J. W, Hartwell

A Procedure for Implementing the Fast Fourier
Transform on Small Computers*

Abstract: A technique has been developed that adapts the Fast Fourier Transform algorithm for implementation on computers having
relatively long multiplication times. The technique is particularly well suited to real-time processing on a small data acquisition computer

such as the IBM System/7.

Four basic ideas are utilized to improve the performance of the original Cooley-Tukey algorithm on such a machine:

1) The real-valued nature of the inptit data is exploited.

2) The number of multiplications that must be carried out is minimized at the expense of additions.

3) The calculations are performed in a carefully ordered sequence.

4) Special multiplication algorithms are used.

This technique has reduced by more than an order of magnitude the time required to carry out 1024-point transformations on a small
computer. A program is developed for calculating these transforms in real time on an IBM System/7 computer. With this program, a

maximum sampling rate in excess of 10 kHz is obtained.

Introduction

The Fast Fourier Transform([1] is a method for efficiently
computing the discrete Fourier transform of a sequence
of data samples. This technique greatly reduces the num-
ber of computations required to calculate such a trans-
form on a digital computer. Consequently, it has made
feasible the use of Fourier transforms in the analysis of
many problems that were previously approached by other
methods. Fourier transforms are now routinely used in
such diverse areas as seismic exploration, speech analy-
sis, echo-ranging systems, vibration analysis, image
processing, and many others.

Recent years have also witnessed a great increase in
the availability of small, relatively inexpensive com-
puters, which are capable of performing most general
purpose calculations quite rapidly. In addition, many of
them are structured so as to facilitate the acquisition of
data from external sources. Because of these capabilities,
small computers are now popularly employed in process
control and other real-time environments. Such com-
puters may be used to sample incoming signals and to
perform certain calculations using these data so that the
results become known as the process continues.

In this paper, procedures are developed for implement-
ing fast Fourier transforms on small computers. Special
algorithms are devised that adapt this powerful computa-

SEPTEMBER 1971

tional technique to the special circumstances presented
by these computers. Several ideas for improving the
performance of the basic Cooley-Tukey algorithm are
presented. When they are combined, an algorithm is
obtained which decreases, by more than an order of
magnitude, the time required to calculate a Fast Fourier
Transform.

After the Fast Fourier Transform and its properties
are briefly introduced, each of the five techniques con-
tributing to the improved algorithm is described in detail.
The performance of an algorithm for the forward trans-
formation incorporating these techniques is examined in
terms of computation time. In addition, a method for
performing the inverse transformation is presented.
Finally, the results of testing the algorithm are given.

Definition and properties

The discrete (or finite) Fourier transform of a set of N
numbers f(k), k=0, 1,-- -, N—1isgiven by aset of N
Fourier coefficients A(n), n=0,1, - -+, N— 1. The co-
efficients are defined by the relation[2]:

*This paper summarizes the author’s Ph.D. dissertation, Department of Electrical
Engineering, Duke University, Durham, North Carolina, 1971.

355

FFT FOR SMALL COMPUTERS




356

Level 1 Level 2 Level 3 Level 4

f(0)o
f(Lo
f(2)o

AN
\NEV/ANVID G4

. \\'IIA‘OWAW a2
o/ [ X XX o
1(5)0 VWW P v aq10

f(6)o
(7)o
f(8)o
f(9)o
f(10)o
f(11)o
1(12)0
f(13)0 W~ a1
f(18)0
f(15)

a c c=Va(a+W")
o]
b d d=%2(a—W"b)
Figure 1 FFT algorithm expressed as a butterfly diagram for
N = 16.

A(n) = 1/N Vj] f(k) exp(—i2mnkIN), (1)

k=0
where i = (—1 )%.

The inverse transform is given by

N—-1
flk) =3 A(n) exp(i2wnk/N). 2
n=0
An important special case of the transform arises when
f(k) is a real-valued sequence. Some of the coefficients
may then be obtained directly from others. Replacing n
with N — n in Eq. (1) yields the result

AN=1) = 1IN f(k) exp[—i2m(N — n)kIN]

k=0

=1/N Nzl F(k) exp (+i2mnk/N)

k=0
= conjg[4 (n)]. 4)

The conjugate symmetry expressed here removes the
need to calculate the coefficients beyond N/2. This
result may also be understood from an information theory
point of view. Only N real numbers are required to
specify the original sequence, so N real numbers also
suffice to express the coefficients. 4(0) and 4(N/2) are
real. Each of the intervening N/2 — 1 coefficients requires
two real numbers to specify its complex value. As a
corollary of this result, it is also possible to synthesize
a real-valued sequence from half of the coefficients.

J. W. HARTWELL

Using Eq. (4) to eliminate those coeflicients in Eq. (2)
with subscripts greater than N/2, one obtains

flk) =A4(0) + (=1)*4(N/[2)
N/2—1
+2 3 Re[d(n) exp(i2wnk/N)]. (5

n=1

» The Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm[1] greatly
speeds the calculation of the discrete Fourier coefficients.
If the A’s are calculated directly from Eq. (1), N2 opera-
tions are required. Here an operation consists of a com-
plex multiplication followed by a complex addition.
When N is factorable, however, the A’s may be obtained
in many fewer operations. The algorithm is particularly
simple when N is equal to a radix raised to an integer
power. Only the case for N equal to a power of two will
be considered here.

When N = 27, the FFT algorithm can be executed by
a repetition of one simple process. The total number of
repetitions required to calculate the discrete transform
is mN/2. For the typical value N = 1024 = 21°, this
method requires fewer than one percent of the operations
needed for a direct application of Eq. (1).

There are several systematic ways[3] to implement the
FFT algorithm. They share a repetition of the basic
technique on each of m levels, but they differ in the order
in which intermediate results are tabulated. One popular
implementation is illustrated in the “butterfly diagram”
of Fig. 1. The modular nature of the calculations, sug-
gested by the butterflies, is an important property of
the FFT algorithm. Each butterfly may be understood
as representing one basic operation (i.e., one complex
multiplication followed by a complex addition, by a com-
plex subtraction, and by a division by two), where W is
the weighting factor exp(—i2w/N). The *levels” of
the transform are shown by the vertical columns. This
method has the advantage of permitting in-place calcula-
tions, i.e., intermediate results can be stored in the same
locations on each successive level. Its disadvantage is
that the Fourier coefficients as finally computed are not
stored in the normal sequence. One additional procedure
is required to rearrange them.

The presence of the normalization factor 1/N in the
forward transformation permits the algorithm to be
written with a division by two included in every opera-
tion, as shown in Fig. 1. This is advantageous if the calcu-
lations are to be done in fixed-point arithmetic. The effect
is to constrain the magnitudes of the operands at each
successive level so as to form a nonincreasing sequence.

In the inverse transformation, the unwanted normaliza-
tion factor 1/N can be removed by eliminating the
division by two that was included in each butterfly. The
decision to alter the algorithm in this way, however,

IBM J. RES. DEVELOP.




must be based upon evidence that overflow conditions
will not result. A sufficient condition is that the transform
being inverted consists of unamplified Fourier coeffi-
cients derived from a previous forward transformation.

s Computation time

When the number of data samples is given by N =27,
the FFT is calculated by performing N/2 butterflies on
each of m successive levels of computation. Thus, a
total of mN/2 complex multiplications, complex addi-
tions, and complex subtractions is required.

Each complex multiplication can be computed with
four real multiplications and two real additions. Each
complex addition or subtraction requires two real addi-
tions. Then the entire FFT calculation requires 2mN
real multiplications and 2mN real additions.

Since the time required for multiplication is assumed
here to be much greater than that for addition, the total
time T required for an N-point transform is approxi-
mately

T = 2mNt, (6)

where ¢ is the time for one real multiplication. This value
is a lower bound, because housekeeping, input/output
operations, and the reordering of the Fourier coefficients
have not been included in the estimate.

Implementation techniques

As shown in Eq. (6), the multiplication time is a signifi-
cant factor in determining the performance of a small
computer in the execution of fast Fourier transforms. In
the procedures described here, particular emphasis is
placed on efficient multiplication at the expense of in-
creased additions and storage requirements. The first
technique employed involves factoring a complex multi-
ply operation to reduce the number of real multiplica-
tions by 25 percent. The second technique is based on a
characteristic of the algorithm, as depicted in Fig. 1,
which allows trivial multiplications to be predicted and
thereby eliminated. Two other techniques greatly reduce
the multiplication time by constructing special purpose
algorithms. Each of these techniques is discussed in the
subsequent sections. Finally, a specialization of the basic
FFT algorithm to the case of real-valued data is pre-
sented. This method is useful in many circumstances
because it permits a reduction in storage requirements
as well as in execution time.

e Golub’'s method for complex multiplication

Golub’s method is mentioned in a footnote by Single-
ton[4]. Although it is not of much value when the FFT
algorithm is coded in a high level language such as
FORTRAN, it is an important factor in the present effort.
The method factors a complex multiplication into three

SEPTEMBER 1971

real multiplications and five real additions. (The con-
ventional evaluation requires four real multiplications
and two real additions.) The method is based on the
following identity:

(a+ib)(c+id)=[(a+ b)(c—d) + ad — bc]
+ i{ad + be). @]

When this technique is coded directly in machine lan-
guage, it provides an immediate savings of nearly 25
percent in computation time if the multiplication time
is assumed to be much greater than the addition time.
Reducing the number of multiplications from four to three
far more than offsets the increase in the number of addi-
tions under this assumption.

s Ordering the butterflies

The following procedure, which groups together opera-
tions requiring a common set of multipliers, was sug-
gested to the author by N. M. Brenner (IBM Thomas J.
Watson Research Center, Yorktown Heights, N.Y.), who
credits Charles Rader (MIT Lincoln Laboratory, 1966)
with the basic idea. The idea is not known to have been
implemented previously. The additional housekeeping
required to use it would normally more than offset its
computational advantages. In the present setting, how-
ever, it is combined with assembly language programming
techniques and with the dynamic compilation procedure
described below to produce significant savings in the
computation time for an FFT.

In this scheme the butterflies are not executed in the
level-by-level sequence implicit in Fig. 1. Instead the
operations are performed in an order that depends upon
the complex multipliers used. First, all butterflies re-
quiring W°=1 are calculated, beginning with those on
level 1, then doing those on level 2, and so forth. Next,
the butterflies using W¥*=—i are computed. Again they
are executed by levels reading from left to right in Fig. 1.
The number x of butterflies using W° can be found by
summing those from each of the levels

x,=N[2+ N4+ N8+ - +1=N—1. (8)

In the same way the number of butterflies x requiring
W4 is found to be

Xys=NI4+ N8+ +1=N[2—1. (9)

It should be noted that Eqs. (8) and (9) count all of the
trivial operations. Those butterflies are executed without
actually multiplying. The significance of this result can
be appreciated when their sum [3 (N/2) — 2] is compared
to the total number of butterflies (mN/2). For N = 1024,
this reduces the number of multiplications by almost
30 percent.

Those butterflies that use certain special multipliers
may be executed with only two real multiplications. These

357

FFT FOR SMALL COMPUTERS




358

are WVs = (V2/2) (1 —i) and W8 = (V2/2) (=1 —i).
The remaining butterflies require all three real multiplica-
tions given by Golub’s method. The combination of
Golub’s method and the ordering technique significantly
reduces the number of real multiplications required to
implement a Fast Fourier Transform. For a 1024-point
transform (m = 10), the number of multiplications is ap-
proximately halved.

In addition to the direct savings in the number of real
multiplications, this ordering procedure yields two other
benefits. It collects together all the butterflies requiring
common sets of multipliers, and it expedites counting the
number of times each factor is used. It can be concluded
that relatively few multipliers are involved in carrying
out most of the operations. This fact is exploited in the
multiplication techniques introduced below.

e Special-purpose multiplication

A general-purpose software multiplication routine was
made available near the beginning of this project for the
IBM System/7 computer. Execution time for this routine
averages about 65 usec, and 58 words of storage are
used. The routine uses 16-bit (1-word) operands and
provides a 2-word product. The special-purpose multi-
plication resulted from efforts to improve this time.

Substantial savings were found to be possible owing
to the special circumstances of the Fast Fourier Trans-
form. First, it was concluded that a single precision result
(16 bits) was acceptable. This shortened the general
purpose routine by eliminating double shifts. Second, it
was decided that the muitiplication procedure would
not be accessed from more than one interrupt level. This
eliminated those steps required for reentrant capability.
Third, it was noticed that considerable time and storage
were used in the housekeeping necessary to execute the
routine as a loop. These steps were deleted by writing
the TEST, ADD, and SHIFT statements for each multiplier
bit separately. Finally, it was decided to treat every
multiplier as a positive number. (The sign of the resultant
product must then be established in a separate procedure
that takes into account the proper quadrant for the
weighting factor).

The effect of these changes is to shorten the multiplica-
tion time to 24 usec and to lengthen the storage require-
ments to 61 words. This procedure is used in the FFT
when the number of times a given multiplier appears is
insufficient to justify the dynamic compilation described
below. It is also recommended for FFT calculations on
computers with very limited storage capabilities.

e Dynamic compilation

It has been found possible to carry out fixed-point multi-
plications very rapidly by specifically tailoring an
algorithm to a multiplier. This technique should be valu-

J. W. HARTWELL

able in any setting that requires repeated multiplication
by a single number. Its advantage in FFT calculations
is significant because there are many multiplications with
relatively few multipliers. This technique was formulated
in consultation with W. D. Modlin (IBM General Sys-
tems Division, Boca Raton, Florida). The basic idea is
his, and he participated throughout its implementation in
the FFT algorithm,

When a multiplier is to be used more than once, certain
steps in the ADD-and-SHIFT routine are observed to be
redundant. These are the steps that constitute an exami-
nation of the multiplier bits. The dynamic compilation
technique avoids this redundancy by examining the
multiplier only once and compiling a list of instructions
for execution specifically tailored to it.

A simplified version of this procedure could be imple-
mented as follows: First, a block of storage in the main
program sequence is reserved for installing the tailored
multiply algorithm. Second, the machine instruction for
adding a number (the multiplicand) to the accumulator,
and the machine instruction for shifting the accumulator
one binary position to the right, are placed in known
storage locations. Third, the multiplier is examined bit
by bit, beginning with the least significant bit. The
appropriate ADD and SHIFT instructions are installed in
the reserved space. If the multiplier bit is a ONE, the
ADD instruction is stored, followed by the SHIFT instruc-
tion. If the multiplier bit is a ZERO, only the SHIFT in-
struction is installed. Finally, when each bit has been
examined and the appropriate instructions stored, a
BRANCH instruction is installed at the end of the sequence.
This branch routes the execution around any unused
locations and back to the main program sequence. Each
operation requiring this muitiplier can now be executed
without the redundancy of additional steps to examine
the multiplier.

The coding for this compilation procedure requires 68
words of storage. It has an average execution time of
about 65 usec. As shown below, however, it results in
an average multiplication time of about 4.8 usec.

Figure 2 is a flow diagram for the dynamic compilation
recommended for FFT applications. It differs from the
simplified case just discussed in two important respects:
When successive shifts are required, they are accom-
plished by installing a single instruction specifying the
appropriate number of shifts. This is easily accomplished
through the System/7 instruction set since the number of
shifts is given by the final field in the instruction. A look-
ahead feature is also provided for successive ONE bits.
This feature speeds the execution process by subtract-
ing the multiplicand when a string of ONEs is encountered,
and by adding one to the multiplier so that the string of
ONES is transformed to a string of ZEROS preceded by a
ONE. Then an instruction for the appropriate number of

IBM J. RES. DEVELOP.




e
Set register 3
to 15 for
Store location bit count
for first compiled No
statement in l 19
register 2
Load pos_itive Yes
multiplier Decrement
into register 1 bit count
No
Yes
Install
Yes . Instz}ll instruction
instruction to to subtract
complement multiplicand
No
. Tnstall Install
lnstruct_lon to instruction
shift right to shift right
arithmetic
Encl?\Yes Decrement
bit count
No
Increment Calculate _Install Ald'dl‘l o
the shift length of instruction to multiplier to
instruction curn branch shift left the + onvert string
re Tan multiplicand of I’s to 0’s’
Install Install
No instruction instruction Yes
to branch to to add End?
main program multiplicand
Yes ) No
Yes the shift
instruction
No
Install
instruction Yes 1?7 No
to add
multiplicand
Figure 2 Flow diagram for dynamic compilation procedure.
arithmetic shifts is installed, followed by an ADD- required to shift the next multiplier bit into position after
MULTIPLICAND instruction when the next ONE bit is each examination.
encountered. Since the multiplier is assumed positive, only 15 of
The flow diagram of Fig. 2 has been kept as brief as its 16 bits are checked in the procedure shown in Fig. 2
possible by lumping several instructions in the decision An exception to this can be caused by a string of ONE hits
block labeled “1?” This block includes the instruction in the most significant positions operated on by the look- 359
SEPTEMBER 1971 FFT FOR SMA; L ()MPUTERS




360

£(0) /A(O) See
text
f(Ho =4 A(8)

r

Sm

o]
0O

Ay
/g

(<)
H2)o 0\
f(3o o C.C.

A41(4)

(4 7o \\ /AR(Z)
f(5)0 | ““+ i o v )
I N N
fero 1~ > | S G
fogmst VAN
fmo AN _TN o A(6)
0
#8) v /AR(I)
f(9)0 ° ———4_po 4y(1)
c.c i
f(10)0 /--i‘:fikm
r——tq wh
f(1no o c.c AL(T)
[ ——
£(12) T, \ /AR(3)
f(13)0 ° P 41(3)
0\‘ C.C. !
f(14y0 W/'(“QARG)
3
f(15)0 o v A(5)

Figure 3 FFT algorithm for real-valued data from Bergland,
(Ref. 5).

ahead procedure. This necessitates an additional route
to the exit from the right-hand loop. A bit counter is
initialized to 15 at the outset and is decremented as the
bits are examined. This decrementing is accomplished as
part of the decision block labeled “End?” A branch to
the EXIT routine is taken when the count has reached
Zero.

It should be noted that no “End?” block is included in
the top loop, which counts low-order zeros. This is
consistent with the assumption that the multiplier is
strictly positive: eventually a oNE bit must be found. This
fact also allows the compiled procedure to begin with the
multiplicand in the accumulator, since it would be added
to an empty accumulator when the first ONE bit was
found. In the event, however, that the first ONE bit
encountered in the multiplier is the start of a string,
then the requisite subtraction is performed by comple-
menting.

The final process blocks in Fig. 2 relate to the branch
instruction that must be installed at the end of the com-
piled procedure. Each time an instruction is placed in the
sequence, an index containing this address is incre-
mented. The length of the branch required can be com-
puted by subtracting this address from the address at
which execution is to be resumed.

J. W, HARTWELL

This procedure results in an execution sequence in
which the time depends upon the multiplier’s specific
bit configuration. The maximum execution time on
System/7 is 6.8 usec. The average time required for a
multiplication was estimated with the aid of a PL/I
program. The program calculated each of the multipliers
needed for a 1024-point transform and expressed them
in binary form. A simple procedure was established to
count the number of instructions that would be compiled
for each of these multipliers. From this information,
an average time of 4.8 usec was deduced.

Storage must be reserved to accommodate the maxi-
mum length compilation. Space for 27 words is required.

The decision to use the dynamic compilation technique
depends upon the number of times a multiplier is used.
The 24-usec procedure is more advantageous if the
multiplier is needed three or fewer times. For multi-
pliers needed four or more times, the 65-usec dynamic
compilation and the resulting 4.8-usec multiplications
are faster.

This method provides greatly improved performance in
FFT calculations where some multipliers are used on the
order of N times for an N-point transform.

% Real-valued data

The butterfly diagram of Fig. 1 shows a method for com-
puting the discrete Fourier transform for the general case
of complex-valued data points. A substantial shortening
of the procedure is possible when the data are restricted
to real values. This case would seem to be of particular
interest to the real-time processing contemplated in this
paper.

It was shown in Eq. (4) that only half of the coeflicients
need to be calculated when the data are real-valued. The
others can be inferred from the relation A(N — n) =
conjg[A(n)]. Bergland[5] has developed an algorithm
that exploits this fact. In it the conjugate symmetry of
the coefficients for real-valued data is applied on every
level. Each level of the butterfly diagram of Fig. 1 may be
understood as representing a combination of two trans-
forms into a longer one. Each of these subtransforms has
the property of conjugate symmetry. By including the
requisite conjugations at each stage, it is possible to
eliminate one level of operations. The resulting algorithm
is depicted schematically in Fig. 3.

The boxes labeled “C.C.” (for complex calculation)
are analogous to the butterflies of Fig. 1. The drawing is
kept as simple as possible by showing only one box for
each complex multiplier on a given level. It is to be under-
stood that this calculation is applied sequentially to all
of the operands in its group.

Only the two real-valued coefficients, A(0) and A(N/2),
are not correctly computed by the procedure shown in
Fig. 3. One final butterfly, a trivial one involving W9, is

IBM J. RES. DEVELOP.




required to complete the calculation. An advantage of
this scheme is that the real and imaginary parts of the
other coefficients are stored in adjacent locations. These
are indicated by the subscripts R and I in the figure.

The benefits gained from the use of the techniques dis-
cussed above are shown in Table 1.

Real-time FFT for a small computer

In some circumstances it may be advantageous to cal-
culate FFT’s in real time, that is, to compute the FFT
for one set of samples while the succeeding set is being
collected. For these applications, it might be desirable
to entrust to a single machine the actual transform com-
putations as well as the data sampling procedures.

Small computers appear to provide the requisite capa-
bilities for this task at moderate cost. They can be
equipped with adequate storage which is accessible in
times on the order of one microsecond. Unless hardware
multiply and divide features are provided, however,
these machines suffer the disadvantage of relatively long
multiplication times. A typical fixed-point software
multiply requires one to two hundred storage cycle
intervals, whereas additions or subtractions may custo-
marily be carried out in only a few machine cycles. As
was shown in Eq. (6), this long multiplication time
severely limits the small computer’s ability to perform
real-time FFT calculations by conventional methods.

In a real-time application, the computation time must
not exceed the time required to collect the N data
points for the next transform. Thus, from Eq. (6), the
sampling rate § is limited by

S < NIT=1/(2ms). (10)

An initial estimate for the performance of the IBM Sys-
tem/7 computer was made using Eq. (10). Taking m = 10,
and using the general-purpose software multiplication
time of 65 usec, this relation shows the sampling rate
limited to about 750 samples per second.

~ Algorithm for the forward transformation

A scheme has been devised that improves the perfor-
mance predicted by Eq. (10) by more than an order of
magnitude. This increase is achieved by combining all
of the techniques heretofore considered. By combining
these techniques, an algorithm is obtained that is suitable
for real-time processing on a small computer.

The complex calculations required by the algorithm for
real-valued data are ordered according to the multipliers
used. First, the trivial calculations requiring W° are car-
ried out proceeding level by level from left to right.
Counting by levels, the number of these boxes is

x,=N/4+ N8+ +1=N2—1. (11)
Then those boxes involving W“'/*‘:(\/E/Z)(I — i) are

SEPTEMBER 1971

Table 1 Reduction in multiplication time.

Approximate
multiplication
Number of real time for

Technique multiplications N =1024
Basic Cooley-Tukey 2mN 100% (reference)
FFT
Golub’s method for 6mN/4 75%
complex multi-
plication

Ordering technique  (4m — 13)N/2 + 10 68%
to expose simple
multipliers

Special purpose Reduces real 35%
multiplication multiplication time
Dynamic compila- Reduces real 17%

tion (where bene- multiplication time

ficial)

Bergland’s FFT for (m— 1)N 45%
real-valued data

Composite algorithm (3m ~ 10)N/4 + 4 4%

done in the same sequence. Each of these requires two
real multiplications. Counting as before, their number is
found to be

Xy = NI4— 1. (12)

Hereafter the complex multipliers are introduced in
pairs, W¥14-n accompanying W The elements of each
pair are related by the interchange of real and imaginary
parts. Three real multipliers, as required by Golub’s
method, are associated with each pair. In general, the
Kth level requires the introduction of 24-3 pairs, each
of which will be used in a total of N/2¥ — ] operations.
The final level (m — 1) calls for N/16 new pairs, each
used once.

The total number of real multiplications can be found
by noting that there are (m — 1) N/4 complex calculation
boxes in all. Each requires three real multiplications,
except for the N/4 — 1 needing only two, and the N/2 — 1
trivial ones:

xrea]multzz(N/4— l) + 3[(”1_ I)N/4_ 3N/4+ 2]
= (3m—10)N/4 + 4, 13)

Of this total, some derive from those complex multi-
pliers used only once. They are carried out by the ‘“‘slow
multiply” procedure that does not use dynamic com-
pilation. As previously pointed out, there are N/16 such
pairs. The number of multiplications to be done this way
is

xslowmult=3 X 2N/16:3N/8 (14)

The remaining operations involve multipliers used six
or more times. These are accomplished by dynamic

361

FFT FOR SMALL COMPUTERS




362

Table 2 System/7 FFT time requirements.

Time re-
Execution quired for
No. of time N=210=
Operation times used in usec 1024, in sec
Real addition  (16m —39)N/8+9 2 0.031
“Slow 3N/8 24 0.009
multiply”
“Fast (6m — 23)N/8 + 4 4.8 (avg) 0.024
multiply”
Dynamic IN/16 —2 65 (avg) 0.012
compilation
I/O operations N 5.8 0.006
Housekeeping/ 0.017
reordering
Total processing time for 1024-point
real-valued transform 0.099

compilation. The number of “fast multiplies” is obtained
by subtracting Eq. (14) from Eq. (13):

Xtast mult — (6m - 23)N/8 + 4, (15)

The number of multipliers for which a dynamic com-
pilation must be carried out can be found by a similar
procedure. Only one real multiplier is required for W3,
Thereafter, new multipliers are introduced at the rate of
three per pair, and 2¥-3 pairs for each level from the third
through the last. Those introduced on the final level,
however, are treated by the “slow multiply” technique.
Summing over level three through level (m — 2) gives:

Xcompiles ™ 1 +3(1 +2+-- +N/32) =3N/16—2
(16)

The foregoing procedures greatly shorten the time
consumed by multiplication. An accurate estimate of
computation time must now include factors previously
neglected. The times required for real additions, house-
keeping chores, rearranging the Fourier coefficients to
their normal order, and input/output operations also
must be included in the total. These times are shown in
Table 2 for System/7. Other small computers may display
significantly different times for the I/O operations.

The total time for processing a 1024-point transform
in this manner on System/7 is about 0.099 sec. In a real-
time application, this would permit a data sampling rate
in excess of 10,300 samples per second. This improves
the corresponding figure for the original Cooley-Tukey
algorithm by more than an order of magnitude.

e Inverse transform for real-valued data

Bergland[S] has suggested an algorithm for inverting
transforms of real-valued data that is similar to the
forward transformation shown in Fig. 3. It is not possible
with this inverse algorithm to utilize the ordering tech-

J. W. HARTWELL

nique. For this reason, its execution time on small general
purpose computers is much longer than the correspond-
ing time for the forward transformation.

Another technique has been developed for computing
this inverse transformation. The algorithm for the forward
transformation is used without alteration. It is, however,
both preceded and followed by a simple modification of

the data. Let B(k), k=0, 1, - - -, N/2 represent the dis-
crete Fourier coefficients for the real-valued sequence of
samples g(n), n=0, 1, - - -, N — 1. As was pointed out

in Eqs. (4) and (5), B(0) and B(N/2) are real, and each
g(n) can be calculated from the formula

g(n) =B(0) + (—1)" B(N/2)
Nz—1
+2 Y Re[B(k) exp(i2mnk/N)]. a7n
k=1
The first step in computing this function is to construct
a new sequence of real numbers f(k),k=0,1,- - -, N — 1
from the Fourier coefficients

f(k) =Re[B(k)] + Im[B (k)]
k=0,1,---, N2
f(N—k)=Re[B(k)] - Im[B(k)]. (18)

In order to see the effect of this change on Eq. (17), it
is necessary to write the original coefficients in terms
of the new sequence:

B(k) =:[f(k) +f(N —k)] + #[f(k) —f(N —k)].
(19)

Then these values can be inserted in Eq. (17) to obtain

N-1
gln) = Ef(k) cos (2mwnk/N) — f (k) sin (2mwnk/N). (20)
k=0
These two sums can be computed using the forward
transformation for real-valued data. If the results of this
algorithm are denoted as in Egs. (1) and (4) by A(n),
n=0,1,---, N/2, then Eq. (20) simply states that the
desired results are to be obtained from the relations

g(n)/N=RefAd(n)] +Im[4(n)]
n=0,1,---, NJ2
g(N—n)IN=Re[A(n)] —Im[4(n)]. (21

It is to be noted that the data modifications required
by Egs. (18) and (21) are identical. Thus, the inverse
transformation can be implemented by executing the
same procedure both before and after the forward al-
gorithm is applied. On System/7, these additional steps
require approximately 7 msec for a 1024-point transfor-
mation. The unwanted normalization factor 1/N was dis-
cussed above for the more general case of complex data.

Results
A program for the forward transformation was executed
on a System/360 Model 25 which emulates System/7.

IBM J. RES. DEVELOP.




The input data was restricted to the format used by the
medium speed analog-to-digital converter: 14 bits plus
sign. The maximum size of the real or imaginary part of
any Fourier coefficient is thus also restricted to be less
than 24,

As the program was being debugged, transforms were
calculated for data consisting of simple impulse functions.
No computational errors were observed. These trans-
forms may be considered as trivial, however, owing to
the very large number of zEros. To provide a better mea-
sure of the accuracy of the algorithm, a ramp function
was transformed. The correct results for this input can
be calculated in closed form in terms of some trigono-
metric functions. The maximum error found in any co-
efficient (real or imaginary part) was =2, where fullscale
is the maximum permitted amplitude of 2'4. Of the 1024
values computed, only seven were in error by this
amount. Errors of =1 were found for 530 of the numbers
computed, while 487 were calculated correctly.

These results may be summarized by stating that the
maximum error found was +0.012% fullscale, with a
standard deviation of +0.004% fullscale. These values
should be viewed as only rough estimates of the com-
putational error to be expected for an arbitrary input
sequence. No attempt was made to transform random
input data. Efforts to obtain a theoretical error analysis
were ultimately abandoned owing to the complexities of

SEPTEMBER 1971

the program and the twos-complement arithmetic used
in System/7.

The algorithms developed in this paper provide a sub-
stantial gain in performance when they are implemented
on machines having relatively long multiplication times.
They are particularly well suited to real-time applica-
tions on small computers with high speed data acquisi-
tion capabilities. The storage requirements are not ex-
cessive, and the accuracy should be acceptable for many
purposes.

References

1. J. W. Cooley and J. W. Tukey, “An Algorithm for the Ma-
chine Calculation of Complex Fourier Series,” Math. Comp.
19, 297 -301 (1965).

2. J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “The Finite
Fourier Transform,” /EEE Trans. A-E, AU-17,77 -85(1969).

3. G-AE Subcommittee on Measurement Concepts, ‘“What is
the Fast Fourier Transform?” IEEE Trans. A-E, AU-15,
45-55 (1967).

4. R. C. Singleton, “An Algorithm for Computing the Mixed
Radix Fast Fourier Transform,” IEEE Trans. A-E, AU-17,
93-103 (1969).

5. G. D. Bergland, “A Fast Fourier Transform Algorithm for
Real-Valued Series,” Comm. ACM, 11, 703-710 (1968).

Received March 18, 1971

Dr. Hartwell is Assistant Professor of Electrical Engi-
neering at the College of Engineering, Florida Atlantic
University, Boca Raton, Fla.

363

FFT FOR SMALL COMPUTERS




