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An Improved Method  for  Designing Optimal Linear 
Compensators 

Abstract: In linear  dynamical systems with white Gaussian plant  and observation noise and  quadratic  cost criteria  the well-known sep- 
aration  theorem of stochastic control  holds. The result is  that  the determination of the  system matrix for the compensator  depends on 
the solution of two Riccati equations,  one arising from a  deterministic  regulator  problem and  the  other  from a filtering problem. It is 
shown in this paper  that if the givelj system is single-input,  single-output and time-invariant, one  can  achieve substantial  savings in 
computation time.  Assuming  controllability and observability and using the  standard controllable representation of the system matrix, 
we show  that  at  each iteratiolr step of the  solution of the algebraic  matrix  Riccati equation by Newton’s  method the  number of vari- 
ables to  be solved for  reduces frolr the  customary n(n + 1)/2 to n. Moreover,  the  number of operations  to  determine  these n variables is 
on  the  order of n”16 as opposed LO n3/3  in ordinary matrix  inversion. 

The observability  matrix is used  as a similarity transformation so that  the Riccati equation  for  the filtering problem is placed in the 
same  format  and the above  procedure may be used  again. The  results obtained are easily extended  to  the  case in which the  system  is 
either single-input or single-output. The  system matrix of a fifteenth-order compensator was determined using 0.92 seconds of comput- 
er time on the  IBM  System/360, Model 67. 

1. Introduction 
In  stochastic  control  problems specified by linear dy- 
namics, quadratic  cost  criteria  and  Gaussian white plant 
and  observation noise, the  separation  theorem[l] of 
stochastic  control may be  invoked  with the  result  that 
the optimal control  is  determined by first estimating the 
state of the  system  and  then using the  estimated  state in 
a  deterministic  optimal control problem. In  order  to esti- 
mate the  state in the  case of a time-invariant system  one 
must  design  a  Kalman filter[2], a procedure  that in- 
volves as a step  the solution of an algebraic  matrix Ric- 
cati equation  for  the  covariance matrix of the estimation 
error.  The resulting  deterministic control problem re- 
quires the solution of an algebraic  matrix  Riccati equa- 
tion for  the optimal feedback gain  matrix. The solution 
of these  two Riccati equations  comprises  the bulk of the 
computation in this class of problems. 

Several  methods  for computing the solution of the 
Riccati  equation  have  been  put  forward in recent  years. 
These generally consist of either  asymptotic integration 
methods[ 31, Newton’s method[4], or  direct  methods 
based on computing the eigenvalues and  eigenvectors of 
the Hamiltonian system[5,6].  In  the  sequel we shall 
show  that if the  system is linear,  time-invariant and 
,single-input or single-output,  then a computational algo- 
rithm exists  for  the solution of the Riccati equation 

which utilizes an  order of magnitude less  computation 
time than is required by conventional  methods.  This al- 
gorithm fits within the  category of Newton’s  method, but 
the complexity of the computation at  each iteration step 
is substantially reduced  over  that of the traditional New- 
ton’s method. 

Let us consider a system  that is both  single-input and 
single-output. 

” d x ( t )  - A x ( t )  + b [ u ( t )  + ( ( t ) ] ,  
dt 

z ( t )  = c w t )  + e ( t )  = y ( t )  + 
where x is the  n-vector  state of the  system, u is the  input 
signal, y is the  output, z is the measured output, A is a 
constant n X n matrix, b and c are  constant n-vectors, 
[ ( t )  is the  Gaussian white  plant disturbance noise  (with 
variance S),  and e( t )  is the  Gaussian white observation 
noise (with variance e). The prime  notation  indicates 
the  transpose of a matrix here  and  throughoutSuppose 
we are given  a cost criterion of the form 

J = lim - [ q y 2 ( t )  + u2(r)]dt, 

where q is a  positive weighting constant. 

l T  
T + a  2T I,. 
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The optimal control is then given by 

U* ( t )  = -b’Ki(t), 

where K is the positive definite solution of the  matrix 
Riccati equation 

KA + A’K - Kbb’K + qcc’ = 0 (2) 

and i ( t )  is the  state of the  system  as  estimated by  a 
Kaiman filter. The filter is specified by 

-= [. - - 8cc’ - bb’K x ( t )  + - Xcz(t), 1 
dt 0 l e  

1 

~ ( t )  =-b‘Ki( t ) ,  (3) 

where 8, the n X n error  covariance matrix is the solu- 
tion of the matrix  Riccati equation 

8 A ’  + A 8  - - ~ c c ’ B  + Ebb’ = 0. 1 
0 (4) 

It  should  be  noted that  the  system given  by Eqs. (3) is 
truly a feedback  compensator  for  the  system given  by 
Eqs. (1) in that  the  input to the filter is the  output (cor- 
rupted by  noise) of the plant and  the  output of the filter is 
the  input  to  the plant. Another point to  note in Eqs. (3) is 
that  we  do  not need the  complete matrices K and 8, but 
only the n-dimensional vectors b’K and 8c .  

An algorithm using Newton’s  method  for solving Ric- 
cati equations corresponding to single-input systems is 
discussed in Section 2 .  The  use of this algorithm in solv- 
ing for optimal compensators is presented in Section 3. 

2. Numerical solution of the Riccati equation 
Let  us  assume  that  the  system  described by Eqs. (1) is in 
standard controllable form;  that  is,  the  system matrix A 
is of the  form 

r 

and  the  transpose of the b-vector is 

b’ = [0  0 . . . 0 I ] .  

This is not a rigid assumption, since  single-input, single- 
output  systems  are customarily specified by transfer 
functions  (a  transfer function vector in the  case of multi- 
ple outputs) whose denominator coefficients form the 
last  row of A and  whose  numerator coefficients form  the 
output  vector  (or matrix  in the  case of multiple outputs). 

Let  us  consider solving the following matrix  Riccati 
equation 
KA + A‘K - Kbb’K + Q = 0, ( 5 )  

where Q is  any non-negative  definite  matrix. If we apply 
Newton’s method to  the solution of this equation,  the ith 
iterate K, must  satisfy 

K,A, + A’$, = -Qi, (6) 

where Ai = A - bb’K,-, and Qi = Q + Ki-,bb’Ki-,. 

Since K is symmetric  we must determine n(n + 1)/2 val- 
ues. However,  at  each  iteration  step only n variables, 
the  elements of the  last  row of K, play  a  role. To see 
this, note  that 

Ai = 

where Bki = a, - [K,-,],,,. 

That  is, only the  last  row  changes  from iteration to itera- 
tion, with the kth  element of the  last row depending only 
on  the kth  element of the last row of the previous  itera- 
tion  matrix.  Similarly, the matrix Q, is simply the sum of 
the matrix Q and  the  outer  product of the  last  row of 
Ki-, with itself. Thus,  it is easily seen  that if a simple 
manner of determining only the last  row of the matrix at 
each iteration  can be  devised,  then substantial  savings in 
computer time may be achieved. 

To  show  that  one  can  use this reduced algorithm, we 
must  examine  the  set of n(n + 1)/2 linear equations in 
the n(n + 1)/2  unknown  elements of Ki obtained from 
Eq. (6). Obviously,  by brute  force  one could invert  the 
n(n + 1)/2 X n(n + 1)/2 matrix to  solve  for  the n(n + 
1)/2 unknown  variables, but we shall see  that  we need 
only consider  an n X n matrix  at  each iteration step.  The 
tableau for this  matrix and  its right-hand  side is given in 
Fig. 1 for a fifth-order example. The  equations  are num- 
bered according to  the  corresponding indices of the ma- 
trix Eq. (6). The variables are numbered  according to 
their  true indices, that is,  variable k l  is [Ki],,. 

It is clear how to generalize the fifth-order  tableau 
given in Fig. 1 to any dimension.  A  detailed derivation 
of the  form of this  tableau as well as  the  results in the 
remainder of this  section may be  found in Ref.[7]. 
Clearly,  the first n(n - 1)/2 columns  remain  unchanged 
from iteration to iteration. This suggests that  the  corre- 
sponding  variables can  be eliminated  symbolically once 
and  for all, and  this is done by means of Gauss-Jordan 
pivots  on  the bold-face elements in Fig. 1. After per- 
forming  this  pivoting, an n X n tableau of the  form given 
in Fig. 2  (this  time for a seventh-order example) is ob- 
tained for  the unknown last  row of Ki. This  system of n 
equations is readily  solved  by means of Gaussian elimi- 31 9 
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Figure 1 Initial tableau. 

Indices 
for equations 

1 1  

21 
22 

31 
32 
33 

41 
42 
43 
44 

51 
52 
53 
54 
55 

1 1  21 22 

2 

1 

1 

31 32 33 
Indices for variables 
41 42  43 44 

i 
2 

1 

1 

1 

Figure 2 Final reduced tableau  after pivoting. 

1 

1 

2 

1 

1 

1 

1 

nation. It  can be shown  that  the  number of multiplica- 
tions  performed in this procedure  for  the special type of 
matrix in Fig. 2 is of the  order n3/16 as  opposed  to n3/3 
in the  case of a general  matrix. 

Thus, we see  that  at  each iteration step  the computa- 
tion has  been reduced in complexity. The  test  for  con- 
vergence is based on  the maximum absolute difference 
between  the  elements of the  present  iterate  and  those of 
the previous iterate.  After  convergence  has been 
achieved,  the remaining elements of the matrix K may 
be determined by simple substitution,  the  expressions 

320 for which will not  be  given, since,  as will be seen in the 

T - 
Right- 
hand 
side 

Q 1 1  

Qn 
Q22 

Q31 

Q32 

Q33 

Q41 

Q42 

Q 4 3  

Q44 

Q 5 ,  

Q5z 

Q53 

Q54 

Q 5 5  

next  section, only the last  row is needed to  determine 
the optimal compensator. 

Convergence in Newton’s  method is guaranteed only 
if certain conditions are satisfied by the initial guess. 
These conditions are  that  the initial guess K, be positive 
definite and  that  the matrix A - bb’K, have all its eigen- 
values in the left half-plane. Since, in the  above  method, 
we need  only supply  the initial guess of a vector, “posi- 
tive  definiteness” is guaranteed by choosing the  nnth 
element positive. It is also a relatively easy  matter  to 
choose  the initial vector  to satisfy the stability  require- 
ment. If we denote  the initial guess  as k, and let 

then  the 0,’s are  the coefficients of the closed-loop sys- 
tem matrix characteristic function 

Let us choose  to  have n -  1 roots  at -? and one  root 
at -4, where T and 4 are positive  real numbers.  Then 
clearly 
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To satisfy the  requirement  that k,, be  positive, we re- 
quire  that 

a,  +l#J + * ( n -  1) > 0. 

In practice we have used = 1 and l#J = 1 + max [0, 
(1 - n )  - a,] with  good  results. 

A version of the  above algorithm has been  pro- 
grammed as a subroutine in Fortran 1V for  the single- 
input, single-output case.  The call to this subroutine 
requires  four arguments: 1) the last  row of the  system 
matrix A (assumed  to be in standard controllable form), 
2) the  output  vector c, 3) the dimension n, and 4) the  last 
row of the optimal feedback matrix,  which is returned by 
the  subroutine.  (It should  be  noted that  the full feedback 
matrix may be obtained by a simple procedure of back 
substitution.) In  the  next section we shall see how  this 
subroutine  can be  used effectively in the optimal  com- 
pensator problem. 

3. Computation of the optimal  compensator 
To determine the system matrix, control  vector  and  out- 
put vector of the optimal compensator given by Eqs. (3) ,  
we must determine  the  vectors b'K and Zc. It is a 
straightforward matter  to  compute b'K in the  standard 
controllable  case. Clearly, b'K is  the last row of the ma- 
trix solution of Eq. (2). This  vector is obtained  directly 
by calling the  computational  subroutine  described in the 
previous section with an  output  vector c , =   q l k  as  an 
argument. 

It is not as straightforward  a matter  to  compute Zc. It 
should be noted that  Eq. (4) is not in a form  such  that 
the algorithm of Section 2 may be applied. Let us define 
a transformation  matrix T with the  properties 

TA' = AT, (7) 

-TIC = b. 1 
VG 
Now, let Z, be some  matrix  such  that 

8 = TZIT'. (9) 

Substituting Eq. (9) into  Eq. (4) and using the symmetry 
of T and  Eqs. (7) and (8), we find that Z, satisfies 

Z,A + A'Z, - Z,bb'Z, + c,c', = 0, (10) 

where 

c, = (E/0)l"c. 

This is precisely the  form  the  subroutine requires. 
Moreover,  since  we really desire  the  vector X1c, we 
have  the beneficial result that 

Zc = T8,T'c = *TX,b 

where u, denotes  the last row of Z,, the  vector  that is 
returned by the  subroutine. 

The transformation  matrix may be  determined by 
standard  techniques  for transforming to  standard  con- 
trollable  form. If the matrix T is given by 

T' = [t,, . . . , t,l, . 
we have  the  recursion relation 

ti = Ati-,, i = 2 ,  3 , .  . . , n  

and t, is given by 

t, = L" b, 

where L is the observability  matrix for  the  system (c.f. 
Ref. [8], ch. 4), 

L' = [c, A'c,  A'%, . . . , Atn-lc]. 

However, in the special case  that we consider,  the ma- 
trix is to be transformed  into  its own transpose  and 
computational simplification can  be gained. The  matrices 
AT and TA' have  the  forms 

I 
AT = 

where a' = (a,, a,, . . ., U J .  From  the  upper left (n - 1 )  
X ( n  - 1) block we  obtain  the recursion formula 

i=2; . . ,n - l ; j= i ;  . . , n - l .  (12) 

From  Eq. (12) we may deduce  that T is symmetric.  This 
follows from  the  fact  that 

Ti+l, j - 1 =  Tij 

Ti+,, j " 2  - Tij - 

Ti+k,j-k = Tij. 

Indeed, if we choose k = j - i, then 

T . .  = T..  
32 v 

and  symmetry is proved. 

umn) we have 

Ti, = a'ti-l. (13) 

Given  recursion formulas (12) and (13) ,  all elements 
may  be  evaluated once t,, the first row of T is determined 321 

From  the first n - 1 elements of the last row (or col- 
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by inverting the observability  matrix as  shown  above. 
As might be  expected, in  this  special case the  observ- 
ability matrix  can be calculated more simply than in 
the general case. Indeed,  the first  row of the  observ- 
ability matrix is the  vector c and  succeeding  rows are 
given by 

Lil = alLi-l, n, i = 2, . . ., n,  (14) 

L, = + Li-l, j-l, j = 2, . . . , n. 

After L has been computed,  the first row of the transfor- 
mation  matrix is determined by 

t, = G L - l b  (15) 

and remaining elements  are found  by using Eqs. (1 2) and 
(13) and  the  symmetry relation. 

As the dimension becomes higher, the matrix L be- 
comes  more ill conditioned. It  has been  found that when 
the dimension is 16 or higher, there is an  abrupt loss in 
accuracy in inverting L, even when  double-precision 
arithmetic is used. This  corresponds physically to  the 
fact that  the higher the dimension of a system,  the  more 
difficult it is to  control (or observe) it by a single input 
(or output). 

The  computational  steps involved in determining the 
optimal compensator may be  summarized as follows: 

1 . )  Compute  the  compensator  output  vector b’K by en- 
tering the  Riccati  equation solution  algorithm  with 

2.) compute  the  transformation T which  satisfies Eqs. 
(7) and (8) by using Eqs. (12), (13), (14) and (15), 

3.) compute  the  last  row, ul, of the  matrix Z, by enter- 
ing the Riccati equation solution algorithm with c, = 

4.) compute  the  compensator input vector ( l /O) B c = 

5.) compute  the  compensator  system matrix as indicated 

c, = q , k ,  

(a / e ) l / z c ,  

(l/V@)Tcrl, and 

in Eq. (3). 

A Fortran IV program[9] has been  written to perform 
these  computations and the results of a sixth-order prob- 
lem are given in Fig. 3. The execution  time for this  ex- 
ample  was  0.27 seconds  on  an  IBM  System/360  Model 

322 67. A fifteenth-order  example  was  run  with an execution 

time of 0.92 seconds, a decrease by a factor of more  than 
ten in comparison with the execution  time of conven- 
tional methods  such  as  the eigenvalue  method  and the 
generalized  Newton’s  method. 

4. Conclusions 
The computational procedure described above demon- 
strates  the savings that  can be  achieved over  standard 
Riccati equation solution techniques  for solving  optimal 
single-input,  single-output  problems. Computational 
complexity is reduced from order n(n + 1)/2 to  order n. 
It is shown that  the Riccati equation  associated with the 
deterministic  optimal  control  problem is in the appropri- 
ate  form  for application of the simplified solution algo- 
rithm. In  the  case of the Riccati equation  associated 
with the filtering problem, a transformation  must be 
made before the algorithm is applied. The  determination 
of this  transformation has been  shown to be  relatively 
simple and  straightforward. 

The  results of Section 2 can be extended  to single- 
output, multi-input systems quite  readily[7] by trans- 
forming the  system  equation  to  the  standard  observable 
form and solving a transformed  Riccati equation for  the 
inverse of the K matrix so that  the  results of Section 3, 
after obvious  modifications, can be extended  to include 
systems  that  are  either single-input or single-output. 
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