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Numerical Calculation of Magnetic Fields in the

Vicinity of a Magnetic Body

Abstract: Static magnetic fields, resulting from an applied field, are calculated in the vicinity of a magnetic body. Specifically, numerical
results are given for a rectangular body of constant permeability. The reduction or shielding of the magnetic fields is calculated in the
neighborhood of the body. Integral equations are developed which can be solved numerically on a computer. Typical fields are described
for rectangles of different thicknesses, and comparisons with known solutions are shown.

1. Introduction

With the availability of powerful present-day computers,
efficient numerical methods for magnetic field calcula-
tions are being developed. One such method, based on
an integral-equation approach, is discussed in this paper.
The method is applicable to magnetic bodies of arbitrary
shape, but special consideration is given to thin planar
geometries since they are easy to fabricate by deposi-
tion techniques. In most cases the field problems in-
volve large free space regions and are not well suited to
finite difference techniques for solving Laplace’s equa-
tion. A three-dimensional grid must be constructed over
at least part of the free space regions for the relaxation
solution, and storage requirements are exceedingly large
for a solution of reasonable accuracy. This is especially
true for flat geometries.

In contrast, for the integral equation techniques pre-
sented here in the numerical solution, grid points are re-
stricted to the two-dimensional surface of the body. Thus,
the difference in storage requirements between the two
approaches becomes larger with a decrease in grid size.
The grid or cell size can be varied rather easily in the
integral equation approach, but the programming of the
method is more complex than, for example, a finite dif-
ference method.

Magnetic stray fields have been calculated for ellipti-
cal bodies[1], and for bodies of a rectangular shape for
low permeabilities[2]. The formulation given below is
similar to a scheme used previously[3] for electrostatic
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fields, and a two-dimensional vector integral equation
has also been described.[4].

The methods described in this paper are generally ap-
plicable, as exemplified by their use in calculating fields
for the following three basic structures: a cube, a sheet of
arbitrary thickness 0.1 and, as a limiting case, an infi-
nitely thin sheet of infinite permeability. These struc-
tures were chosen because a comparison with existing
solutions[ 1] can thus be obtained, at least for some points
in the neighborhood of the body. Also, a thin sheet rep-
resents a fairly difficult application with which to demon-
strate the method.

In the following two sections, an integral equation is
developed for arbitrary geometries. Numerical aspects
are discussed in Section 4. Section 5 is devoted to the
case of the infinitely thin sheet, and numerical results
for three cases are compared with other solutions in
Section 5.

2. Formulation in terms of magnetic poles

A convenient scalar formulation results if the concept of
magnetic pole density is used. The definitions of Reitz
and Milford[5] are adopted (rationalized MKS system)
for magnetization and pole density. The fields are then
related to magnetization by B = u,(H + M). From Max-
well’s equation V- B =0 it follows that V- H=—-V - M.
The volume magnetic pole density is then defined by
pm=—V-M. The field is related to the magnetic scalar
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potential U by H=—VU. An integral solution to Pois-
son’s equation relates the pole density to the magnetic
potential,

1 [ pn(r) 1 (o)

Ulr) =— v’ +——
(r) 47rv|r—r’| v 41Tslr—r’|

da’ )]

at a point r anywhere in space where s represents the sur-
face of a magnetic body of volume v. In the second inte-
gral o, is the surface pole density. Since the magnetic
material is assumed to be uniform, all induced magnetic
poles reside on s, implying that p,,(r) = 0 in Eq. (1). The
numerical solution of the integral equation in the next
section gives the values of o, on s. Finally, the compo-
nents of field at any point r = (x, y, z) are calculated by
superposition as

_1 no=v)
Hy(l‘) _47T ! on(r') _ir——r'Pda +H¢, (2)

where y = x, y, z and H$ is the projection of the applied
field H* onto the y-direction.

2. Integral equation for the surface pole density
An equation is derived describing the pole density at any
point r on the interface between two materials of different
permeability, u* and u”. The continuity of B, across the
interface implies that

WH,—wH,_-=0, 3

where n' and n~ are the normal directions into the re-
gions of permeability u” and p~, respectively. The surface
s is assumed to be locally smooth everywhere (which is
satisfied for physical systems since all corners have a
small finite radius of curvature), and is divided into two
surfaces, a small disk of radius p with center at the pro-
jection of r onto the interface as shown in Fig. 1. The re-
mainder of the surface is called s’. The radius of the disk
approaches zero in such a way that & = o(p), where &
represents the normal distance between the point r and
the center of the disk. Then, in the limit p — 0, the total
field on either side of the interface can be written as

H,.(r) ==H,(r) + ﬁ f Tn(r') G(r, v') da’ + H™,
d )
where

(r—r")n*

G(r3rl) = Ir_rl|3 .

&)
Here, H, (r) = on(r)/2 represents the contribution of
the charge layer on the small disk surface. The normal
component of the applied field includes the field gen-
erated by potential currents in the system. Substituting
both statements of Eq. (4) into Eq. (3), we obtain an
integral equation for the pole density at r:
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Figure 1 A section of the interface between two materials.

—om(F) =2’iﬂfam(r') G(r,v') da’ + 2RH?, 6)

where R = (u" — pu)/(n" + 7). Equation (6) is a Fred-
holm equation of the second kind and is therefore suit-
able for an iterative solution in its present form. Further,
the convergence properties of the iterative solution are
improved if an additional condition is specified:

fa-m(r’) da' = 0. 7N

S

3. Numerical solution for rectangular bodies
Equations (6) and (7) must be put into a discrete form
suitable for a numerical solution. Approximate equations
are derived specifically for the rectangular bodies under
consideration. Other geometries can be considered, how-
ever, with minor modifications.

A semi-analytical approach is used to obtain the dis-
crete surface integrals. Let the surface s be divided into
a set of nonoverlapping surface cells S;. A suitable choice
consists of rectangles of side length Ay =/ /N, where
N, signifies the number of divisions in the y direction and
I, is the total side length of the surface.

The surface integral in Eq. (6) can be rewritten in
terms of defined intervals as

[-3]
s J=1 S;
where the total number of intervals is given by
N=2(N,N,+N,N,+ NN,

By the mean value theorem [6],

Jo-m(r') G(r,v') da' = on(§;) fG(r, r') da', (8)
S,

Sj J

where £ represents a suitable point on the surface cell
S ; and a-m(fj) is bounded by its smallest and largest value
on the interval. With the definition o-m(fj) = Oy and

fs; = fG(ri, r') da’, 9)
Sj

Eq. (8) can be rewritten as
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Figure 2 Variation of H with y or z for a cube.
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N
_ 2’% ]21 G f5; F2R H. (10)
i
fori=1,2, -, N. The integral in fs; can be evaluated
analytically for the rectangular coordinate system con-
sidered. Two basic expressions result, one for n* normal
for.the cell surface S; and one for n* parallel to S It the
field point is located on the same surface of the body as
the pole density, a zero contribution results (fs; = 0).
The matching points r, are always chosen to be at the
centers of the cells.

The exact locus of ¢, the points where the charge
densities are calculated, is in general unknown. The ap-
proximation made in the solution is then to assume that
Eq. (8) is approximately satisfied if the §; are located at
the centers of the cells. This approximation is discussed
further in the context of the numerical solutions.

Equation (10) is solved by first assuming a zero pole
density on the right hand side. The left hand side leads
to a new, updated value of pole density. With symmetry
and a homogeneous applied field, Eq. (7) can be imple-
mented in a particularly simple form by setting

On(r) =—on(-r). (11)

This implies that the pole densities must be recalculated
for only half the intervals, which reduces the storage re-
quirement by a factor of two. Storage is reduced by an-
other factor of two if one component of the applied field
is zero.

Figures 2 and 3 show the inside (demagnetizing) fields
and the fields in the neighborhood of a cube of normalized
side length 1 with a relative permeability of 10. The x
component of the magnetic field is normalized with re-
spect to the applied field H% = 1. The internal field is
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Figure 3 Variation of H, with x for a cube.

close to that of an inscribed sphere, which is 0.25. Con-
vergence of the solutions with respect to the number of
intervals is indicated. The solutions for 36 and 100 in-
tervals per side are almost equivalent. It is expected that
a relatively small number of intervals is sufficient for
u, = 10, since the pole density is nearly constant. Equa-
tion (8) is exact for all g-‘] on the respective cells if the
pole density is constant, and a small number of intervals
N will lead to accurate results in this case. The computa-
tion for the cube was done on an IBM 1130 computer.
Fewer than eight iterations were required in the above
calculations for o' =0, i=1,2, - -, N, to three sig-
nificant digits.

Each iteration consists of the application of Eq. (10)
with a step corresponding to Eq. (7). The iteration is
stopped after the mth step if o,” = ;""" on all cells within
a specified error. The representation of the corners of the
body as being curved is necessary only if the number of
cells is very large, since the local field at the corners is
seldom of interest. Theoretical aspects of the iterative
convergence of similar schemes are discussed in [7].

4, Infinitely thin sheet of infinite permeability

For rectangular bodies with a small thickness ¢, the above
representation becomes inexact. It is evident that the
side lengths of the cells must be small compared with ¢.
This results in an impossibly large number of cells for
practical computation, and a different integral equation is
therefore considered for an infinitely thin sheet of infinite
permeability. The corners are not rounded in this case,
and the pole density is the sum of the top and bottom pole
densities. Also, the field is zero on the sheet and therefore
the magnetic scalar potential is constant (U = 0). The
magnetic potential arising from the applied field is

IBM J. RES. DEVELOP.




x

z
A
5 QY
x H HA"'

=100, sheet r=0.1,
18 X 18 X 8 divisions
x=0.03, y=0.03

Insufficient
intervals %,

-

Inscribed prolate
spheroid solution,
x=0,y=0

1, =1000, sheet =0.1;
30X 30 X 6 divisions

Infinite- . sheet, infinitely thin,
t==0; 20 X 20 divisions

= 1000, sheet 1=0.1
30 X 30 X 6 divisions

Infinite u sheet, infinitely thin,
t=0; 20 X 20 divisions

Inscribed prolate spheroid
solution, y=0, z=0

0.5 1

Figure 4 Variation of H on the top surface of a flat geometry.

Ua(x, y) =—xH, — yH,. (12)

A Fredholm equation of the first kind results with
Eq. (1) if the potentials are superimposed inside the sheet:
U, +—f"m(r)d“ =0. (13)

Ir—r'|
In discrete form, Eq. (13) becomes, with the same ap-
proximations as above,

xH, +yH, = E TmyPS 53 1,2,- - -, N, (14)

ij* i=

where

ps; = 4177!|rl—r|da' (15)
Equation (14) forms a system of equations —U, = [ps;]on
with the elements of the matrix given by Eq. (15). The
pole densities are immediately obtained by solving the
system for the surface pole density vector oy, Finally, the
magnetic field H(») is again obtained by using Eq. (2) in
the same way as for the finite permeability calculations.
The matrix here is of size N.N X N_N , where N and
N, represent the number of divisions per side of the
rectangle.

If cells are taken to be everywhere the same size, the
matrix becomes ill-conditioned for a large number of in-
tervals. In this case it is advisable to decrease the size for
cells near the sides. The pole density vector is multiplied
by the cell area with an appropriate division of the co-
efficients ps;; by the cell area. In this way, the new solu-
tion vector is more uniform since the cell size is small
where oy, is large.

Equation (13) does not lend itself to an iterative solu-
tion as well as does Eq. (6). Of course, the system could
still be solved by an iterative matrix inversion scheme.
There always exists a trade-off between the computer

NOVEMBER 1971

1072

(x—0.5)

Figure 5 Variation of H in front of a thin sheet.

storage requirement and computation time. For example,
an iterative solution for the finite -u case requires only
N/2 words of storage if the coefficients, Eq. (9), are
recomputed whenever they are needed.

5. Comparison among different solutions

Figure 4 shows the variation of the H, component with
distance from the center of the top surface of the magnetic
body. The solutions given for the prolate spheroid in-
scribed in the square sheet are after Chang and Burns[1].
The prolate spheroid solution compares closely to the
solution from the infinitely thin sheet. This is to be ex-
pected since the observation points are far from the dis-
similar corner regions. Further, in Fig. 4 the solutions for
the finite-thickness sheet are quite poor for distances
close to the surface. This is understandable, however, if
the coarse representation by the relatively large cells on
the top and bottom surfaces is considered. Thus Eq. (8)
is approximated rather poorly. An increase from 18
cells per side to 30 cells improves the situation con-
siderably. By inspection of Eq. (10), it is found that the
source field H2 enters into the equations only for the
front and back poles. This implies that the pole density at
the center of the sheet depends on an accurate representa-
tion of the top and bottom as well as the front and back.
It can thus be concluded that the center of the sheet is
the worst position for convergence with respect to the
number of intervals.

The computations for the sheet with 30 X 30 X 6
divisions took about 20 minutes on an IBM System/360,
Model 91 computer for 16 iterations. The coefficients
given by Eq. (9) were not stored between iterations.

Figure 5 shows a comparison of the three solutions for
points close to the front of the sheets. Here, the solu-
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Figure 6 Variation of H, on the side of a thin sheet.

Figure 7 Comparison of the fields above a sheet at z = 0.05.
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tions for the two integral equation formulations compare
rather closely, as must be expected from the above dis-
cussion. The prolate spheroid is of a considerably dif-
ferent shape in this region, such that the fields are over-
estimated.
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As the last location of interest, the solution near the
side is shown in Fig. 6. Again, convergence with respect
to the number of cells is observed for the finite-p solu-
tion. The solutions are, however, more accurate than the
solutions in Fig. 5 since coupling exists from both the top
and bottom faces and also from the side faces.

Finally, the field close to the surface is shown in Fig. 7.
The greatest difference in the solutions is observed near
the corner region, as is expected. The fields near the sur-
face are reduced or shielded considerably, especiaily
near the center of the body.

Summary
Integral equation formulations have been given for the
calculation of magnetic fields for magnetic bodies in ex-
ternal fields. The above formulation has been directed
to a single body of rectangular shape. This should, how-
ever, not be interpreted to mean that the technique is
restricted to a single magnetic body. The calculation of
fields for multiple bodies is quite feasible if a sufficiently
fast computer is available with a large storage capacity.
Special consideration has been given to the problem of
flat geometries because of their practical interest, and
because they represent a challenging problem. Flat
geometries point out convergence problems with the size
of the cells used in the numerical approximations. These
problems have been discussed extensively.
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