ] to F and then erase  the block 
for  each  arithmetic progression vector, and n multiplica- BI. If 11 is an  arithmetic progression vector, then we  can 
tions for  each  general  array,  where n is the  number of add B][ 11 t.0 F and  then set B][ 11 to  zero.  In  the final cal- 
elements in the  array.  The total number of multiplications culation  (described  in the  next section), each B block will 49 
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control a loop in the  subscript evaluation process; elim- 
inating a B block will eliminate an unnecessary loop. 

In  the  above example, the  successive  elements of the 
result are R[F] ,   R[F + 1201, R[F + 2401, and so on.  We 
notice  that  the first five items are spaced at equal  inter- 
vals,  but this is not surprising since  the original expres- 
sion  contained an ~5. We  see  subsequent items are  also 
separated by 120. The  separation implies that  we could 
replace  the  two blocks: 

1-"3 600 
1 - "  5 120 

by a single block of the  form 

1 - __ - 15  120. 

This is true  because a block of the form 

BI= 1 - - - B][4]  B][5] 

means  that INDC should use  the  steps 0, B][5], 2 X B][5], 
. . . (BI[4] - 1) X BI[5]; then INDC should reset  the 
counter  for this block to  zero  and  increment  the  counter 
of the prior  block  by  its  stepping factor.  Let B]Ml (which 
stands  for B of I - 1) be  the  prior block. If this block is 
also  an  arithmetic progression vector,  then  its  step is 
BIMl [SI. Now if B]M1[5] = B][4] X BI[5], then  we  can 
write the  double loop  controlled by BI and BIMl as a 
single loop. If both  loops  are  used,  then INDC will come 
to  the  stage  where  one  counter changes from (B1[4] - 
1) X B][5] to zero and the  other  counter changes by 
B]Ml[ 51. The  same effect can  be gained  by changing the 
first counter  from (BJ[4] - 1) x BJ[5] to BI[4] x BI[51. 
The  steps  at  statements 18 and 20 of INDB (see  Appendix 
I) carry  out  the  tests  for this  optimization. 

We now summarize the calculations done by INDB. We 
check  that  each  subscript  is in range. Then  we multiply 
it by an  appropriate weight factor.  Each B block in L will 
control a loop in the final calculation.  We remove  the 
constant  factor from scalar  and  arithmetic progression 
vector blocks,  and we  erase  the  scalar blocks. Finally, if 
two  arithmetic progression  blocks are  next  to  each  other, 
we  test  to  determine if the  two blocks can  be  compressed 
into one. I t  is this compression which will result in the 
efficient calculation of special cases  such  as A [K ; ;] . 

At  the  end of INDB, L has  the  form C, BO, B1, . . . V, 
S, T, where 

C t F u u u u u  
B + X  u u u N G 
V c (old values - index origin) X weight factors 
S + shape of result  with all values filled in 
T + rank of result, 
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(41X) = 0 then this  block is no longer  used 
(41X) = 1 then this  block generates G X LN 
(4(X) = 2 then this block generates LEG + LN] 
F = fixed part of subscript 
u = unused  part of block. 

The  active blocks have been squeezed together. If we 
let X denote  the first  item in a block and  let BIT = (8pDT 
X, then  the  outermost block has BIT[4] = 1, the  inner 
block has BIT[3] = 1. 

As an example, if the  subscript  expression  is A[3 ; ;] 
and A is a 10 X 20 X 30 array,  then  at  the end of INDB, 
L will be 

1800 u u u u u 
29 u u u 600 1 

unused  block 
unused block 
20 30 
2. 

This result implies that A[3 ; ;] = 20 30 p (,A)[1800 + 
16001. 

Evaluation 
The final stage is to  show how  L can be  used to  generate 
the  subscripts. If the  number of elements in the result is 
zero,  then  we  do not  need to proceed  any  further. If the 
result is a scalar,  then L[O] represents  the  complete re- 
sult. If the result is nonscalar  and nonnull, then we have 
to  generate  successive  subscripts by  progressing through 
BO, B1, . . .. Each B has  the  form X u  u u N G, where u 
is unused and X, N and G are  described in the  previous 
section. The basis of the  method is to  use  each B to con- 
t ro l aDOloop .WeuseB[1] tocoun tN-1 ,N-2 ;~~0 ;  
we use B[2] to hold a step  or  an offset,  and we  use B[3] 
to hold a current value. The function INDC produces 
successive values, one at a  time. We could arrange  to 
produce all values at  once,  but in a typical  application 
the  rest of the  interpreter will call on INDC for  one  value 
at a time. INDC does  not  use any  global  variables other 
than L. INDC does  use  some local variables but  these 
are all scalars. In  some compilers (or  interpreters)  there 
is a limit (typically 2 ,  3 or 7) on  the  number of subscripts, 
and the compiler writer  can  make  use of this fact. He  can 
allocate  a small number of memory  locations to hold 
intermediate results. In APL, the  number of subscripts 
and number of elements in each  subscript is unlimited; 
we can not assume  that  there is some  permanent  area 
which can  be used to hold intermediate results. INDA as- 
sumes  that  the  interpreter has some mechanism for allo- 
cating memory;  it  uses this  mechanism once,  to  get  space 
for L ,  and  thereafter it saves  intermediate  results in L. 

It  will be  seen  that INDC allows a negative subscript; 
however, lNDB has already checked all subscripts so 
this case  cannot  arise.  The  reason  for allowing negative 
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subscripts in l N D C  will be  apparent when we come  to 
consider selection operators. 

To  summarize the position so far:  We  have  presented 
a series of functions which describe  the evaluation of 
APL subscripts.  The method does apply to any number of 
subscripts, it uses a moderate  amount of intermediate 
storage, it applies to  subscripts of any size  and  shape, 
and it does  analyze all cases so that  the final evaluation 
takes  advantage of all special cases. 

We  have assumed that  the  subscript is on  the right of 
an assignment. The following steps apply to  both sub- 
scripts  on  the left or  on  the right.  Initially, the  stack is 
Arlo; . . . or Arlo] . . . . After  the  use of l N D A  
and INDB, the  stack will be 

A [ L ]  + B . . . or A [ L ]  or A [ L ] X  . . . 
where X is not the assignment operator. 

The  second and  third cases imply subscripting on  the 
right. The  steps  are: 

Get  space  for  result,  space is defined by 

(-1 + -1 t L )  t L 

Use INDC to generate  subscripts,  get values  and store 
successive results. 

The first case implies subscripting on  the left and  the 
steps  are: 

If ( 1  f p,B), then  check  that 

( p B )  = -1  4 (-1 + -1 t L )  t L. 

If A is arithmetic  and B is character (or  vice versa)  and 
if the  number of subscripts specified by L is not zero, 
then indicate an  error. If (type of A)# (type of B), then 
it may  be necessary  to  convert  the whole of A. This 
happens if A is integer and B is  real,  or A is logical and 
B is nonlogical. Get succesive  elements of B, convert  to 
type of A, use l N D C  to find offset of result  position and 
store result in A. 

The calculations specified by INDA,   lNDB and INDC 
require many separate  steps  and  it might seem  that  these 
would take  an  excessive  amount of time.  There  are  some 
saving factors.  Most of the  steps  can  be performed by a 
few LOAD, STORE or BRANCH instructions.  A  machine 
language MULTIPLY instruction typically takes eight times 
as long as a LOAD instruction. If the  subscript result  con- 
tains  a  large number of elements, then  the initial analysis 
will be  compensated by the saving in multiply times. 
There  are  several places where  further optimization can 
be performed;  for example, if the  result of lNDB shows 
that  there is a single loop  which is an  arithmetic progres- 
sion vector with a step of +1 or -1,  then lNDC can (ex- 
cept in the logical case) be  replaced by a MOVE LONG 

instruction. There is no  doubt  that APL subscript opera- 

tions  are complicated  and that any method will require 
many  steps;  because of the  dynamic  structure of all vari- 
ables, it is  not possible to  do any of the analysis  during a 
compilation  stage. 

Selection operators 
The  subscript  operations of APL can be used to  select 
part  on  an  array;  for  example, M [ 3  ; ]  selects  row 3 of 
matrix M. Other  operators  such as reverse  and  transpose 
can be  used to select  part of an  array.  Abrams[9]  has 
suggested that all these  operations  have  certain proper- 
ties in common,  and  he applies the term selection opera- 
tion to them. The significance of Abrams' work is  that 
he develops an efficient and  elegant  way of doing selec- 
tion operations. 

Given  an  array A, Abrams  uses  an internal  represen- 
tation which  contains a value part (which we will call 
AV), and an access function. The  access function is di- 
vided into  three  parts  denoted by A B A S E ,   A V E C  and 
ADEL. The definition of these quantities  is: 

AV t ,A  
A V E C  + PA 
ADEL +- ( N  +- p p A ) p  1 

A D E L E N ]   + A D E L [ N  + 1 1  X A V E C [ N  + 1 1  
"$ LOOP 

LOOP: + N O M O R l F O > N t N - l  

N O M O R :   A B A S E  + 0 

ADEL is just  the weight function discussed earlier. 
1 is a vector,  then 

A[l[O]; 1 [ 1 ] ;  . . . ] = A V [ A B A S E  + + / A D E L  x I ] .  

If 

Consider a typical  selection operation  such  as Z + 

$ [ ] I  A. Abrams  shows  that  the internal representation of 
Z has 

ZV +" AV 
ZBASE +- A B A S E  + A D E L [ ] ]  X ( A V E C [ I ]  - 1 )  
ZVEC +- A V E C  
ZDEL +- A D E L  
ZDEL[]]  +- -ADEL[]]  

Abrams' implementation is arranged so that  both A 
and Z have  an  access function, but they share a common 
value block. Abrams defines a selection operation  to  be 
any operation  whose result can  be  computed by rede- 
fining an access function. He  shows  that  reverse, trans- 
pose,  and  some  cases of take,  drop and  subscripting are 
selection operations. 

In  the previous section  we  described a function l N D C  
which produces  successive  elements of a  subscripted 
expression.  The  complete  expression  can be computed 
using the function E V A L  shown below. The APL programs 
shown in this section will give an over-all  view; they will 
not show  the detailed steps  to be  used  by an  interpreter. 51 
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V Z t- EVAL;  I ;  I; N ;  T 
[ 1 1  c N O T E   T H A T  0 ORIGIN IS USED 
[ a ]  + NOTNULL IF 0 # I + x/N + - 1  1 

[31 Z + N p l  t , A  
(-1 + - 1  t L )  t L 

[41 + 0 
[ 5 ]  c THIS  SETS I = Z E R O   O R   B L A N K  
[6] NOTNULL:  I + 1 7 (T+ 0 ) p A  
[7]  c SO NOW W E   C A N  INITIALIZE Z 
[81 Z + I d  

[ l o 1   Z [ T l  + ( , A ) [ I I  
[ 9 ]   L O O P :  + SKIP IF 0 > I +- INDC T > 0 

[ l l ]  SKIP: + LOOP I F ]  > T + T + 1 
[ l a ]  Z + NpZ 

v 

We can now extend  Abrams’ idea of selection opera- 
tors.  The  vector L used by INDC can  be  used in place of 
A B A S E ,   A V E C  and ADEL,  so that L is now the  access 
function  (actually it is L in conjunction  with INDC that 
carries  out  the  access,  but INDC does not change  from 
case  to case). An  operation S is a  selection operation if 
there is an  access function L such  that E V A L  and INDC 
can compute  the  result of S A .  We have  seen  that E V A L  
can be used for all cases of subscripting. I t  can  also  be 
used for  reverse,  transpose,  compress,  expand,  take  and 
drop. Ravel and  some  cases of reshape can be considered 
as selection operations  but  it  is usually not profitable to 
do this. 

As a first example,  consider $[J]A.  For  the moment, 
suppose p A  is 10 20  30 and I is 0. The result is 

Z + $[O]A or 

Z + A [ 9  - ~ 1 0  ; ; ] .  

If we  take A [9 - ~ 1 0  ; ; ]  and apply INDA,  then it will pro- 
duce  the list 

8 3 1 8 0  0 0 
1 9  0 0  1 0 - 1  
5 0   0 0 2 5  1 
5 0   0 0 2 6  1 
10 0 0 
3 

and now applying INDB would produce 

5400 0 0 0 0 0 
9 0 0 0 10 -600 

17 0 0 0 600 1 
10 20 30 
3 

and applying INDC to this would produce  the  desired re- 
sult.  A  function to  produce L in the general case is as 
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V L + ] R E V A  
[ 1 1  c GENERATE  L IST   FOR $ [ J ] A  
[ 2 ]  c N O T E   T H A T  0 ORIGIN IS U S E D  
[3]   SETUP A 
[41 N (PA) [I1 
[ 5 ]  L [ ( 6 X I f 1 ) + 0 1 4 5 ] + 1 , ( N - l ) , N , - l  

v 

V SETUP A; K; N ;  M 
[ l ]  c SET U P  A LIST   FOR A [ ;  ; . . ; ; ]  
[ a ]  c NOTE  THAT 0 ORIGIN IS USED 
[ 3 ]  N + 6 X K + p p A  
[ 4 ]   L + - 8 , K , N , O O O , N p 5 O O O O 1  
[ 5 ]   L [ 1 0  + 6 x L K ]  + ( p L )  + LK 
[61 L + L,  (PA) ,  p p A  

v 
REV is a  description of the overall process.  In  an  actual 
implementation, the program  would first calculate the 
size of L and  then  get  space  for L. We  assume  that A is 
not a scalar and that I has a legitimate value. The  output 
from L has  to  be  processed by INDB and  then it can  be 
used  by INDC. It would be possible to write  a REV which 
does  not  use SETUP or INDB. The monadic transpose 
operation can  be expressed in terms of the  dyadic  trans- 
pose. The  dyadic  transpose  does a transposition of sub- 
scripts.  For  example, if Z + 2 3 1 & A, then 

Z [ I ;  I ;  K ]  + A [I; K; I ]  for all I, 1, K. 

For Z + V4A then  the Nth subscript of A is the V[N]th 
subscript of Z. If some of the  elements of V [ N ]  are equal 
to  each  other,  then  the  corresponding  subscripts of A be- 
come a single subscript in Z. A  description for producing 
the  subscript list of V&A is shown in function T R A N S -  
POSE.  It follows the method of Abrams [ 9 ] .  

V V T R A N S P O S E  A; B];  D; S ;  T 
[ 1 ] c NOTE  THAT 0 ORIGIN IS USED 
[ 2 ]   G E T D S T  
[31 BI + SQUEEZE,  1, (0, (0, (0, S, Dl 1 )  
[41 BI[OI + BI[Ol + 8 
[ 5 ]   B I [ - 6  + pBJ]  + BIr-6 + p B J ]  + 16 
[ 6 ]  L + 0 0 0 0 0 0 ,BI, (,S), T 

v 

V GETDST;   DELA;  I ;  I R R A ;   R A ;   R R A ;   T E M P  
[ 1 ] c N O T E   T H A T  0 ORIGIN IS U S E D  
[ 2 ]   I R R A  + L R R A  + p R A   p A  
[ 3 ]  ’ D E L A  t x / ( l  J R A ,  1 )  [ ( R R A  - 1)LIRRA 

[ 4 ]  + TESTSD  AFTER S t- D +- Opl t- - 1  
[ 5 ]  FIXSD: S +- S ,  L / T E M P / R A  
[ 6 ]  D t- D,  + /TEMP/DELA 
[ 7 ]   T E S T S D : + F I X S D I F   ( V / T E M P + - V = I + l + 1 )  

0. + I R R A ]  
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[81 S + ( (T  +"S), 1)pS 
[91 D + (T, 1)pD 

v 

V Z +- SQUEEZE B; T 
[ 1 ] c NOTE THAT 0 ORIGIN IS USED 
[ 2 ]  Z + -6 t B 
[ 3 ]  LOOP: + 0 IF O=pB + -6 J, B 
[4] + COMBINE IF  (T + -6 B )  [5] = Z[4] 

[5] -+ LOOP AFTER Z + T, Z 
[6] COMBINE: + LOOP AFTER Z[4] + T[4] 

X z[51 

X n 4 1  
v 

V Z + A AFTER B 
[ l ]  Z + A  

v 

Consider D t A and  let all the  elements of D be greater 
than  zero.  The method  used for this restricted  case  can 
easily  be extended  to  drop,  and  to  the  case  where ele- 
ments of D are less than  or  equal  to  zero. D t A can  be 
expressed in terms of the subscript  list 

L + C ,  BO, B1, . . . BK, S, T where S + D 
T + p,D 
K + T - 1  

and each B usually has the form BJ = 1 0 0 0 D[J] 1. This 
form is adequate providing D[]] 5 (PA)[]] (Abrams' 
methods  are restricted to this case). We can  treat  the  case 

O[ll > (PA) [I1 by 

BI = 2 0 0 0 D[I]  OV, 

where OV is the offset of the  vector 

( ~ ( p A ) [ l l ) ,  - (pA)[ l l )p- l .  

The INDB routine will reject  negative subscripts.  As 
we mentioned  earlier, however, INDC will accept a nega- 
tive subscript. We  can  now  give a meaning to a negative 
result from INDC. If INDC returns  the result I, then  the 
corresponding  element of A is  as follows: 

if I 1 0 then (,A) [I] 
if J < 0 then zero  or blank. 

Suppose A is 2 2 p 'PQRS', then 3 2 f A would pro- 
duce  the list 

0 0  0 0 0  0 
1 0 0  0 0 3 1 8  
1 7 0  0 0 2  1 
0 2 -2 
3 2  
2 
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INDC would produce 0 1 2 3 -2 -2 and  the result is 3 2 p 
'PQRS '. An unsatisfactory feature of this  method is that 
it requires a block of type 2 (explicit vector) rather than 
a block of type 1 (AP vector)  for  each D [ I ]  > (PA) [I]. 
An  alternative  approach is to  use  the  type 1 vector, 1 0 0 
0 D [ J ]  1 in all cases, but modify INDC at  statement 48 
from 

+ L O O P , L [ U + 3 ]  + Z + Z + S T E P  

to 

+ (L[U + 41 > L[U + 31 + Z + Z + STEP)/LOOP 
-+ LOOP, z + -1 

and a similar modification at  statement 35. An unsatis- 
factory  feature of this second method is that  it  adds  an 
extra  test in the  inner  loop of every  subscript calculation. 
Since  the  second method  penalizes all cases,  whereas 
the first method only  penalizes  exceptional cases, we pre- 
fer  the first method. 

The  compress  operation Z +- V/[]]A is equivalent to 
Z + A [; ; . . . ; C; ; . . . ;], where  there  are I semicolons 
in front of the C, C + V/b(pA)[]] and  there  are -1 + 
(ppA) - I semicolons after  the C. This result  can  be  ex- 
pressed in terms of a list L with at most three blocks. The 
empty  subscripts  reduce  to a block of type 1 and the C 
reduces  to a  block of type 1 or type 2. We see  that Z + 

V\[J]A can also be treated in the  same  way,  but C is 
now C + (- + V\b(pA)[I] and we rely on lNDC to 
transmit a negative subscript  as a request  for a fill ele- 
ment (zero  or blank). 

Consider Bh[I]A. If B is a scalar, then we can use  the 
method described in the previous  paragraph, where C +- 
B&(pA)[I]. Alternatively,  we could use C + B + ~(PA) 
[I] and modify INDC so that  subscripts  are  interpreted 
modulo pA. We cannot  see any way of including the gen- 
eral rotate  operation  (where B is a vector) in our existing 
list  form. There  are  several methods of doing the general 
case,  but including these  methods in INDC would seem 
to penalize all the  other  subscript operations. 

To  summarize the discussion of this  section:  We ex- 
tend  Abrams' notion of a selection operation; we define 
a  selection operation  to be any  operation S which can 
be represented by the  subscript list described  earlier. 
In  other  words, S is a selection operation if there  exists 
a vector L such  that €VAL will evaluate SA. 

All cases of subscripting, take,  drop,  reverse,  trans- 
pose,  compress  and  expand  can be expressed in  this  way. 

Dragalong  and  beating 
Abrams[9]  has  shown  that many APL expressions  can 
be evaluated  more efficiently if various operations  are 
combined and if other  operations  are  commuted. If S1 
and S2 are selection operators,  then  Abrams  describes 
a machine which treats S1 S 2  A as  follows: Make  copy 53 
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of descriptor block of A, apply S2 to this  block to  pro- 
duce a new block,  apply S1 to the new block. Abrams 
calls  this process beating. We  gave  an  example earlier 
of how his machine does $[]]A  in afew simple steps.  The 
Abrams machine delays  the evaluation (drags  along) 
of nonselect expressions.  For example, 3 t (2X - V) is 
evaluated as though it  were  written 2~ - 3 t V with a 
saving of (pv) - 3 operations.  The design of Abrams 
machine is quite  unlike any  other machine, so we  cannot 
use his methods;  however,  we  can investigate the pos- 
sibility of beating  and  dragalong in a more conventional 
machine. 

We assume  an APL design that is similar to  the  one de- 
scribed earlier[8].  The  data  descriptor  can specify that 
an  item is a scalar, a vector,  an  array,  an A P  vector,  or a 
subscripted  array.  The AP vector  and  the  subscripted 
array  were  not in the previous  design.  A subscripted ar- 
ray has  the  form L which results  from I N D A  and INDB 
(or from REV or  one of the  other selection operator rou- 
tines). We also  set L [  11 equal to  the internal name of the 
operand (in the earlier part of this paper,  the  operand 
was always  called A). In  the following description we 
use L, L1, L2, . . . to denote  subscripted  arrays. 

In  the previous  design, the expression A[I; I] + B[P; Q] 
was evaluated as follows: Form  temporary  result T1 +- 

B [P; Q],  form  temporary  result T2 +- A[I; I],  form T1 + 
T2. In  the new  design we  can  evaluate  it  as follows: Form 
L1 from B [P; Q],  form L2 from A[I; I],  access  the ele- 
ments  described by L1 and L2 and  add them  element  by 
element. Since  the  intermediate  results T1 and T2 are  not 
formed,  there will usually be  some saving. This saving has 
to  be balanced  against the  added complexity of the design. 
We  have,  for example, to  deal with expressions  such  as 
(B t X) [I; I ]  + B [P; Q] , where L1 refers  to a B which is 
no longer the  current B. 

There  seems  to  be  no theoretical difficulty in beating 
of selection operators, although in practice  the algorithms 
are complex. The  reason  for  the complexity is that  our 
L lists are more  general than  the  Abrams  array descrip- 
tors.  Consider  the following examples: 

A +- 10 20 30 p L 6000 
B t (1 0 1 0)/[1] AIO 3 1; 2 4  7  9; 8 21. 

The evaluation of the A [ . . . ] will produce  the  subscript- 
ed array 

L C 0  a 0 0 0 0 
10 0 0 0  3 2 4  
2 0 0 0  4 2 7  

18 0 0 0  2 3 1  
0 1800 600 60 120 210 270 8 2 
3 4 2  
3 

54 where a denotes  the internal  name of A. The  shape of 
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A[ . . . ] is given  by L[33  34 351 and  the  rank is in L[36]. 
After  the  compression,  the  shape along dimension num- 
ber  one (dimensions are  numbered 0, 1,2) is 2 so we need 
L[34] c 2. The block L[12 + 661 and L[27 + ~41 de- 
scribes  the  subscripts along the  second  dimension; now 

60 210 = ( (1  0 1 0)/60 120 210 270) 
= (1 0 1 O)/L[27 + 641, 

so the final result is 

B = subscripted  array  described by 

0 a 0 0   0 0  
10 0 0 0 3 2 4  
2 0 0 0 2 2 7  

18 0 0 0 2 3 1  
0 1800 600 60 210 u u 8 2 
3 2 . 2  
3 

where u denotes “undefined” or  “unused” and we  have 
underscored  the  elements  that  have  changed[ lo]. This 
case was quite  straightforward;  we now  illustrate the  two 
complications that  can arise. Consider 

A +“ 10 20 30 p ~6000 
B + (1 0 1 1)/[1] AIO 3 1; 2 4  6 8; 8 21. 

The resulting L is almost  the  same,  except  that L [  12 + 
~ 6 1  is now 1 0 0 0 4 120, that is, it describes an AP vec- 
tor. (1 0 1 1) applied to  the AP vector  produces a non-AP 
vector so we  have  to  convert  to a block of type 2 .  The 
second complication arises in cases  such  as 

A + 20 10 p ~ 2 0 0  
C t 3 4 p 0 3 1 2 4 7 9 8 2 5 1 6  
B +- (1  0 1 0)/[1] A[C; 8 21. 

After  the A[ . . . 1, the  subscripted  array is 

L C 0  a 0 0 0 0 
10 0 0 0 12 18 
18 0 0 0 2 3 0  
0 30 10 20 40 70 90 80 20 50 10  60 8 2 
3 4 2  
3 

The  shape of the result is still 3 4 2 so the  compression 
is legal, but now one block  (namely, L[6 + 161) covers 
two of the dimensions. I t  is possible to  unscramble  the 
dimensions. Suppose an L contains K blocks (in this case 
K =  2 )  and l e t s  +- -1 J (-1 + -1 t L)  t L(in  thiscase 
S +- 3  4 2). Then L[lO],  L[16], . . . [ lo  + 6 X K -  11 
contains  the number of elements  covered by each block. 
Now L[10] equalsS[O]  orS[O] X S[1] orS[O] X S[1] X 

S [ 2 ]  or . . . (in this case, L[10] = S [ O ]  X S[1]) and in 
general if L[10] +- x/S[O,1,2 . . . 101 then L[16] 
X/S[(ZO + l), (IO + 2), . . . I l l  and so on. Hence,  the first 
block came  from  an  array of dimensions S[O, 1 . . . lo], 
the  second block came from an  array of dimensions 
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S[IO + 1, . . . I l l ,  and so on. In  our example, the final re- 
sult is that L[6 + 161 has  to  describe  the block 

(1 0 1 0)/3 4 p 0 30 10 20 
40 70 90 80 
20 50 10 60 

that  is, 

3 2 p   0 1 0  
40 90 
20 10 

so the final value of L is 

O a O O O O  
10 0 0 0 6 1 8  
18 0 0 0 2 3 0  
0 10 40 90 20 10 u . . . u  8 2 
3 2 2  
3 

If S A  (where S is some selection operator)  produces a 
subscripted  array L, then L contains all the information 
on  the  value  and  shape of S A ,  hence  it is always possible 
to compute S ' S A  (where S' is  another selection operator) 
by  operating on L. 

A final point about  subscripted  arrays is that if A is of 
length 4, then AIO 21 and (1 0 1 O)/A produce  the  same 
list and,  therefore ((1 0 1 O)/A) + X should have  the 
same effect as AIO 21 +- X. 

To  summarize  this  discussion:  If we  defer  the evalua- 
tion of subscripted  arrays,  then we can  do beating on 
selection operators,  we can allow selection in assign- 
ments,  we may achieve  increased efficiency in the evalu- 
ation of scalar  operations  on  subscripted  arrays. We do 
not  see a simple method of implementing the general type 
of dragalong that  is  used in the  Abrams machine. 

Conclusions 
We  have described  a  method of calculating array sub- 
scripts of arrays.  This method is completely  general. It 
requires only a moderate  amount of intermediate mem- 
ory. It  does  take  advantage of the special properties of 
particular  subscript  patterns.  Wherever possible, it ex- 
tracts  scalar  subscripts, and  collapses several of the im- 
plied DO loops  into a single loop. The  techniques used 
in the subscripting case  are  extended  to  the  other selec- 
tion operators; namely, take,  drop,  reverse,  transpose, 
compress and expand. I t  is shown  that  sequences of se- 
lection operators could be collapsed into a single selec- 
tion  operation. 

Appendix I 
The following APL functions give a detailed  description 
of the  methods  described in the text. INDA assumes  that 
the global variable STACK contains a representation of 

the  stack,  and  that  there is a function called POP which 
will take  the  top item off the  stack. S T A C K [ S P ]  is the 
top item. If POP finds a variable name,  then  it  sets X equal 
to the value of the variable, and it removes  two items  from 
the  stack;  the  two  items  are  the  name  and  the following 
';' or '1'. POP also  returns a value which is 0, 1 or 2 de- 
pending on  whether  the variable is a scalar,  an  arithmetic 
progression vector,  or a  general vector  or  array. If POP 
finds an  empty  subscript position,  then it returns  the value 
5, and  takes  one item off the  stack. INDA makes two pass- 
es  over  the  stack.  In  the first pass  it  computes  the  space 
needed for L. It  gets  the  space  for L ;  in a real  implemen- 
tation,  statement 13 of INDA would be a call to  the  space 
management  routine. In  the  second  pass, INDA computes 
L. The global  variable IORG in INDB is the APL index 
origin. 

D ZNDA; LL; ARANK;  SRANK; SP; BB; BS; BV; 
N;  X 

[ 11 c NOTE  THAT 0 ORIGZN IS USED 
[2] c COMPUTE  SPACE  NEEDED  FOR L 
[3] LL t 7 + ARANK + SRANK + 0 
[4] SP + 2 
[5] L1: ARANK + ARANK + 1 
[6] + (TO, T1, T2, 0 0 ,T5) [POP] 

[8] T2: LL + LL + p,X 
[9] + TO, SRANK + SRANK + ppX 
[lo] "1: SRANK t SRANK + 1 
[ l l ]  TO: LL + LL + 6 
[12] -+ L1 IF(pSTACK)  > SP t SP + 2 
[ 131 c GET  SPACE  FOR L 
[14] L + ( L L  + S R A N K ) p  0 
[15] LIO 1 21 + 8, ARANK,  6 X ARANK 
[16] L[-1 + pL] + SRANK 
[17] BB t 6  
[18] BV + L [ 2 ]  + 6 
[19] BS + ( p L )  + -1 - SRANK 
[ZO] c FORM L = C, B, V ,  S, T 
[ a l l  c BB, BV, BS POINT TO NEXT  PART OF B, V ,  S 
[22] SP + 2 
[23] L4: -+ ( T T O ,  TT1, TT2,O 0 ,TT5) [POP] 
[24] TT5: L[BB + 161 + 5 0 0 0 ,BS, 1 
[25] SP + SP - 1 
[26] L2: + L3, BS BS + 1 
[27] TT2: 'DOMAIN'  ERRORIF V/,X # LX 
[28] L[BV + LN p,X] + ,X 
[29] L [ B S  + ~ p p X ]  + pX 
[30] BS + BS + p p X  
[31] L[BB + 161 +- 2 0 0 0 ,N, BV 
[32] "+ L3, BV + BV + N 
[33] TT1: L[BS] + p X  
[34] + L2, L[BB + ~ 6 ]  + 1, X[O], 0 0 ,(pX),  X[1] 

- X D l  
[35] T T O :  'DOMAIN'  ERRORIF X # LX 

[7] T5: -+ "1, SP t SP - 1 
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[36] L [ B B  + ~ 6 ]  + 0, X ,  0 0 0 0 
[37] L3: B B  t B B  + 6 
[38] -+ L4 I F ( p S T A C K )  > SP + SP + 2 

v 

V A E R R O R I F  B 
[ l ]  -+ 0 IF - V / , B  
[a] A,'   ERROR' 
131 -+ 

v 

V INDB; D; W;  S;  K;   F;  Q 
11 1 c N O T E   T H A T  0 O R I G I N  IS U S E D  
[a] 'RANK'   ERRORIF  L [ 11 # p p A  
[31 D +- ( p A )  [Q +- -1 + ppA] 
[4] S + W + l + F + O  
[5] L[K] + L [ K  + L[2]] + 16 
[61 c S T A R T   A T   I N N E R   B L O C K   A N D   P R O C E S S  
[71 c O N E   B L O C K   A T  A TIME 
[8] LOOP: L[K + 2 31 t D, W 
[91 -+ (TO, T1, 7'2, 0 0 ,T5) [81L[K]] 

[ l l ]  M O R :  S + S X L [ K  + 41 

[13] W - W X D  

[15] T5: -+ L1, L[K + 41 +- L [ L [ K  + 411 +- D 
1161 T1: F + F + W X C H E C K  L[K + 11 
1171 -+ (0 x CHECK L [ K  + 11 + L [ K  + 51 

x L[K + 41 - l)/L1 
1181 L1: L[K + 51 + W X L[K + 51 
[19] -+ M O R  I F ( L [ K ]  > 16) V 1 # 21L[K + 61 
[20] c S U C C E S I V E   A P   V E C T O R S ,   R E D U C E  IF 

1211 -+ M O R   I F L [ K  + 51 # L [ K  + 101 X L [ K  + 111 

[23] S + S X L [ K  + 41 
[24] - + M O R 2 , L [ K + 5 4 ]  t L [ K +  111, 

[25] T2: L[P] + W x CHECK L [ P  + L [ K  + 51 

[26] -+ M O R  
[27] c NOW M O V E   A C T I V E   B L O C K S  TO H E A D  

[28]  ENDLOOP: P +- 6 + K + 0 
[29] L4: -+ L2 IF 0 = 41L[K +- K + 61 
[30] + L3 IF K = P 
[31] L [ P  + ~ 6 ]  t L [ K  + ~ 6 ]  
[32] L3: P + P + 6 

[34]  L[6] +- 8 + 81L[6] 

[36] L [ 0 ]  t F 

[ lo]  TO: F + F + W X C H E C K  L[K + 11 - I O R G  

[ la ]  M O R 2 :  -+ E N D L O O P  IF L [ K  + K - b] > 7 

1141 -+ LOOP, D -+ ( p A )  [Q +- Q - 11 

P O S S I B L E  

[22] L[K + 61 +- L[K + 61 - 41L[K + 61 

L [ K  + 41 x L[K + 101 

+ L L [ K  + 411 - I O R G  

OF LIST 

[33] L2: -+ L4 IF - L[K] > 15 

[35] L [ P  - 61 + 16 + 161L[P - 61 
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V Z + C H E C K A  
[ 11 -+ ( V / 0  > ,Z t A ) / E R R O R  
[a] -+ (- V/D 5 ,A) /O 
[3] ERROR:   ' INDEX  ERROR'  
[41 -+ 

V 

V Z + INDC T ;  U ;  S ;  COUNT;   STEP;  W 
[11 c NOTE THAT 0 ORIGIN rs USED 
[a] -+ FETCH IF T 
[3] c INITIALISE LOOPS A N D   G E T   F I R S T   V A L U E  

[5]  L[1] + U + 0 
[6] LOOP: S +- 2561L[U + U + 61 
[7]  LOOP1: S T E P  +- L[U + 51 

[9] -+ (DOWNOO, DOWN01, DOWNl0) 

[ 101 c C A N   O N L Y   O C C U R  IF 0 = p p A  
[ 1 11 DOWNOO: + 0 
1121 c A P   C A S E  
[13]  DOWN01: -+ (0 5 L[U + 31 +- Z) /POS 
[14] STEP +- 0 
1151 POS: -+ (BIT   3 ) i INNER 
1161 NOTIN: -+ LOOP, L [  U + 1 21 +- C O U N T ,   S T E P  
[17] INNER:  U +- 1 + 4 X U 
[181 L[41 +-Z 
[ 191 I N N E R  1 : -+ 0, L [ 1 2 31 +- U, C O U N T ,   S T E P  
[a01 c G E N E R A L   V E C T O R  OR ARRAY 
[ a  1 ] c ' S T E P '   A C T U A L L Y   C O N T A I N S   O F F S E T  
[ZZ] DOWNl0: W + Z 
[231 Z + (-1, Z + L [ S T E P ] )   [ L [ S T E P ]  > 01 
[24] + INNER2 IF BIT 3 
[25] + NOTIN, L [ U  + 31 + W 
[26] I N N E R 2  U t 3 + 4 X U 
[27] -+ INNER1,  L[4] +- W 

1291 c G E T   N E X T   V A L U E ,  L [ 2  3 41 C O N T A I N S  
[30] c C O U N T ,   S T E P   O R   O F F S E T ,  OLD V A L U E  
[31] FETCH: -+ N O N S C  IF 21s + 2561L[ 11 
[32] FINAL:  'NO MORE  ELEMENTS  IN  LIST' 
[33] + Z + O  
[34] NONSC: "-z E N D S  IF 0 > L[2] + L[2] - 1 
[35] + V E C  IF  BIT 6 
[36] -+ 0, Z L[4]  +L[3] + L[4] 
[37] V E C :  + 0 IF 0 > Z +- L[3] 
[38] + 0, Z +- L[4] + L[L[3] + L[3] + 11 
[39] c INNER LOOP IS FINISHED,   TRY  NEXT 

[40] ENDS:  S + 2561L[U +LU + 41 
[41] UP: -+ F I N A L  IF BIT 4 

[43] Z t L [ U  + 31 
[44] STEP + L[U + 21 

[41 z ~ ~ 1 0 1  

[8] C O U N T  +- L[U + 41 - 1 

[(Z x BIT 6) + BIT 71 

1281 c 

0 UTER 

[42] S + L[U t U - 61 
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[45] -+ UP IF 0 > L[U + 13 t COUNT 

[46] c OUTER IS OK, SO RE-CYCLE INNER 
[47] + DOWN1 IF BIT 6 
[48] + LOOP, L[U + 31 +- Z +- Z + STEP 
[49]  DOWN1: STEP + L [ U  + 21 + L[U + 51 
[50] -+ LOOP, Z + (-1, Z + L[STEP]) [L[STEP]  

+ L [ U + l l - l  

’ 01 
V 

V Z +BIT K 
[ l ]  cGETBITKOFS 
[2] c NOTE THAT 0 ORIGIN IS USED 
[3i Z + ( , ( ~ P ~ ) T S ) [ K I  

V 

References and notes 
1. A. D. Falkoff  and  K. E. Iverson, APL\360 User’s  Manual, 

IBM Research Center, Yorktown Heights, New York 
(1968). Now available as  IBM manual, file number H20- 
0683. 

2. H. G .  Kolsky, “Problem formulation using APL,” IBM Sys- 
temsJournal, 8 No. 3, 204-219 (1969). 

JANUARY 1972 

3. F. E. Allen, “Program Optimization,” Annual  Review  ofAu- 
tomatic Programming, edited by  M. I. Halpern and C. J. 
Shaw, Vol. 5 ,  Pergamon Press, 1969, 239-307. 

4. F. R. A. Hopgood, Compiling Techniques, American Elsev- 
ier, New York, 1969. 

5.  V. A. Busam, and D.  E. Englund, “Optimization of Expres- 
sions in FORTRAN,” Comm. A C M ,  12,666-674 (1969). 

6. E. S. Lowry and C .  W. Medlock, “Object Code Optimiza- 
tion,” Comm. A C M ,  12, 13-30 (1969). 

7. L. M.  Breed  and  R. H. Lathwell, The  implementation of 
APL\360. Interactive Systems for Applied Mathematics. 
Academic Press, New York. (1968), pages 390-399. 

8. A. Hassitt, J. W. Lageschulte and L. E. Lyon, “Implemen- 
tation of a High Level Language Machine”. Preprints, 
ACM 4th Annual Workshop on Microprogramming, Sep- 
tember 13-14, 1971. 

9.  P. S. Abrams, “An APL Machine,” Stanford University 
Computer Science Dept. STAN-CS-70- 158 (1970). Also 
available from U.S. Dept. of Commerce, National Technical 
Information Service, Document A D  706 741. 

10.  By coincidence, the new value of L[27] is the same as the 
old value. 

Received June 28, 1971 

The authors are located at the IBM Scient$c Center, 
2670  Hanover  Street, Palo Alto,  California  94304. 

57 

EVALUATING ARRAY  SUBSCRIPTS OF ARRAYS 


