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Abstract: Static magnetic fields, resulting from  an applied field, are calculated in the vicinity of a  magnetic  body. Specifically, numerical 
results  are given for a rectangular  body of constant permeability. The reduction or shielding of the magnetic fields is calculated in the 
neighborhood of the body.  Integral equations  are developed  which can  be solved  numerically  on  a computer. Typical fields are described 
for rectangles of different thicknesses, and  comparisons with known solutions are  shown. 

1. Introduction 
With the availability of powerful present-day  computers, 
efficient numerical  methods for magnetic field calcula- 
tions are being developed.  One  such  method, based on 
an integral-equation approach, is discussed in this  paper. 
The method is applicable to magnetic  bodies of arbitrary 
shape,  but special consideration is given to thin planar 
geometries since they are  easy  to  fabricate by  deposi- 
tion techniques. In  most  cases  the field problems in- 
volve  large free  space regions and  are not well suited to 
finite difference techniques  for solving Laplace’s  equa- 
tion. A three-dimensional grid must be  constructed  over 
at  least part of the  free  space regions for  the relaxation 
solution, and  storage  requirements  are exceedingly  large 
for a  solution of reasonable  accuracy.  This is especially 
true  for flat geometries. 

In  contrast,  for  the integral equation  techniques pre- 
sented  here in the numerical  solution, grid points are  re- 
stricted  to  the two-dimensional surface of the body. Thus, 
the difference in storage  requirements  between  the two 
approaches becomes  larger  with  a decrease in grid size. 
The grid or cell size can be  varied rather easily in the 
integral  equation approach,  but  the programming of the 
method is more complex than,  for  example, a finite dif- 
ference method. 

Magnetic stray fields have  been calculated for ellipti- 
cal  bodies [ 1 1, and  for bodies of a rectangular  shape  for 
low permeabilities[2]. The formulation given below is 
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fields, and  a  two-dimensional vector integral  equation 
has also  been  described. [4]. 

The  methods described in this paper  are generally  ap- 
plicable, as exemplified by their use in calculating fields 
for  the following three basic structures: a cube, a sheet of 
arbitrary  thickness 0.1 and,  as a limiting case,  an infi- 
nitely thin sheet of infinite permeability. These  struc- 
tures  were  chosen  because a comparison  with  existing 
solutions [ 1 3 can thus  be obtained, at  least  for some  points 
in the neighborhood of the body. Also, a thin sheet rep- 
resents a fairly difficult application  with  which to demon- 
strate  the method. 

In the following two sections, an integral equation is 
developed for  arbitrary geometries. Numerical  aspects 
are discussed in Section  4.  Section 5 is devoted  to  the 
case of the infinitely thin sheet, and numerical results 
for  three  cases  are  compared with other solutions in 
Section 5. 

2. Formulation in  terms of magnetic poles 
A convenient  scalar formulation results if the  concept of 
magnetic  pole  density is used.  The definitions of Reitz 
and  Milford[5]  are  adopted (rationalized MKS system) 
for magnetization  and  pole  density. The fields are then 
related to magnetization by B = p,, (H + M) . From Max- 
well’s equation V . B = 0 it follows that V * H = -V . M. 
The volume  magnetic  pole  density is then defined by 
pm = -V . M. The field  is related to  the magnetic scalar 

IBM J. RES.  DEVELOP. 



potential U by H =-VU.  An integral solution to Pois- 
son’s equation  relates  the pole density to  the magnetic 
potential, 

at a  point r anywhere in space  where s represents  the  sur- 
face of a magnetic  body of volume v. In  the second  inte- 
gral urn is the  surface pole density. Since  the magnetic 
material is assumed to be  uniform, all induced  magnetic 
poles reside  on s, implying that p,(r) = 0 in Eq. (1). The 
numerical  solution of the integral equation in the  next 
section  gives the values of urn on s. Finally, the compo- 
nents of field at any  point r = (x, y ,  z )  are calculated by 
superposition as 

where y = x, y ,  z and He is the projection of the applied 
field HA onto  the y-direction. 

2. Integral  equation for the surface pole density 
An equation is derived  describing the pole density at any 
point r on  the interface between  two materials of different 
permeability, p’ and p-. The continuity of B ,  across  the 
interface implies that 

where n+ and n- are  the normal  directions into  the re- 
gions of permeability p+ and p-, respectively. The  surface 
s is assumed to be locally smooth  everywhere (which is 
satisfied for physical systems since all corners  have a 
small finite radius of curvature), and is divided inta two 
surfaces, a small disk of radius p with center  at  the pro- 
jection of r onto  the interface as  shown in Fig. 1. The re- 
mainder of the  surface is called s’. The radius of the disk 
approaches  zero in such a way that 6 = o(p), where 6 
represents  the normal distance between the point r and 
the  center of the disk. Then, in the limit p + 0, the total 
field on either side of the  interface can be  written as 

H , + ( r )   = M , ( r )  + om(r’)  G(r,  r’) da’ + H i + ,  
(4) 

where 

G (r,  r’) = (r - r’)n+ 
(r - rrlS ’ 

Here, H/ (r) = a,(r)/2 represents  the contribution of 
the charge layer  on  the small disk  surface. The normal 
component of the applied field includes the field gen- 
erated by potential currents in the system.  Substituting 
both  statements of Eq. (4) into  Eq. (3), we obtain  an 
integral equation  for  the pole density  at r: 

- /‘ /- 

I 

Origin 

Figure 1 A section of the interface  between  two  materials. 

where R = (p+ - p-)/(p+ + p-). Equation (6) is a Fred- 
holm equation of the  second kind and is therefore suit- 
able  for an iterative solution in its present form. Further, 
the  convergence  properties of the  iterative solution are 
improved if an additional  condition is specified: 

[ cm(r ’ )  du’ = 0. 

3. Numerical solution for rectangular bodies 
Equations (6) and (7) must be put into a discrete  form 
suitable for a numerical  solution. Approximate  equations 
are derived specifically for  the rectangular  bodies under 
consideration.  Other geometries  can  be considered, how- 
ever, with minor modifications. 

A semi-analytical approach is used to obtain the dis- 
crete  surface integrals. Let  the  surface s be  divided  into 
a set of nonoverlapping surface cells Sj. A  suitable  choice 
consists of rectangles of side length Ay = l,/N,  where 
N ,  signifies the number of divisions in they direction and 
1, is the total side length of the surface. 

The  surface integral in Eq. (6) can be rewritten in 
terms of defined intervals as 

s J = 1  S. 

where  the total number of intervals is given by 

N = 2(N,Ny + N,N, + N U N , ) .  

By the mean value theorem [6], I um(r’) G(r, r’)  da’ = cm(tj) G(r,  r’) da‘, (8) 
‘ j   ‘ j  

where Sj represents a suitable  point on  the  surface cell 
Sj and urn(,$) is bounded by its smallest  and  largest value 
on  the interval. With the definition um(tj) = umj and 

I 

r 
fs, = G (Ti, r’)  da’, 

Eq. (8) can be rewritten as 

s . 
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Figure 2 Variation of H z  with y or z for a cube. 

-umi = 5 umj f s ,  +2R Hi+:+. 
2.rr j=, 

j#i 

for i = 1, 2, . . ., N .  The integral in f s ,  can be evaluated 
analytically for  the rectangular coordinate  system  con- 
sidered. Two basic expressions  result,  one  for n+ normal 
for  the cell surface Sj and  one  for n+ parallel to Sj. If the 
field point is located on  the  same  surface of the body  as 
the pole density, a zero contribution results (fs, = 0). 
The matching points ri are always chosen  to be at  the 
centers of the cells. 

The  exact locus of tj, the  points  where  the charge 
densities are  calculated,  is in general  unknown. The ap- 
proximation made in the solution is then  to  assume  that 
Eq. (8) is approximately satisfied if the Sj are located at 
the  centers of the cells. This approximation is discussed 
further in the  context of the numerical  solutions. 

Equation (10) is solved by first  assuming a zero pole 
density on  the right hand side.  The left hand  side  leads 
to a new,  updated  value of pole density. With symmetry 
and a homogeneous  applied field, Eq. (7) can be imple- 
mented in a particularly  simple form by setting 

u,(r)  =-um(-r).  (1 1) 

This implies that  the pole densities must be recalculated 
for only half the  intervals, which reduces  the  storage re- 
quirement  by  a factor of two. Storage is reduced by an- 
other  factor of two if one  component of the applied field 
is zero. 

Figures 2 and 3 show  the inside  (demagnetizing) fields 
and  the fields in the neighborhood of a cube of normalized 
side length 1 with a  relative  permeability of 10. The x 
component of the magnetic field is normalized  with  re- 

480 spect  to  the applied field H $  = 1. The internal field is 

(All scales relative) 

2.0 

2 X 2 X 2 divisions 

0 . 5 1 e  

A 6 10 X X 6 10 X 6 X divisions 10 divisions 

2 " 
- 0  I I I 

0 0.5 1.0 1.5 2.0 

X 

Figure 3 Variation of H ,  with x for a cube. 

close to  that of an inscribed sphere, which is 0.25. Con- 
vergence of the solutions  with respect  to  the  number of 
intervals is indicated. The solutions for 36 and 100 in- 
tervals  per  side  are almost  equivalent. It is expected  that 
a relatively small number of intervals is sufficient for 
p, = 10, since  the pole density is nearly constant.  Equa- 
tion (8) is exact  for all ej on the  respective cells if the 
pole density is constant,  and a small number of intervals 
N will lead to  accurate  results in this  case. The computa- 
tion for  the  cube  was  done  on an IBM 1 130 computer. 
Fewer than eight iterations were required in the  above 
calculations for ui7 = ui8, i = 1, 2 ,  . . ., N ,  to  three sig- 
nificant digits. 

Each iteration consists of the application of Eq. (10) 
with a step  corresponding  to  Eq. (7). The  iteration is 
stopped  after  the mth step if uim = uim+' on all cells within 
a specified error.  The  representation of the  corners of the 
body as being curved is necessary only if the  number of 
cells is very  large,  since the local field at  the  corners is 
seldom of interest.  Theoretical  aspects of the  iterative 
convergence of similar schemes  are  discussed in [7]. 

4, Infinitely thin sheet of infinite permeability 
For rectangular  bodies  with a small thickness t ,  the  above 
representation becomes inexact. It is evident  that  the 
side  lengths of the cells must be small compared with t .  
This results in an impossibly  large number of cells for 
practical computation,  and a different integral equation is 
therefore  considered  for  an infinitely thin sheet of infinite 
permeability. The  corners  are  not  rounded in this case, 
and the pole density is the  sum of the  top and  bottom pole 
densities. Also,  the field is zero  on  the  sheet  and  therefore 
the magnetic scalar potential is constant ( U  = 0).  The 
magnetic  potential arising from  the applied field is 
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Figure 4 Variation of H, on the top surface of a  flat geometry. 

U a ( x ,   y )  = -xH,  - YH, .  (12)  

A Fredholm  equation of the first kind results with 
Eq. (1) if the potentials are superimposed  inside the  sheet: 

In  discrete  form,  Eq. (13) becomes, with the  same ap- 
proximations as  above, 

N 
x iHX + y i H ,  = 2 umjpsij; i = 1, 2,  ’ ’ ., N ,  (14) 

j = 1  

where 

Equation (14) forms a  system of equations -Ua = [psij](+m 
with the  elements of the matrix  given  by &. (1 5) .  The 
pole  densities  are immediately  obtained  by solving the 
system  for  the  surface pole density  vector urn. Finally, the 
magnetic field H(r) is again obtained by using Eq. ( 2 )  in 
the  same way as  for  the finite permeability  calculations. 
The matrix here is of size N , N ,  X N,N,,  where N ,  and 
N ,  represent  the number of divisions per side of the 
rectangle. 

If cells are  taken  to  be  everywhere  the  same size, the 
matrix becomes ill-conditioned for a  large  number of in- 
tervals. In this case it is advisable to  decrease  the size for 
cells near  the sides. The pole density vector is multiplied 
by the cell area with an  appropriate division of the co- 
efficients psii by the cell area.  In this way, the new solu- 
tion vector is more uniform since the cell size is small 
where umi is large. 

Equation (1 3 )  does not lend itself to  an  iterative solu- 
tion as well as  does  Eq. (6). Of course,  the  system could 
still be  solved  by an iterative matrix inversion scheme. 
There  always  exists a trade-off between  the  computer 
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Figure 5 Variation of H ,  in front of a  thin sheet. 

storage  requirement  and computation time. For example, 
an  iterative solution for  the finite -p case  requires only 
N / 2  words of storage if the coefficients, Eq. (9), are 
recomputed  whenever they are needed. 

5. Comparison  among  different solutions 
Figure 4  shows the variation of the H ,  component with 
distance from the  center of the top  surface of the magnetic 
body. The solutions  given for  the prolate  spheroid in- 
scribed in the  square  sheet  are  after  Chang and  Burns[ I]. 
The prolate  spheroid  solution compares closely to  the 
solution from  the infinitely thin sheet.  This is to be  ex- 
pected  since  the  observation  points  are  far  from  the dis- 
similar corner regions. Further, in Fig. 4 the  solutions  for 
the finite-thickness sheet  are quite poor  for  distances 
close  to  the surface. This is understandable,  however, if 
the  coarse  representation by the relatively  large  cells on 
the  top and  bottom surfaces is considered. Thus Eq. (8) 
is approximated  rather poorly. An  increase  from 18 
cells per side to 30 cells improves  the situation  con- 
siderably. By inspection of Eq. (lo), it is found that  the 
source field H,A enters  into  the  equations only for  the 
front  and back  poles. This implies that  the pole density at 
the  center of the  sheet  depends  on  an  accurate representa- 
tion of the  top  and  bottom  as well as  the  front  and back. 
It can thus be  concluded that  the  center of the  sheet is 
the  worst position for  convergence with respect  to  the 
number of intervals. 

The  computations  for  the  sheet with 30 X 30 X 6 
divisions took about 20 minutes on  an  IBM  System/360, 
Model 91 computer  for  16 iterations. The coefficients 
given  by Eq. (9) were not  stored  between  iterations. 

Figure 5 shows a comparison of the  three solutions for 
points close to  the  front of the  sheets.  Here,  the solu- 481 
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Figure 6 Variation of H z  on  the  side of a thin sheet. 

Figure 7 Comparison of the fields above a sheet  at z = 0.05. 
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tions  for  the two  integral equation formulations compare 
rather closely,  as must  be  expected  from  the  above dis- 
cussion. The  prolate spheroid is of a  considerably dif- 
ferent  shape in this  region, such  that  the fields are over- 
estimated. 

As the  last location of interest,  the solution near  the 
side is shown in Fig. 6. Again, convergence with respect 
to  the number of cells is observed  for  the finite-p solu- 
tion. The solutions are,  however, more accurate than the 
solutions in Fig. 5 since  coupling exists  from  both  the  top 
and  bottom  faces  and also from  the side faces. 

Finally, the field close to  the  surface is shown in Fig. 7. 
The  greatest difference in the solutions is observed  near 
the  corner region, as is expected.  The fields near  the  sur- 
face  are  reduced  or shielded  considerably,  especially 
near  the  center of the  body. 

Summary 
Integral  equation  formulations have been  given for  the 
calculation of magnetic fields for magnetic  bodies in ex- 
ternal fields. The  above formulation has been directed 
to a single body of rectangular shape.  This should,  how- 
ever, not be  interpreted  to mean that  the  technique is 
restricted to a single magnetic  body. The calculation of 
fields for multiple bodies is quite feasible if a sufficiently 
fast  computer is available  with a large storage capacity. 

Special  consideration has been  given to  the problem of 
flat geometries because of their practical interest, and 
because they represent a challenging problem. Flat 
geometries  point out  convergence problems  with the size 
of the cells used in the numerical  approximations. These 
problems have been  discussed  extensively. 
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