A. Hassitt
L. E. Lyon

Efficient Evaluation of Array Subscripts of Arrays

Abstract: The APL language allows subscripted expressions such as A[I;];K], where A is an array and [,/ and K may be scalars, vectors
or arrays of any size and shape. We describe an efficient method of evaluating these expressions. The method is quite general and yet it
does recognize all the special cases in which multiple subscripts can be reduced to a simpler form. We show how the same mechanism
can be used to evaluate other selection operations, such as transpose, and how selection operations may be combined.

Introduction

When programs written in a high-level language such as
FORTRAN or PL/1 are run on the computer, they usually
go through three stages, namely compilation, program
loading, and execution. At each of these stages certain de-
cisions about data structure and data representation have
to be made. In the early languages such as FORTRAN 1,
all of these decisions could be made at the compiler
stage. In more modern languages such as PL/i , the com-
piler can determine most of the structure and the data
representation, but some of the decisions have to be de-
ferred until execution time; for example, the memory ad-
dress of an automatic variable is not fixed until the pro-
cedure that uses the variable is executed. The advantage
of making an early decision about structure is that the
compiler can then try to optimize the object program. The
advantage of making a late decision, on the other hand, is
that the programming language can be more powerful and
easier to use; in certain cases the late decision can lead
to a more optimum use of the computer.

APL\360[1] removes many of the restrictions of pre-
vious languages; it allows the structure and the represen-
tation of a variable to change at any time during execu-
tion. APL is a powerful and elegant language (see for ex-
ample, Kolsky[2]) but the construction of an efficient
APL interpreter does lead to some complex problems. In
this paper we are particularly concerned with the evalua-
tion of APL subscript expressions. At the present time,
this problem is peculiar to APL, but as new and more
powerful languages are developed we would expect this
type of problem to arise in many other situations.

JANUARY 1972

Specification of the problem
Consider first the problem of subscripts in FORTRAN. If
the FORTRAN programmer writes a statement such as
Z = A(1,]J,K), then A must be a three-dimensional array,
I, J and K must be scalars, and the dimensions of 4 must
be either constants or simple scalar variables. It is com-
paratively easy to generate code which will extract the
relevant element from A and put it in Z. Although the sub-
script evaluation is quite straightforward, it is somewhat
more difficult to produce optimum code. An optimizing
compiler will evaluate the constant parts of the subscript
at compile time, will try to replace any multiplications by
additions, and will move parts of the subscript evaluation
outside any of the enclosing DO loops, see Allen[3],
Hopgood[4], Busam and Edlund[5], and Lowry and
Medlock[6].

pL/1 allows scalar subscripts and it also allows state-
ments such as Z = A(I,*,K). In this case, if A has dimen-
sions N1, N2, N3, then Z must be a vector of N2 ele-
ments and the statement sets Z(J) = A(I,J,K) for all valid
values of J. The compiler has to produce the code to
perform

DOJ=1TO N2; zJ) = A(LJ,K); END:;

and this is not difficult to do.

Before discussing APL subscripts, let us review some
of the terms used in ApL. If A is any variable, then the
size of A is a vector which gives the dimensions of A. The
rank of A is the size of the size of A; it gives the number
of dimensions. If A is a 5§ X 6 matrix, then the size of A is
5 6, and the rank is 2. The ravel of A is a vector which

45

EVALUATING ARRAY SUBSCRIPTS OF ARRAYS

46

contains all the elements of A. If A is a scalar, then the
ravel of A is a one-element vector. If A is a vector, then
the ravel of A is the same as A. If A is, for example, a
5 X 6 matrix, then the ravel of A is a vector of 30 ele-
ments with values A[0; 0], A[0; 1], - + A[O; 5], A[1; 0],
- - - A[4; 5]. APL subscripts can begin at either “0” or 17,
in this example, and throughout the rest of this paper, we
will use origin “0” and all subscripts begin at “0”. In
APLN\360 the “size of A” is written pA, and the rank is
ppA. The ravel of A is written ,A. APL frequently uses one
symbol for two different operations. For example, if the
item to the left of “p” is a variable (or a bracketed ex-
pression or a function of no arguments) then p stands for
reshape; otherwise it stands for size. The statement
C « B p A defines an array C. The size of C is equal to
B and the elements of C are the same as the elements of
A. If Ais a 5X 6 matrix, then C < (352) p A sets C
equal to an array of size 3 5 2 and C[0; 0; 0] = A[0; 0],
C[0; 0; 1] =A[0; 11, C[0; 1; 0] = A[O; 2], and so on. If
the item to the left of a ©*,”’ is a variable, then the operator
stands for catenate; otherwise it stands for ravel. If A
and B are vectors, then A,B is a vector consisting of the
elements of A followed by the elements of B. See Falkoff
and Iverson[1] for a complete description of APL.

The apL statement Z < A[I; J; K] is much more com-
plex than the corresponding FORTRAN or-PL/1 statement.
The complexities of APL arise from the following causes.
I,] and K need not be scalars; they may be scalars, vec-
tors or arrays of any number of dimensions. An APL com-
piler or interpreter has no prior knowledge of the proper-
ties of Z; in fact Z is completely respecified by the execu-
tion of this statement. The dimensions of A, I,] and K
cannot be determined until the actual execution of the
statement. In a PL/1 program, the dimensions of A may
vary during execution, but the dimensions are fixed once
the containing procedure (or block) is entered. In apL
the dimensions of A may even change during execution of
the current statement; for example, Z < ((P,Q,R)pX)
[I;]; K] is a valid APL statement which defines an array
of size P,Q,R and then it immediately accesses some of
the elements of this array.

A general APL subscript expression has the form
Y{IC; I1; I2 ... ; IK]. Any number of subscripts are al-
lowed, but the number of subscripts must be equal to the
rank of Y. Each of the subscripts may be a constant, a var-
iable, an expression, or it may be omitted. An omitted
subscript corresponds to the PL/1 use of * in a subscript
position. It implies the subscript in that position should
range over all valid values. As an example, M[3;] gives
row 3 of matrix M. In the case of Z < Y[I0;I1;12. .. : K]
the size of Z is the concatentation of the sizes of 0
through IK, thus (pZ) = (pl0), (pI1), . . ., (pIK). If the Jth
subscript position is empty, then (pY){/] should be used
in place of pl]. Let][0 denote the ravel of I0, I1 denote the

A. HASSITT AND L. E. LYON

ravel of I1, and so on. We will use I[KM1 (which stands
for I K — 1) to denote the penultimate subscript. The suc-
cessive elements of the ravel of Z are

Y[I0{0]; 11[0]; ... IKML[O]; IK[0]]
Y[IO[03; I1[0]; ... IKM1[0]; IK[1]]

Y[lU['O]: 1oj; ..
Y[I0[0]; 1110]; ..

- IKM1[0]; IK[NK]]
- IKM1[1}; IK[0]]

Y[gO[NOj; 11[N1]; ... IKM1[NKM1]; IK[NK1},

where NK stands for the number of elements in [K minus
1. All of the subscripts used above must be valid sub-
scripts; this implies that each element of /0 must be non-
negative and less than (pY)[0]; similarly each element of
I1 must be nonnegative and less than (pY)[1], and so on.

Since this definition looks complicated we will examine
some cases. Let A be a three-dimensional array. If I,]
and K are scalars, then A[I; J; K] is a scalar and this case
is similar to the FORTRAN orPL/1 case. If [and] are sca-
lars and K is a vector with elements 5 6 2, then A[I; J; K]
is a vector with elements A[I; J; 5], A[I;]; 6] and A[I;]; 2].
If I is a scalar with value 4,] is a vector with elements
2983, and K is a vector with elements 56 2, then
A[l:]: K] is a 4 X 3 matrix with the values

Al4;2; 5] Al4:2;6] Al42; 2]
Al4;9; 5] Af4;9:6] Al4 9 2]
Al4;8;5] Al4:;8:6] Al4;8;2]
Al4;3;5] Al4; 3,61 Al4 3 2].

As a final example, the following program shows how
a general subscript on a three-dimensional array can be
expressed in terms of simple scalar subscripts on a vector.
Program to compute A[I; J; K]:

V Z<—EVAL3 A:D; M; S; S1;S2; S3: R; I1; I2; I3
[1] ¢ NOTE THAT 0 ORIGIN IS USED
(2] R < X%/(S1 «<pJ), (82 < plJ), (83 < pK)
[3] S <« (pI), (p), pK
[4] Z <« Rpl 7 A
[5] — NULLIFR=0
[6] D « pA
(7] M1
[8] I1 <0
[9] DO2: 12 <0
[10] DO3: 13«0
{117 LOP:Z[M «— M+ 1] « (A)[(K)[I3] + D[2]
x (.D[I2] + D[1] x (1) [111]
[12] — LOPIFS3>I3« 341
[13] —- DO3IFS2>12«< 1241
[14] —DO2IFSI>1l <1 +1
{15] NULL: Z « SpZ
v

IBM J. RES. DEVELOP.

V Z<AIFB
[1] Z < B/A
v

Notice that the major part of the calculation is inde-
pendent of the shape of I,] and K. The program produces
a vector Z which contains the appropriate values, and
then in the last statement it gives the correct shape to Z.

The environment

We assume that subscript evaluation is part of an emula-
tor or interpreter. The features of the environment that
are relevant to this discussion are as follows. The user’s
programs are written in APL. These programs are read
into the computer and they are translated from the ex-
ternal APL form to some suitable internal form. This pro-
cess does not involve compilation; there is a one-to-one
correspondence between the items of the external form
and the items of the internal form. An external name such
as “A” is translated into an internal name «. In languages
such as FORTRAN, a would be the address of the value
of A. In this implementation of APL, « is a number which
is used to access the description and the value of A. Dur-
ing execufion, the memory contains a table called the
address table. The address table entry for « gives the ad-
dress of a block of memory which contains data in one of
the following formats:

)BDa

2) B D « data giving the value of A.

3) B D « data giving the value of A and pA.

4) B D a data giving the value of A, (pA), (ppA) and p,A.

5) B D « data giving the value of A[0], (A[1] — A[Q]),
pA.

These five forms correspond to the five cases of A having
no value, A being a scalar, A being a vector, A being an
array and A being a vector whose values form an arith-
metic progression. The latter case is used to provide a
compact representation of vectors of the form P + Q X
¢ R. In the formats given above, B is a count of the num-
ber of bytes in the block. D is a pattern of bits called the
descriptor; it specifies whether A has a value, and if so
whether the value is character, logical, integer or real.
D also specifies whether A is a scalar, a vector, an array,
or an arithmetic progression vector. The execution of the
user’s program is controlled by an interpreter (we use the
word interpreter to cover both interpreters and emula-
tors). The interpreter scans the internal form of the ApL
program, starting at the right hand end of the statement
and moving to the left. The interpreter moves items from
the ApPL program onto the stack until it comes to the stage
when an operation can be performed. A stack is simply
a series of successive memory locations which is used to
hold a list; it is used on a first-in, last-out basis. If the in-

JANUARY 1972

terpreter starts to execute the statement Z <« A[I;] +
B=C; K + D] then it builds up the stack as far as

(top of stack) — K+ D]

We show the stack using external names; the real stack,
however, will contain’ the internal representation of all
names and operators. When the stack reaches the stage
shown above and the interpreter evaluates K + D, it gen-
erates as temporary result with the name T1 and sets the
stack to T1] and continues to scan the program. In a
language such as PL/1 or ALGOL it would be possible to
put the value of T1 on the stack; in APL this is not usually
feasible because T1 may be a large array. This arrail is
stored in memory and its internal name is put on the
stack. Eventually the interpreter will come to the stage
where the stack contains A[I; T3; T1], where T3 contains
the value of | + B*C. At this stage, the interpreter will
enter the subscript-processing routine. The subscript
routine will take the top item off the stack (in this case it
is the name of “A”’) and then using this name, it can use
the address table to find the block which gives the type,
size and value of A.

Although the interpreter is usually written in assembly
language, it could also be written in microcode. See Breed
and Lathwell[7] for an example of an interpreter and
Hassitt, Lageschulte, and Lyon[8] for an example of a
microcoded APL emulator. We will describe the subscript
evaluation process using the ApL language. It should be
noted, however, that these APL programs are descriptions
of machine language programs, and consequently we will
take care to use only simple operations. We assume that
the machine (on which the interpreter will run) can move
data from one part of memory to another, that it can do
additions, subtractions and multiplications, and condi-
tional branching; we do not assume that it can do noncon-
ventional operations such as the APL encode and decode.
(We do use an encode with base 2 but this usage corre-
sponds to a simple IBM System/360 test under mask
instruction). We assume that the interpreter will have a
subroutine that can allocate a block of memory and set
up the appropriate address table entry and the data for-
mats discussed earlier.

The method

No description is available in the literature of the meth-
ods used in the existing APL interpreters. We assume they
use a generalization of the method shown in the EVALS3
function. Abrams[9] describes a method for use on a
theoretical APL machine, but his basic machine is so radi-
cally different from conventional machines that his tech-
niques are not directly applicable. In the ApL emulator
for the IBM/360 model 25[8], we used a microcode rou-
tine for scalar and vector subscripts and an APL routine
(which in turn called on the microcoded routines) to do

47

EVALUATING ARRAY SUBSCRIPTS OF ARRAYS

the general case. The method used in EVALS3 can be modi-
fied to treat the case of a general N-dimension subscript.
The routine would have to be reorganized; instead of the
three explicit loops using I1, I2 and I3 there would be a
general iteration vector [[0], I[1], ... I[N — 1] which
would control N implicit loops. These changes are non-
trivial but they can be done. There is however a funda-
mental objection to this method; the method is quite
inefficient in almost all cases. The LOOP statement in
EVAL3 uses two multiplications, and this statement is
repeated S1 X S2 X S3 times (see EVAL3 for the defini-
tion of S1, S2 and S3). The method to be discussed here
needs at most S1 + S2 + S3 multiplications. Many APL
subscripts have one or more empty subscript positions
(see Kolsky[2] for many examples). The method pro-
posed here will recognize these special cases and, for
example, if A is a 10 X 20 X 30 array, then the method
will recognize that (LA[3; ;]) is the same as (,A)[1800 +
600] and it will use this fact to optimize the evaluation.

The method which we use to evaluate APL subscripts
is divided into three stages. These stages are described
in detail by three ApL routines INDA, INDB and INDC.
The subscript calculation begins at the stage where the
stack contains information of the form

(top of stack) — A[I0; I1; ... K],

where A is the internal name of a vector or array, and 0,
Il, - - - IK are the internal names of scalars, vectors or
arrays; some or all of the subscript positions may be
empty. In the first stage we set up a vector called L, which
gives a convenient, and usually concise description of the
information contained in /0 through /K. In stage 2 we look
for features that can be factored out of the subscript list,
so as to optimize the final calculation. In stage 3 we show
how the vector L can be used to access successive ele-
ments of the final answer.

e [nitialization

We now consider the details of the first stage. Suppose
the stack contains the information shown above. We
build up the vector L, which contains K + 5 blocks of

Ainformation, L. = C, BO, Bl,... BK,V, S, T. C contains six

integers, namely C=8 K+ 1 6 x K+ 1 uuu, where u
denotes unused or undefined. These undefined slots will
be used at a later stage. Each of the B blocks contains six
integers, with one B block corresponding to each sub-
script position. Each B has one of the following formats:

B[O 1 23 4 5]
I is scalar Bis 0 I uu O u
[is AP vector Bis 1 I{f0] uw u pl I[1]—1I[0]
[is missing Bis 5 0 uuOS 1
I is vector or array B is 2 u uu pl oV

Will be used to hold (pA)[J] |
Will be used to hold weights

A. HASSITT AND L. E. LYON

If [is a scalar or an arithmetic progression vector, then
the B block contains a complete description of [. If [is a
general vector or array, then we copy the values of | into
the block V and use B[5] to give the offset of these values.
S gives the shape information, S « (pl0), (pI1), . . . (pIK)
and T < pS. If the jth subscript is missing then a single
element is used instead of (pl]). The offset OS will point
to this element, and its value will be filled in later. Some
examples should clarify this description. If the sub-
scripted example was A[3 2 4; 1 53 4; 2], then the re-
sultant L block is

8 3 18 00 O ~C
2 0 00 3 24 <~ B0
2 0 0 0 4 27 « Bl
02 000 O « B2
32 41 5 3 4 «V
3 4 S
2 T

If the subscript expression was A[3 2 4; ; 2], then the L
block is

8 3 180 0 O
2 0 00 3 24
5 0 00 28 1
62z 00 0 O
3 2 4

3 0

2

If the subscript expression is A[I0; 1 5 3 4; 2], where [0
is312p657144, then the L block is

8 3 180 0 O

20 00 6 24

2 0 00 4 30

02 000 O

6 5 71 4 41 5 3 4
31 2 4

4

Finally if the subscript expression is A[2; «9;], then L is

8 3 180 0O
02 00 0O
1 0 00 91
5 0 00 25 1
9 0

2

Appendix I gives the ApL description of the method used
to compute L. The function INDA will compute an L for
any number of subscripts.

A possible objection to the method used in INDA is that
we copy subscripts into L and this procedure might waste
time. One advantage of the copying is that we can multi-
ply the copy by an appropriate weight factor and store

IBM J. RES. DEVELOP.

the result in the same place; doing the multiplication at
this stage effectively takes the multiplication outside the
inner loop of the subscript calculation. The APL language
insists that subscripts should have integer values, but
there is no guarantee that they will have an integer repre-
sentation. We can check for integer values and convert
to an integer representation at the time the copying is
done. In practice many APL subscripts are either scalars
or arithmetic progression vectors, and in this case the
copying takes a negligible amount of time.

~ Analysis and compression

The next stage, which is described in [NDB, is to check
the value of the subscripts, insert the weight factors, and
finally to reduce the number of subscripts, if possible. If
[0, I1, . .. are scalars, then

AlI0; I1; ... K]
= (A)[(W[0] X I0) + (W[1] xI1) +... W[K] x IK],

where W[K] =1

and W[J] =W[J+ 1] x (pA)[J + 1]
forJ=K—1,K-2,...0.

If I] is a vector or an array, then each element of I has
to be multiplied by W[J]. Of course in the arithmetic
progression case we use the fact that

((W[J1xP) + (W[]] X Q) X R)
=W[J] x (P+ Q X (R).

As discussed earlier, L contains the blocks C, B0, Bl,
.. .BK,V,S,T. The routine INDB implements the follow-
ing rules. For each block BJ, set BJ/[2] = (pA)[]] and
BJ[3] = W[J] and then

1) If 1] is a scalar, then check that it is in range (that is
nonnegative and less than B/[2] and multiply it by the
weight factor.

If IJ is an arithmetic progression vector, then check
that B{1] and B[1] + B[5] X (B[4] — 1) are in range
and multiply B{1] and B[5] by the weight factor
which is in BJ[3].

3) If I was an empty subscript, then fill the rank infor-
mation into the appropriate place in S, and now make
this case look like the arithmetic progression case.

If I] is a general vector or array, then check that each
element is in range, and multiply each element by the
weight factor. The elements are conveniently available
in L(B{S]), L(B[S]1+ 1), ...

2

-

4

~—

Notice that INDB requires K — 1 multiplications to
compute the weight factors, but that it then needs only
one multiplication for each scalar, two multiplications
for each arithmetic progression vector, and #» multiplica-
tions for each general array, where n is the number of
elements in the array. The total number of multiplications

JANUARY 1972

is the sum (not the product) of the number of multiplica-
tions for each item.

If Ais a 10 X 20 x 30 array, and we consider the first
example shown above (namely, A[32 4; 1 5 3 4; 2]) then
the results of the above calculation would set L to

'8 3 18 0 0 O
2 0 10 800 3 24
2 0 20 30 4 27
0 2 30 1 0 0
1800 1200 2400 30 150 90 120
3 4
2

Notice that the final result could now be obtained with-
out any further multiplications. The successive elements
of the result are taken from A[3; 1; 2], A[3; 5; 2],
A[3; 3; 2] and so on. The final routine will access these
elements as (,A)[1800 + 30 + 2], (A)[1800 + 150 + 2],
(,A)[1800 + 90 + 2], and so on.

Part of INDB is concerned with optimization. We can
best illustrate this by considering a specific example. Sup-
pose the subscript expression were A[2 +3; 3+ 4 X
5; 6] and that A has size 10 20 30. After the INDA stage,
L will be

8 3 18 0 0 O

1 2 wuwu 3 1

1 3 uudsb 4 :
06 vwuou

3 5

2

and after the processing described above it would be

8 3 18 0 0 0
1 1200 10 600 3 600
1 90 20 30 5 120
0 6 30 1 0 0
3 5

2

The successive elements of the final result are to be
taken from A[2; 3; 6], A[2; 7; 6], A[2; 11; 6], A[2; 15; 6],
A[2;19; 6], A[3; 3; 6], A[3; 7; 6] and so on. Let R denote
the ravel of A; then these elements are the same as
R[1200+ 90+ 6], R[1200+ 90+ 120+ 6], R[1200+
90 + 240 + 6], R[1200 + 90 + 360 + 6], R[1200 + 90 +
480 + 6], R[1200 + 600+ 90+ 6] R[1200 + 600 + 90 +
120 + 6], and so on. We notice that this can be written
R[F], R[F + 120], etc., where F = 1200 + 90 + 6, is the
fixed part of each expression. In the routine INDB we
calculate this constant. In the general case, if [] is a sca-
lar, then we can add B/[1] to F and then erase the block
BJ. If I] is an arithmetic progression vector, then we can
add BJ[1] to F and then set BJ/[1] to zero. In the final cal-
culation (described in the next section), each B block will

49

EVALUATING ARRAY SUBSCRIPTS OF ARRAYS

50

control a loop in the subscript evaluation process; elim-
inating a B block will eliminate an unnecessary loop.

In the above example, the successive elements of the
result are R[F], R[F + 120], R[F + 240], and so on. We
notice that the first five items are spaced at equal inter-
vals, but this is not surprising since the original expres-
sion contained an 5. We see subsequent items are also
separated by 120. The separation implies that we could
replace the two blocks:

|
1

— — 3 600
— — S5 120

by a single block of the form

1 — — 15 120

This is true because a block of the form
Bl=1 _ _ _ BJj[4] BJ[3]

means that INDC should use the steps 0, BJ[5], 2 X BJ[5],
-+« (BJ][4] - 1) X BJ[5]; then INDC should reset the
counter for this block to zero and increment the counter
of the prior block by its stepping factor. Let BJM1 (which
stands for B of | — 1) be the prior block. If this block is
also an arithmetic progression vector, then its step is
BJM1[5]. Now if BJM1[5] = BJ[4] X BJ{5], then we can
write the double loop controlled by B/ and B/M1 as a
single loop. If both loops are used, then INDC will come
to the stage where one counter changes from (BJ[4] —
1) X BJ[S] to zero and the other counter changes by
BJM1[5]. The same effect can be gained by changing the
first counter from (BJ[4] — 1) X BJ[5] to Bj[4] x BJ[5].
The steps at statements 18 and 20 of INDB (see Appendix
I) carry out the tests for this optimization.

We now summarize the calculations done by INDB. We
check that each subscript is in range. Then we multiply
it by an appropriate weight factor. Each B block in L will
control a loop in the final calculation. We remove the
constant factor from scalar and arithmetic progression
vector blocks, and we erase the scalar blocks. Finally, if
two arithmetic progression blocks are next to each other,
we test to determine if the two blocks can be compressed
into one. It is this compression which will result in the
efficient calculation of special cases such as A[K ; ;].

At the end of INDB, L has the form C, BO, Bl,...V,
S, T, where

C«F u uuwuu

B«~X u uu N G

V <« (old values — index origin) X weight factors
S < shape of result with all values filled in

T <« rank of result,

where if

A. HASSITT AND L. E. LYON

(4|X) = 0 then this block is no longer used
(41X) = 1 then this block generates G X N
(4/X) = 2 then this block generates L{G + «N]
F = fixed part of subscript

u = unused part of block.

The active blocks have been squeezed together. If we
let X denote the first item in a block and let BIT = (8p2)T
X, then the outermost block has BIT[4] = 1, the inner
block has BIT[3] = 1.

As an example, if the subscript expression is A[3; ;]
and A is a 10 X 20 X 30 array, then at the end of INDB,
L will be

1800 uw u u u u
29 u u u 600 1
unused block
unused block

20 30

2.

This result implies that A[3 ; ;] =2030p (A)[1800 +
6001].

s Evaluation
The final stage is to show how L can be used to generate
the subscripts. If the number of elements in the result is
zero, then we do not need to proceed any further. If the
result is a scalar, then L[0] represents the complete re-
sult. If the result is nonscalar and nonnull, then we have
to generate successive subscripts by progressing through
BO, B1, - - -. Each B has the form X uu u N G, where u
is unused and X, N and G are described in the previous
section. The basis of the method is to use each B to con-
trol a DO loop. Weuse B[1] tocount N—1,N—2,- - - 0;
we use B[2] to hold a step or an offset, and we use B[3]
to hold a current value. The function INDC produces
successive values, one at a time. We could arrange to
produce all values at once, but in a typical application
the rest of the interpreter will call on INDC for one value
at a time. INDC does not use any global variables other
than L. INDC does use some local variables but these
are all scalars. In some compilers (or interpreters) there
is a limit (typically 2, 3 or 7) on the number of subscripts,
and the compiler writer can make use of this fact. He can
allocate a small number of memory locations to hold
intermediate results. In APL, the number of subscripts
and number of elements in each subscript is unlimited;
we can not assume that there is some permanent area
which can be used to hold intermediate results. INDA as-
sumes that the interpreter has some mechanism for allo-
cating memory; it uses this mechanism once, to get space
for L, and thereafter it saves intermediate results in L.
It will be seen that INDC allows a negative subscript;
however, INDB has already checked all subscripts so
this case cannot arise. The reason for allowing negative

IBM J. RES. DEVELOP.

subscripts in INDC will be apparent when we come to
consider selection operators.

To summarize the position so far: We have presented
a series of functions which describe the evaluation of
APL subscripts. The method does apply to any number of
subscripts, it uses a moderate amount of intermediate
storage, it applies to subscripts of any size and shape,
and it does analyze all cases so that the final evaluation
takes advantage of all special cases.

We have assumed that the subscript is on the right of
an assignment. The following steps apply to both sub-
scripts on the left or on the right. Initially, the stack is

AlIo; ... or A[I0] After the use of INDA
and INDB, the stack will be
A[L] «<B... or A[L] or A[L]X ...

where X is not the assignment operator.

The second and third cases imply subscripting on the
right. The steps are:

Get space for result, space is defined by
-1+"11L)1L

Use INDC to generate subscripts, get values and store
successive results.

The first case implies subscripting on the left and the
steps are:

If (1 # p,B), then check that
@eB)="1) (~1+7111L) 1L

If A is arithmetic and B is character (or vice versa) and
if the number of subscripts specified by L is not zero,
then indicate an error. If (type of A)# (type of B), then
it may be necessary to convert the whole of A. This
happens if A is integer and B is real, or A is logical and
B is nonlogical. Get succesive elements of B, convert to
type of A, use INDC to find offset of result position and
store result in A.

The calculations specified by INDA, INDB and INDC
require many separate steps and it might seem that these
would take an excessive amount of time. There are some
saving factors. Most of the steps can be performed by a
few LOAD, STORE Or BRANCH instructions. A machine
language MULTIPLY instruction typically takes eight times
as long as a LOAD instruction. If the subscript result con-
tains a large number of elements, then the initial analysis
will be compensated by the saving in multiply times.
There are several places where further optimization can
be performed; for example, if the result of INDB shows
that there is a single loop which is an arithmetic progres-
sion vector with a step of +1 or —1, then INDC can (ex-
cept in the logical case) be replaced by a MOVE LONG
instruction. There is no doubt that APL subscript opera-

JANUARY 1972

tions are complicated and that any method will require
many steps; because of the dynamic structure of all vari-
ables, it is not possible to do any of the analysis during a
compilation stage.

Selection operators

The subscript operations of APL can be used to select
part on an array; for example, M[3 ;] selects row 3 of
matrix M. Other operators such as reverse and transpose
can be used to select part of an array. Abrams[9] has
suggested that all these operations have certain proper-
ties in common, and he applies the term selection opera-
tion to them. The significance of Abrams’ work is that
he develops an efficient and elegant way of doing selec-
tion operations.

Given an array A, Abrams uses an internal represen-
tation which contains a value part (which we will call
AV), and an access function. The access function is di-
vided into three parts denoted by ABASE, AVEC and
ADEL. The definition of these quantities is:

AV « A
AVEC « pA
ADEL « (N < ppA)p 1
LOOP: —> NOMORIFO0>N<«<N-—1
ADEL[N] <« ADEL[N + 1] x AVEC[N + 1]
- LOOP
NOMOR: ABASE <0

ADEL is just the weight function discussed earlier. If
[is a vector, then

A[I[0]); I{1}; ... 1= AVI[ABASE + + /ADEL x I].

Consider a typical selection operation such as Z «
¢[/] A. Abrams shows that the internal representation of
Z has

ZV <~ AV

ZBASE < ABASE + ADEL[J] X (AVEC[J]]1 — 1)
ZVEC <« AVEC

ZDEL « ADEL

ZDEL[]] <« —ADEL[]]

Abrams’ implementation is arranged so that both A
and Z have an access function, but they share a common
value block. Abrams defines a selection operation to be
any operation whose result can be computed by rede-
fining an access function. He shows that reverse, trans-
pose, and some cases of take, drop and subscripting are
selection operations.

In the previous section we described a function INDC
which produces successive elements of a subscripted
expression. The complete expression can be computed
using the function EVAL shown below. The APL programs
shown in this section will give an over-all view; they will
not show the detailed steps to be used by an interpreter.

51

EVALUATING ARRAY SUBSCRIPTS OF ARRAYS

V Z<«EVAL; I N;T V L<JREVA

[1] ¢ NOTE THAT 0 ORIGIN IS USED [1] ¢ GENERATE LIST FOR ¢[J]A
[2] — NOTNULLIF Q0 #] « X/N «< "1 } [2] ¢ NOTE THAT 0 ORIGIN IS USED
-1+"11L)1L [3] SETUP A
[3] Z<—Npl T A (4] N « (pA)[J]
[4] —0 [5] LIBXxJ+1)+0145] «< 1, (N—1),N, -1
[5] c THIS SETS I = ZERO OR BLANK \Y
[6] NOTNULL:I< 1 1 (T<0)pA
[7] ¢ SO NOW WE CAN INITIALIZE Z V SETUPA;K:N; M
[8] Z < Jpl [1] cSETUP ALISTFORA[; ;..::]
[91 LOOP: — SKIPIFO>1<«INDCT>0 [2] c NOTE THAT 0 ORIGIN IS USED
[10] ZIT} <« (A)[I] [3] N < 6 X K « ppA
[11] SKIP: > LOOPIF]>T«T+1 [4] L <8 K NOGONpS000O01
[12] Z «— NpZ [5] L[10+6 X K] « (pL) + K
v (6] L <L, (pA), ppA
\Y

We can now extend Abrams’ idea of selection opera- REV is a description of the overall process. In an actual
tors. The vector I. used by INDC can be used in place of implementation, the program would first calculate the
ABASE, AVEC and ADEL, so that L is now the access size of L and then get space for L. We assume that A is
function (actually it is L in conjunction with [NDC that not a scalar and that [has a legitimate value. The output
carries out the access, but INDC does not change from from L has to be processed by INDB and then it can be
case to case). An operation S is a selection operation if used by INDC. It would be possible to write a REV which
there is an access function L such that EVAL and INDC does not use SETUP or INDB. The monadic transpose
can compute the result of SA. We have seen that EVAL operation can be expressed in terms of the dyadic trans-
can be used for all cases of subscripting. It can also be pose. The dyadic transpose does a transposition of sub-
used for reverse, transpose, compress, expand, take and scripts. For example, if Z < 2 3 1 § A, then

drop. Ravel and some cases of reshape can be considered

as selection operations but it is usually not profitable to [1:J: K] = AL K 1] for all [, J. K

do this. For Z < V§A then the Nth subscript of A is the V[N]th
As a first example, consider ¢[J]A. For the moment, subscript of Z. If some of the elements of V[N] are equal
suppose pA is 10 20 30 and] is 0. The result is to each other, then the corresponding subscripts of A be-

come a single subscript in Z. A description for producing

Z<olbla or the subscript list of VXA is shown in function TRANS-

Z «— A[9—.10;;]. POSE. It follows the method of Abrams[9].

If we take A[9 — ¢10; ;] and apply INDA, then it will pro-

duce the list ¥ V TRANSPOSE A: B]; D; S; T
83180 0 O [1] c NOTE THAT 0 ORIGIN IS USED
19 00 10 -1 [2] GETDST
S50 00 25) [3] BJ] < SQUEEZE, 1, (0, (0, (0, S, D)))
50 00 2% 1 (4] BJ{0] < BJ[0] +8

0 0 0 [5] BJ[6 +pB]] < B][(6+ pB]] + 16
5 [6] L<000000.BJ,(S), T

v
and now applying INDB would produce

5400 0 0 O g 0
9 0 0 0 10 —600
17 0 0 0 600 1

¥ GETDST; DELA; I; IRRA; RA; RRA; TEMP
[1] ¢ NOTE THAT 0 ORIGIN IS USED
[2] IRRA « (RRA < pRA « pA
[3] ° DELA < x/(1 | RA, 1)[(RRA — 1)LIRRA

1020 30 o. + IRRA]
: [4] — TESTSD AFTER S « D « 0pl < "1
and applying INDC to this would produce the desired re- [5] FIXSD: S <« S,L/TEMP/RA
sult. A function to produce L in the general case is as [6] D «— D, + /TEMP/DELA
52 follows: [71] TESTSD: — FIXSD IF (V/TEMP «V=]<«1+1)

A. HASSITT AND L. E. LYON IBM J. RES. DEVELOP.

[8] S« ((T<pS),)pS
(9] D« (T, 1)pD
v

V Z < SQUEEZEB; T
[1} ¢ NOTE THAT 0 ORIGIN IS USED
(2] Z<— 61B
[31 LOOP: > 0QIF0=pB<« 6 | B
(4] — COMBINE IF (T < 6 1 B)[5] = Z[4]
X Z[5]
[5] — LOOP AFTERZ « T, Z
(6] COMBINE: — LOOP AFTER Z[4] « T[4]
X Z[4]
v

vV Z<— AAFTERB
[1] Z<A
Y

Consider D 17 A and let all the elements of D be greater
than zero. The method used for this restricted case can
easily be extended to drop, and to the case where ele-
ments of D are less than or equal to zero. D 1 A can be
expressed in terms of the subscript list

L<C B0 Bl ...BK,S, T where S« D
T < pD
KeT-1

and each B usually has the form B/ =1000 D[J] 1. This
form is adequate providing D[]] = (pA)[/] (Abrams’
methods are restricted to this case). We can treat the case
D[]} > (pA)[]] by

Bj=2000D[]] OV,

where OV is the offset of the vector

((pA)JD, (DU] = (pA)JDp 1.

The INDB routine will reject negative subscripts. As
we mentioned earlier, however, INDC will accept a nega-
tive subscript. We can now give a meaning to a negative
result from INDC. If INDC returns the result J, then the
corresponding element of A is as follows:

if J=0 then ((A)[J]
if J <0 then zero or blank.

Suppose A is 2 2 p 'PORS’, then 32 1 A would pro-
duce the list

—
o O O
o oo
N WO
>

2

NN O O O

Y
0
7
0
3
2

JANUARY 1972

INDC would produce 01 23 "2 "2 and the result is 3 2 p
'PORS '. An unsatisfactory feature of this method is that
it requires a block of type 2 (explicit vector) rather than
a block of type 1 (AP vector) for each D{]] > (pA)[J].
An alternative approach is to use the type 1 vector, 1 00
0D[J] 1 in all cases, but modify INDC at statement 48
from

— LOOP, L[U + 3] « Z « Z + STEP
to

— (L[U+ 4] > L[U + 3] « Z « Z + STEP)/LOOP
— LOOP, Z « 1

and a similar modification at statement 35. An unsatis-
factory feature of this second method is that it adds an
extra test in the inner loop of every subscript calculation.
Since the second method penalizes all cases, whereas
the first method only penalizes exceptional cases, we pre-
fer the first method.

The compress operation Z «— V/[J]A is equivalent to
Z<A[;:...:C;;...;], where there are | semicolons
in front of the C, C <« V/W(pA)[J] and there are "1 +
(ppA) —] semicolons after the C. This result can be ex-
pressed in terms of a list L with at most three blocks. The
empty subscripts reduce to a block of type 1 and the C
reduces to a block of type 1 or type 2. We see that Z <
VN\UIJ/]A can also be treated in the same way, but C is
now C «— (— ~V) + V\upA)lJ] and we rely on INDC to
transmit a negative subscript as a request for a fill ele-
ment (zero or blank).

Consider B$[J]A. If B is a scalar, then we can use the
method described in the previous paragraph, where C «—
Bdu(pA)[]]. Alternatively, we could use C < B + «(pA)
[J1 and modify INDC so that subscripts are interpreted
modulo pA. We cannot see any way of including the gen-
eral rotate operation (where B is a vector) in our existing
list form. There are several methods of doing the general
case, but including these methods in INDC would seem
to penalize all the other subscript operations.

To summarize the discussion of this section: We ex-
tend Abrams’ notion of a selection operation; we define
a selection operation to be any operation S which can
be represented by the subscript list described earlier.
In other words, S is a selection operation if there exists
a vector L such that EVAL will evaluate SA.

All cases of subscripting, take, drop, reverse, trans-
pose, compress and expand can be expressed in this way.

Dragalong and beating

Abrams[9] has shown that many APL expressions can
be evaluated more efficiently if various operations are
combined and if other operations are commuted. If Sl
and S2 are selection operators, then Abrams describes
a machine which treats S1 S2 A as follows: Make copy

53

EVALUATING ARRAY SUBSCRIPTS OF ARRAYS

54

of descriptor block of A, apply S2 to this block to pro-
duce a new block, apply Sl to the new block. Abrams
calls this process beating. We gave an example earlier
of how his machine does ¢$[/]A in a few simple steps. The
Abrams machine delays the evaluation (drags along)
of nonselect expressions. For example, 3 1 (2X — V) is
evaluated as though it were written 2X —3 1 V with a
saving of (pV) — 3 operations. The design of Abrams
machine is quite unlike any other machine, so we cannot
use his methods; however, we can investigate the pos-
sibility of beating and dragalong in a more conventional
machine.

We assume an APL design that is similar to the one de-
scribed earlier[8]. The data descriptor can specify that
an item is a scalar, a vector, an array, an AP vector, or a
subscripted array. The AP vector and the subscripted
array were not in the previous design. A subscripted ar-
ray has the form L which results from INDA and INDB
(or from REV or one of the other selection operator rou-
tines). We also set L[1] equal to the internal name of the
operand (in the earlier part of this paper, the operand
was always called A). In the following description we
use [, L1, L2, . .. to denote subscripted arrays.

In the previous design, the expression A[I; J] + B[P; Q]
was evaluated as follows: Form temporary result T1 «
B[P; Q], form temporary result T2 < A[I; J], form Tl +
T2. In the new design we can evaluate it as follows: Form
L1 from B[P; Q], form L2 from A[I; J], access the ele-
ments described by L1 and L2 and add them element by
element. Since the intermediate results T1 and T2 are not
formed, there will usually be some saving. This saving has
to be balanced against the added complexity of the design.
We have, for example, to deal with expressions such as
(B < X)[I;]J1 + B[P; Q], where L] refers to a B which is
no longer the current B.

There seems to be no theoretical difficulty in beating
of selection operators, although in practice the algorithms
are complex. The reason for the complexity is that our
L lists are more general than the Abrams array descrip-
tors. Consider the following examples:

A « 102030 p « 6000
B—(1010)/[11A[031;2479;82].

The evaluation of the A[. . .] will produce the subscript-
ed array

L< 0 a 0 O 0 0
10 0 0 O 3 24
2 0 0 0 4 27
18 0 0 O 2 3l
0 1800 600 60 120 210 270 8 2
3 4 2
3

where a denotes the internal name of A. The shape of

A. HASSITT AND L. E. LYON

A[...]is given by L[33 34 35] and the rank is in L[36].
After the compression, the shape along dimension num-
ber one (dimensions are numbered 0, 1, 2) is 2 so we need
L[34] < 2. The block L[12+ 6] and L[27 + 4] de-
scribes the subscripts along the second dimension; now

60 210 = ((1 0 1 0)/60 120 210 270)
= (101D0)/L[27 + 4],

so the final result is

B = subscripted array described by

0 « 0 0 0 0

0 0 0 0 3 24

2 0 0 0 2 27

8 0 0 0 2 3l

0 1800 600 B0 210 u u 8 2
3 2 2

3

where u denotes “undefined” or ‘“‘unused” and we have
underscored the elements that have changed[10]. This
case was quite straightforward; we now illustrate the two
complications that can arise. Consider

A « 10 20 30 p 16000
B« (1011)/[11A[031;2468;82].

The resulting L is almost the same, except that L[12 +
6] is now 1 00 0 4 120, that is, it describes an AP vec-
tor. (1 0 1 1) applied to the AP vector produces a non-AP
vector so we have to convert to a block of type 2. The
second complication arises in cases such as

A <2010 p 200
C<«34p0312479825186
B« (1010)/[1] A[C: 82].

After the A[...], the subscripted array is

L~0 « 0 0 0 O
10 0 0 0 12 18
18 0 0 0 2 30
0 30 10 20 40 70 90 80 20 50 10 60 8 2
3 4 2
3

The shape of the result is still 3 4 2 so the compression
is legal, but now one block (namely, L[6 + ¢6]) covers
two of the dimensions. It is possible to unscramble the
dimensions. Suppose an L contains K blocks (in this case
K=2)andletS <1 | (=1 +71 1 L) 1 L(in this case
S <« 342). Then L[10], L{16], ... [10+6XxK—1]
contains the number of elements covered by each block.
Now L[10] equals S[0] or S[0] X S[1]orS[0]} x S[1] X
S[2] or ... (in this case, L[10] = S[0] x S[1]) and in
general if L[10] « x/S[0,12 ... I0] then L[16] «
X/S[(I0+ 1), 0+ 2),...1I1] and so on. Hence, the first
block came from an array of dimensions S{0, 1 ... 10],
the second block came from an array of dimensions

IBM J. RES. DEVELOP.

S[I0+1,...11], and so on. In our example, the final re-
sult is that L[6 + 6] has to describe the block

(1 01 O/3 4 p 0 30 10 20

40 70 90 80
20 50 10 &0
that is,
3 2 p 010
40 90
20 10

so the final value of L is

0 « 0 0 O O

10 0 0 0 6 18

18 0 0 0 2 30

0 10 40 90 20 10 u...u 8 2
3 2 2

3

If SA (where S is some selection operator) produces a
subscripted array L, then L contains all the information
on the value and shape of SA, hence it is always possible
to compute S'SA (where S’ is another selection operator)
by operating on L.

A final point about subscripted arrays is that if A is of
length 4, then A[0 2] and (1 0 1 0)/A produce the same
list and, therefore ((1 01 0)/A) <« X should have the
same effect as A[0 2] « X.

To summarize this discussion: If we defer the evalua-
tion of subscripted arrays, then we can do beating on
selection operators, we can allow selection in assign-
ments, we may achieve increased efficiency in the evalu-
ation of scalar operations on subscripted arrays. We do
not see a simple method of implementing the general type
of dragalong that is used in the Abrams machine.

Conclusions

We have described a method of calculating array sub-
scripts of arrays. This method is completely general. It
requires only a moderate amount of intermediate mem-
ory. It does take advantage of the special properties of
particular subscript patterns. Wherever possible, it ex-
tracts scalar subscripts, and collapses several of the im-
plied DO loops into a single loop. The techniques used
in the subscripting case are extended to the other selec-
tion operators; namely, take, drop, reverse, transpose,
compress and expand. It is shown that sequences of se-
lection operators could be collapsed into a single selec-
tion operation.

Appendix |

The following ApPL functions give a detailed description
of the methods described in the text. INDA assumes that
the global variable STACK contains a representation of

JANUARY 1972

the stack, and that there is a function called POP which
will take the top item off the stack. STACK[SP] is the
top item. If POP finds a variable name, then it sets X equal
to the value of the variable, and it removes two items from
the stack; the two items are the name and the following
> or ‘]’. POP also returns a value which is 0, 1 or 2 de-
pending on whether the variable is a scalar, an arithmetic
progression vector, or a general vector or array. If POP
finds an empty subscript position, then it returns the value
5, and takes one item off the stack. INDA makes two pass-
es over the stack. In the first pass it computes the space
needed for L. It gets the space for L; in a real implemen-
tation, statement 13 of INDA would be a call to the space
management routine. In the second pass, INDA computes
L. The global variable [ORG in INDB is the APL index
origin.
V INDA; LL; ARANK; SRANK; SP; BB; BS; BV;

N; X
[1] ¢ NOTE THAT 0 ORIGIN IS USED
[2] c COMPUTE SPACE NEEDED FOR L
[3] LL « 7+ ARANK « SRANK <0
(4] SP « 2
[5] Ll: ARANK <« ARANK + 1
[6] — (T0, T1, T2, 0 0 ,T5)[POP]
[7] TS5:—>Tl,SP<« SP—1
[8] T2:LL <« LL+pX
[9} — T0, SRANK <« SRANK + ppX
[10] TI1: SRANK <« SRANK + 1
[11] TO:LL < LL+6
[12] — L1 IF(pSTACK) > SP <« SP + 2
[13] ¢ GET SPACEFOR L
[14] L« (LL+ SRANK)p 0
[15] L[01 2] « 8, ARANK, 6 Xx ARANK
[16] L[T1+ pL] < SRANK
[17] BB <6
[18] BV « L[2] +6
[19] BS « (pL) + "1 — SRANK
[20] cFORML=C,B,V,S T
[21] ¢ BB, BV, BS POINT TO NEXT PART OF B,V, S
[22] SP <2
[23] L4:— (TTO, TT1, TT2, 0 0 .,TT5)[POP]
[24] TT5:L[BB+ 6] <5000 ,BS, 1
[25] SP «~ SP—1
[26] L2: — L3,BS <~ BS+1
[27] TT2: 'DOMAIN ERRORIF V/X # X
[28] LIBV+ N «—pX] <« X
[29] L[BS + tppX] « pX
[30] BS « BS + ppX
[31] L[BB+ 6] <2000 ,N, BV
[32] — L3, BV «<BV+N
[83] TT1: L[BS] « pX
[34] — L2, L[BB 4+ 6] « 1, X[0],00 ,(pX), X[1]

— X[0]
[35] TTO: DOMAIN ERRORIF X #LX 55

EVALUATING ARRAY SUBSCRIPTS OF ARRAYS

[36] L[BB+ 6] < 0,X,0000

[37] L3:BB <« BB+6

[38] — L4 [F(pSTACK) > SP <~ SP + 2
v

V A ERRORIF B
[1] —0IF ~ V/B
[2] A’ ERROR’

(1]
(2]
(3]
(4]

V Z <« CHECK A
— (V/0 > Z < A)/ERROR
— (~V/D=.,A)/0
ERROR: 'INDEX ERROR’
—

v

V Z <« INDC T;U;S; COUNT; STEP; W

(3] - [1] ¢ NOTE THAT 0 ORIGIN IS USED
v 2] — FETCHIF T
[3] ¢ INITIALISE LOOPS AND GET FIRST VALUE
v INDB; D; W: S; K; F; Q [4] Z <« L[0]
[1] ¢ NOTE THAT 0 ORIGIN IS USED [5] L[1] «U <0

[2] 'RANK' ERRORIF L[1] # ppA

[3] D« (pA)[Q « "1 + ppA]

[4] Se«We«1+F<«0

[5] LIK] « L[K < L[2]] + 16

[6] c START AT INNER BLOCK AND PROCESS
[7] ¢ ONE BLOCK AT A TIME

[6]
(7]
(8]
[9]

[10]

LOOP: S < 256|L[U « U + 6]
LOOP1: STEP « L[U + 5]
COUNT « L[U + 4] — 1
— (DOWNO0O, DOWNO1, DOWNI10)
[(2 X BIT 6) + BIT 7]
c CAN ONLY OCCUR IF 0= ppA

[8] LOOP:LIK+23] <D W [11] DOWNOQO: — 0

[9] — (T0, T1, T2,00,T5)[8|LIK]] [12] c AP CASE

[10] TO:F <« F+ W x CHECK L[K + 1] — IORG [13] DOWNOL: — (0= L[U + 3] < Z)/POS
[11] MOR: S « S X L[K + 4] [14] STEP <0

[12) MOR2: - ENDLOOP IF L[K <K — 6] >7
[13] W<WxD

[14] = LOOP, D « (pA)[Q <« Q — 1]

[15] T5:— L1, L[K+4] < L[L[K +4]] <D
[16] T1:F < F+ W x CHECK L[K + 1]

[15]
[16]
(17]
(18]
[19]

POS: — (BIT 3)/INNER
NOTIN: — LOOP, L[U + 1 2] «~ COUNT, STEP
INNER: U «~ 1 +4 XU
L[4] « Z
INNER1: — 0, L{1 2 3] « U, COUNT, STEP

[17] — (0 X CHECK LIK + 1] + L[K + 5] [20] c GENERAL VECTOR OR ARRAY
X LK+ 4] —D/L1 [21] ¢ ‘STEP" ACTUALLY CONTAINS OFFSET
[18] L1:L[IK+5] « W X L[K + 5] [22] DOWNIO: W «Z
[19] — MOR IF(L[K] > 16) v 1 # 2|L[K + 6] [23] Z < ("1, Z+ LI{STEP])[L[STEP] > 0]
[20] ¢ SUCCESIVE AP VECTORS, REDUCE IF [24] — INNER? IF BIT 3
POSSIBLE [25] — NOTIN, LIU + 3] « W
[21] — MORIFL[K+5] # LK+ 10] X L[K + 11] [26] INNER2:U «<3+4xU
[22] LIK +6] < L[K + 6] — 4|L[K + 6] [27] — INNERL, L[4] « W
[23] S« SX LK+ 4] (28] c
[24] — MOR2, LK +54] « L[K +11], [29] ¢ GET NEXT VALUE, L[2 3 4] CONTAINS
L[K + 4} x L[K + 10] [30] ¢ COUNT, STEP OR OFFSET, OLD VALUE
[25] T2: L[P] « W x CHECK L[P « L[K + 5] [31] FETCH: — NONSC IF 2|S « 256|L[1]
+L[K + 4]] — IORG [32] FINAL: ‘NO MORE ELEMENTS IN LIST'
[26] — MOR [33] —>Z <« 0
[27] c NOW MOVE ACTIVE BLOCKS TO HEAD [34] NONSC: — ENDSIF Q> L[2] « L[2]—1
OF LIST [35] — VEC IF BIT 6
[28] ENDLOOP: P <6+ K «0 [36] — 0,Z < L[4] < L[3] + L[4]
[28] L4:— L2[F0=4|L[K < K + 6] [37] VEC: > 0IF0>Z < L{3]
[30] — L3IFK=P [38] —0,Z <« L[4] + LIL[3] « L[3] + 1]
[31] LIP + 8] « L[K + 8] [39] c INNER LOOP IS FINISHED, TRY NEXT
[32] L3:P<«<P+6 OUTER
[33] [2:—[L4IF ~ L[K] > 15 [40] ENDS: S « 256|L[U < LU =+ 4]
[34] L[6] < 8+ 8|L[6] [41] UP: — FINALIF BIT 4
[35] LIP—6] < 16 + 18|L[P — 6] [42] S« LIU < U—6]
[36] L[0] « F [43] Z < LIU+3]
56 v [44] STEP « L[U + 2]

A. HASSITT AND L. E. LYON

IBM J. RES. DEVELOP.

[45] — JPIF0>L{U+ 1] « COUNT 3. F. E. Allen, “Program Optimization,” Annual Review of Au-
—L[U+1]—-1 tomatic Programming, edited by M. 1. Halpern and C. J.
Shaw, Vol. 5, Pergamon Press, 1969, 239 -307.

[46] c OUTER IS OK, SO RE-CYCLE INNER 4. F. R. A. Hopgood, Compiling Techniques, American Elsev-
[47] — DOWNI IF BIT 6 ier, New York, 1969.

48 LOOP, L[U + 3] « Z < Z + STEP S. V A. Busam, and D. E. Englund, “Optimization of Expres-
[48] N) L] sions in FORTRAN,” Comm. ACM, 12, 666 ~674 (1969).
[49] DOWNIL: STEP « L[U + 2] < L[U + 5] 6. E. S. Lowry and C. W. Medlock, “Object Code Optimiza-
[50] - LOOP, Z <« ("1, Z + L[STEP]) [L[STEP] tion,” Comm. ACM, 12, 13 -30 (1969).

>0 7. L. M. Breed and R. H. Lathwell, The implementation of
] APLN360. Interactive Systems for Applied Mathematics.
\ Academic Press, New York. (1968), pages 390-399.
8. A. Hassitt, J. W. Lageschulte and L. E. Lyon, “Implemen-
V 7« BITK f:t(ij(l)\r/} :21 1 Higli %Vevil hLanguai/eI. Machine”. F_’reprisnts,
th Annual Workshop on Microprogramming, Sep-
(11 cGETBITKOF S tember 13~ 14, 1971
[2] ¢ NOTE THAT 0 ORIGIN IS USED 9. P. S. Abrams, “An APL Machine,” Stanford University

3 7 (802 K Computer Science Dept. STAN-CS-70-158 (1970). Also

(3] < ((8p2)TS) (K] available from U.S. Dept. of Commerce, National Technical
v Information Service, Document AD 706 741.
10. By coincidence, the new value of L[27] is the same as the

References and notes old value.
1. A. D. Falkoff and K. E. Iverson, APL\360 User's Manual,

IBM Research Center, Yorktown Heights, New York Received June 28, 1971

(1968). Now available as IBM manual, file number H20-

0683.
2. H. G. Kolsky, “Problem formulation using APL,” IBM Sys- The authors are located at the IBM Scientific Center,

tems Journal, 8 No. 3, 204-219 (1969). 2670 Hanover Street, Palo Alto, California 94304.

57

JANUARY 1972 EVALUATING ARRAY SUBSCRIPTS OF ARRAYS

