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Some Numerical Results for lterative Continuation
in Nonlinear Boundary-value Problems

Abstract: In this communication we apply certain continuous analog iterative methods to two sample boundary-value problems. We
show that the Euler-Newton and the second-order continuation of the Newton method are both useful algorithms for obtaining solu-
tions to classes of nonlinear boundary-value problems. For a convergence analysis we rely upon a number of convergence theorems
presented in earlier work. We indicate, through the numerical results, that the relaxed Newton methods are particularly useful in the
iterative solution of “‘strongly”’ nonlinear problems where little information is available concerning “good starting values.”

Introduction

In this communication we apply certain continuous ana-
log iterative methods to two simple nonlinear boundary-
value problems. More particularly, we consider the ap-
plication of the Euler and the second-order continuation
of Newton’s method (see [1]). For a convergence analy-
sis we rely upon a number of convergence theorems
presented in [1]. (See also [2].) We indicate, through the
numerical results, that the relaxed Newton algorithms
are particularly useful in the iterative solution of
“strongly’’ nonlinear problems where little information is
available concerning “good starting values.” We point
out, in such cases, that the algorithms are considerably
more useful than the (conservative) convergence theo-
rems would indicate. This is very often the case in nu-
merical analysis, however. In our case it is undoubtedly
the result of applying certain (in general, rather poor)
Runge-Kutta type error bounds in the derivation of the
convergence conditions [1]. A more useful convergence
result, based on a somewhat different approach, will
appear in a forthcoming paper.

1. Two-point boundary value problem

In this section we present a brief review of the transla-
tion of a general two-point boundary-value problem
(TPBVP) into an integral operator context (see, for
example, [3] or [4]). We begin by considering a nonlinear
TPBVP:

(1) =G, glx(0)]+hx(D]=c, (D
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where G,g and 4 are “sufficiently smooth” vector-valued
functions with x,c ERP (R? is a p-dimensional Euclidian
space). We study a “related” linear TPBVP,

x=A)x+ k), Bx(0)+Cx(1)=d, (2)

in which we require the matrix set {A(#), B, C} to be
boundary compatible (this is equivalent to requiring that
TPBVP (2) possess a unique solution for all £(t) and c).
Falb and DeJong prove in [4] (under appropriate ¢ondi-
tions on G, g and k) that TPBVP (1) has the equivalent
integral representation

x(1) = A1) {c—g[x(0)] — A[x(1)] + Bx(0) + Cx(1)}
+j‘ T(ts) {Gx(s).s] — A(s)x(s)} ds, 3)

where A and I” are Green’s matrices for the linear prob-
lem (2).

By a similar analysis we can translate a typical nonli-
near self-adjoint elliptic boundary-value problem (Di-
richlet form),

Lu=f(ux), x€EDCR»,
u(dD) = ¢(x), 4
into an equivalent integral representation of the form

u(x) =—f G (x,0) flu(o), o] do
D

—f G, (3D,s) ¢ (s) ds, )
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where G is the Green’s function for the linear elliptic
operator L and G, is the outward normal derivative of
G. Equation (3) or (5) can now be viewed as a nonlinear
operator map of an appropriate Banach space into itself.
Thus we note that solving (3) or (5) is equivalent to solv-
ing an appropriately defined operator equation

F(z) =0, ©

where F =1 — T, with the nonlinear integral operator
appearing on the right hand side of (3) or (5).

2. Two continuation algorithms for Newton’s
method

In [1] we developed a number of continuation algorithms
based on Newton’s method for iteratively solving prob-
lems of the form (2). The algorithms are obtained by
simply translating certain basic function-theoretic con-
tinuation algorithms into a TPBVP context. It is clear
that a similar translation in the context of Eq. (5) will
reduce (4) to the problem of solving an appropriate se-
quence of linear elliptic problems.

We illustrate the translation by considering the first-
and second-order relaxed Newton iteration (see [1]) in
the two-point boundary-value problem context. We treat
the Euler-Newton method,

X1 =X, — T [F', 17'F(x,), n=011,--- N, —1

S =X, = [F, 1'F(x),  n=N, -, Q)
and a Trapezoidal-Newton method,

Yo =%, —ET,[F', 171F (x,)
Xpe1 = X Tz[F'yn]’l F(x,)

—1

2

},nZO,l,"',N

xn+1 =xn_ [F’.z'n]ilF(x())’ n =N2’ Y (8)

where 7 = 1/N, and 7, = 1/N, and x, is some appropri-
ate initial guess. The derivitives indicated are all taken in
the Frechet sense.

Upon interpreting (8), for example, in the context of
the TPBVP (3), we arrive at the Trapezoidal-Newton
algorithm:

an(t)=[aac]mv (1) + 7Gx, (1), ] — 5, ()}, (9a)

[ * [ 0

=Yz 1{c — g[x,(0)] — hlx, (1)1}, b)

i (1) = |FE], o 0+ 4G ey 0, 1= 2,0}, 99)

g oh
(28], 10 a00) + [ 2] 0 0, 01)

=1{c—glx,(0)] — hlx, ()]}, (9d)
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forn=0,1, -, N,—1, and

£ .() =Glx,(1).1] +[ G]I o s (1) = x, (1), (102)

gu(01+hu<n+[ £ [50ns @) = 5,00

oh
+ ,:E:lzn(l) [xn+1(1) —xn(l)] =,
(10b)

forn=N

2’...’

where v, =y, —x,, u,=x,,, —x, and 7,= 1/N,. Note
that Eqs. (10) represent quasilinearization and Eqgs. (9)
describe a “‘higher-order” method of “creeping” into the
quasilinearization convergence region (from, perhaps, a
poor initial guess).

An interpretation of either (7) or (8) in the context of
(5) yields a similar sequence of linear elliptic boundary-
value problems (Dirichlet). We illustrate the method later
in the paper with one example in the TPBVP context
and one example in the elliptic boundary-value problem
context.

Remark 2.1: A typical convergence theorem for the al-
gorithm (9)-(10) can be found in [1]. Convergence re-
sults for algorithms (7) and (8) in the elliptic boundary-
value context are obtained simply by translating the
main convergence theorems for continuation methods
into the integral equation context, Eq. (5). The results
obtained are almost identical (in structure)to those in [1].

Remark 2.2: An analysis of composite algorithms such
as Continuation-SOR or Continuation-ADI for non-
linear problems of the form (4) will be presented in a
future paper. (See, for example, [2] for a discussion of
Newton-SOR, etc.) Branin[5] has obtained some very
interesting numerical results for a special continuation
algorithm used in the context of solving a set of nonlin-
ear algebraic equations. Branin’s method coupled with
an appropriate “linear problem solver” offers promise
(numerically) for problems of the form (4), where f is not
“monotone” in u. A convergence analysis appears al-
most out of the question in such cases. This is not an
unusual state of affairs in numerical analysis, however.

Remark 2.3: If shooting methods are employed to solve
Eq. (1) and results of Antosiewicz[6] are used to inter-
pret the shooting problem as a finite-dimensional root-
finding problem of the form F(y) = 0, y ERP, algorithms
(7) and (8) can then be interpreted in the “shooting con-
text”” to obtain good numerical results. Results along this
line appear in Roberts and Shipman[7], although no
exhaustive convergence study of this interesting *“mar-
riage” has appeared.
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3. Appiication of the algorithms to specific
examples

o Example 1: A nonlinear oscillator problem
Consider the nonlinear differential equation

X(t) + 6x(t) + Bx2(t) +cost =0, 11

which describes an oscillator with a nonlinear restoring
force. We wish to determine periodic solutions of (11)
with period 27, and so, we impose the boundary condi-
tions

x(0) —x(27w) =0 and x(0) — x(27) = 0. (12)

The boundary-value problem (11) and (12) can be writ-
ten in vector form as

[5“(')] = [ %(1) ] (13a)

x,(1) —6x,(t) — Bx,2(t) —cos ¢
o 1wl o Slleml=lel

Thus, we define G(-, +), g(-) and A(-), respectively, by

Gxt) = [—6x, — Bi? — cos t],
glx(0)] = [ﬁﬁgﬂ and - ALGmI= Bﬁgm

We apply, for illustration, the Euler-Newton method
to the solution of TPBVP (11). We generate, therefore, a
sequence {u,(-)}, (where u,=x,,  —x,) according to

S BN
i, - —6—2Bx,®  0]Lu,™

X, — &©
+7 . ] 14a
1[—6x1(°) — Bx,®2 —cos t —x,@]’ (14)

o Mizeol Lo ~lietan]

[, 9+ x,02m)
= et e (140)

forn=0,1,---, N—1, and
[)’Cl<n+1)] [ 0 1][x1(n+1) — x](n)]
)‘cz(n+1) —6 — 23x1(n) 0 xz(n+l) —_ Xz(rf)
x. ™
+ z 15
[—6x1(") — Bx,™2 — cos t]’ (152)

x®0)] [x®2a)] [1 0] [x,#(0) —x,®(0)
+ +

x,™(27) 0 1] [x,™V(0)—x,™(0)

1 0] [x,*V(27) —x,®(27) 0
+ =| |. (sb)
0 1] [x,™V(27)—x,7(27) 0

x,™(0)
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forn=N, .
Systems (14) and (15) simplify to yield

i, =1,®+ 7 (x,© — jl(O)), (16a)

i, =—(6 + 2Bx,M)u ™ — 1 (6x, + Bx,©2)

+ cos 1 + x,, (16b)
u,™(0) = u,™(2m), (16¢)
u,M(0) = u,™(2m), (16d)
and
jcl(nﬂ) = xz("“)’ (17a)

AT = —(6 + 2Bx,™)x @) + Bx ™2 — cos ¢, (17b)
x,+0(0) = x, ™ 0(27), (17¢)
X, D(0) = x,D(27r). (17d)

We state the following proposition concerning con-
vergence of the algorithm (16)—-(17):

Proposition 3.1: Suppose 0 < B8 < 0.58, r,=0.38 and
7, < 0.28 X 1078, Then the Euler-Newton sequence
{x,()}, based on the initial guess x,(-) = 0(-), converges
to the solution x*(-) of Eq. (13) in $(0,r,).

Proof: The proposition is proved by a straightforward
application of Theorem 3.1 in [1] to Eq. (13). Most of
the approximations involving the Green’s function for
this problem appear in Collatz[8], who has studied this
problem in other contexts.

Remark 3.2: The requirement on the step size
(r, = 0.28 X 10-%) is necessarily extremely conserva-
tive. In practice we again find that convergence of the
Euler-Newton sequences are obtained for a much wider
range of B, and for 7, as large as 1/2 (for certain 8). Similar
results are expected and obtained for higher-order re-
laxed Newton method algorithms applied in the TPBVP
context.

s Example 2: A potential problem
In this example we consider the nonlinear potential
problem defined by

Viu(x,y) = Bexp [1*(x,y)], (x,y)EG
u(x,y) =0, (x,y) €3G, (18)

where G = (0,1) X (0,1) and V2 = 82/ax? + 92/9y2. Since
u(3G) = 0, we can write (18) in the integral form

u(x,y) =8 fl f [K (x,y:m,0) exp (u2(n,0)] dn do. (19)

If we interpret algorithm (7) in the context of (19), we
obtain the sequence of linear elliptic (Dirichlet) prob-
lems:
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Table 1: Values of relaxation constant 7, required to obtain
convergence for several values of 8. (Example 1).

B 20 25 30 35 40 45 50 55 60 65
7 1 1 1 1 2 12 12 13 13 18

Table 3: Values of relaxation constant 7, and number of
Newton iterations required to obtain convergence for several
values of 8. (Example 2).

B 1.0 50 60 65 70 72 74 75
T, 1 1 /2 12 1/2 1/4 1/4 1/4
Newton 3 4 3 3 4 3 4 4
iterations

Table 2: Computed values of x at various time steps for several values of 8. (Example 1).

Solution values x
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B Time steps t
0.07 0.47 0.87 1.27 1.6m 2.0m
2.0 —0.227325 ~0.055409 +0.151716 +0.151716 —0.055401 —0.227325
2.5 —0.234664 —0.054880 +0.149996 +0.149996 —0.054870 —0.234664
3.0 —0.242405 —0.054854 +0.148584 +0.148583 —~0.054843 —0.242405
35 —0.250707 —0.055396 +0.147480 +0.147470 —0.055383 —0.250707
4.0 -0.259790 -0.056595 +0.146693 +0.146689 —0.056579 —0.259790
4.5 —0.269992 —0.058584 +0.146242 +0.146236 —0.058566 —0.269928
5.0 —0.281867 -0.061575 +0.146160 +0.146152 —0.061553 —0.281867
5.5 —0.296436 —0.065946 +0.146513 +0.146501 —0.065918 —0.296436
6.0 —0.315386 —0.072344 +0.147744 +0.147742 —0.072308 —0.315386
6.5 —0.348514 —0.083514 +0.149329 +0.149295 —0.083929 —0.348514
Table 4: Computed values of u(x,y) for 8 =7.5. (Example 2).
Solution values u

y values x values

0.00 0.18 0.36 0.55 0.73 091 1.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.18 0.00 —0.2925 —0.4439 —0.4744 —0.3833 —0.1679 0.00
0.36 0.00 —0.2471 —(0.5952 —0.7545 -0.5952 —0.2471 0.00
0.55 0.00 —0.4744 —0.7546 —0.8147 —0.6391 -0.2626 0.00
0.73 0.00 —0.3833 —0.5952 —0.6391 —0.5094 —-0.2158 0.00
0.91 0.00 —0.1679 —0.2471 —0.2626 —0.2158 —0.9961 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
V2w, = B exp (u,2) w, + 1, [exp u? — Vu,], Proof: The proof follows by an immediate application of

the main convergence result in [1] interpreted in the
aG)=0, forn=0,1, -+, N—1, 20 C . . .
W, (9G) ! 20 partial-differential equation context. We remark that the
where w, = u,  —u, and Green’s function is given by
4 = sin jwx sin kwy sin j7m sin ko
V2w, = B exp (u,2) w, + [exp u? — V2u,], Kxymo)=—= J Y Sinjmn T
™ J.k=1 j2 + k2

w,(8G) =0, forn=N, - -. Qn

We now state the following proposition on conver-
gence of algorithm (20)-(21).

Proposition 3.3: Suppose 0 << 12, r,=1 and
7, < 2.8 X 10-® with u(x,y) =0. Then the Euler-
Newton sequence {u,}, defined in (20)—(21), converges
to a solution «* in $(0,1).
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(see, for example Weinberger(9] and the estimates of ||K||
required in the proof of the proposition are easily ob-
tained.

Remark 3,4: Remark 3.2 applies in the above context. In
fact, using the results of Falb and Groome[10], it can be
shown that global convergence for this problem [u(x,y) =
0] can be guaranteed for all 8 > 0.
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4. Numerical results

In this section we provide the numerical results for the
examples discussed in the previous section. We observe
that the application of the Euler-Newton algorithm (or
the Trapezoidal-Newton algorithm) to nonlinear TPBVP
(13) yields a “corresponding sequence” of linear
TPBVP’s to solve. For the numerical integration of the
resultant linear differential equations, a modification of a
fourth-order Runge-Kutta method is used. This method
requires the values of the right hand sides of the dif-
ferential equations at points in between the points for
which the algorithms yield the value of the solution, in
addition to points where the solution is obtained. Since
the values are not available at these intermediate points,
they are obtained by linear interpolation.

s Example 1:

Results of the numerical treatment of the Euler-Newton
method for Example 1 appear in Tables 1 and 2. In Ta-
ble 1 we present the values of the relaxation number
7,(where 7, = 1/N,) required to obtain convergence [11]
of the relaxed Newton sequence for various values of 8.
In Table 2 we present the actual solutions. We note that,
although Proposition 3.1 guaranteed convergence only
for very small value of 7, the actual computations con-
verged for 7, significantly larger.

o Example 2:

Results of some particular computations appear in Table
4. The square [0,1] X [0,1] was partitioned into 121
subsquares and a second-order implicit finite-difference
method was used for the numerical approximation. In
Table 3 we present the number of Newton iterations
required to obtain convergence [12] for various values of
B and 7, We observe that, although the proposition
guaranteed convergence only for 0 < 8 =< 1.41, the ac-
tual computations converged for values of 8 much great-
er (see Table 4). We also observe that the relaxed New-
ton sequences converge for values of 8 for which the
Newton sequences (7, = 1) diverge.
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