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Direct Technique for Improving a Matrix Inverse

Abstract: A method is shown that transforms the problem of inverting an ill-conditioned matrix to one of inverting a diagonally domi-
nant matrix. An error analysis is outlined and the method is compared in theory and in result with the commonly used iterative methods.
This direct method is demonstrated to be the limiting case of an ath-order iterative procedure as »n approaches infinity. Examples are
given that show the advantages of the direct method even under adverse conditions. The unreliability of the convergence of the iterative

technique due to computational errors is also discussed.

Introduction
The problem of obtaining accurate inverses of large ill-
conditioned matrices arises in many numerical proce-
dures[1,2]. Application areas include structural anal-
ysis, electrical network analysis, and the solution of
systems of differential equations with variable coeffi-
cients. To realistically evaluate any method, a detailed
analysis of computational errors due to finite significance
arithmetic is necessary[3,4]. Consideration is given here
to improving a given approximate inverse matrix that has
previously been obtained by arbitrary means. No discus-
sion, however, is directed to the related problem of solv-
ing systems of linear equations.

Given a matrix A to be inverted and an arbitrary ma-
trix B,

A'=B(AB)™’ ¢)]

if A and B are nonsingular. By letting B be an estimate
of A™' such that

AB=C=I+g, 2)

we show that, under certain conditions, {(A™') is a better
approximation to A’ than is B; here

(AT = (B{CY™). 3

The notation () is used to indicate a computed value
subject to roundoff error, and I is the unit matrix.
Notice that we could have chosen, instead of (1),

A™ = (BA)'B (1)

as our basic premise, but the results will be the same us-
ing (1) or (1) in any analysis. However, the error ma-
trix, €, will be different for the pre- or post-multiplicative
correction in the direct method. The better of the two
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can be decided only by carrying out the actual computa-
tions.

Direct method

It is more convenient to work with scalar norms than
with matrices to measure error. To establish an improve-
ment criterion, a norm function having the following
properties is used:

IX + Y| = [X]| + [)Y], and )
leXll = |cllX]| = 0, (5)
where ¢ is a scalar constant; and from (4) and (5),

IX — Y| = |X]| + Y], and (6)
XYl = X fyll. (7

There are a number of norms that satisfy these relations;
the ones more difficult to compute and use analytically
tend to give smaller values as a measure of error[5].

It is also necessary to use the fact that if

llell < 1, ®)
(I+ €)™ exists and is given by
I+te)'=1—€e+e€—€+---. 9)

To show the error in approximation (3), all computed
quantities must be expressed in terms of actual values
and error terms. Regarding € as a measure of the error
in a computed inverse matrix, by analogy with Eq. (2)
we can write

AAY=1+0¢ and (10)

(COHYHCY™H =1+a. (n
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The matrices €, o, and & in Egs. (2), (10), and (11) are
residual matrices. Note also from Eq. (2) that

e=(B—A™. (12)

Thus €, o, and 8 may be considered to be relative error
matrices. Absolute errors are not usually of interest
because they are easily changed by a multiplicative
constant; only relative errors are considered in this
discussion.

We must also express the error due to a computed
matrix multiplication. This is done by defining

(C)y= T+ pn,)C, (13)
and if (C) is nonsingular,
(BHC)™)) =BHC)™H T+ pm,). (14)

If we assume that (I+ p, )~" exists, then by substitut-
ing Egs. (2), (10), and (11) in Eq. (3), using the results
of Egs. (13) and (14), and regrouping terms and simplify-
ing, we obtain

o=T+p)" (p,—n +3+0p,).

If u, = p, =0, Eq. (15) shows that o = §. Therefore the
error in the final approximation to A™' is equal to the
error introduced in inverting(C), except for the multi-
plication errors. In these multiplications g, and m, can
be kept small by using double-precision arithmetic while
accumulating inner products[5].

The norm relation corresponding to (15) is found by
applying Egs. (4) through (7), which yields

(15)

llorll = 10+ )70 el + el + 181+ 1181 el (16)
Similarly, after expanding as in Eq. (9), we obtain
B+ ) 7= 0+ Do+ N P+ - - 17
or
I+ ) 7= 10+ e 1T = fleeg D (18)
Thus the final norm equation is
lorll = THED + llee, (T — ey DT Clasy

+ el + 18I+ 118 Hee, ). (19)

It remains only to compute or estimate upper bounds
on ||g,{l, le,], and |8]l. It should be clear that ||8]| is a func-
tion of |le| as well as of ||u,|. Error analyses have been
done by Turing[6] for Gauss-Jordan reduction and by
Wilkinson[7] for Gaussian elimination. Wilkinson[5]
has also shown an error relation for matrix multiplica-
tion. A simpler solution might be just to try the method
to see if an improvement can be made, i.c., if |lo)| < |l€].

If inequality (8) is satisfied and if the multiplicative
errors |u,| and ||u,|| are negligible, the logic involved in
any pivotal inversion scheme is minimal, since only di-

agonal pivoting is required[8]. The inversion process,
called Gauss-Jordan reduction, has low error also be-
cause all of the pivot elements are approximately equal
to one [see Eq. (2)]. This method for improving an in-
verse is basically noniterative, but due to rounding er-
rors is not exact, i.e., one could apply Eq. (3) more than
once. Empirical evidence, however, has not shown any
improvement after a second correction pass was made.

As an added point of interest, it may be possible to
improve an associated determinant, which can usually
be computed along with the inverse matrix at little ex-
pense. This can be shown by using the determinant re-
lation

IXY| = IX] [Y] (20)
in Eq. (1). The result is
|A] = [B™'| |AB. 2D

If BR2 A™', then B"' &~ A and |[B™'| & |A|. Thus Eq. (21)
may be used with Eq. (3) to improve a determinant along
with an inverse matrix. The error analysis procedure for
(21) would be similar to that for (3).

Classical method
The most commonly described matrix improvement
technique[5, 9-12] is iterative:

B, =B,(I1—¢,), 22)
where

AB,=1+¢, 2"
The associated error relation is

€., == eiz. (23)

Convergence of (22) is assured if |l | < 1[9], where
B, =B, the first approximation to A~'. Equation (23)
must be considered an optimistic relation since, as in
the direct method, error is introduced in the process of
matrix multiplication. An analysis has been done by
Householder[13] which shows Eq. (22) not to be strictly
true. This means that the number of iterations required
cannot be accurately determined beforehand and con-
vergence must be tested for each iteration. Also, the
iterative method offers no means to improve an asso-
ciated determinant.

It has been shown[1, 13] that a general nth order iter-
ative procedure is

B, =Bi[I_€i+Ei2_ c ()], (24)
where
€., =¢€(—€)" (25)

As in the classical or first-order method, Eq. (25) is valid
only if all computational errors are zero. A similarity

IBM J. RES. DEVELOP.




Table 1 Euclidean norms? of matrix inversion calculations done in single-precision arithmetic.

Method®

Matrix

order 1 2 3 4 5 6
2 1.8 X 1072 0 0 0 0 0
3 22 x 107 4.5x 107" 1.8 x 107" 4.5 % 1072 4.5%x 107" 4.5x 107"
4 49x107° 1.1x107° 1.6 x 107° 9.8 x 107" 9.8 x 107" 1.1 x107°
5 82x10°® 5.5x10°% 7.8 x 107 93 x 107" 9.3 x 107° 6.8 x 107*
6 6.7 x 107° 59 %1077 48 x 1077 3.8 %1077 3.8x 1077 4.7 x 1077
7 9.8 x 107° 2.2x107° 2.8 x 107° 7.1x 107° 7.1 x 107 5.4 x107°
8 1.7x 107* 2.1x10™ 2.1x10* 2.1x10™* 1.7 x 107* 1.7 x107*
9 8.1x 107" 3.2x 1072 3.1 %1072 3.5%x 1072 49 x 107 3.4x107°
10 2.4 x 10’ 6.0 x 10° 7.2 x 10° 3.7 x10° 3.0 x 10° 2.2 x 10°

“Defined by Eqgs. (27) and (28) in the text.
®Described in the text on page 415, column 2.

may be seen between Eqgs. (19) and (24); the direct meth-
od is equivalent to the limiting case of the general iter-
ative scheme used once (i.e., # —> ©), when no other
errors are considered.

Comparison of accuracy

In practice || may be greater than one when a more
accurate inverse matrix is desired. To compare the ef-
fectiveness of the methods discussed, an inherently ill-
conditioned test matrix was chosen. The test matrix is
a segment of the Hilbert matrix, which is defined as

A,=G+j—1)"" (26)

Several groups of tests were run to compare these
methods using two different computers. On both com-
puters single-precision arithmetic was used except for
two tests. In those tests double-precision arithmetic was
used only in the accumulation of inner products. The ma-
chines used were the Rice University R1 computer using
13 decimal places and an IBM System/360 Model 67
using seven decimal places (both single-precision ac-
curacy). The basic error norm used was the Euclidean
norm, given by

Xl = (3 %,0)" @7)
i,j

This norm was chosen because it satisfies Eqs. (4)
through (7) and is easily computed.

On the R1 computer Eq. (26) was used to define the
test matrices through and including the 10 X 10 case,
the maximum Hilbert Matrix usable in single-precision
arithmetic. The error in these tests is measured by |€]ls,
where

=AM 1 (28)

and Af_1 is the final improved inverse of A obtained by
various methods (see below) for comparison. In each
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case the initial value A,~' was computed using in-place
Gauss-Jordan reduction with column pivoting. Both
single- and double-precision arithmetic were used for
accumulating inner products in two different tests. The
results of the first test are shown in Tables 1 and 2 for
single- and double-precision arithmetic, respectively.

As numbered in the Tables, the methods used to ob-
tain the matrix inverses for comparison are 1) initial
value; 2) single-pass classical, Eq. (22); 3) two-pass clas-
sical; 4) single-pass 2nd-order, Eq. (24); 5) single-pass
3rd-order; and 6) direct.

The Euclidean norm values shown in Table 2 are gen-
erally smaller than those in Table 1 as a result of using
double-precision arithmetic for the inner products in
the matrix multiplications. These results are also more
representative of the true error in each method since
numerical errors are minimized. The zeros in row one of
Table 1 are spurious and were caused by mantissa under-
flow during single-precision inner-product calculations,
and it can be assumed that no real improvement was ob-
tained by any method for the 2 X 2 matrix. Using double-
precision arithmetic, however, the higher-order iterative
corrections did improve the 2 X 2 matrix calculation.
One can observe from Table 2 that the direct method is
about as accurate as all other methods for the test ma-
trices larger than 2 X 2.

The second series of tests was made to confirm this
result and to check that the actual inversion errors being
studied are free of unrelated numerical errors. The test
matrices here were scaled by their least common factors
in order to present the matrices in integer form. This was
easily done for the 2 X 2 through 8 X 8 matrices, which
were investigated using the Model 67. The scaled ele-
ments of the Hilbert matrix are thus not truncated as
were certain elements of the unscaled form given by
Eq. (26). The “exact” inverses of the scaled test matrices
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Table 2 Euclidean norms? of matrix inversion calculations using double-precision arithmetic for matrix inner products.

Method®
Matrix
order 1 2 3 4 5 6
2 2.6 X 107" 2.0x 107" 9.1 x 1072 2.8 x 107 28 %x 107" 2.6 X 107
3 2.0x 107" 1.3 x 1072 1.3 x 107" 22x 107" 22 % 107" 2.9 x 1072
4 42x107° 3.9 x 107 5.0 x 1071° 1.9 x 107%° 1.9 x 107 . 24x 107"
5 8.2x 1078 2.7 X 1078 3.1x10°¢ 6.1 x107® 6.1 x 1078 50x 107%
6 6.7 X 107° 9.5x107® 9.0 x 107° 9.9x 107® 9.9 x 1078 9.6 X 107®
7 9.9 x 107° 2.6 X 107° 22%x107° 22%x107° 22%x107° 2.1x107°
8 1.6 x 107* 2.3 x 107 1.6 X 107° 1.6 x 107° 1.7 x 107 3.4 x 1078
9 8.2 x 107! 4.8 %107 3.6 x 1078 5.1%x107° 3.4 x107° 5.8 x 107°
10 2.4 x 10* 4.7 x 10° 1.9 x 10° 6.9 x 107! 6.0 x 107! 7.2 % 107!

“Defined by Eqgs. (27) and (28) in the text.
"Described in the text on page 415, column 2.

Table 3 Relative error measures? for matrix inversion calculations done in double-precision arithmetic.

Matrix Initial value Classical (IR) method Direct method
order
ll€gl #(e}) f llefll: & (e)) llezle &(e)

2 9.1 X 1077 9.5 X 107 1 3.8 x 10" 4.8 X 1077 3.8 X 1077 4.8 X 107
3 6.4 x 10-7 9.5 X 1077 1 2.7 X 107 3.2 x 107 8.3 X 107 9.5 X 107
4 3.0%x 1077 4.1 X 10-¢ 1 9.6 X 108 1.5 X 107 2.6 X 1077 5.8 X 107
5 2.8 X 10~ 3.7 X 10 2 3.5 X 1077 8.7 X 1077 6.2 X 107 9.2 X 107
6 8.0 X 10-3 9.6 X 10-* 3 6.7 X 10-5 2.5 x 1077 3.2 X107 2.0 X108
7 2.1 X 10-2 2.5 X 102 1 45%x10™* 5.4 % 10 1.6 X 10-6 2.4 x 101
8 1.1 X 107! 1.2 X 107! 1 1.2x 1072 1.4 x 102 1.6 X 10-3 3.3 x 103

2Defined by Eqgs. (29) and (32) in the text.

were tabulated in double-precision arithmetic (16 digits) The subscript j indexes the columns and [X]|_ indicates
for comparison with the computed inverses. the infinity or max norm for a vector X given by

We compared our direct method with the classical
(first-order) iteration in the form of the iterative refine- ”X”w = m]jctx(|X].|). GD

ment (IR) method given in Ref. 5. The IR method is an
astute combination of Gaussian elimination and classical
iteration techniques. If it converges, the IR method can

For further comparison, a relative Euclidean norm was
computed that is defined as

be shown to reduce the maximum relative error column- €'l = Nl lle / 1A le. (32)
wise to less than the truncation error of the computer
(about 107° for single-precision arithmetic in the Model Table 3 shows the results for the seven matrices tested
67). Gauss-Jordan reduction was again used to invert using the IR and the direct methods. The value of £, or ¥
the asymmetric correction matrix (2) for the direct meth- number of iterations, is given for the IR method; f is al-
od, and double-precision arithmetic was used to accumu- ways one for the direct method and zero for the initial
late inner products in all matrix multiplications. The error value. Each iteration was stopped at the lowest value of
measure is given by f for which the following condition was satisfied:
Il oy PG ZE(E). (33)
In short, the results in Table 3 confirm previous tests
where from Eq. (12) using different criteria, test matrices, and computer. The
direct method always improved the computed inverse
416 € =B— A=A (30) matrix except for the 3 X 3 matrix, which was hardly
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affected. The two highest-order cases, especially the
8 X 8 matrix showed the direct method to be superior to
the IR or classical improvement method. The failure of
the IR method was in fact predicted on the basis of an
operating criterion given by Martin et al.[14], which
dynamically tests for convergence in the sense given by

llell < 1 (34)

without actually computing the norm. The criterion is
based on successive iterates and therefore takes into
account accumulated numerical errors. As was verified,
the test predicted that all computed inverse matrices
but those of orders seven and eight would be improved
by the IR method such that & (€;) would be Iess than 1075,
the computer roundoff error. The direct method failed
this criterion for orders six, seven, and eight, but gave
better results than the IR method for orders seven and
eight.

Summary

A simple, direct, matrix-inverse improvement method
has been analyzed and demonstrated to be useful for
extremely ill-conditioned matrices. The direct method
was found to improve the inverses of mildly ill-condi-
tioned matrices (Table 3, orders 4, 5, and 6), but not as
much as the classical iteration method. It did, however,
give better results than all other methods on the most
extreme cases (Tables 1 and 2, order 10 and Table 3,
order 8). Experience indicated that double-precision
arithmetic should be used in accumulating inner products
in all matrix multiplications (Table 1 values vs Table 2
values).
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