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Abstract: In linear dynamical systems with white Gaussian plant and observation noise and quadratic cost criteria the well-known sep-
aration theorem of stochastic control holds. The result is that the determination of the system matrix for the compensator depends on
the solution of two Riccati equations, one arising from a deterministic regulator problem and the other from a filtering problem. It is
shown in this paper that if the given system is single-input, single-output and time-invariant, one can achieve substantial savings in
computation time. Assuming contrellability and observability and using the standard controllable representation of the system matrix,
we show that at each iteration step of the solution of the algebraic matrix Riccati equation by Newton’s method the number of vari-
ables to be solved for reduces from: the customary n(n + 1)/2 to n. Moreover, the number of operations to determine these n variables is
on the order of n3/16 as opposed 10 #3/3 in ordinary matrix inversion.

The observability matrix is used as a similarity transformation so that the Riccati equation for the filtering problem is placed in the
same format and the above procedure may be used again. The results obtained are easily extended to the case in which the system is
either single-input or single-output. The system matrix of a fifteenth-order compensator was determined using 0.92 seconds of comput-

er time on the IBM System/360, Model 67.

1. Introduction

In stochastic control problems specified by linear dy-
namics, quadratic cost criteria and Gaussian white plant
and observation noise, the separation theorem[1] of
stochastic control may be invoked with the result that
the optimal control is determined by first estimating the
state of the system and then using the estimated state in
a deterministic optimal control problem. In order to esti-
mate the state in the case of a time-invariant system one
must design a Kalman filter[2], a procedure that in-
volves as a step the solution of an algebraic matrix Ric-
cati equation for the covariance matrix of the estimation
error. The resulting deterministic control problem re-
quires the solution of an algebraic matrix Riccati equa-

tion for the optimal feedback gain matrix. The solution

of these two Riccati equations comprises the bulk of the
computation in this class of problems.

Several methods for computing the solution of the
Riccati equation have been put forward in recent years.
These generally consist of either asymptotic integration
methods[3], Newton’s method[4], or direct methods
based on computing the eigenvalues and eigenvectors of
the Hamiltonian system[5,6]. In the sequel we shall
show that if the system is linear, time-invariant and

single-input or single-output, then a computational aigo-

rithm exists for the solution of the Riccati equation
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which utilizes an order of magnitude less computation
time than is required by conventional methods. This al-
gorithm fits within the category of Newton’s method, but
the complexity of the computation at each iteration step
is substantially reduced over that of the traditional New-
ton’s method.

Let us consider a system that is both single-input and
single-output.

DU ax(e) + blutt) + 1)),
() =¢cx(1) +00) =y(t) +0(2), 1)

where x is the n-vector state of the system, u is the input
signal, y is the output, z is the measured output, A is a
constant n X n matrix, b and ¢ are constant n-vectors,
£(1) is the Gaussian white plant disturbance noise (with
variance =), and 6(¢) is the Gaussian white observation
noise (with variance ©). The prime notation indicates
the transpose of a matrix here and throughout.Suppose
we are given a cost criterion of the form

S T LN
7= lim 2 f [qy*(0) + (1) ] di,

where g is a positive weighting constant.
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The optimal control is then given by
u*(t) = —b'Kx(s),

where K is the positive definite solution of the matrix
Riccati equation

KA + A'’K — Kbb'K + gee’ = 0 )

and x(r) is the state of the system as estimated by a
Kalman filter. The filter is specified by

dX(t) [« _ 1 sov_ wiie e 1
i [A ) Scc’ —bb K]x(t) + 5 ez(t),
u(t) =—b'Kx(1), (3)

where 3, the n X n error covariance matrix is the solu-
tion of the matrix Riccati equation

SA’ + AS — é Sec'S + Ebb’ = 0. ()

It should be noted that the system given by Egs. (3) is
truly a feedback compensator for the system given by
Eqgs. (1) in that the input to the ﬁlter is the output (cor-
rupted by noise) of the plant and the output of the filter is
the input to the plant. Another point to note in Egs. (3) is
that we do not need the complete matrices K and 3, but
only the n-dimensional vectors b’K and Zc.

An algorithm using Newton’s method for solving Ric-
cati equations corresponding to single-input systems is
discussed in Section 2. The use of this algorithm in solv-
ing for optimal compensators is presented in Section 3.

2. Numerical solution of the Riccati equation

Let us assume that the system described by Eqgs. (1) is in
standard controllable form; that is, the system matrix A
is of the form

o 1 0 0 --- O 07

0O 0 1 0 0 0
A=l

0 0 0 O 0 1

la, a, a, a, a, , a,|

and the franspose of the b-vector is
b=[00---01].

This is not a rigid assumption, since single-input, single-
output systeins are customarily specified by transfer
functions (a transfer function vector in the case of multi-
ple outputs) whose denominator coefficients form the
last row of A and whose numerator coefficients form the
output vector (or matrix in the case of multiple outputs).

Let us consider solving the following matrix Riccati
equation

KA + A’K— Kbb'K + Q=0, (5)
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where Q is any non-negative definite matrix. If we apply
Newton’s method to the solution of this equation, the ith
iterate K, must satisfy

KA, +A'K, =—Q, 6)
where A,=A—bb'’K,, and Q,=Q+K, bb'K, .

Since K is symmetric we must determine n(n + 1)/2 val-
ues. However, at each iteration step only n variables,
the elements of the last row of K, play a role. To see
this, note that

o 1 0 --- 0 07
0 0 1 --- 0 O

A= >
0 0 0 -+ 0 1

61 6,1 6, 0, 0,4

where 0, = a, — [K,_,], ;.

That is, only the last row changes from iteration to itera-
tion, with the kth element of the last row depending only
on the kth element of the last row of the previous itera-
tion matrix. Similarly, the matrix Q, is simply the sum of
the matiix Q and the outer product of the last row of
K, , with itself. Thus, it is easily seen that if a simple
manner of determining only the last row of the matrix at
each iteration can be devised, then substantial savirigs in
computer time may be achieved.

To show that one can use this reduced algorithm, we
must examine the set of n(n + 1)/2 linear equations in
the n(n + 1)/2 unknown elements of K, obtained from
Eq. (6). Obviously, by brite force one could invert the
n(n + 1)/2 X n(ri + 1)/2 matrix to solve for the n(n +
1)/2 unknown variables, but we shall see that we need
only consider an n X n matrix at each iteration step. The
tableau for this matrix and its right-hand side is given in
Fig. 1 for a fifth-order example. The equations are num-
bered according to the corresponding indices of the ma-
trix Eq. (6). The variables are numbered according to
their true indices, that is, variable k! is [K,],,.

It is clear how to generalize the fifth-order tableau
given in Fig. 1 to any dimension. A detailed derivation
of the form of this tableau as well as thé results in the
remainder of this section may be found in Ref.[7].
Clearly, the first n(n — 1)/2 columns remain unchanged
from iteration to iteration. This suggests that the corre-
sponding variables can be eliminated symbolically once
and for all, and this is done by means of Gauss-Jordan
pivots on the bold-face elements in Fig. 1. After per-
forming this pivdting, an n X n tabléau of the form given
in Fig. 2 (this time for a seventh-order example) is ob-
tained for the unknown last row of K. This system of n
equations is readily solved by means of Gaussian elimi-
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Figure 1 Initial tableau.

N Right-
Indices Indices for variables hand
for equations 11 21 22 31 32 33 41 42 43 44 51 52 53 54 55 side
11 26, 0,
21 1 0, 0, Q,,
22 2 26, Q..
31 1 03 01 Q3l
32 1 1 03 92 Q32
33 2 26, (3
41 1 04 1 Q4]
42 1 1 04 2 Q42
43 l 84 03 Q43
44 2 204 Q44
51 1 0, 0, 0.,
52 1 o, 0, Q.,
53 1 1 65 03 st
54 1 1 6, 6, 0.,
55 2 26, 0.,

Figure 2 Final reduced tableau after pivoting.

K, K, K, K, K, K,, K, Righit-hand side
0, 2 Qn

=0, 0, _61 Vo @y, — Oy
6, -0, 6; -4, 6, Vo Qu—Qu+ Qyy

’2 =0, | V2 Q4 — Oy + Qp — Oy
1 8, _96 6, —0, 0,1Y20Q, -0 +0,;
A —95 Yo Qs — Qr

1 0. 1% Q,,

nation. It can be shown that the number of muiltiplica-
tions performed in this procedure for the special type of
matrix in Fig. 2 is of the order 7%/16 as opposed to n3/3
in the case of a general matrix. ,
Thus, we see that at each iteration step the computa-
tion has been reduced in complexity. The test for c¢on-
vergence is based on the maximum absolute difference
between the elements of the present iterate and those of
the previous iterate. After convergénce has béen
achieved, the remaining elements of the matrix K may
be determined by simple substitution, the expressions
for which will not be given, since, as will be seen in the
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next section, only the last row is needed to determine
the optimal compensator.

‘Convergen‘ce in Newton’s method is guaranteed only
if certain conditions are satisfied by the initial guess.
These conditions are that the initial guess K; be positive
definite and that the matrix A — bb'K; have all its eigen-
valiies in the left half-plane. Since, in the above method,
we need only supply the initial guess of a vector, “posi-
tive definiteness” is guaranteed by choosing the nnth
element positive. It is also a relatively easy matter to
choose the initial vector to satisfy the stability require-
ment. If we denote the initial guess as k, and let

6,=a,—k i=1,- -+, n,

i [Ux

then the 8;’s are the coefficients of the closed-loop sys-
tem matrix characteristic function

plx)=—0,—0x - - -—0x"1+x"

Let us choose to have n—1 roots at —¥ and one root
at —¢, where ¥ and ¢ are positive real numbers. Then
clearly

6, =—¢pwn1,

0. :_[(qu—i('? - 1> + (" - 1>\Ijn—i+1:|’ i=2,-,n
¢ i—1 i—2
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To satisfy the requirement that &£, be positive, we re-
quire that

a,+¢+¥(n—1)>0.

In practice we have used ¥ =1 and ¢ =1 + max [0,
(1 —n) — a,] with good results.

A version of the above algorithm has been pro-
grammed as a subroutine in Fortran IV for the single-
input, single-output case. The call to this subroutine
requires four arguments: 1) the last row of the system
matrix A (assumed to be in standard controllable form),
2) the output vector ¢, 3) the dimension n, and 4) the last
row of the optimal feedback matrix, which is returned by
the subroutine. (It should be noted that the full feedback
matrix may be obtained by a simple procedure of back
substitution.) In the next section we shall see how this
subroutine can be used effectively in the optimal com-
pensator problem.

3. Computation of the optimal compensator

To determine the system matrix, control vector and out-
put vector of the optimal compensator given by Egs. (3),
we must determine the vectors b'’K and 3. It is a
straightforward matter to compute b’K in the standard
controllable case. Clearly, b’K is the last row of the ma-
trix solution of Eq. (2). This vector is obtained directly
by calling the computational subroutine described in the
previous section with an output vector ¢, = g'/>c as an
argument.

It is not as straightforward a matter to compute Xc. It
should be noted that Eq. (4) is not in a form such that
the algorithm of Section 2 may be applied. Let us define
a transformation matrix T with the properties

TA’' = AT, )
1

——T'c=hb. ®)

Ve

Now, let %, be some matrix such that

2 =T:T. 9)

Substituting Eq. (9) into Eq. (4) and using the symmetry
of T and Egs. (7) and (8), we find that X, satisfies

S A+AZ -3 bb'E +c,e,=0, (10)
where

¢, = (E/O)'%c.

This is precisely the form the subroutine requires.
Moreover, since we really desire the vector X.c, we
have the beneficial result that

Sc=TS,T'c=VOTI b
= \VoTo,, (11
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where o, denotes the last row of X, the vector that is
returned by the subroutine.

The transformation matrix may be determined by
standard techniques for transforming to standard con-
trollable form. If the matrix T is given by

) ’tn]’ .

we have the recursion relation

T=1t,

ti=Ati‘1’ l=2’ 3’.””[

.

and t, is given by
t,=L"'b,

where L is the observability matrix for the system (c.f.
Ref.[8], ch. 4),

L'=[c, A'c, A%, : - -, A’ 1¢].

However, in the special case that we consider, the ma-
trix is to be transformed into its own transpose and
computational simplification can be gained. The matrices
AT and TA' have the forms

t,

AT= and TA'=[t,- -t iTal,

LT}

where &' = (q,, a,, - - -, a,). From the upper left (n — 1)
X (n — 1) block we obtain the recursion formula

T.=T

ij i-1,j+1°

i=2,--n—1;j=i,--,n— 1L (12)

From Eq. (12) we may deduce that T is symmetric. This
follows from the fact that

Ti+1, -1 Tij
Tips, =Ty
Ty = Ty

Indeed, if we choose k =j — i, then
T, =Ty
and symmetry is proved.

From the first n — 1 elements of the last row (or col-
umn) we have

T =a't_.. (13)

Given recursion formulas (12) and (13), all elements
may be evaluated once t,, the first row of T is determined 321
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OPTIMAL COMPENSATDR uF DIMEIISIGN E WITH STATE WEIGHTING FACTOR 1,0000
MEASUREMENT NOISE V. AND PLANT NOISE VARIANCE 1.0000
THE LAST ROW OF THE SYSTEM MATRIX ls
01 0.260000D 01 0.3000008 01 0.486000D 01 0.40C0000 C1 ©.2000000 01
THE OUTPUT VECTOR OF THE SYSTEM IS
000000 01 Q. 0000 01 4.2000000 01 4.800000D 01 0.4500000 01 0.72C000D 01
SVSTEM MATRIX OF COMPENSATOR
0,2487580 01 .4731380 01 0.126378D 01 0.497517D 01 0.279853D 01 0.4477650 01
0.162126D 01 D.Zh}lB!D 01 0.1810630 01 0.324252D 01 0.1§2392D 01 0.291827D 01
-0.509856D 00  -g.76L784D 00  -0,254928D 00  -0.197115D-01 -0,573588D 0C  ~-0.917740D 00
-0.179076D 01 ~0.268614D 01 -0.8953800 00 -0.358152D 01 -0.101460D 01 =0,3223370 01
-0.1948380 01 -“ 2922570 01 -0.9751810 09 -0.389676D 01 -0.2181930 01 ~0.250708D 01
-6.105071D 02 -0.258462D 02 -0.331113D 02 -0.4811540 02 -0.3144270 02 ~0.2208120 02
COMPENSATOR INPUT VECTOR
~0.621896D_00 .405316D 00 0.127464D 00 0.447690D 00 0.487096D 00 0.159600p 01
COMPENSATOR OUTPUT VECTOR
-0.512311D €1 -0.1827020 02 =0,329193D 02 =0.393474D 02 -0.2826070 02 -0.126001D 02

Figure 3 Printout for sixth-order example.

by inverting the observability matrix as shown above.
As might be expected, in this special case the observ-
ability matrix can be calculated more simply than in
the general case. Indeed, the first row of the observ-
ability matrix is the vector ¢ and succeeding rows are
given by

Ly=al,_, . i=2,--n, (14)
Ly=aL_, ,+L_, ., j=2-n

After L has been computed, the first row of the transfor-
mation matrix is determined by

t,= VoL b (15)

and remaining elements are found by using Eqgs. (12) and
(13) and the symmetry relation.

As the dimension becomes higher, the matrix L be-
comes more ill conditioned. It has been found that when
the dimension is 16 or higher, there is an abrupt loss in
accuracy in inverting L, even when double-precision
arithmetic is used. This corresponds physicaily to the
fact that the higher the dimension of a system, the more
difficult it is to control (or observe) it by a single input
(or output),

The computational steps involved in determining the
optimal compensator may be summarized as follows:

1.) Compute the compensator output vector b’K by en-
tering the Riccati equation solution algorithm with
c,= q1/2c,

2.) compute the transformation T which satisfies Eqs.
(7) and (8) by using Eqgs. (12), (13), (14) and (15),

3.) compute the last row, o,, of the matrix X, by enter-
ing the Riccati equation solution algorithm with ¢, =
(E/0)V2c,

4.) compute the compensator input vector (1/6) 3 ¢ =
(1/VO)Ta, and

5.) compute the compensator system matrix as indicated
in Eq. (3).

A Fortran IV program[9] has been written to perform
these computations and the results of a sixth-order prob-
lem are given in Fig. 3. The execution time for this ex-
ample was 0.27 seconds on an IBM System/360 Model
67. A fifteenth-order example was run with an execution
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time of 0.92 seconds, a decrease by a factor of more than
ten in comparison with the execution time of conven-
tional methods such as the eigenvalue method and the
generalized Newton’s method.

4. Conclusions

The computational procedure described above demon-
strates the savings that can be achieved over standard
Riccati equation solution techniques for solving optimal
single-input, single-output problems. Computational
complexity is reduced from order n(n + 1)/2 to order n.
It is shown that the Riccati equation associated with the
deterministic optimal control problem is in the appropri-
ate form for application of the simplified solution algo-
rithm. In the case of the Riccati equation associated
with the filtering problem, a transformation must be
made before the algorithm is applied. The determination
of this transformation has been shown to be relatively
simple and straightforward.

The results of Section 2 can be extended to single-
output, multi-input systems quite readily[7] by trans-
forming the system equation to the standard observable
form and solving a transformed Riccati equation for the
inverse of the K matrix so that the results of Section 3,
after obvious modifications, can be extended to include
systems that are either single-input or single-output.
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