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A Procedure  for  Implementing  the  Fast  Fourier 
Transform  on  Small  Computers* 

Abstract: A technique  has been  developed that  adapts  the  Fast  Fourier  Transform algorithm for implementation on  computers having 
relatively long multiplication  times. The  technique is particularly well suited to real-time  processing on a small data acquisition computer 
such  as  the IBM System/7. 

Four basic  ideas are utilized to improve the performance of the original Cooley-Tukey algorithm on  such a machine: 

1) The real-valued nature of the input data is exploited. 
2) The  number of multiplications that must be carried out is minimized at  the  expense of additions. 
3) The calculations are performed in a carefully ordered  sequence. 
4) Special  multiplication  algorithms are  used. 

This  technique has reduced by more than  an order of magnitude the time  required to  carry  out 1024-point transformations  on a small 
computer. A program is developed for calculating these  transforms in real time  on an IBM System/7  computer. With this  program,  a 
maximum sampling rate in excess of 10 kHz is obtained. 

Introduction 
The  Fast  Fourier  Transform[ I ]  is a  method  for efficiently 
computing the  discrete  Fourier  transform of a sequence 
of data samples. This  technique greatly reduces  the num- 
ber of computations required to calculate such a trans- 
form on a digital computer.  Consequently, it has made 
feasible the  use of Fourier transforms in the analysis of 
many hroblems  that  were previously approached by other 
methods.  Fourier  transforms  are now routinely  used in 
such  diverse  areas  as seismic exploration,  speech analy- 
sis,  echo-ranging systems, vibration  analysis,  image 
processing,  and many others. 

Recent  years  have also  witnessed  a  great increase in 
the availability of small,  relatively  inexpensive  com- 
puters, which are  capable of performing most general 
purpose calculations quite rapidly. In addition, many of 
them are  structured so as to facilitate the acquisition of 
data from external  sources. Because of these capabilities, 
small computers  are now popularly  employed in process 
control and  other real-time environments. Such  com- 
puters may be  used to sample incoming signals  and to 
perform  certain  calculations using these  data so that  the 
results  become known as  the  process continues. 

In this paper,  procedures  are developed for implement- 
ing fast Fourier  transforms on small computers. Special 
algorithms are  devised  that  adapt this  powerful computa- 

tional technique  to  the special circumstances  presented 
by these  computers.  Several ideas for improving the 
performance of the  basic  Caoley-Tukey algorithm are 
presented. When  they are  combined, an algorithm is 
obtained which decreases, by more than  an  order of 
magnitude, the time  required to calculate  a Fast  Fourier 
Transform. 

After  the  Fast  Fourier  Transform and its  properties 
are briefly introduced,  each of the five techniques con- 
tributing to  the improved  algorithm is described in detail. 
The  performance of an algorithm for  the  forward  trans- 
formation  incorporating these techniques is examined in 
terms of computation time. In addition, a method for 
performing the  inverse  transformation is presented. 
Finally, the  results of testing the algorithm are given. 

Definition and  properties 
The  discrete (or finite) Fourier transform of a set of N 
numbersf(k), k = 0, 1 , .  . ., N - 1 is given by a set of N 
Fourier coefficients A ( n ) ,  n = 0, 1 ,  . . ., N - 1. The CO- 
efficients are defined by the relation[2]: 

Engineering, Duke  University, Durham, North Carolina, 1971. 
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A ( n )  = 1/N f ( k )  exp(-i2rnk/N), 

where i = (-1 )+. 

The  inverse transform is given by 

.v- 1 

(1) 
k=O 

f ( k )  = A ( n )  exp(i2rnklN). 
N-1 

f l=O 

An  important special case of the  transform  arises when 
f ( k )  is a real-valued sequence.  Some of the coefficients 
may then  be obtained  directly  from others. Replacing n 
with N - n in Eq. (1) yields the result 

A ( N  - n )  = l / N  f ( k )  exp[-i2r(N - n)k/N] 
h- 1 

k=O 

N- I 

= 1/N f ( k )  exp(+i2rnk/N) 

= conjg [ A  ( n )  1, (4) 

The conjugate symmetry  expressed  here  removes  the 
need to calculate the coefficients beyond N/2.  This 
result may also be understood from an information theory 
point of view. Only  N  real numbers  are required to 
specify the original sequence, so N real  numbers  also 
suffice to  express  the coefficients. A ( 0 )  and  A(N/2)  are 
real. Each of the intervening N/2 - 1 coefficients requires 
two  real  numbers  to specify its  complex  value. As a 
corollary of this result, it is also  possible to  synthesize 
a  real-valued sequence from half of the coefficients. 

k=O 
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Using Eq. (4) to eliminate those coefficients in Eq.  (2) 
with subscripts  greater  than  N/2,  one  obtains 

f ( k )  = A  (0) + (-1 1% (N/2) 
N/2 - 1 

+ 2 2 Re[A(n)  exp(i2mklN)I. ( 5 )  
n=1 

The  Fast  Fourier  Transform 
The  Fast  Fourier  Transform  (FFT) algorithm[ 11 greatly 
speeds  the calculation of the  discrete  Fourier coefficients. 
If the A's are calculated  directly from  Eq. ( l) ,  N2 opera- 
tions  are required. Here  an  operation  consists of a  com- 
plex multiplication  followed by a complex addition. 
When N is factorable,  however,  the A's may be obtained 
in many fewer  operations.  The algorithm is particularly 
simple when N is equal  to a radix raised  to  an integer 
power.  Only the  case  for N  equal to a power of two will 
be  considered  here. 

When N = 2'", the FFT algorithm  can be  executed by 
a  repetition of one simple process.  The total  number of 
repetitions  required to  calculate  the  discrete transform 
is mN/2.  For  the typical  value  N = 1024 = 21°, this 
method requires  fewer than one  percent of the  operations 
needed for a direct application of Eq. (1). 

There  are  several  systematic ways[3] to implement the 
FFT algorithm. They  share a repetition of the basic 
technique on each of m levels, but  they differ in the  order 
in which intermediate  results  are tabulated. One popular 
implementation is illustrated in the "butterfly diagram" 
of Fig. 1. The modular nature of the calculations, sug- 
gested by the butterflies, is an  important  property of 
the FFT algorithm. Each butterfly may be understood 
as representing one basic operation (i.e., one complex 
multiplication followed by a complex addition, by a com- 
plex subtraction,  and by a division  by  two), where W is 
the weighting factor  exp(-i2r/N).  The "levels" of 
the transform are  shown by the vertical  columns. This 
method  has  the  advantage of permitting  in-place  calcula- 
tions, i.e., intermediate results can be  stored in the  same 
locations on each  successive level. Its disadvantage is 
that  the  Fourier coefficients as finally computed  are not 
stored in the normal sequence.  One additional procedure 
is required to  rearrange them. 

The  presence of the normalization factor  1/N in the 
forward transformation  permits the algorithm to be 
written with a division by two included in every opera- 
tion,  as  shown in Fig. 1. This is advantageous if the calcu- 
lations are  to be done in fixed-point arithmetic. The effect 
is to constrain  the magnitudes of the  operands at each 
successive level so as  to form  a  nonincreasing sequence. 

In the  inverse  transformation,  the unwanted  normaliza- 
tion factor 1/N can be removed  by eliminating the 
division  by two  that  was included in each butterfly. The 
decision to  alter  the algorithm in this way, however, 
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must  be based  upon evidence that overflow conditions 
will not  result. A sufficient condition is that  the transform 
being inverted consists of unamplified Fourier coeffi- 
cients derived  from  a  previous  forward  transformation. 

Computation  time 
When the  number of data samples is given by N = 2'", 
the FFT is calculated by performing N / 2  butterflies on 
each of m successive levels of computation. Thus, a 
total of m N / 2  complex  multiplications,  complex  addi- 
tions,  and complex subtractions is required. 

Each complex multiplication can  be computed with 
four real multiplications  and two real  additions. Each 
complex  addition or  subtraction  requires  two real addi- 
tions. Then  the  entire FFT calculation requires 2mN 
real multiplications and 2mN real additions. 

Since  the time  required for multiplication is assumed 
here  to be much greater than that  for addition, the total 
time T required for  an N-point  transform is approxi- 
mately 

T = 2mNt,   (6)  

where t is the time for  one real multiplication. This value 
is a lower bound, because housekeeping, inputloutput 
operations,  and  the reordering of the  Fourier coefficients 
have  not  been included in the  estimate. 

Implementation  techniques 
As shown in Eq. (6) ,  the multiplication time is a signifi- 
cant  factor in determining  the  performance of a small 
computer in the execution of fast  Fourier  transforms.  In 
the  procedures  described  here, particular emphasis is 
placed on efficient multiplication at  the  expense of in- 
creased additions and  storage requirements. The first 
technique  employed  involves  factoring  a  complex multi- 
ply operation  to  reduce  the  number of real multiplica- 
tions by 25 percent.  The  second  technique is based on a 
characteristic of the algorithm, as depicted in Fig. 1, 
which allows trivial multiplications to be  predicted and 
thereby eliminated. Two  other  techniques greatly reduce 
the multiplication time  by  constructing  special purpose 
algorithms. Each of these  techniques is discussed in the 
subsequent sections.  Finally,  a  specialization of the  basic 
FFT algorithm to  the  case of real-valued data is pre- 
sented.  This method is useful in many circumstances 
because it permits a reduction in storage  requirements 
as well as in execution  time. 

0 Golub's method  for  complex  multiplication 
Golub's method is mentioned in a footnote by Single- 
ton[4]. Although it is not of much value when the FFT 
algorithm is coded in a high level language such as 
FORTRAN, it is an  important  factor in the  present effort. 
The method factors a  complex multiplication into  three 
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real multiplications  and five real additions. (The con- 
ventional  evaluation requires  four real multiplications 
and two real  additions.) The method is based on  the 
following identity: 

( a  + i h )   ( c  + i d )  = [ ( a  + h )   ( c  - d )  + ad - bc]  
+ i (ad  + bc) .  (7) 

When this technique is coded directty in machine  lan- 
guage, it provides an immediate  savings of nearly 25 
percent in computation time if the multiplication time 
is assumed to be much greater than the addition  time. 
Reducing the  number of multiplications from  four  to  three 
far  more than  offsets the  increase in the number of addi- 
tions  under this  assumption. 

Ordering  the  butterflies 
The following procedure, which groups together  opera- 
tions  requiring  a  common set of multipliers, was sug- 
gested to  the  author by N. M. Brenner (IBM Thomas J .  
Watson  Research  Center,  Yorktown  Heights,  N.Y.), who 
credits  Charles  Rader  (MIT Lincoln Laboratory, 1966) 
with the  basic idea. The  idea is not  known to  have been 
implemented  previously. The additional  housekeeping 
required to  use it would normally more than offset its 
computational  advantages. In  the  present setting,  how- 
ever, it is combined with assembly  language programming 
techniques  and with the  dynamic compilation procedure 
described below to  produce significant savings in the 
computation  time for  an FFT. 

In this scheme  the butterflies are not executed in the 
level-by-level sequence implicit in Fig. 1 .  Instead  the 
operations  are performed in an  order  that  depends upon 
the complex multipliers used. First, all butterflies  re- 
quiring WO= 1 are calculated, beginning with those  on 
level 1 ,  then doing those on level 2, and so forth.  Next, 
the butterflies using W N I 4  = - i are  computed. Again  they 
are  executed by  levels  reading from left to right in Fig. 1 .  
The  number x of butterflies using W o  can  be  found by 
summing those from each of the levels 

x , = N / ~ + N / ~ + N / ~ + . . . + ~ = N - I  . (8) 

In  the  same way the  number of butterflies x requiring 
Wv14 is found to  be 

= N / 4  + N / 8  + . . . + 1 = N / 2  - 1. (9) 

It should  be  noted that  Eqs. (8) and (9 )  count all of the 
trivial operations. Those butterflies are  executed without 
actually multiplying. The significance of this  result  can 
be appreciated when their sum [3 ( N / 2 )  - 21 is compared 
to  the total number of butterflies ( m N / 2 ) .  For N = 1024, 
this reduces  the  number of multiplications by almost 
30 percent. 

Those butterflies that use certain special multipliers 
may be executed with only two real multiplications. These 
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are WVl8= (*/2)(1 - i )  and W3.’‘/*= ( f i / 2 ) ( - 1  - i ) .  
The remaining butterflies require all three real multiplica- 
tions given by Golub’s  method. The combination of 
Golub’s method  and the ordering technique significantly 
reduces  the  number of real  multiplications  required to 
implement a Fast  Fourier  Transform.  For a 1024-point 
transform (m  = lo), the  number of multiplications is ap- 
proximately  halved. 

In addition to  the  direct savings in the number of real 
multiplications,  this  ordering procedure yields two  other 
benefits. I t  collects together all the butterflies  requiring 
common sets of multipliers, and it expedites counting the 
number of times each  factor is used. It  can be  concluded 
that relatively few multipliers are involved in carrying 
out  most of the  operations.  This  fact is exploited in the 
multiplication techniques  introduced  below. 

Special-purpose  multiplication 
A general-purpose software multiplication routine  was 
made available near  the beginning of this  project for  the 
IBM  System/7  computer.  Execution time for this routine 
averages  about 65 psec,  and 58 words of storage  are 
used. The  routine  uses 16-bit  (1-word) operands and 
provides  a 2-word product.  The special-purpose multi- 
plication resulted  from  efforts to  improve this  time. 

Substantial  savings were found to be  possible owing 
to  the special circumstances of the  Fast  Fourier  Trans- 
form. First, it was concluded that a single precision  result 
(16 bits)  was  acceptable. This  shortened  the general 
purpose  routine by eliminating double shifts. Second, it 
was decided that  the multiplication procedure would 
not  be  accessed from more  than  one  interrupt level. This 
eliminated those  steps required for  reentrant capability. 
Third,  it was  noticed that  considerable time  and storage 
were  used in the housekeeping necessary to execute  the 
routine as a loop. These  steps were  deleted by writing 
the  TEST,  ADD,  and SHIFT statements  for  each multiplier 
bit separately. Finally, it was decided to  treat  every 
multiplier as a positive  number. (The sign of the resultant 
product  must  then  be established in a separate  procedure 
that  takes  into  account  the  proper  quadrant for the 
weighting factor). 

The effect of these  changes is to  shorten  the multiplica- 
tion time to 24 psec and to lengthen the  storage require- 
ments to  61 words. This  procedure is used in the FFT 
when the  number of times a given multiplier appears is 
insufficient to justify the  dynamic compilation  described 
below. It is also recommended for FFT calculations on 
computers with  very limited storage capabilities. 

Dynamic compilation 
It  has been found possible to carry  out fixed-point multi- 
plications very rapidly by specifically tailoring an 
algorithm to a multiplier. This  technique should  be valu- 

able in any  setting that  requires  repeated multiplication 
by a single number. Its  advantage in FFT calculations 
is significant because  there  are many  multiplications with 
relatively few multipliers. This technique  was  formulated 
in consultation  with W. D. Modlin (IBM  General  Sys- 
tems Division,  Boca Raton, Florida). The basic idea is 
his,  and he participated  throughout its implementation in 
the FFT algorithm. 

When a multiplier is to be  used  more  than once, certain 
steps in the ADD-and-SHIFT routine  are  observed  to be 
redundant.  These  are  the  steps  that  constitute  an exami- 
nation of the multiplier bits. The  dynamic compilation 
technique avoids  this  redundancy by examining the 
multiplier only once  and compiling a list of instructions 
for execution specifically tailored to it. 

A simplified version of this procedure could be imple- 
mented  as follows: First, a  block of storage in the main 
program sequence is reserved  for installing the tailored 
multiply algorithm. Second,  the machine instruction  for 
adding  a number  (the multiplicand) to  the  accumulator, 
and the machine  instruction for shifting the  accumulator 
one binary  position to  the right, are placed in known 
storage locations. Third, the multiplier is examined bit 
by bit, beginning with the  least significant bit. The 
appropriate ADD and SHIFT instructions  are installed in 
the  reserved  space. If the multiplier bit is a ONE, the 
ADD instruction is stored, followed  by the SHIFT instruc- 
tion. If the multiplier bit is a ZERO, only the SHIFT in- 
struction is installed.  Finally, when each bit has  been 
examined  and the  appropriate  instructions  stored, a 
BRANCH instruction is installed at  the  end of the sequence. 
This  branch  routes  the  execution  around  any unused 
locations  and back to  the main program sequence.  Each 
operation requiring  this multiplier can now  be executed 
without  the  redundancy of additional steps  to examine 
the multiplier. 

The coding for this  compilation procedure  requires 68 
words of storage. It  has  an  average  execution  time of 
about  65  psec. As shown  below, however, it results in 
an  average multiplication time of about 4.8 psec. 

Figure 2 is a flow diagram for  the  dynamic compilation 
recommended  for FFT applications. It differs from  the 
simplified case  just discussed in two  important  respects: 
When successive shifts are  required, they are accom- 
plished by installing a single instruction specifying the 
appropriate  number of shifts. This is easily  accomplished 
through the  System/7 instruction set since the  number of 
shifts is given by the final field in the instruction. A look- 
ahead  feature  is  also provided for  successive ONE bits. 
This  feature  speeds  the  execution  process by subtract- 
ing the multiplicand when a string of ONES is encountered, 
and by adding one  to  the multiplier so that  the string of 
ONES is transformed to a  string of ZEROS preceded by a 
ONE. Then  an  instruction  for  the  appropriate  number of 
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Figure 2 Flow diagram for  dynamic  compilation  procedure. 
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Figure 3 FFT algorithm for real-valued data from Bergland, 
(Ref. 5). 

ahead  procedure.  This  necessitates an additional route 
to  the  exit from the right-hand loop. A bit counter is 
initialized to 15 at  the  outset and is decremented  as  the 
bits are examined. This  decrementing is accomplished as 
part of the decision  block  labeled  "End?" A branch  to 
the EXIT routine is taken when the  count  has reached 
zero. 

It should  be  noted that  no "End?" block is included in 
the  top  loop, which counts low-order ZEROS. This is 
consistent with the  assumption  that  the multiplier is 
strictly  positive:  eventually a ONE bit must be found. This 
fact  also allows the compiled procedure  to begin with the 
multiplicand in the  accumulator,  since it would be added 
to  an  empty  accumulator when the first ONE bit was 
found. In the  event,  however,  that  the first ONE bit 
encountered in the multiplier is the  start of a string, 
then  the requisite subtraction is performed by comple- 
menting. 

The final process blocks in Fig. 2 relate  to  the  branch 
instruction that must  be  installed at  the  end of the com- 
piled procedure. Each time an  instruction is placed in the 
sequence,  an index  containing  this address is incre- 
mented. The length of the branch  required can be  com- 
puted by subtracting this address  from  the  address  at 
which execution is to be resumed. 360 

J.  W. HARTWELL 

This  procedure  results in an  execution  sequence in 
which the time depends upon the multiplier's specific 
bit configuration. The maximum execution time on 
System/7 is 6.8  psec.  The  average time  required for a 
multiplication was  estimated with the aid of a PL/l  
program. The program  calculated each of the multipliers 
needed for a  1024-point  transform  and expressed them 
in binary form. A simple procedure was  established to 
count  the  number of instructions  that would be  compiled 
for each of these multipliers. From this  information, 
an  average time of 4.8  psec was deduced. 

Storage must be reserved to  accommodate  the maxi- 
mum length compilation. Space  for 27 words is required. 

The decision to use  the  dynamic compilation technique 
depends upon the number of times  a multiplier is used. 
The  24-psec  procedure is more  advantageous if the 
multiplier is needed three  or  fewer times. For multi- 
pliers  needed four  or  more  times,  the  65-psec  dynamic 
compilation and  the resulting 4.8-psec multiplications 
are  faster. 

This method  provides  greatly  improved performance in 
FFT calculations where  some multipliers are used on  the 
order of N times for  an  N-point transform. 

Real-valued  data 
The butterfly diagram of Fig. 1 shows a method  for  com- 
puting the  discrete  Fourier transform for  the  general  case 
of complex-valued data points. A substantial  shortening 
of the  procedure is possible  when the  data  are restricted 
to  real values. This  case would seem  to be of particular 
interest  to  the real-time  processing  contemplated in this 
paper. 

It was shown in Eq. (4) that only half of the coefficients 
need to  be calculated  when the  data  are real-valued. The 
others can  be  inferred  from the relation A ( N  - n )  = 
conjg[A(n)]. Bergland[S] has  developed an algorithm 
that exploits  this fact.  In it the conjugate  symmetry of 
the coefficients for real-valued data is applied on every 
level. Each level of the butterfly diagram of Fig. 1 may be 
understood  as representing  a  combination of two trans- 
forms  into a longer  one. Each of these  subtransforms  has 
the  property of conjugate symmetry. By including the 
requisite  conjugations at  each  stage, it is possible to 
eliminate one level of operations.  The resulting  algorithm 
is depicted schematically in Fig. 3. 

The boxes  labeled "C.C." (for  complex  calculation) 
are analogous to  the butterflies of Fig. 1. The drawing is 
kept  as simple as possible by showing  only one box for 
each complex multiplier on a given level. It is to be  under- 
stood  that this calculation is applied sequentially to all 
of the  operands in its  group. 

Only the two  real-valued coefficients, A(0)  andA(N/2), 
are  not  correctly  computed by the  procedure  shown in 
Fig. 3. One final butterfly, a trivial one involving W n ,  is 
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required to complete the calculation. An  advantage of Table 1 Reduction in multiplication  time. 
this scheme is that  the real and imaginary parts of the 
other coefficients are  stored in adjacent locations. These Approximate 
are indicated by the  subscripts R and I in the figure. 

cussed above  are  shown in Table 1 .  
The benefits gained from the use of the techniques  dis- 

mulfiplicafion 
Number  of real  time for 

Technique  multiplications N = 1024 

Basic Cooley-Tukey 2mN 100% (reference) 
Real-time FFT for a small  computer FFT 

In some  circumstances  it may be advantageous  to cal- 
culate FFT’s in real  time, that  is,  to  compute  the FFT 

complex multi- 
plication 

Golub’s  method for 6 m N / 4  75% 

for  one  set of samples while the succeeding set is being 
collected. For  these applications, it might be desirable 
to  entrust  to a single machine the actual  transform com- 
putations as well as  the  data sampling procedures. 

Small computers  appear  to provide the requisite capa- 
bilities for this task  at  moderate cost. They  can be 
equipped with adequate  storage which is accessible in 
times on  the  order of one microsecond. Unless  hardware 
multiply and divide features  are provided, however, 
these machines suffer the  disadvantage of relatively long 
multiplication times. A typical fixed-point software 
multiply requires  one  to two hundred  storage  cycle 
intervals,  whereas  additions or  subtractions may custo- 
marily be carried  out in only  a  few  machine  cycles. As 
was shown in Eq. (6) ,  this long multiplication time 
severely limits the small computer’s ability to perform 
real-time FFT calculations by conventional  methods. 

In a  real-time  application, the  computation time  must 
not exceed  the time  required to collect the N data 
points for  the  next transform. Thus,  from  Eq. (6), the 
sampling rate S is limited by 

S < N / T  = 1 / ( 2 m t ) .  (10) 

An initial estimate  for  the  performance of the  IBM  Sys- 
tern17 computer was made using Eq. (10). Taking m = 10, 
and using the general-purpose software multiplication 
time of 65 psec, this  relation shows  the sampling rate 
limited to  about  750 samples per  second. 

Algorithm for the  forward  transformation 
A scheme has  been devised  that improves the perfor- 
mance  predicted by Eq. ( 1  0) by more  than an  order of 
magnitude. This  increase is achieved by combining all 
of the techniques heretofore  considered. By combining 
these  techniques, an algorithm is obtained that is suitable 
for real-time  processing on a small computer. 

The complex  calculations  required by the algorithm for 
real-valued data  are  ordered according to  the multipliers 
used. First,  the trivial calculations  requiring W” are  car- 
ried out proceeding level by level from left to right. 
Counting by levels, the number of these boxes is 

x , = N / 4 + N / 8 + . . . + 1 = N / 2 - 1  . (1 1 )  

Then  those boxes involving WV’* = ( f i / 2 ) ( 1  - i )  are 

Ordering technique (4m - 13)N/2 + 10 68% 
to  expose simple 
multipliers 

multiplication  multiplication  time 

tion (where bene-  multiplication  time 
ficial) 

real-valued data 

Special purpose Reduces real 35% 

Dynamic compila- Reduces real 17% 

Bergland’s FFT for ( m  - l ) N  45 % 

Composite algorithm (3m - 10)N/4 + 4  4% 

done in the  same  sequence.  Each of these  requires  two 
real multiplications.  Counting as before, their  number is 
found to be 

X,,* N / 4  - 1 .  (12)  

Hereafter  the complex multipliers are introduced in 
pairs, W.V/4-71 accompanying Wn. The  elements of each 
pair are related by the interchange of real and imaginary 
parts.  Three real  multipliers, as required by Golub’s 
method,  are  associated with each pair. In general, the 
Kth level requires  the introduction of 2K-3 pairs, each 
of which will be  used in a  total of N / 2 K  - 1 operations. 
The final level ( m  - 1 )  calls for N / 1 6  new  pairs, each 
used  once. 

The total number of real  multiplications can be  found 
by noting that  there  are ( m  - 1 )  N / 4  complex  calculation 
boxes in all. Each  requires  three real multiplications, 
except  for  the N / 4  - 1 needing  only two,  and  the N / 2  - 1 
trivial ones: 

~ , , , 1 , , , ~ , ~ = 2 ( N / 4 -  1 )  + 3 [ ( m -   l ) N / 4 - 3 N / 4 + 2 ]  
= ( 3 m  - 1 0 ) N / 4  + 4 .  ( 1 3 )  

Of this  total, some  derive from those complex multi- 
pliers used  only once.  They  are carried out by the “slow 
multiply” procedure  that  does  not use dynamic com- 
pilation. As previously  pointed out,  there  are N / 1 6  such 
pairs. The  number of multiplications to be done this way 
is 

xslOw 3 X 2N/16 = 3NI8.  (14) 

The remaining operations involve multipliers used six 
or  more times. These  are accomplished by dynamic 361 
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Table 2 System/7 FFT time  requirements. 

Time  re- 
Execution  quired for  

No.  of time N = 210 = 
Operation times  used in psec  1024, in sec 

Real  addition (16m - 39)N/8 + 9 2 0.03 1 
“Slow 3 N / 8  24 0.009 

“Fast (6m - 23)N/8 + 4 4.8 (avg) 0.024 

Dynamic 3N/16 - 2 65 (avd 0.012 

1/0 operations N 5.8 0.006 
Housekeeping/ 0.017 

Total processing time for  1024-point 

multiply” 

multiply” 

compilation 

reordering 

real-valued  transform 0.099 

compilation. The number of “fast multiplies” is obtained 
by subtracting  Eq. (14) from Eq. (13): 

XfaSt mult = ( 6 ~  - 23 )N/8 + 4. (15) 

The number of multipliers for which a dynamic com- 
pilation must  be  carried out  can be  found by a similar 
procedure. Only one real multiplier is required for Wt‘’s. 
Thereafter, new multipliers are introduced at  the  rate of 
three  per  pair,  and 2K-3 pairs for  each level from  the third 
through the last. Those introduced on  the final level, 
however,  are  treated by the “slow multiply” technique. 
Summing over level three through level (rn - 2) gives: 

x , , , , i , , , = 1 + 3 ( 1 + 2 + . . . + N / 3 2 ) = 3 N / 1 6 - 2  . 
(16) 

The foregoing procedures greatly shorten  the time 
consumed  by multiplication. An  accurate  estimate of 
computation  time  must  now  include factors previously 
neglected. The times  required for real  additions, house- 
keeping chores, rearranging the  Fourier coefficients to 
their normal order,  and  inputloutput  operations  also 
must  be  included in the  total.  These times are  shown in 
Table 2 for  System/7.  Other small computers may display 
significantly different  times for  the 1/0 operations. 

The  total time for processing  a  1024-point  transform 
in this manner  on  System/7 is about 0.099 sec. In a real- 
time  application,  this would permit  a data sampling rate 
in excess of 10,300 samples per  second.  This improves 
the  corresponding figure for  the original Cooley-Tukey 
algorithm by  more than  an  order of magnitude. 

Inverse transform for real-valued data 
Bergland[S] has suggested an algorithm for inverting 
transforms of real-valued data  that is similar to  the 
forward  transformation shown in Fig. 3. It is not possible 
with this inverse algorithm to utilize the ordering tech- 

nique. For this reason,  its  execution time on small general 
purpose  computers is much  longer  than the  correspond- 
ing time for  the  forward transformation. 

Another technique has been  developed for computing 
this inverse transformation. The algorithm for  the forward 
transformation is used  without  alteration. It is, however, 
both preceded and followed by a simple modification of 
the  data.  Let B(k) ,  k = 0, 1, . . ., N/2  represent  the dis- 
crete  Fourier coefficients for  the real-valued sequence of 
samples g(n), n = 0, 1, . . ., N - 1 .  As was  pointed out 
in Eqs. (4) and ( 9 ,  B(0) and  B(N/2)  are real, and  each 
g(n)  can  be calculated from  the formula 

g (n )  = B ( O )  + (-l)n B(N/2)  
A’/ 2 - 1 + 2 E Re[B(k)  exp(i2rnk/N)].  (17) 

The first step in computing  this  function is to  construct 
a new sequence of real  numbers f ( k ) ,  k = 0, 1 ,  . . ., N - 1 
from  the  Fourier coefficients 

k = l  

f (k )  = Re[B(k)l + Im[B(k)l 
k = 0, 1, ‘ . -, N/2 

f ( N  - k )  = Re[B(k)] - Im[B(k)].  (1 8) 

In  order  to  see  the effect of this change  on  Eq.  (17), it 
is necessary  to write the original coefficients in terms 
of the new sequence: 

B ( k )  = i [ f ( k )  + f ( N   - k ) ]  + i $ [ f ( k )  -f(N  -k)].  
(19) 

Then  these  values  can be inserted in Eq. (17) to obtain 

g ( n )  = E f ( k )  cos(2rnk/N) - f ( k )  sin ( 2 ~ n k / N ) .  (20) 

These  two  sums  can be computed using the  forward 
transformation for real-valued data. If the  results of this 
algorithm are  denoted  as in Eqs.  (1)  and (4) by A(n), 
n = 0, 1, . . *, N/2, then Eq. (20) simply states  that  the 
desired  results are  to be  obtained  from the relations 

g(n) /N=  Re[A(n) l  + Im[A(n)l  
n = 0, 1 ,  . . ., N/2 

g ( N  - n) /N  = Re[A(n)] - Im[A (n)].  (2 1 )  

It is to be noted  that  the  data modifications required 
by Eqs. (18) and (21) are identical. Thus,  the  inverse 
transformation can be  implemented  by  executing the 
same  procedure  both before and  after  the forward al- 
gorithm is applied. On  System/7,  these additional steps 
require approximately  7  msec for a  1024-point  transfor- 
mation. The unwanted  normalization factor  1/N  was dis- 
cussed  above  for  the more  general case of complex data. 

Results 
A  program for  the forward transformation  was  executed 
on a System/360 Model 25 which emulates  System/7. 

A- 1 

k=O 
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The input data was  restricted to  the  format used by the 
medium speed analog-to-digital converter:  14 bits  plus 
sign. The maximum size of the real or imaginary part of 
any Fourier coefficient is thus  also restricted to be  less 
than 214. 

As the program was being debugged,  transforms  were 
calculated for  data consisting of simple  impulse  functions. 
No computational errors were observed.  These  trans- 
forms may be considered as trivial, however, owing to 
the very  large  number of ZEROS. To provide a better mea- 
sure of the  accuracy of the algorithm, a ramp  function 
was transformed.  The  correct  results  for this input  can 
be  calculated in closed form in terms of some  trigono- 
metric  functions. The maximum error found in any co- 
efficient (real or imaginary part) was k2, where fullscale 
is the maximum permitted  amplitude of 214. Of the  1024 
values computed, only seven were in error by this 
amount.  Errors of k1 were found for 530 of the numbers 
computed, while 487  were calculated correctly. 

These  results may be  summarized by stating that  the 
maximum error found  was 20.012% fullscale, with a 
standard deviation of &0.004%  fuliscale. These values 
should  be  viewed as only rough estimates of the com- 
putational error  to be expected  for  an  arbitrary input 
sequence. No attempt  was made to transform random 
input data. Efforts to  obtain a  theoretical error analysis 
were  ultimately abandoned owing to  the complexities of 
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the program and  the twos-complement arithmetic used 
in System/7. 

The algorithms  developed in this paper  provide a  sub- 
stantial gain in performance when  they are implemented 
on machines  having relatively long multiplication times. 
They  are particularly well suited to real-time  applica- 
tions on small computers with high speed  data acquisi- 
tion capabilities. The  storage  requirements  are not ex- 
cessive, and the  accuracy should be  acceptable  for many 
purposes. 
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