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Direct Technique for Improving a  Matrix Inverse 

Abstract: A  method is shown that  transforms  the problem of inverting  an  ill-conditioned  matrix to  one of inverting a diagonally domi- 
nant  matrix. An  error analysis is outlined and  the method is compared in theory and in result  with the commonly  used iterative methods. 
This  direct method is demonstrated  to  be  the limiting case of an nth-order iterative procedure  as n approaches infinity. Examples  are 
given that  show the advantages of the direct method even  under  adverse conditions. The unreliability of the  convergence of the iterative 
technique due  to computational errors is also  discussed. 

Introduction 
The problem of obtaining accurate  inverses of large ill- 
conditioned  matrices arises in many numerical proce- 
dures [ 1,2]. Application areas include structural anal- 
ysis,  electrical  network  analysis, and  the solution of 
systems of differential equations with  variable coeffi- 
cients. To realistically evaluate any method, a detailed 
analysis of computational errors  due  to finite significance 
arithmetic is necessary [ 3,4]. Consideration is given here 
to improving a given approximate  inverse matrix that  has 
previously  been obtained by arbitrary means. No discus- 
sion, however, is directed  to  the related  problem of solv- 
ing systems of linear equations. 

Given a  matrix A to be  inverted  and an  arbitrary ma- 
trix B, 

if A and  B are nonsingular. By letting  B be an estimate 
of A" such  that 

A B = C = I + E ,  (2) 

we show  that,  under  certain conditions,  (A-') is a better 
approximation to A" than is B; here 

(A") = (B((C)-I)) .  (3) 

The notation ( )  is used to indicate  a computed value 
subject  to roundoff error, and I is the unit  matrix. 

Notice  that we could have  chosen, instead of (l) ,  

A" = (BA)"B (1') 

as our basic  premise, but the results will be the same us- 
ing (1) or (1 ') in any analysis. However,  the  error ma- 
trix, E, will be different for  the pre- or post-multiplicative 
correction in the  direct method. The  better of the two 

can  be  decided  only by carrying out  the actual  computa- 
tions. 

Direct method 
It is more  convenient to work with scalar  norms  than 
with matrices to  measure  error. To establish an improve- 
ment criterion, a norm function having the following 
properties is used: 

IIX + YII 5 IIXII + llYll> and (4) 

where c is a scalar  constant; and from (4) and ( 9 ,  

IIX - YII 5 IlXll + IIyII3 and (6)  

IIXYII 5 llxll IlYll. (7) 

There  are a number of norms  that satisfy these relations; 
the  ones more difficult to  compute and use analytically 
tend to give  smaller  values as a measure of error [ 51. 

It is also  necessary  to  use  the  fact  that if 

IlEll < 1, (8) 

( I  + E ) - '  exists and is given by 

(I  + E)-' = I - E + E2 - E3 + . . .. (9) 

To show  the  error in approximation (3), all computed 
quantities  must be expressed in terms of actual values 
and  error  terms. Regarding E as a measure of the  error 
in a computed inverse  matrix, by analogy  with Eq. (2) 
we can  write 

(C)  ((C)") = I + 6. (1 1) 41 3 
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The matrices E, u, and 6 in Eqs.  (2), (lo), and (1 1) are 
residual matrices. Note also  from Eq. ( 2 )  that 

E = (B - A-'). ( 1  2) 

Thus E, u, and 6 may be  considered to be  relative error 
matrices. Absolute  errors  are not  usually of interest 
because they are easily  changed by a  multiplicative 
constant; only  relative errors  are  considered in this 
discussion. 

We  must  also express  the  error  due  to a computed 
matrix multiplication. This is done by defining 

( C )  = (1 + P 1 ) C ,  ( 1  3) 

and if ( C )  is nonsingular, 

(B((C)- ' ) )  = B((C) - ' ) ( I  + p,). (14) 

If we assume  that (I + pI)-' exists,  then by substitut- 
ing Eqs.  (2),  (lo),  and ( 1   1 )  in Eq.  (3), using the  results 
of Eqs. ( 1  3) and (14), and  regrouping terms and simplify- 
ing, we obtain 

u = (I + p l ) - I  (p, - p1 + 6 + tip,). (15) 

agonal  pivoting is  required[8].  The inversion process, 
called Gauss-Jordan reduction, has low error also be- 
cause all of the pivot elements  are approximately equal 
to  one  [see  Eq. (2)]. This  method  for improving an in- 
verse is basically noniterative,  but  due  to rounding er- 
rors is not  exact, Le., one could  apply Eq. (3) more  than 
once. Empirical evidence,  however,  has not shown  any 
improvement  after a second  correction  pass  was made. 

As an  added  point of interest,  it may be possible to 
improve an associated  determinant, which can usually 
be computed along with the  inverse matrix at little ex- 
pense.  This  can  be shown by using the  determinant re- 
lation 

lxyl= 1x1 IYI (20) 

in Eq. (1). The  result is 

IAl = lB-'l  IABI. (2 1)  

If B M A-', then B" M A and 1B"l M [AI. Thus  Eq. (21) 
may be used  with Eq. (3) to  improve a determinant along 
with an inverse matrix. The  error analysis procedure  for 
(21) would be similar to  that  for (3). 

If p1 = p2 = 0, Eq. ( 1  5) shows  that u = 6. Therefore  the 
error in the final approximation to A" is equal to  the Classical method 
error introduced in inverting(C),  except  for  the multi- The most  commonly described matrix improvement 
plication errors. In these multiplications p1 and p2 can  technique [ 5 ,  9 - 121 is iterative: 
be kept small by using double-precision arithmetic while 
accumulating inner  products [ 51. 

Bi+l = B,(I - E, ) ,  (22) 

The norm  relation corresponding  to (15) is found by where 
applying Eqs. (4)  through (7), which yields AB, = I + E,. (2') 

Similarly, after expanding  as in Eq. (9), we  obtain E,+, = - E;. (23) 

1 1 0  + P1)-'11 5 1lIll + llPlII + IIEL.1112 + . . .. (17) Convergence of (22) is assured if l l ~ , J  < 1 [9],  where 

II(1 + PI)-'ll 5 IlIll + IIPlIl(1 - IIccIII)-l. (18) the  direct  method,  error is introduced in the  process of 

Bo = B, the first approximation  to A-l. Equation (23) 
must  be  considered an optimistic  relation since,  as in or 

Thus  the final norm  equation is 

1 1 4  5 [IlIll + I I E . c l / l ( l  - llP1ll~"l (llPlll 

+ IIPJ + IlSll + IlSll l lP2ll) '  (19) 

It remains  only to  compute  or  estimate  upper  bounds 
on l l p l / l ,  Ilp211, and IlSll. It should be clear that llSll is a  func- 
tion of Ilell as well as of Ilplll. Error  analyses  have been 
done by Turing[6]  for  Gauss-Jordan reduction  and by 
Wilkinson [7]  for  Gaussian elimination. Wilkinson[5] 
has  also  shown an error relation for matrix multiplica- 
tion. A simpler  solution might be  just  to  try  the  method 
to  see if an  improvement can  be  made, Le., if 11u/1 < 1 1 ~ 1 1 .  

If inequality (8) is satisfied and if the multiplicative 
errors ~ ~ p l ~ ~  and /Ip211 are negligible, the logic involved in 

41 4 any  pivotal  inversion scheme is minimal, since only di- 

matrix  multiplication. An analysis has  been  done by 
Householder [ 131 which shows  Eq.  (22) not to  be strictly 
true.  This  means  that  the  number of iterations  required 
cannot be accurately  determined beforehand and con- 
vergence  must be tested  for  each iteration. Also,  the 
iterative method offers no  means  to  improve  an  asso- 
ciated determinant. 

I t  has been shown[ 1, 131 that a general  nth  order iter- 
ative  procedure is 

Bi+l = B,[I - E, + E; - . . . + ( - E ~ ) ~ ] ,  (24) 

where 

= Ei(-EJn. (25) 

As in the classical or first-order  method, Eq. (25) is valid 
only if  all computational errors  are zero.  A  similarity 
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Table 1 Euclidean  norms" of matrix inversion calculations done in single-precision  arithmetic. 

Methodh 

Mutrix 
order I 2 3 4 5 6 

2 1.8 X IO"' 0 0 0 0 0 
3 2.2 x lo-" 4.5 x 10"' 1.8 x IO-'* 4.5 x 10-12 4.5 x 10" 4.5 x lo-'' 
4 4.9 X 1.1 X 1 0 - ~  1.6 X 1 0 - ~  9.8 X 10"' 9.8 X 10"' 1.1 X 1 0 - ~  
5 8.2 X 5.5 x lo-* 7.8 X 9.3 x 9.3 x lo-* 6.8 X IO-* 

7 9.8 X 2.2 X 2.8 X 7.1 X 7.1 X 10-' 5.4 X 
8 1.7 X 2.1 X 2.1 X 2.1 X 1.7 X 1 0 - ~  1.7 X 

9 8.1 X 10" 3.2 X 10" 3.1 X lo-' 3.5 x lo-* 4.9 x lo-' 3.4 x lo-' 
I0 2.4 X 10' 6.0 X IOo 7.2 X 10' 3.7 x 10" 3.0 X 10' 2.2 x 10' 

6  6.7 X 5.9 X 1 0 - ~  4.8 X 10" 3.8 X 1 0 - ~  3.8 X 1 0 - ~  4.7 X 10" 

hDescribed in the text on page 415, column 2 
,'Defined by Eqs. (27) and (28) in the text. 

may be  seen between Eqs. (19) and (24);  the  direct meth- 
od is equivalent to  the limiting case of the general  iter- 
ative  scheme used once (i.e., n + m), when no  other 
errors  are  considered. 

Comparison of accuracy 
In  practice l l ~ ~ l l  may be  greater  than  one when  a  more 
accurate  inverse matrix is desired. To  compare  the ef- 
fectiveness of the  methods  discussed,  an inherently ill- 
conditioned test matrix  was chosen.  The  test matrix is 
a  segment of the  Hilbert matrix, which is defined as 

A i , j  = ( i  + j  - l ) - l .  (26) 

Several  groups of tests  were run to  compare  these 
methods using two different computers.  On  both com- 
puters single-precision arithmetic  was used except  for 
two  tests.  In  those  tests double-precision arithmetic was 
used only in the accumulation of inner  products.  The ma- 
chines used  were  the  Rice  University RI computer using 
13 decimal  places and  an  IBM  System/360 Model 67 
using seven decimal places (both single-precision ac- 
curacy).  The basic error norm  used was  the Euclidean 
norm, given by 

IlXllE = (x Xi,j2)'i2. (27) 
i , j  

This  norm was chosen  because it satisfies Eqs. (4) 
through (7) and is easily computed. 

On  the  R1  computer  Eq. (26)  was  used to define the 
test matrices  through and including the  10 X 10 case, 
the maximum Hilbert  Matrix usable in single-precision 
arithmetic. The  error in these  tests is measured by ll~jl~, 
where 

ef = A A ~ - '  - I (28) 

and Af" is the final improved inverse of A obtained by 
various  methods (see below) for  comparison.  In each 

case  the initial value A,,-' was  computed using in-place 
Gauss-Jordan reduction  with  column  pivoting.  Both 
single- and  double-precision arithmetic  were used for 
accumulating inner  products in two  different tests.  The 
results of the first test  are  shown in Tables 1 and 2 for 
single- and  double-precision arithmetic, respectively. 

As numbered in the  Tables,  the  methods used to ob- 
tain the matrix inverses  for  comparison  are 1) initial 
value; 2) single-pass  classical, Eq.  (22); 3) two-pass  clas- 
sical; 4) single-pass 2nd-order,  Eq.  (24); 5) single-pass 
3rd-order;  and 6) direct. 

The Euclidean  norm  values  shown in Table 2 are gen- 
erally  smaller  than those in Table 1 as a result of using 
double-precision arithmetic  for  the  inner  products in 
the matrix  multiplications. These  results  are  also  more 
representative of the  true  error in each method since 
numerical errors  are minimized. The  zeros in row one of 
Table 1 are  spurious and were  caused by mantissa  under- 
flow during  single-precision inner-product calculations, 
and it can be  assumed  that  no real improvement  was ob- 
tained by any  method for  the 2 X 2  matrix.  Using  double- 
precision arithmetic,  however,  the higher-order iterative 
corrections did improve  the 2 X 2  matrix  calculation. 
One  can  observe  from  Table 2 that  the  direct  method is 
about as accurate as all other methods for  the  test ma- 
trices  larger than 2 X 2. 

The  second series of tests was made  to confirm this 
result  and to  check  that  the actual  inversion errors being 
studied  are  free of unrelated  numerical errors.  The  test 
matrices here  were scaled  by their  least common factors 
in order  to  present  the matrices in integer form.  This  was 
easily done  for  the 2 X 2  through 8 X 8 matrices,  which 
were  investigated using the Model 67.  The scaled  ele- 
ments of the  Hilbert matrix are  thus  not  truncated  as 
were  certain elements of the unscaled form given by 
Eq.  (26).  The "exact" inverses of the scaled test matrices 41 5 
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Table 2 Euclidean  norms" of matrix  inversion  calculations using double-precision arithmetic  for matrix inner  products. 

Metho8  

Matrix 
order I 2 3 4 5 6 

2 
3 
4 
5 
6 
7 
8 
9 

10 

2.6 X lo-" 
2.0 x lo-" 
4.2 X 1 0 - ~  

9.9 X 
1.6 X 

8.2 x IO-' 
6.7 X 

8.2 X 10" 
2.4 X 10' 

2.0 x 10-12 

3.9 x 10"" 

9.5 x lo-@ 

1.3 X lo-" 

2.7 x lo-@ 

2.6 X 
2.3 X 
4.8 X 
4.7 x 10" 

9.1 X 1 0 - l ~  

1.3 X 
5.0 X 10"" 
3.1 X lo-@ 
9.0 X 
2.2 X 
1.6 X 
3.6 X 
1.9 X 10" 

2.8 X 10-1~ 
2.2 x lo-'* 
1.9 X 10"' 
6.1 X lo-* 
9.9 x lo-* 
2.2 X 10-5 
1.6 X 
5.1 X 1 0 - ~  
6.9 x IO-'  

2.8 X 10-l4 
2.2 x 
1.9 X 10"" 
6.1 x lo-@ 
9.9 x lo-' 
2.2 X 
1.7 X 
3.4 x 
6.0 x 10" 

2.6 X 10"' 
2.9 X 10"' 
2.4 X 
5.0 X lo-* 
9.6 X IO-* 
2.1 X 
3.4 X 
5.8 X 
7.2 x 10" 

"Defined by Eqs. (27) and (28) in the text. 
"Described in the text on page 415, column 2. 

Table 3 Relative error  measures"  for matrix  inversion  calculations done in double-precision  arithmetic. 

I I I 

Matrix 
order 

9.1 x 10-7 9.5 x 10-7 
6.4 X 10-7 9.5 x 10-7 

2.8 x 10-4 3.7 X 1 0 - 4  
8.0 x 10-3 9.6 X 1 0 - 3  

3.0 X 10" 4.1 X IO-$ 

2.1 x 10-2 2.5 X lo-* 
1.1 x IO-' 1.2 x 10-1 

1 
1 

3.8 X 10" 4.8 X 10" 
2.7 X 10-7 3.2 x 10-7 

1 
2 

9.6 X lo-@ 1.5 X 10-7 

3 
3.5 x 10-7 8.7 x 10-7 
6.7 X 10-5 2.5 X 10-7 

1 4.5 X 5.4 x 10-4 
1 1.2 x 10-2 1.4 X 10" 

3.8 X 10" 4.8 X 10-7 

2.6 X 10-7 5.8 X 10-7 

3.2 X 10" 2.0 x 10-6 
1.6 X 2.4 X 10-4 

8.3 x 10-7 9.5 X 10-7 

6.2 X 10-7 9.2 X 10-7 

1.6 x 10-3 3.3 x 1 0 - 3  
~~~ ~~ ~ 

"Defined by Eqs. (29) and (32) in the text. 

were tabulated in double-precision arithmetic (1 6 digits) 
for  comparison with the  computed  inverses. 

We compared  our  direct method  with the classical 
(first-order)  iteration in the  form of the iterative refine- 
ment (IR) method  given in Ref. 5. The IR method is an 
astute combination of Gaussian elimination and classical 
iteration techniques. If it converges,  the  IR  method  can 
be shown  to  reduce  the maximum  relative error column- 
wise  to  less  than  the  truncation  error of the  computer 
(about  for single-precision arithmetic in the Model 
67). Gauss-Jordan reduction  was again used to  invert 
the  asymmetric  correction matrix ( 2 )  for  the  direct meth- 
od,  and double-precision  arithmetic  was  used to accumu- 
late  inner  products in all matrix  multiplications. The  error 
measure is given by 

where from Eq. (12) 

The  subscript j indexes  the columns  and IlXll, indicates 
the infinity or max norm  for a vector X given by 

llxll, = max ( lXjl I .  (3 1) 

For  further  comparison, a relative Euclidean norm was 
computed  that is defined as 

~lE'l1r = k l l E  / IIA"IIE. ( 3 2 )  

Table 3 shows the  results  for  the  seven matrices tested 
using the IR and the  direct  methods.  The value off,  or 
number of iterations, is given for  the  IR  method;fis al- 
ways  one  for  the  direct method and  zero  for  the initial 
value. Each iteration  was stopped  at  the  lowest value of 
f for which the following condition was satisfied: 

U E ; + ' )  2 a€;). (33) 

In  short,  the  results in Table 3 confirm previous tests 
using  different criteria,  test  matrices, and computer.  The 
direct method  always  improved the  computed  inverse 
matrix except  for  the 3 X 3 matrix,  which was hardly 
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affected. The  two highest-order cases, especially, the 
8 X 8 matrix  showed the  direct  method  to  be  superior  to 
the  IR  or classical  improvement  method. The failure of 
the  IR method was in fact predicted on  the basis of an 
operating  criterion  given  by Martin  et  ai.[ 141, which 
dynamically tests  for  convergence in the  sense given by 

l l ~ o l l  1 (34) 

without actually  computing the norm. The  criterion is 
based  on  successive  iterates and therefore  takes  into 
account accumulated  numerical errors.  As was verified, 
the  test predicted that all computed  inverse matrices 
but  those of orders  seven and eight would be improved 
by the IR method such  that g(t$) would be less than IO-’, 
the  computer roundoff error.  The  direct method  failed 
this  criterion for  orders  six,  seven,  and eight,  but gave 
better  results than the  IR method for  orders  seven and 
eight. 

Summary 
A  simple, direct, matrix-inverse  improvement  method 
has been  analyzed  and demonstrated  to be useful for 
extremely ill-conditioned matrices. The  direct method 
was found to  improve  the inverses of mildly ill-condi- 
tioned  matrices (Table 3, orders 4, 5 ,  and 6), but not  as 
much  as the classical  iteration method.  It  did,  however, 
give better results  than all other methods on  the  most 
extreme  cases  (Tables 1 and 2, order 10 and  Table 3, 
order 8) .  Experience indicated that double-precision 
arithmetic should  be  used in accumulating inner  products 
in all matrix  multiplications (Table 1 values  vs Table 2 
values). 
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