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Communication 

Some  Numerical  Results  for Iterative Continuation 
in Nonlinear Boundary-value Problems 

Abstract: In this  communication we apply certain  continuous analog  iterative methods  to  two sample  boundary-value  problems. We 
show that  the  Euler-Newton  and the second-order  continuation of the  Newton method are both  useful  algorithms for obtaining solu- 
tions to  classes of nonlinear  boundary-value  problems. For a convergence analysis we rely  upon a number of convergence  theorems 
presented in earlier  work. We indicate,  through the numerical results,  that  the relaxed Newton  methods  are particularly  useful in the 
iterative  solution of “strongly”  nonlinear  problems where little  information is available  concerning  “good  starting  values.” 

Introduction 
In this  communication we apply certain  continuous  ana- 
log iterative methods to  two simple  nonlinear  boundary- 
value  problems. More particularly, we  consider  the ap- 
plication of the  Euler  and  the  second-order  continuation 
of Newton’s method  (see [I]). For a convergence analy- 
sis we rely upon a number of convergence  theorems 
presented in [I]. (See also [2].) We indicate,  through the 
numerical  results, that  the relaxed Newton algorithms 
are particularly  useful in the  iterative solution of 
“strongly”  nonlinear problems  where little  information is 
available  concerning “good starting  values.” We point 
out,  in such  cases,  that  the algorithms are considerably 
more useful than  the (conservative) convergence theo- 
rems would indicate. This is very  often the  case in nu- 
merical  analysis,  however. In  our  case  it is undoubtedly 
the result of applying certain (in general, rather poor) 
Runge-Kutta  type  error bounds in the derivation of the 
convergence conditions [I]. A more useful convergence 
result, based on a somewhat different approach, will 
appear in a forthcoming  paper. 

1. Two-point boundary value  problem 
In this section we present a brief review of the transla- 
tion of a general  two-point  boundary-value  problem 
(TPBVP)  into an integral operator  context  (see,  for 
example, [3] or [4]). We begin by considering a nonlinear 
TPBVP: 

i ( t )  = G ( x , t ) ,  g[x(O)l + h [ x ( l ) l  = c,  ( 1 )  

where G,g and h are “sufficiently smooth” vector-valued 
functions with x , c E R p  ( R p  is a  p-dimensional  Euclidian 
space).  We study a “related” linear TPBVP, 

i = = A ( t ) x + k ( t ) ,  B x ( 0 )  + C x ( l ) = d ,  (2) 

in which we require  the matrix set {A(?) ,  B ,  C} to  be 
boundary  compatible  (this is equivalent to requiring that 
TPBVP ( 2 )  possess a  unique  solution for all k ( r )  and c). 
Falb  and  DeJong  prove in [4] (under  appropriate Condi- 
tions on G ,  g and h) that  TPBVP (1) has  the equivalent 
integral representation 

x(?) = A(?)  {C - g [ x ( O ) ]  - h [ x (  I ) ]  + B x ( 0 )  + C X (  I ) }  

+ [ r ( t , s )  {G[x(s),sl  - A ( s ) x ( s ) )  ds, (3) 

where A and r are  Green’s matrices for  the linear  prob- 
lem (2). 

By a similar analysis we can  translate a typical nonli- 
near self-adjoint elliptic boundary-value  problem (Di- 
richlet form), 

Lu = f (  U J ) ,  x E D  C R P ,  

u ( m )  =+(x), (4) 

into  an equivalent  integral representation of the  form 
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where G is the Green’s function  for the linear elliptic 
operator L and G,, is the outward normal derivative of 
G. Equation (3) or (5) can now be viewed as a nonlinear 
operator map of an appropriate  Banach space  into itself. 
Thus we note  that solving (3) or (5) is equivalent to solv- 
ing an  appropriately defined operator equation 

F ( z )  = 0, (6) 

where F = I - T ,  with the nonlinear integral operator 
appearing  on the right hand  side of (3) or (5). 

2. Two continuation algorithms for Newton’s 
method 
In [ 11 we  developed  a  number of continuation algorithms 
based on Newton’s  method  for  iteratively solving prob- 
lems of the form (2).  The algorithms are obtained by 
simply translating  certain  basic  function-theoretic  con- 
tinuation  algorithms  into a TPBVP  context.  It is clear 
that a similar translation in the  context of Eq. (5)  will 
reduce (4) to  the problem of solving an appropriate se- 
quence of linear elliptic problems. 

We illustrate the translation by considering the first- 
and  second-order  relaxed Newton iteration (see  [l]) in 
the two-point  boundary-value problem context.  We  treat 
the  Euler-Newton method, 

x,+, = x ,  - T ~ [ F ’ ~ , ] ” F ( X , ) ,  n = 0,1, * * . , N ,  - 1 

= X, - [ F ’ , n ] - l F ( ~ o ) ,  n = N , ,  . . , (7) 

and  a Trapezoidal-Newton method, 

Y ,  = x ,  - i 7, [F’ I “F ( x , )  

x,+1 = x ,  - 7, [ F ’  ] -1  F (x , )  
In I , n = 0 ,  1 , .  . ., N , -  1 

Yn 

x,+1 = X, - [F’,,]-l F ( x , ) ,  n = N , ,  . . ., (8) 

where r1 = 1/N, and r, = 1/N, and x ,  is some  appropri- 
ate initial guess. The derivitives  indicated are all taken in 
the  Frechet sense. 

Upon interpreting (8), for  example, in the  context of 
the TPBVP (3) ,  we arrive at the  Trapezoidal-Newton 
algorithm: 

for n = N , ,  * . . , 

where v, = y ,  - x , ,  u, = x , + ,   - x ,  and T ,  = 1/N2.  Note 
that  Eqs.  (10) represent quasilinearization  and  Eqs.  (9) 
describe a “higher-order’’ method of “creeping”  into the 
quasilinearization  convergence region (from, perhaps, a 
poor initial guess). 

An interpretation of either (7) or (8) in the  context of 
(5) yields a similar sequence of linear elliptic boundary- 
value  problems (Dirichlet). We illustrate the method later 
in the  paper with one  example in the  TPBVP  context 
and one example in the elliptic boundary-value  problem 
context. 

Remark 2.1: A  typical  convergence theorem  for  the al- 
gorithm (9)-(10)  can  be found in [l].  Convergence re- 
sults  for algorithms (7) and (8) in the elliptic boundary- 
value context  are obtained simply by translating the 
main convergence  theorems for continuation  methods 
into the integral equation context, Eq. (5). The results 
obtained are almost  identical (in structure)-to  those in [l]. 

Remark 2.2:  An analysis of composite  algorithms  such 
as Continuation-SOR or  Continuation-AD1 for non- 
linear problems of the form (4) will be presented in a 
future paper.  (See, for example, [2] for a discussion of 
Newton-SOR, etc.) Branin[5] has  obtained  some  very 
interesting  numerical  results  for a special  continuation 
algorithm used in the  context of solving a set of nonlin- 
ear algebraic equations. Branin’s method  coupled with 
an  appropriate “linear problem  solver” offers promise 
(numerically) for problems of the form (4), wherefis  not 

aG 
~ , ( t )  = [ ~ ] x n ( t ) v , ( t )  + a T 2 { G [ x o ( r ) ,  t] - i o ( r ) } ,  (9a) 

“monotone” in u. A  convergence  analysis appears al- 
most out of the question in such  cases.  This is not  an 
unusual state of affairs in numerical analysis,  however. 

[ 2 ] . z n ( 0 )  Vn(0) + [ g ] x n ( l )  Remark 2.3: If shooting  methods are employed to solve 

k, ( t )  = [ j T J / n ( t ) u n ( t )  + ~ , { G [ X , ( t ) >  tl  - i , ( t ) } ,  (9c) 

= ‘ ~ ~ ~ ~ ~ ~ - ~ ~ ~ , ~ ~ ~ l - h ~ X O ~ l ~ l ~ ,  
Eq. (1) and  results of Antosiewicz[6] are used to inter- 

(9b) pret  the shooting  problem as a finite-dimensional root- 
finding problem of the form F ( y )  = 0, y ERP, algorithms 
(7) and (8) can then be interpreted in the “shooting  con- 
text”  to obtain good numerical results.  Results along this 

exhaustive  convergence  study of this interesting  “mar- 

ac 

[$]yn(0) Un(0) + [ 2 ] y n ( 1 )  line appear in Roberts and Shipman[7], although no 

324 = r ,{c  - g [ x , ( O ) l  - h[x,(l)lI,  (9d) riage” has appeared. 
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3. Application of the algorithms to specific 
examples 

Example 1: A nonlinear oscillator problem 
Consider  the nonlinear differential equation 

Y ( t )  + 6x(t) + p x 2 ( t )  + cos t = 0, (1 1) 

which describes an  oscillator with a nonlinear  restoring 
force. We wish to determine periodic  solutions of (1 1) 
with period 2m, and so, we impose the boundary  condi- 
tions 

x ( 0 )  - x(2.rr) = 0 and i ( 0 )  - i ( 2 ~ r )  = 0. (12) 

The boundary-value  problem (1 1) and (12) can  be writ- 
ten in vector form as 

(13b) 

Thus, we define G(-, .), g ( . )  and h(.), respectively, by 

G ( x , t )  = x2 

-6x1 - Px,' - COS t I , 
We apply, for illustration, the  Euler-Newton method 

to  the solution of TPBVP (1 1). We generate,  therefore,  a 
sequence {u,( .) }, (where u, = x,+, - X,) according to 

We  state  the following proposition  concerning  con- 
vergence of the algorithm (16) - (1 7): 

Proposition 3.1: Suppose 0 < P s 0.58 ,  ro = 0 .38  and 
T, C 0 .28  X lo-*. Then  the  Euler-Newton  sequence 
{ x n ( . ) } ,  based  on  the initial guess x o ( . )  = O ( . ) ,  converges 
to the solution x * ( . )  of Eq.  (13) in s(O,ro). 

Proof: The proposition is proved by a straightforward 
application of Theorem 3.1 in [ 13 to  Eq. (13). Most of 
the approximations involving the  Green's function for 
this problem appear in Collatz[ 81, who has studied this 
problem in other  contexts. 

Remark 3.2: The requirement  on the  step size 
( T ~  5 0 .28  X is necessarily  extremely  conserva- 
tive. In  practice  we again find that  convergence of the 
Euler-Newton sequences are obtained for a much  wider 
range of /3, and  for T~ as large as 1/2 (for certain P). Similar 
results are expected and obtained  for  higher-order re- 
laxed Newton method  algorithms  applied in the TPBVP 
context. 

Example 2: A potential  problem 
In this  example  we  consider the nonlinear  potential 
problem defined by 

v2u (%Y 1 = P exp [u' ( X , Y  11 7 ( X , Y  1 E G 

U ( X , Y )  = 0,  b > Y )  EdG, (18) 

where G = (0,l) X (0,l) and V2 = d*/dx2 + d2/dy2. Since 
u(dG) = 0, we can write (1 8 )  in the integral form 

u(x ,Y)  = P [ [ [ ~ ( x , y , w )  exp ( u 2 ( w ) 1  dq dm. (19) 

If we interpret algorithm (7) in the  context of (1 9), we 
obtain the  sequence of linear elliptic (Dirichlet)  prob- 
lems: 
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Table 1: Values of relaxation constant T~ required to  obtain Table 3: Values of relaxation constant r2 and  number of 
convergence  for  several  values of p. (Example 1). Newton iterations  required to obtain convergence  for  several 

values of p. (Example 2). 
p 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  6.0 6.5 
T~ 1  1  1 1 1/2  1/2 1/2 1/3  1/3  1/8 p 1.0 5.0 6.0 6.5 7.0 7.2 7.4 7.5 

T2 1  1 1/2 1/2 1/2 1/4  1/4 1/4 
Newton 3 4  3  3  4  3  4  4 
iterations 

Table 2: Computed values of x at various  time steps  for  several  values of p. (Example 1). 

Solution  values x 

P Time  steps t 
0.057 0.457 0.857 1.271.  1.657 2.0n 

2.0 
2.5 
3 .O 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 

-0.227325 
-0.234664 
-0.242405 
-0.250707 
-0.259790 
-0.269992 
-0.28 1867 
-0.296436 
-0.315386 
-0.348514 

-0.055409 
-0.054880 
-0.054854 
-0.055396 
-0.056595 
-0.058584 
-0.061575 
-0.065946 
-0.072344 
-0.083514 

H.151716 
+0.149996 
H. 148584 
+0.147480 
+0.146693 
+0.146242 
$0.146160 
M.146513 
H.147744 
M.149329 

M.151716 
+O. 149996 
H.148583 
M.147470 
$0. 146689 
M.146236 
+0.146152 
+0.146501 
+0.147742 
+0.149295 

-0.055401 
-0.054870 
-0.054843 
-0.055383 
-0.056579 
-0.058566 
-0.061553 
-0.065918 
4.072308 
-0.083929 

-0.227325 
-0.234664 

-0.250707 
-0.259790 
4.269928 

-0.242405 

-0.281867 
-0.296436 
-0.315386 
-0.348514 

Table 4: Computed values of u(x,y) for p = 7.5. (Example 2). 

Solution  values u 

y values 
0.00 0.18 0.36 0.55 0.73 0.9 1 1 .oo 

x values 

0.00 
0.18 
0.36 
0.55 
0.73 
0.91 
1 .oo 

0.00  0.00 0.00 0.00 0.00 0.00 0.00 
0.00 -0.2925 -0.4439 -0.4744 -0.3833 -0.1679 0.00 
0.00 -0.2471 -0.5952 -0.7545 -0.5952 -0.2471 0.00 
0.00 4 .4744 4 .7546 -0 .8 147 -0.6391 -0.2626 0.00 
0.00 -0.3833 -0.5952 -0.6391 -0.5094 -0.2158 0.00 
0.00 -0.1679 -0.247 1 -0.2626 -0.2158 -0.9961 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

V2w, = j3 exp (u:) w, + T, [exp u,' - V2u,], Proof: The proof follows by an immediate  application of 

w, (aG) = 0, for n = 0,1, , N,-1, 
the main convergence result in [ 11 interpreted in the 

(20) partial-differential equation context.  We  remark  that  the 
where w, = u,+~ - u, and Green's function is given by 

V2w, = /3 exp (u:) w, + [exp u,' - V2u,] ,  

w,(dG) = 0, for n = N, ,  . . . . (2 1) 

4 sin j r x  sin kn-y sin jrrq sin kn-u 
K ( x , Y , w )  = -2 ,E 

j , k= l  j z  + k2 

(see, for example Weinberger[9] and the  estimates of IlKll 
We now state  the following proposition on conver-  required in the proof of the proposition are easily ob- 

. .  

gence of algorithm (20) - (2 1). tained. 

Proposition 3.3: Suppose 0 < /3 < 1.2, r, = 1 and Remark 3,4: Remark 3.2 applies in the above  context. In 
T~ 2.8 X with u,(x,y) = 0. Then  the Euler- fact, using the results of Falb and  Groome[ lo], it can  be 
Newton  sequence {u,},  defined in (20)-(21),  converges shown that global  convergence for this problem [u,(x,y) = 

326 to a solution u* in S(O,I). 01 can be guaranteed for all /3 > 0. 
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4. Numerical results 
In this section  we  provide  the numerical results  for  the 
examples discussed in the previous  section. We  observe 
that  the application of the  Euler-Newton algorithm (or 
the  Trapezoidal-Newton algorithm) to nonlinear TPBVP 
(13) yields a “corresponding sequence” of linear 
TPBVP’s  to solve. For  the numerical  integration of the 
resultant linear differential equations, a modification of a 
fourth-order  Runge-Kutta method is used. This  method 
requires  the values of the right hand sides of the dif- 
ferential equations at points in between  the points for 
which the algorithms yield the value of the solution,  in 
addition to  points  where  the solution is obtained. Since 
the values are not  available at these intermediate points, 
they  are  obtained by linear  interpolation. 

Example 1 :  
Results of the numerical treatment of the  Euler-Newton 
method for  Example 1 appear in Tables 1 and 2.  In  Ta- 
ble l we  present  the values of the relaxation number 
-r,(where T, = l /NJ required to obtain convergence [l 11 
of the relaxed Newton  sequence  for various  values of p. 
In Table 2 we  present  the actual  solutions.  We note  that, 
although  Proposition 3.1 guaranteed  convergence only 
for very small value of -rl, the  actual  computations con- 
verged for T, significantly larger. 

Example  2: 
Results of some  particular computations appear in Table 
4. The  square [0,1] X [0,1] was  partitioned into 121 
subsquares  and a second-order implicit finite-difference 
method was used for  the numerical  approximation. In 
Table 3 we present  the number of Newton  iterations 
required to  obtain convergence [ 121 for various  values of 
p and T ~ .  We observe  that, although the proposition 
guaranteed  convergence only for 0 < p .s 1.41, the ac- 
tual computations converged for values of p much great- 
er  (see  Table 4). We also  observe  that  the relaxed New- 
ton  sequences  converge  for values of p for which the 
Newton  sequences (-r2 = 1) diverge. 
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