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Equivalent  Circuit for Conductivity-Temperature 
Characteristics of the PdO/Ag-Pd Glaze  Resistor 

Abstract: It is shown that a reasonable fit of experimental to calculated data  can  be obtained with a simple model of the  PdO/Ag-Pd 
glaze  resistor. An equivalent  circuit  describing the  temperature  characteristics of the glaze resistor is proposed. The experimental 
measurements  can be reproduced quite adequately  over a considerable temperature range, using an equivalent  circuit  consisting of a 
semiconductor  contact  resistance in parallel with a  metal.  A quadratic  term in (1/T2) in addition to  the usual linear  term with (1/T) for 
In u is used to obtain  a  good fit at low temperatures. ( T  = absolute  temperature; u = conductivity.) This parabolic curve  approaches 
the experimentally observed values for palladium oxide. 

1. Introduction 
The general success in manufacturing the glaze resistor 
has given  very little incentive  for  an investigation of the 
more basic  physics of this component.  However,  to pre- 
dict  its performance  over  extended periods of time in 
various atmospheres and in various  liquids, and  to pre- 
dict the result of minor  variations in the composition or 
processing, does  require  an  accurate model of this  com- 
ponent.  It is generally  known that it shows a  negative 
temperature coefficient of resistance  (TCR)  at low  tem- 
peratures,  and a  positive coefficient at high tempera- 
tures. On thermal aging its resistance generally in- 
creases;  on load its resistance  frequently  decreases. 
Hypotheses  to  account  for  these effects have been  given 
by A.  H.  Mones  and E. H. Melan[l,2]. 

One  can  attempt  to explain the  behavior of the glaze 
resistor’s conductivity vs temperature relationship in 
various  ways. Attempts  have been made  for  at  least 
three of these  approaches. 

First,  one  can try to explain the  glaze  resistor  charac- 
teristics in terms of those of the palladium  oxide. One 
can follow the now well-established semiconductor  the- 
ory.  Madelung[3]  summarized the  conductivity of semi- 
conductors in detail.  Starting at low temperatures  the 
conductivity increases with temperature  because of an 
increase in the number of charge  carriers with tempera- 
ture. Eventually  thermal  scattering  becomes a factor  and 
the  conductivity  decreases. Finally, in the range of in- 
trinsic  conductivity, the conductivity  again increases 
strongly. It is at this  time  impossible to follow Made- 

lung’s approach  quantitatively, since such  necessary 
characteristics  as mean free  path, impurity level ener- 
gies,  etc., are unknown for this  polycrystalline  material. 
One  can  see,  however,  even without  this quantitative 
analysis,  that the glaze resistor  does not follow this pat- 
tern. 

If one  compares  the  curves obtained for  PdO films by 
Okamoto  and Aso[4] with those of Conwell[S] for ger- 
manium, one  sees  that  PdO exhibits characteristics ob- 
served in a semiconductor.  Although the  PdO films 
show a certain instability,  they  exhibit  a distinct transi- 
tion at  the point where  the intrinsic  conductivity  becomes 
effective, i.e., at 500 K or lO3/T = 2. The  TCR of the 
PdO  becomes strongly  negative. A comparative plot 
of In cr/m,vs 103/T for  the glaze resistor  on  the  other 
hand  exhibits no  such striking change  at  the  temperature 
at which the  PdO becomes an intrinsic semiconductor 
(Fig. 1). (mo = maximum  conductivity.)  Clearly  this indi- 
cates  that  the  behavior of the glaze resistor  at high tem- 
peratures  does not follow the  pattern of the  PdO film. It 
is necessary  to  assume  that effects other than the behav- 
ior of the  semiconductor alone  control the  temperature 
characteristics of the glaze resistor  at high temperatures. 

Second,  one can accept with Mones and  Melan the 
“hopping theory” of Heikes  and  Johnston[6]  for  conduc- 
tivity in semiconductor oxides. This model assumes  that 
the number of charge carriers is essentially independent 
of temperature,  but  that  the mobility of the  carriers in- 
troduces a temperature  dependence.  The motion of the 31  3 
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Figure 1 In o film vs 103/T from  Okamoto and Aso[4], and In 
o/o, vs 103/T for glaze resistor with 3 X 103n/U. 

charge  carriers requires an  adjustment of the  lattice; 
thus  the diffusion coefficient of the  charge  carrier in the 
lattice and  its  temperature  dependence  become  the  de- 
termining factors.  This  leads  to  the  equation R = ATeHIkT, 
which is discussed  later in the  paper. 
. Third,  one  can  consider a suggestion put forward  re- 

cently by Brady[7] that  contact  resistance in addition to 
bulk resistance  determines  the conduction  mechanism in 
the glaze resistor and thus  the  temperature-resistance 
characteristics.  In  the manufacture of the  resistor,  the 
starting  materials are metal,  glass and  semiconductor 
powders. Since metal powders  can  show 100 times the 
resistance of bulk metal, the effect of contact  resistance 
may be  large  indeed. It is not altogether surprising to 
find the suggestion made  that  contact  resistance may be 
of importance. 

2. Experimental 
Resistors  were  fabricated  from a 300Ofl/O  paste, with 
a silverlpalladium electrode and an aluminum oxide 
(96.5%) substrate.  Contact was made  to  the  electrode 
with platinum  wires and rivets. The  electrodes  were not 
tinned. 

Measurements  on  resistors  were  made by passing a 
current of about 1 mA from a storage  battery  through 
both  the  glaze  resistor  and a standard  resistor,  then 
measuring the voltages across  the  resistors with digital 
voltmeters of several-megohm  input resistance.  Temper- 
atures  were maintained  automatically in a Delta temper- 

ature  chamber and measured with a copperlconstantan 
thermocouple  and a bridge. 

The palladium oxide,  prepared by oxidizing a fine pal- 
ladium powder  at  400°C,  was  compressed in a steel 
mold to  about 1000 psi so the  green slug would hold its 
shape.  This  green slug was then  compressed isostatically 
to 30,000 psi and fired in a tube  furnace in 1 atmosphere 
of oxygen at 810 to 820°C or, in another  case, in 6 at- 
mospheres of oxygen at 950°C. 

Measurements  on  the palladium  oxide  cylinders were 
made  by using a fixture  which  applied the  pressure  from 
a steel spring to  the  two platinum electrodes.  Separate 
current  and voltage  leads went  to  the platinum foil. 

Resistance  measurements in PdO pellets were  made 
by passing the  current  from a storage  battery through 
the palladium oxide cylinder  and  a standard resistor. 
The voltage drop  across  the palladium oxide  was mea- 
sured with  a 412A Hewlett  Packard  voltmeter  set  to  the 
millivolt scale. The  current was  derived from  the reading 
of a digital voltmeter  across  the  standard  resistor. 

3. Results 
The  measurements  from a representative module,  with a 
3000n/U paste  and silver  palladium electrodes,  are 
represented  as  the experimental  points in Fig 2 .  To ob- 
tain  basic  material constants,  measurements  were  made 
on palladium oxide in the  form of compressed cylinders. 
The  data  thus obtained were plotted as  the logarithm of 
the conductivity  vs 103/T. It  was established that a sig- 
nificant fraction of the cylinder resistance  was  contact 
resistance.  The density of the cylinder  was 4.4 gm/cm3 
as  compared  to a theoretical density for palladium oxide 
of 8.7. Thus, we were dealing with a very  porous slug; 
this  explains at  least in part  the role  played by contact 
resistance. 

The  measured In u v s  103/T curve  for  the fired PdO 
cylinder  can reasonably well be  represented by  a  pa- 
rabola 

In U/U,  = 5.84 X 103/Tp 

- 0.160 ( 103//T) + 0.434 

The general form 

In u/u, = A/Tz -B /T  + C 

approximates the  shape of the experimental  curve. In 
the 200 to  300 K range, the  data followed a straight line 
closely  enough to give 

In u/uo = -BIT + C ,  

with B measured  between 90 and 120 K. 
Above room temperature  the  measurements  on  PdO 

become  extremely  erratic. Slow  drifts of the  resistance 
make  the  measurement of temperature-resistance  curves 
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impossible. Okamoto  and Aso[A] show a rather  sharp 
transition in the  slope of the In u v s  103/T curve  at low 
temperatures, which is approximated in the following 
calculations  by the parabola. This  change in the  slope 
has been observed  for  other  semiconductor materials. 
Rogers,  Shannon  and Gillson[8] measured single crys- 
tals of PdO  and confirmed the  fact  that  PdO  behaves 
like a semiconductor. Their  measurements  covered  the 
4.2 to  300 K range. The  form 

= Ae-E1/h.T + Be-E2/kT 

suggested by Fritzsche  and  Lark-Horowitz[9]  -does not 
lend itself to  the  reproduction of our  data. A parabolic 
shape of the In u vs 103/T curve is used  only for  the  sake 
of mathematical convenience. 

4. Discussion 

The  Mones-Melan  model 
The glaze resistor  shows a negative TCR  at low temper- 
atures  and a positive TCR  at high temperatures.  This led 
Mones  and Melan to  apply  the  Heikes-Johnston mod- 
e1[6] of conduction in semiconductor  oxides  to  the glaze 
resistor. This model leads to a dependence of the resis- 
tance  on  temperature of the  form 

= BT-le-H/kT ( 2 )  

This  resistance-temperature relationship  leads to a min- 
imum resistance[ 1,2]  at T ,  = TTCK=,)  = H / k .  If T ,  is 
fixed, u/uo is entirely  determined: 

a/uo = ( To/T)el-TO/T. (3) 

It must also be  pointed out  that  Heikes and Johnston 
applied their  theory  to materials in a temperature  range 
where  the exponential  term determines  the  temperature 
dependence  and  the effect of the linear term is negligible. 
Their  graphs  demonstrate  that  for all practical purposes 
the  resistance follows  a curve given by R = AeHikT. 
Mones  and  Melan,  on  the  other  hand, apply  this theory 
to a  range of temperatures  where  the linear term in T 
becomes dominant. 

Heikes  and  Johnston’s model involves the  assumption 
that  the number of carriers is essentially temperature 
independent,  but  that  the mobility of the  carriers is tem- 
perature  dependent.  The motion of the  carriers  requires 
an adjustment of the  lattice;  thus  the  temperature  de- 
pendence of the diffusion coefficient of the charge carrier 
in the lattice  becomes the determining factor.  The point 
at which the sign reversal of the TCR is observed is then 
that  temperature  at which the energy  required for  the 
adjustment of the  lattice  to  the motion of the  carriers is 
equal to  the thermal  energy of the  atom T,k = H where 
H is the activation enthalpy and k the Boltzmann  con- 
stant.  Since H is rather large in the  semiconductors 
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Figure 2 o/u, vs T ,  Heikes-Johnston theoretical curve, and 
Brady theoretical curve applied to semiconductor powder. 

measured by Heikes  and  Johnston, To is also a very high 
temperature. 

Our glaze resistors  show a minimum of resistance  at 
about  306 K. A plot of a/uo vs T using a value of T o  = 

306 K is shown in Fig. 2.  This clearly shows  the need 
for a more accurate model of the glaze  resistor. 

The  Brady  model  applied to a semiconductor  powder 
Brady[7] evaluated a model of elemental resistors,  ar- 
ranged jack-straw fashion and  bonded  to  each  other.  The 
positive temperature coefficient part of the  contact re- 
sistance is generated, according to Brady,  through the 
interaction of the glass-substrate  combination with the 
conducting  material. As the glass contracts  on cooling 
from its  softening  point at a rate  greater  than  the  con- 
ducting  oxide-metal  mixture,  a pressure is generated  on 
the  contact  areas.  On reheating,  this pressure is reduced, 
causing an  increase in resistance, i.e., a positive  temper- 
ature coefficient of resistance[7]. 

Brady uses  the well known equation  for  the  contact 
resistance by Holm[ 101: 

R ,  = d 2 r ,  

where R ,  is the  contact  resistance, p the resistivity  and r 
the radius of actual microscopic contact  area. He intro- 
duces  the  pressure P ,  through 

r = S1P1/3, 

where SI is a proportionality constant, and the  tempera- 
ture through 

P = S , ( T , -   T ) ,  

where S, is a proportionality constant  and T ,  is the sof- 
tening  point of the glass. This,  put all together, gives 31 5 
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R ,  = S,p (  T ,  - T)-' / , ,  (4) 

where S, is a constant. 

u = uorEikT law, we  obtain 

R SC = LeW/T( T ,  - T )  -113, ( 5 )  

where W = E/k.  E is the activation  energy for  conduc- 
tion and k is the Boltzmann constant. L is a constant  into 
which all previous constants  have  coalesced. R,, is the 
contact  resistance  between  the  semiconductor particles. 

To  this  must be  added  the bulk resistance R,, of the 
semiconductor: 

Assuming  with  Brady that  the  semiconductor  obeys a 

R = R,, + R,, 
= RoeW/T + Lew/r( T ,  - T)--1/3; (6)  

dR/dT=-(W/T2)R, ,  + [ ( 1 / 3 ) / ( T S -  T )  - W/T2]R,,. 
(7) 

At T = To,  

= -( W/T,2) ( R s h  R s ~ )  + R s ~ / 3  ( T s  - To) ; ( 8 )  

Rd(RsC + Rsh) = 3 W ( T ,  - To)/T,2.  (9) 

If Rsb is negligible compared  to R,,, then To defines the 
activation  energy  uniquely, once  the softening point of 
the glass is fixed. 

The  equation  for  the  resistance is similar in this re- 
spect  to  the  Heikes-Johnston formula.  With T,,   To and 
therefore W fixed and Rsb = 0, the  entire  curve u vs T is 
defined (Fig. 2).  Then with To  = 306 K and T ,  = 861 K, 
one  obtains W = 56. The fit of the  curve in  Fig. 2 is 
poor. On adding  bulk semiconductor  resistance Rsh  one 
finds that  as Rsh increases with  fixed To,  W decreases. 
With W reduced  to 28.1, a rather good fit is actually ob- 
tained, except in the low temperature range. This, how- 
ever,  contradicts  the  measurements of the  activation 
energy made on pure  PdO cylinders, where values of 90 
to 125 were  observed in the  200-300 K range. Thus,  we 
find that  neither  the  Heikes-Johnston model nor  the 
Brady model applied to a semiconductor  powder  as  such 
gives a satisfactory fit to  our data. 

These simplified models do not take  into  consideration 
the  actual  structure of our  resistor, which contains a 
two-phase  mixture of metal and  semiconductor, besides 
glass and  substrate.  Because  the  accurate  treatment of 
the two-phase  mixture of semiconductor  and metal com- 
bined  with the  contact  resistance  problem is quite diffi- 
cult, a simplified equivalent  circuit is used. 

Application of the parallel model  to  an actual  glaze 
resistor 
A  calculation was  carried  out  on  an equivalent  circuit 
containing  a semiconductor  contact  resistance in parallel 

31 6 with  a  metal. The  semiconductor  contact  resistance  is 
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Figure 3 a/a,vs T ,  calculated  curve for parallel  model  resis- 
tor, and curve  calculated  with  parabolic  correction of semicon- 
ductor  characteristics. 

due  to  the  contact  resistance  between  the particles of 
PdO  powder;  the parallel  metallic resistance  is  the resis- 
tance of the  AglPd alloy formed by firing the  resistor 
glaze. It was thought  that  the alloy  with a resistivity of 
about 15 x ohm-cm would act  as a shunt  to  the 
semiconducting  oxide,  which has a resistivity of about 
15 X ohm-cm. 

As shown in Eq ( 3 ,  we represent  as a first  approxima- 
tion the  contact  resistance of the semiconducting oxide 
by 

R,, = LeWIT(T, - T)- ' / , ,  

and  the alloy resistance by 

R,=  Rm0( 1 + a[T - 2731). 

Writing these  equations  as conductivities, we  have 

usC = usoe-w/T( T ,  - T)' / , ;  urn = urno/( 1 + a [ T  - 2731). 

Then 

u = use + urn 

= u2e-W/T(Ts - T)'I3 + urno/(l + a [ T  - 2731); (10) 

d u / d T =  [u-u,][W/T' - 1 / 3 ( T , -   T ) ]  

- aurnO/(l + a [ T  - 273] )2  

= [(a - u,"(l + a [ T  - 2 7 3 ] ) ]  

X [WIT2 - 1/3(T ,  - T ) ]  

- aurn0/(l  + a [ T  - 2731)'. 

At T = To the  derivative du/dT = 0; as a normaliza- 
tion we  set a( T o )  = 1 .  The  determination  that  the resis- 
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tor should have a resistance minimum at 306 K puts  a 
considerable  constraint  on the adjustable components in 
the equivalent  circuit.  Assuming TCR = 3.6 X 1 1  1, 
W = 120, and T ,  = 861 K, we  observe  that the  ratio of 
semiconductor contact resistance to metallic resistance 
is fixed, and we obtain urno = 0.661. With u( T o )  = 1 ,  
urno = 0.661 and the  constants for a, W and T ,  fixed, the 
entire u/uovs T curve is determined  and is shown in 
Fig. 3 .  It shows a good fit over a  considerable  tempera- 
ture range: We can  improve this fit still more if we con- 
sider  that  the In u / aovs  1/T curve  measured on  PdO 
cylinders  showed  considerable  deviation from  the 
straight line at low temperatures. 

To allow for this effect, we introduce a quadratic  term 
U / T 2  into the activation  energy for conduction: 

u = use + urn, (12)  

with 

= u s c ~ e - ~ ~ ~ + ~ ~ ~ 2  ( T ,  - T )  ‘ I 3 ;  

urn= um0/[l + a ( - 2 7 3 . f   T ) ] .  

Differentiating with regard to  temperature gives 

duldT = u s c [ W / T 2  - 2 U / T 3  - ( 1 / 3 ) / ( T s  - T ) ]  

- (aurn0)/[l  + a ( T  - 273)l’ .  

Substituting from  Eq. ( 1  0), we have 

d u / d T =  [u-urn0/(1 + a [ T - 2 7 3 ] ) ]  

x [WIT2 - 2 U / T 3  - ( 1 / 3 ) / ( T ,  - T I ]  

- a ~ , , , ~ / [ l  + a ( T  - 273)] ’  ( 1  3 )  

We now normalize the  resistance by assuming u = 

u3306K = 1R-km-’ and use  the value of urno = 0.661 es- 
tablished in the previous  calculation. If we  measure 
du/dT and u at a low temperature T I  we  obtain one 
equation for W and U in very simple form. The equation 
for du/dT at T o  gives a  second  equation for W and U .  
We  can calculate the values for W and U from these two 
equations; W = 145.1 and U = 3982. 

The resulting equation for u, Eq. (12) ,  with T ,  = 86 1 K, 
a = 3.6 X T o  = 306 K, and W and U derived from 
the slope of the experimental u/uo vs T curve at  one low 
temperature and at To,  is shown in Fig. 3 .  Quite a good 
fit is shown over the  entire range. 

TO 

5. Conclusions 
It is shown in this paper  that  the Mones-Melan  conduc- 
tion model when  applied to  the glaze  resistor  leaves a 
significant discrepancy  between  experiment and theory. 
The  data of Okamoto  and Aso on palladium oxide films 
show  that  the behavior of the palladium oxide  alone 
does not account  for  the behavior of the glaze resistor, 
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for  the glaze resistor shows  a high positive TCR where 
the  onset of intrinsic  conduction gives the palladium 
oxide  a high negative TCR.  This then suggests that a 
different phenomenon is involved  and Brady’s sugges- 
tion on  the effect of contact  resistance becomes  more 
plausible. 

T o  obtain quantitative agreement  between  calculated 
and  measured data,  one has to go  one step  further and 
examine the role of the total  composition of the resistor, 
i.e., take  account of the  presence of the significant 
amounts of metal in the  resistor paste. In this  manner 
improved  agreement  between  calculations  and  experi- 
ments can  be obtained. 

It is shown  that  an  equivalent parallel circuit of metal 
and  semiconductor contact resistance  can be used to 
give an  adequate representation. It has been the  purpose 
of this  paper to show in principle that  the resistor can  be 
represented with reasonable assumptions about basic 
material  characteristics. 
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