Communication

236

G. M. Lederle

Heat-transfer Calculations at the Tape-head
Interface of a Computer Tape Drive

Abstract: Frictional heat generation can develop localized high temperatures at the tape-head interface of a computer tape drive and
can seriously affect the performance of the drive. Using standard heat transfer theory, we calculated the magnitude of this “hot
spotting” to be of the order of 21°C for an IBM 2400 series tape drive. In general, it is almost impossible to accurately measure hot
spotting on a tape drive. A series of calculations was performed to investigate why this is so.

Introduction

Sliding systems can generate localized high temperatures,
or hot spots, at points of true contact between the sliding
bodies. When a polymeric tape slides across the metallic
head of a computer tape drive, the heat generated can
become high enough to intermittently bond the tape to
the surface of the head. The continual forming and
breaking of such bonds produces wear debris that gives
rise to ‘“‘adhesive wear,” a common cause of failure.
Also, in a tape-head system that has been run and then
allowed to cool with tape and head in static contact, the
heat buildup can cause more permanent sticking and
may even prevent the tape drive from starting again.
For these and other reasons relating directly to tape drive
performance, it is important to determine the extent of
hot spotting at the tape-head interface.

In the past, attempts have been made to assess the
degree of hot spotting, both by calculation and by measure-
ment, but neither approach has yielded satisfactory results.
The difficulty with the calculations has been that various
theoretical models were based on several questionable
assumptions. In addition, a number of operating param-
eters needed for the calculation are not easily determined.
The disadvantages of experimental measurement depend
upon the technique used. With one of the more popular
methods, the use of infrared sensing devices, it is generally
not possible to make an in sifru measurement. The problem
in this instance is to derive the temperature rise at the hot
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Figure 1 Sliding contact at a square junction,

spot from a measured value that is displaced in both time
and space from the point of contact between the bodies.

This paper presents a theoretical analysis of the hot
spotting that occurs at the tape-head interface of an
IBM 2400 series tape drive. Details are given to justify
all major assumptions made in the calculations. The
analysis is also used to examine why direct measurement
of hot spotting has been unsuccessful.

A model for hot spotting

Jaeger [1] has developed a model for calculating the
frictional temperature buildup between two semi-infinite
bodies that are in sliding contact over a square contact
area, having side 2a as indicated in Fig. 1. If all surface
heat transfer is restricted to this junction, then at steady
state, the average temperature rise 7' of the junction is
given by

= STl )
3.76a J(1.125 K.kE + KA/ a V)
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where

g = 980 cm/sec’

J =418 X 107(gm)cm®)/(sec’)(cal), the mechanical
equivalent of heat

K is thermal conductivity

k is thermal diffusivity

7 is the dynamic coefficient of friction

V is the relative velocity of the two bodies

W s the load borne by the junction,

and the subscripts 1 and 2 refer to the two sliding bodies
designated in Fig. 1.

A description of the individual contact junction

In order to apply Eq. (1) to a given tape-head contact
junction, reliable determinations of a, the radius of the
contact junction, and W, the load borne by it, are needed.
The most direct method of obtaining W would be to
determine how the macroscopic load is distributed over the
individual contact points between the two bodies, but this
approach would be extremely impractical. Instead, it is
generally recognized that the real contact area for the
system will be a very small fraction of the apparent contact
area. Therefore, even a light load on the tape will cause
plastic deformation of the polymeric asperities that are
in actual contact with the head [2]. For this condition,

W = za’pa ¢))

where p,,, the mean pressure over the area of true contact,
is [3]

D™~ 3Y. 3)

By Eqs. (2} and (3), the load on the individual asperity can
be expressed directly in terms of the yield stress of the
polymeric tape coating Y and the contact radius of the
asperity a. Therefore, Eq. (1) can be rewritten

2.5k uYeVa/J
1125 K.k + K,V aV

(4)

Rabinowicz [4] has formulated an indirect method of
calculating @ which he has used to produce reliable esti-
mates of the contact radius for a wide variety of sliding
surfaces. It is based on the hypotheses that a wear
particle and the contact area at which it is formed are
equal in size, and that a wear particle is produced when
the stored elastic energy of the particle exceeds the increase
in surface energy that occurs during its formation. His
equation

a = 4000y/Y )

introduces an additional material property vy, the surface
tension of the tape coating.
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Material and operating constants

The physical constants and operating variables for an
IBM 2400 series tape drive and for IBM Series/500
magnetic tape have been chosen to illustrate the hot-
spotting calculation. For these systems, the tape velocity
and dynamic coefficient of friction over the tape drive
head are [5]

V = 285 cm/sec and (6)
p = 0.442. 0

The required thermal and physical properties of the tape
coating (polymer and vy-Fe,O; particles) are

k = 7.9 X 107* cm®/sec )
K = 4.25 X 107* cal/(sec)(°C)(cm) ©)
Y = 2.6 X 10® dynes/cm® 0
v = 38 dynes/cm 11

and, for the HyMu “80”"* epoxy head,

k
K

0.06 cm®/sec (12)

Il

0.06 cal/(sec)(°C)(cm). (13)

The yield stress Y of the tape coating was measured [6] at
a testing rate of 0.25 in/in/min and then converted to a
value at 7 X 10" in/in/min, the rate of deformation at
the tape-head interface, by means of a WLF time-tempera-~
ture superposition [7]. According to Rabinowicz’s Eq. (5)
and expressions (10) and (11), the contact radius is

a= 59X 107" cm. 14)

The calculation of hot spotting

Once estimates for all the necessary parameters have been
developed, we can calculate the temperature rise at the
contact junctions of the tape-head interface. If the sliding
contact is considered to be carried by the tape (phase 2 in
Fig. 1), then according to Eqs. (4), (6), (7), (9), (10), (12),
(13) and (14),

T = 11.5°C. (15)

If instead the sliding contact is taken to be carried by
the head, then according to Egs. (4), (6-10), (13) and (14),

T = 15.6°C. (16)

Considering the nature of the assumptions made in
these calculations, the values in Eqgs. (15) and (16) do not
differ significantly. For purposes of illustration, Eq. (15)
is used to represent the actual temperature rise in the
calculations that follow.

The accuracy of the result given by expression (15) will
depend, in some measure, on the correctness of the

*Trademark Registered, Carpenter Steel Co.
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Figure 2 Conformal mapping of asperities into simple
geometries. (a) For a raised asperity; (b) for a flat asperity.

Figure 3 Shape of an average tape asperity.
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assumptions made in applying Eq. (4) to a tape-head
contact junction. Several of these assumptions will now be
examined in detail.

o The assumption of a flat asperity

In applying Eq. (1) to a tape-head contact junction, we
implicitly assumed that the contact area of the sliding
junction lay entirely within the plane of the sliding surface.
In practice, however, the average contacting asperity
protrudes somewhat above the surface of the body and,
because of the heat-concentrating effect of such a geometry,
can be expected to generate higher surface temperatures
than we predicted from Eq. (1).

To estimate the difference involved, we used the two-
dimensional system pictured in Fig. 2. Part (a) represents
a raised asperity and part (b) an asperity in the plane of
the surface. In each case, we maintain a constant rate of
heat input across the surface between points —1 and +1,
and keep all the surface adjacent to this heat source

G. M. LEDERLE

at 0°C. The question is, given the same rate of heat input
to both bodies, would the temperature 7, of the raised
asperity be significantly higher than the temperature 7, of
the flat asperity at steady state?

Conformal mappings that transform both bodies into
semi-infinite slabs for which the temperature gradients
are known to be linear functions of position are shown in
Fig. 2. Note that the temperature gradient between surfaces
e and f in Fig. 2(a) is proportional to 7,/3, whereas that
between the same two surfaces in Fig. 2(b) is proportional
to 7,/2. Since the heat flow through these two semicircular
regions is equal, and if their thermal conductivities are
considered equal, it follows that

T.)3 = T,/2 %)
or
T, = 1.5T,. (18)

Equation (18) indicates that the assumption of a flat
contact area will result in a calculated temperature rise
which is only % lower than the true value. Furthermore,
this difference may be even smaller since our surface
profile measurements of tape-surface roughness show
that the average asperity (Fig. 3) is actually much flatter
than that shown in Fig. 2(a). Hence it appears that the
assumption of a completely flat asperity does not introduce
any serious error into the calculations.

o The assumption of semi-infinite bodies
The temperature beneath a circular heat source of radius a
on the surface of a semi-infinite body is given [8] by

_ 2060 e 2 g & @
T(z, t) = X [1erfc 2G1)! ierfc 2(1(—1—1)7—] ,
(19)

where

a is the circular heat source radius

z is the distance below the center of the source

t is time

¢ is the heat flux per unit area

ierfc is the integral of the complementary error function.

At steady state, Eq. (19) reduces to

T(z) z AN
m—‘ﬁ[‘*(;”’ 20
where 7(z) has been normalized by the surface temperature
T(0). We can now use this equation to estimate the thermal
penetration into the tape and head near a contact junction.
IBM Series/500 magnetic tape is 4.82 X 10~ * cm thick [5],
which is equivalent to 8.2 contact radii according to
expression (14). Equation (20) predicts that for equilibrium
conditions, the temperature will have decreased to 6%, of
its surface value at a depth of 8.2 contact radii. The per-
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centage would be even less for the more realistic case of
a moving heat source, and it is therefore reasonable to
assume that for purposes of heat transfer, the tape behaves
as if it were infinitely thick. The head is many times thicker
than the tape; hence it can also be treated as being infinitely
thick with respect to heat transfer.

o The assumption of noninteracting hot spots

Before discussing this assumption, we must estimate the
spacing and orientation of hot spots at the tape-head
interface. The dynamic tensile loading of the tape in an
IBM 2400 series tape drive is indicated in Fig. 4. It follows
that the normal load borne by the contact area is

L >~ 2(160) sin 7° = 39 gm. (21)

Since the points of actual contact can be expected to be
plastically deformed [2, 9], the total area of real contact
can be calculated from expressions (10) and (21):

= L/Y = 1.47 X 107* cm®, (22)

The total area of apparent contact was estimated from the
wear scar on a typically worn head to be

A, = 1.08 cm®, (23)

It can be verified that the number of contact radii equiv-
alent to the distance between adjacent square contact areas
arranged in a square lattice is

2(A,/A) (24)

regardless of the size of the individual contact area.
Therefore, by using expressions (22), (23) and (24), we
calculated the repeat distance of the hot spots to be
approximately 171 contact radii. The hot spots most
likely to interact thermally are those aligned in the direction
of tape movement. We measured the length of the wear
scar in this direction to be 0.85 cm. By dividing this length
by the distance between junctions, we find that the number
of these interacting junctions is eight.

In determining surface temperatures near a sliding hot
spot on the tape surface, it is sufficient to consider an
infinitely long sliding-band source of width 2a transversely
oriented to the direction of tape movement. Using this
model introduces negligible error when temperature
distributions in the direction of tape movement are
calculated [1]. The solution for the band source is given [1]
by

;Ef)) <§> Cl<Rs1
(25)
R + 1> <R - 1)*’
—_— <
( 2 2 I's R
where R = x/a, the distance in contact radii behind the

center of the moving source, and where 7(R) has been
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Figure 4 Compression loading at the tape-head interface.

Figure 5 Tape surface temperature profiles for neighboring
hot spots.
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normalized by the maximum temperature which occurs at

the trailing edge of the source, i.e., at R = 1. When R is
large, Eq. (25) can be written

T(R) 1

o = 1 1 .

() 2R’ < R (26)

If we assume that there is no thermal interaction among
the hot spots, we can use Eq. (25) to plot the profiles of
the surface temperature for several adjacent contact areas
(see Fig. 5). Notice that should there be any interactions,
they would be most strongly felt at the leftmost asperity.
Their effect would be to increase the temperature of this
asperity over that calculated by Eq. (25).

We can obtain a simple estimate of this interaction by
adding the contributions of all eight hot spots at the
point R = 1 and comparing this to the value for the
single hot spot at the point. Using Eq. (25) for the first
contact area and Eq. (26) for the remaining seven gives

B () - (¢7)

T(1) 2 2
1
+ Z QR — 2 + 342n) R21. 27)
When R = 1, this gives
ZT(I) = 1.22, (28)

(D

or a temperature only i higher than would have been
predicted from a single hot spot. Therefore, the assumption
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Figure 6 Convective cooling of tape surface.

that there is no thermal interaction among hot spots
should not seriously affect the accuracy of the estimate
derived from Eq. (4).

To allow for the conservative nature of the three
assumptions discussed so far, the estimate given by ex-
pression (15) is increased to

T~ 21°C (29)

by the factors given in expressions (18) and (28). The
accuracy of this result is directly affected by the approxi-
mate nature of the original temperature-rise calculations
[see Egs. (15) and (16)].

Hot spot measurement by infrared microscopy

One popular way to attempt to measure hot spotting at a
tape-head interface is to view the tape surface with an
infrared rasdiometric microscope as soon as possible after
the tape touches the head. The difficulty with this procedure
is that the hot spots usually cool to the ambient tape
temperature before the measurement can be taken, thus
giving the misleading impression that hot spotting has not
occurred. For example, if the surface cools only by
conduction into the body of the tape, a 21°C hot spot
will cool to 1°C within

R =22 (30)

contact radii, or 1.30 mm from the point of contact,
according to Eqgs. (14) and (26). Few infrared microscopes
have a sensitivity of 1°C, and it is difficult to obtain
readings as close as 1 mm to the contact zone [10].
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Convective cooling of the hot spots to the atmosphere
further complicates the problem of temperature measure-
ment. We made the following sequence of approximations
to determine how rapidly the hot spots would cool by
convection. In each case, the approximation was con-
servative since a rigorous calculation would have produced
an even higher rate of hot spot cooling.

In order to determine the depth of thermal penetration
into the tape during the formation of a hot spot, we have
written Eq. (19) in the form

(S, 1) _ ierfc [aS/Z(Et)‘f] — ierfc [a(1 + 8%)/2(kt)}]
(0, 1) 1/N7 — ierfela /2(kt)!]

(D

where S = z/a, the depth in contact radii below the
hot spot, and where 7(S, ) has been normalized by the
hot spot temperature 7(0, ¢). The time required to form
a hot spot can be approximated by expressions (6) and (14):

t=a/V=207X 10" sec. (32)

If we consider the depth of thermal penetration to be
equal to the level at which a hot spot temperature of 21°C
has decayed to 1°C, then by expressions (8), (14), (31)
and (32), the thickness of this thermal layer is

L=963X10"cm. (33)

We can obtain a conservative estimate of the cooling
rate of the tape surface by assuming that the thermal layer
cools only by convection into the air gap between the
tape and the head. This problem is described in Fig. 6
and by the conditions

T(z, 0) = T;
T(Z,CD) = Tf
0

%z T, =0

k2w, = wr - 1L, 0,
0z

for0<z< L,0< < », where

T; is the initial temperature of the thermal layer

T; is the ambient air temperature

K is the thermal conductivity of the thermal layer
A is the surface heat-transfer coefficient of the tape.

The solution for the surface temperature of the tape as
a function of time [11] is
(L, — T,

Tf - Ti

= 2 sin 2\,
=1- ,Lzle)\n—I—sinZ)\n

exp (—A\ kt/L?), (34)
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where the \,’s are the roots of the equation [12]
Ntan A = hL/K. (35)

Before we can use these equations, we must estimate the
surface heat transfer coefficient 4. The Reynolds number
for air flow in the gap between the head and tape surface
is quite low, indicating laminar flow [13]. For this condi-
tion, heat is transferred through the laminar air layers
essentially by conduction. The steady heat flow can be
calculated by Fourier’s law

(T, — Ty

g = K,— p , (36)

where

T, is the temperature of the tape surface
T, is the temperature of the head surface
K, is the thermal conductivity of air

d is the nominal tape-head gap size.

It is also true that this same rate of heat flow can be
expressed [14] as

g = hT, — Tiv), (37

which is the defining relation for coefficient 4. The average
air temperature, Ty, is (T, + T,)/2 for laminar flow.
Therefore, combining Eqs. (36) and (37) gives

— ZKR'

="

(38)

The head-to-tape separation for an IBM 2400 series
tape drive is

d= 767X 107" cm (39)
and the thermal conductivity of air [15] is

K, = 6.37 X 107" cal/(sec)(cm)(°C). (40)
Therefore,

h = 1.67 cal/(sec)(cm”)(°C). (41)

Equation (34) can now be used with expressions (8), (9),
(33) and (41) to estimate the time required to cool a 21°C
hot spot to 1°C. This is

f=1.02 X 107" sec, (42)
during which time the tape will have progressed to
R =493 43)

contact radii, or 0.291 mm past the point of contact.

The actual rate of convective cooling will be faster than
has been estimated here and the hot spots will also cool by
inward conduction. Therefore, it does not seem that an
infrared microscope can be brought close enough to the
tape-head contact zone of an IBM 2400 series tape drive
to obtain useful measurements of hot spotting.
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Another method of infrared measurement which avoids
the problem of rapid cooling of hot spots is to view the
contact zone directly through the back side of an infrared-
transmitting tape. The limitation here is that when the
field of view is larger than the spacing between hot spots,
the microscope will read an average surface temperature
of the form

T.d, + T, A,
A+ A, (44)

The subscripts r and a refer to the real and apparent contact
areas, respectively. Unless 7.4, is of the same order
as T,A,, no increase in the temperature of the tape surface
will be detected. For example, according to expressions
(22), (23), (29), and for an ambient temperature T, of 25°C,
the average rise in surface temperature for an IBM 2400
series tape drive will be only 0.006°C, which is well below
the sensitivity of the infrared microscope.
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