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Abstract: A description of the electrophotographic discharge process is presented for a homogeneous photoconductor characterized
by constant free-carrier lifetimes and trapping times. The physical model is described by a set of one-dimensional nonlinear differential
equations with appropriate boundary conditions. It is shown that a quasi-steady-state approximation can be derived which is valid
for most of the decay process under typical electrophotographic conditions. In this quasi-steady state, the photoconductor layer can
be described by an equivalent circuit which consists of a capacitance in parallel with a two-terminal element whose current-voltage
characteristic is directly related to the field-dependent photoinjection efficiency. A numerical analysis using large-scale computation
of the solutions to the differential equations has been done for a hypothetical but typical material. The results of this computation,
which describe the initial transient behavior and the subsequent quasi-steady-state behavior of the photoconductor, are presented.
The results of the quasi-steady-state analysis agree with the actual behavior of amorphous Se. Tt is suggested that measurement of the
quasi-steady-state photodischarge process can be used as a convenient technique for obtaining the field-dependent characteristics of

the photoinjection process.

1. Introduction

Xerography, that part of electrophotography invented by
Carlson, [1] is presently a well developed and widely used
technology. In its most common implementation [2, 3]
a layer of photoconducting material about 10 to 50 um
thick on a grounded conducting substrate is “‘sensitized,”
i.e., charged to a uniform potential by means of a corona
discharge in the dark. Then the layer is exposed to an
illuminated image to be reproduced. The area exposed
to light experiences a rapid decay of the potential because
of the transport of photogenerated carriers across the
photoconducting layer, while the dark area maintains
most of its original voltage, thereby resulting in the
formation of a “latent electrostatic image.” This paper
is concerned primarily with the photodischarge process
which is involved in the formation of the electrostatic
image for a homogeneous, high-resistivity photoconducting
layer having a low density of ionizable donor and acceptor
sites. Of the various photoconducting layers in use today
amorphous Se and some organic photoconductors are
relevant examples.

It has recently been shown by Tabak and Warter [4]
that the simple range-limited models [5] are not adequate
to describe the photodischarge process of Se. They pointed
out that the measured range of holes is much greater than
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the layer thickness and stressed the importance of field-
controlled photogeneration of free carriers. More recently
Warter [6] has presented a qualitative discussion of the
discharge process taking this into account. The objective
of the present work is to derive from the basic physical
concepts some quantitative relations that closely describe
the photodischarge process in Se-like materials.

In the following section the physical model is discussed
and the problem is formulated mathematically. Although
a relatively simple model is used, the analysis involves
nonlinear differential equations. In Section 3 the existence
of a quasi-steady state is demonstrated within the con-
straints of certain specified conditions. It is shown by a
self-consistent analysis that these conditions are realized
in most xerographic applications. Some specific con-
sequences of the existence of the quasi-steady state are
then considered. The results of a numerical solution of
the differential equations are presented in Section 4. These
results, including the effects of trapping and detrapping,
are obtained for a hypothetical material and give a
complete description of both the initial transient behavior
and the subsequent quasi-steady-state behavior. Com-
parisons of the quasi-steady-state analysis with experi-
mental observation are discussed in Section 5. Some
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Figure 1 Diagram showing coordinate and positive vec-
tor direction for the electrophotographic model. The thick-
ness of the photoconductor layer is designated as L.

important mathematical results are derived in Appendices
A and B. The computations involved in this paper were
performed on an IBM System/360 Model 91.

2. Physical model

The analysis presented here is based on a physical model
of the photoconductor and on boundary conditions which
assume the following:

1) The deposited corona charge forms an effective blocking
contact. By this it is meant that in the dark the deposited
charge is immobile on the surface in the form of ions or
in traps located at or very near the surface [7].

2) The photoconductor-substrate interface blocks the
injection of carriers having polarity opposite to the charge
deposited on the surface [7]. A further requirement on the
interface, especially if the plate is to be reused, is that the
photogenerated carriers that drift across the photocon-
ductor be able to flow out without appreciable buildup
of voltage across this interface.

3) The density of ionizable donors and acceptors is
negligibly small. This assumption appears to be valid
for amorphous Se or some of the organic photoconductors
but not for ZnO binder type layers [8].

4) Light is absorbed at the surface of the photoconductor.
As will be discussed later, the fact that light is absorbed
within a finite thickness is compensated by an effective
recombination velocity. This compensation is adequate
for materials that exhibit high sensitivity to strongly
absorbed light [9].

5) Recombination in the bulk of the photoconductor is
negligible. This is a consequence of assumptions 1)-4).
6) The lifetime of free carriers is mainly limited by traps.
Here traps are sites in which carriers can be trapped and
are neutral when empty. A trap of any given type i is
characterized by a constant free carrier lifetime 7, with
respect to that trap and a constant trapping time 7r,.
The net free carrier lifetime 7 is given by 1/7 = Zi 1/7;,
and in practical situation the 7,’s and 7,’s have values
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such that most of the carriers involved in the discharge
process can traverse the thickness of the photoconductor
within xerographic process time.

The problem is treated in one dimension with the
coordinates taken as shown in Fig. 1. The field E and the
conduction current density j, are positive in the x-direction.
Light is incident on the surface (x = 0), which has been
charged to an initial voltage ¥;. The differential equations
governing the carrier transport in the layer are then as
follows:

Jo(x, t) = eun(x, )E(x, t) — eD 6n_((9xx,_t_) , a
0E(x, 1) e

Ton = e {n(x, ) + Z nr(x, 0}, Q)
on(x, 1) Onp(x, 1)  139jx, 1)

at - z,: ot e Ix 3

dne,(x, 1) _ n(x, 1)  anx, )
at o T Tr; ’ S
0 = ju(x, 1) + epe 2EE2 D), ®)

ot

The total voltage across the photoconductor is given by

L
V() = f EGe. 1) dx. 6)

Equation (1) is the expression for the conduction
current density, Eq. (2) is Poisson’s equation, Eq. (3)
is the continuity equation, Eq. (4) contains the mathe-
matical description of the trap model used, and Eq. (5)
reflects the fact that the total current is zero since a floating
surface is assumed at x = 0. Here e is the charge of the
carrier, u the carrier mobility, D the diffusion coefficient,
¢ the permittivity of free space, and e the relative di-
electric constant. The density of free carriers is » and the
density of carriers in traps of type i is ny,.

Initially the layer is charged to a voltage V, and the
bulk of the layer is neutral, i.e., there are no free or trapped
carriers and therefore n(x, 0) = nr,(x, 0) = 0. Then the
field is uniform throughout the sample and
EGx, 0) = 2% = E,. %)

L
The carrier drift velocity for this field is termed the initial
carrier velocity v, and is given by

Uy = /..LEO. (8)
The corresponding transit time ¢, is given as
ft, = L/v,. &)

Illumination of the surface (x = 0) begins at t = 0
and the absorbed photon flux density is taken to be
some function of time f(¢). The generation efficiency of
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free carriers is assumed to be a function g[E(0, 9] of
both the field at the surface and implicitly the illumination
wavelength [4, 9-12]. The recombination rate is taken to
be proportional to the free-carrier density at the surface
with a recombination velocity v, (the quantity v, effectively
includes both surface and bulk recombination since
light is actually absorbed in a finite volume; thus v, could
also depend on the wavelength of light). The free carriers
injected into the bulk of the photoconductor by illumina-
tion constitute what might be called the photoinjected
current. For the case of surface absorption this current
is given by

70, &) = e{f(NSLEO, H] — v.n(0, N}. (10)

A photoinjection efficiency [9] Y can be defined as

_ 40,1
Y = (1) ()

It can be seen (Appendix A) that the photoinjection
efficiency is a product of the free-carrier generation
efficiency and a recombination loss factor, both of which
will depend on the material, field and illumination.
Equation (11) thus provides the boundary condition at
the illuminated surface for the photodischarge process.
An electrophotographic yield for the decay process Y,
can be defined as

el E0, 0) — E(O, 1)] _ fo Y(0)f(e) dt

efau 1(¢) dt fOLL HOX/[3

where ¢, is the duration of the illumination. For constant
photon flux density,

3

Yx(tL) =

(12)

Y.(tr) = i/o Y(t) dt. (13)

Note that if at time ¢;, carriers still remain in the photo-
conductor (e.g., in deep traps) the electrophotographic
yield as defined here in terms of surface field strengths
will be somewhat greater than the electrophotographic
yield commonly defined in terms of the decay in surface
potential.

3. The quasi-steady state

Since the differential equations (1)—-(4) are involved in
basic studies of the transport properties of materials,
there have been a number of attempts to obtain usable
relations between the measurable parameters and the
material parameters under experimentally realizable
conditions [13-16]. In the absence of trapping, the problem
is greatly simplified and in some cases an exact analysis
is possible [17-20]. Here those simplifications which are
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particularly applicable to the electrophotographic process
will be considered.

In what follows, an analysis will be presented that will
demonstrate that under certain conditions the system
will go into a quasi-steady state. A reasonable simplifica-
tion that will be made here is to assume that the photon
flux density f(#) is a constant. It will be shown that the
voltage decay in this quasi-steady state can be directly
related to the photoinjection efficiency and that the decay
process can be described analytically in terms of basic
physical parameters. Relations will be derived which will
permit a self-consistent check on the conditions for the
establishment of the quasi-steady state.

Let |(dn/dr) + Z,- (On1,/30)|mas denote the maximum
value of |(dn/dr) + Zi (dng,/31)| over the thickness
of the sample at any given time. The total number N;q(f)
of charges in the bulk of the photoconductor per unit
area at any time is given by

Neow®) = [ 1+ 3 nw) dx. (14)

vo

Further the number of charges Ny(r) on the surface at
x = { per unit area is

Ng(t) = % EQ, 1). (15)

Now assume the following conditions:

a) The total space charge in the photoconductor is very
small relative to the charge on the surface, i.e.,

Nror() < Ng(¥). (16)

b) The rate of change of the space charge at any point
in the photoconductor is much smaller than the rate of
change of the surface charge, i.e.,

Qﬂ anr,
o T Z at

GNS
at

L < . a7

max

This of course implies that

}aNm
Jat

ot

¢) The diffusion term in Eq. (1) is negligible.

It can be shown rigorously (Appendix B) that if these
conditions are satisfied a quasi-steady state is established
in which the field, the conduction current and the free-
carrier density are uniform throughout the photocon-
ductor. Since (dn/dx) = 0 in the quasi-steady state, it
can be said at this stage that condition c) is self-consistent
with a) and b). Thus when the conditions for quasi-steady
state hold E(x, ?), j(x, ) and n(x, t) can be considered
as functions of ¢ only. Under these conditions Eqgs. (1),
(5) and (6) simplify considerably and one writes

Jo(t) = epn()EQ), (18)

215

ELECTROPHOTOGRAPHIC DISCHARGE




216

dE 1
V() = LEG). (20)

Also j.(9) is determined by the boundary condition (11)
which gives

Jt) = efY(E). 1)

When combined with Eq. (19) the following differential
equation results for E(7):

dE

e
- _e_(;fY(E)' (22)

Equations (18) and (19) combine to give

_ _&cl dE
@) = eu E dt (23)
Combining Eqs. (20) and (22) one gets
v _ _eL <_V)
dt €€ Y L/’ (24)

which describes the behavior of the observable V(¢).
It is interesting to note that in this quasi-steady state the
voltage decay process is not directly dependent on the
details of the transport process. The mobility is implicitly
included in the injection efficiency but the injection
efficiency i$ a characteristic of the sample that can be
measured without knowledge of the mobility [16].

Using Eg. (20), Egs. (19) and (21) can be rewritten as

dv

—C = L0, (25)

oy = e (2. 26)

where C is the capacitance per unit area of the photo-
conductor layer (C = €,¢/L). These two equations demon-
strate that the photoconductor in the quasi-steady state
can be represented by an equivalent circuit consisting
of a capacitor C in paralilel with a two-terminal element.
The current-voltage characteristic of the two-terminal
element is determined by the photoinjection efficiency
through Eq. (26). In the special case where the injection
efficiency is linearly dependent on the field, the photo-
conductor will appear as an RC circuit,

The assumptions a) and b) stated earlier were written
in terms of variables that cannot be measured directly.
To further examine these conditions, it is necessary to
consider the trapped-carrier density. Since the trapped-
carrier density is initially zero it tends to increase with
time until it reaches the equilibrium value of (7,/7)n.
Therefore in the quasi-steady state

(1 + Z >n(t) Q7)

Nror(f) =

SEKI, BATRA, GILL, KANAZAWA AND SCHECHTMAN

and

RS DL (1 + X ’—) an, 28)
A i Ti dt
Henhce using (15), (22), (23), (27) and (28), one obtains
NTOT < T'n) Lef Y(E)
<1+ X)L (29)
and

+ Z dﬂTl(

‘st
dt

7o\ Lef 1 dY(E) )
<1 T Z >I.L€0€ E’ }E dE Y(E) (30)

The expressions on the right-hand side in relations (29)
and (30) are in terms of imposed external conditions and
material properties, and provide a means of stating
self-consistent conditions under which the quasi-steady
state can be éxpected. Thus, sufficient conditions for the
existence of a quasi-steady state are

2\ Lef Y(E)
<1+Z )uo - K1 (31)
<1+ZTT>551E1 E%—Y‘«l (32)

If these conditions hold for a reasonable period after
illumination begins, the system can be expected to establish
a quasi-steady state after an initial transient. The duration
of this transient period will depend largely on the transport
parameters, u, 7; and rr,. After the quasi-steady state
is once established; it is possible that conditions (31) and
(32) may break down at lower fields if Y(E) decreases less
rapidly than E°. If the sums in Eqgs. (31) and (32) include
deep traps with large 7,,/7;, but for which 7, is much
larger than the initial carrier transit time (), then these
traps will not affect the initial portion of the decay. In such
cases these traps can be excluded from conditions (31)
and (32) and it is possible for the discharge process to
achieve a quasi-steady state for a limited period, after
which this is no longer true due to buildup of excess space
charge of carriers in these deep traps.

4. Case study of the quasi-steady state

Using the results obtained in the previous section, it
will now be demonstrated that in typical electrophoto-
graphic applications the quasi-steady-state approximations
are valid. This is best done by examining specific cases.
Measurements of photoinjection efficiency are relatively
scarce. In most instances, reported measurements of the
free-carrier generation efficiency turn out to be measure-
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ments on the photoinjection efficiency. These generally
indicate that Y is a monotonically increasing function
of E[4, 9-12]. Since such curves are relatively smooth
and any segment of the curve can be approximated quite
well by a power-law dependence on the field, it is instructive
to consider the quasi-steady-state decay process under
constant illumination assuming

Y(E) = Y,E", (33)

where for reported data m has had values between 0.5
and 2.5 [4, 9-12]. Then Egs. (22) and (23) now become,
respectively,
dE ef

— = —— Y, E", 34
dt €0€ 0 G4

n(t) = L Y E" . (35)

")
Conditions (31) and (32) can be expressed as

PSSP
|m—1|<1+2%)ff5—§<<1. (37)

Integration of Eq. (34) gives for m # 1

1/(m=-1)
E@t) = /{1 + (m — 1) ES" ]ft} » (3%)

For m = 1 we have

E(t) = E, exp( 20 ft) , 39)

where E;, = E(0). Through Egs. (20), (34), (38) and (39)
one obtains
4V _ e

—=L Y, L, 40
dt €€ 0 (40)

with solutions for m % 1

1% —1 1/(m—1)
V(t)=V/{1+(m—1) <L°> ft} ,

(41)

and form = 1

V({t) = V, exp <—(i ft> , 42)
€€
where ¥V, = V(0). Equations (40)-(42) give the time-
dependent behavior during the quasi-steady-state photo-
discharge process.

Note that the form of Eq. (41) includes two distinct
families of decay curves, ¥(r) = Vo/( + |4] H'"' or
V(i) = V(1 — |A| H'"! depending on whether m > 1
or m < 1. Here 4 and P are constants defined as
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A= (m— l)eYO (—Z—")m_ 1,

P=1/(m — 1).

It is seen from Eq. (40) that the slope of log |dV/di|
versus log V' will give the value of m and that plots of
such curves should coincide for decays which start from
various voltages. The latter property can be used as an
experimental check as to whether the quasi-steady state
was established.

At this point a matter of considerable concern in the
imaging sciences can be noted, i.e., reciprocity, by which is
meant the property of obtaining the same image level
independent of the light intensity so long as the integrated
light input is the same. Electrophotographically this means
that the same voltage is obtained in the latent electrostatic
image for a given integrated light input. It is clearly seen
from Egs. (41) and (42) that, starting from the same initial
voltage, the final surface voltage is determined by the
integrated light input §7,. Hence, so long as the injection
efficiency is independent of the light intensity, reciprocity
can be expected when the photodischarge process takes
place in the quasi-steady state.

5. Numerical analysis

Since the preceding analysis is limited to the assumed
conditions a) and b) of Section 3 and ignores diffusion,
the problem has also been investigated by numerical
computation. The behavior for transient situations, very
high light intensity and severe trapping are the situations
for which this approach is most useful. The problem is
essentially an initial vaiie problem to be analyzed by
the difference method. The basic variables E, nr,, and n
are calculated through numerous iterations of small time
increments using the first two terms of the Taylor series.

Fx, 0+ A = Flx, 1) + - At (43)

The relevant time derivatives can be derived from the
differential equations and are

[:22) Gn
ar eo nk + ax (44)
onr, n A,
_=r T _ oI 4
at T T, )
and
9n _ _ Z anT, . 6n
" Bx
2
——n(n+Zl1T)+ D*f‘ (45)

Some care must be used in the choice of the spatial grid
in relation to ¢ and in the calculation of the space deriva-
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Figure 2 Initial time dependence of —(dV/df) from the
numerical computation.

tives to avoid computational instabilities. The result is an
array of E(x;, t;), ny,(x;, t;) and n(x;, ¢,) from which
the other parameters can be calculated. Here x; and 7,
represent, respectively, the discrete values taken in the
computation for the continuous space and time variables.
The advantage of the numerical approach is that it is
considerably more flexible with regard to the problems it
can handle. For example, it can easily incorporate time-
dependent variations of the incident light, arbitrary bound-
ary conditions at the two surfaces of the photoconductor
layer, and arbitrary initial conditions. In effect, it provides
a numerical laboratory in which the more complex aspects
of the photodischarge process can be investigated.

Here some computational results concerning a hypo-
thetical material are presented as an illustration of the
numerical analysis technique. The results also serve to
confirm the validity of the previous quasi-steady-state
analysis. In this example a material with one type of
trap is considered and the relevant material parameters
are chosen as follows:

e=13

= 33X 10"* ecm®/V sec
7= 2X 107" sec
e = 6.7 X 107° sec

L=12X10"cm
Y(E) = 3.16 X 107'° E"® carriers/photon.

The values given represent a situation in which there
is considerable trapping and detrapping. The layer is
charged initially to 500 V and the charge carriers are
holes. The trap-free transit time of the leading carriers is
then 8.73 usec. It is assumed that the electrode is non-
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Figure 3 Two spatial distributions for various times during
the transient portion of the numerical computation.

(a) Distribution of free carrier density.

(b) Distribution of trapped-carrier density.

injecting and that photoinjection is the sole source of
space charge in the photoconductor layer. The illumina-
tion absorbed by the photoconductor is given by

() = 10**{1 — exp (—10°n)} (photons/cm” sec).

A finite risetime is used for computational purposes to
describe the essentially step-function illumination. The
Einstein relation is assumed for the diffusion coefficient
and the calculation is for T = 300°K.

In Fig. 2 the initial transient behavior of d¥/dr is plotted
as a function of time. An important fallout of numerical
analysis is that it allows the investigation of parameters
which may not be easily measured. Examples of this are
shown in the next two figures. Figure 3(a) presents the
spatial profile of the free carrier density for various times
during the initial transient period and Fig. 3(b) presents the
spatial profile of the trapped-carrier density. It should be
noted that the scales for the carrier density on the two
figures are different. At 5 usec the leading edge of the
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Figure 4 The time dependence of V and —(dV/df) for
most of the photodischarge process in the numerical com-
putation.

free carriers is at x = 6.9 X 107* cm. The total number of
free carriers is rapidly increasing and it is seen in Fig. 2
that dV/dr is also rising rapidly at this stage.

The absorbed light is essentially saturated to 10™
photons/cm® sec by 60 usec and beyond this point, if the
appropriate values in this example are substituted into
Egs. (36) and (37), one obtains

NTO’I‘ < 03
Ns - »\/E ’
dn dny
e+ )
dt dt < 0.]2 ’
dNg \VE
dt

which indicates that the system should reach quasi-steady
state. Indeed it is seen in Fig. 2 that at roughly 160 usec,
which corresponds to about 20 transit times, |dV/di|
reaches a maximum and subsequently decreases relatively
slowly. In Figs. 3(a) and 3(b) the free- and trapped-carrier
densities are seen to be essentially uniform by this time.
The ratio of trapped carriers to free carriers is essentially
71/7, as expected from Eq. (4), and the quasi-steady state
is established, The subsequent behavior of the system is
seen in Fig. 4, where V and dV/dr are plotted against
a longer time scale. The logarithmic plot of V vs —dV/dt
consists of a straight line with a slope of 1/m, which
agrees with Eq. (40).

6. Comparison with actual behavior

The transport properties of amorphous Se and its photo-
injection efficiency have been reported [4]. Using this
information the prediction of the quasi-steady-state
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Figure 5 Comparison of the measured surface potential vs
time relation (points) in a photodischarge process of amor-
phous Se with quasi-steady-state theory (solid curve). The
curve is calculated from Eq. (41) setting Vo = 480 and
using f and Y(E) as indicated in the figure.

analysis is now compared to the photodischarge behavior
of amorphous Se samples prepared in this laboratory.
Figure 5 is a linear plot of the voltage versus time for
a sample 50 um thick discharged by 2.2 uW/cm® A =
4000 A illumination from an initial voltage of about 500
V. Taking x4 = 0.16 cm®/V sec and ¢ = 6 the solid curve
was calculated from Eq. (41) letting Y, = 1.09 X 107° and
m = 0.5 which is in close agreement with the reported
square root field dependence (for E > 10* V/cm) of the
injection efficiency for N = 4300 A [4]. A more direct
comparison between the decay process and the injection
efficiency can be made by plotting d¥/dt vs V and this is
especially convenient when the field dependence of the
injection efficiency is not a simple power law. Figure 6
is a logarithmic plot of dV/dr vs V in which the dashed
curve is the experimental result obtained by use of a
differentiating circuit. In this case the same sample was
charged to an initial voltage of about 600 V and discharged
by 2.5 uW/cm®, A = 5500 A illumination. The solid curve
was calculated using Eq. (24) based on the reported injec-
tion efficiency data [4] for A = 5500 A. The higher voltage
portion of the curves differ by a slight vertical shift. This
shift most likely represents error in the measurement of
the light intensity and the agreement is good, considering
that the injection efficiency and decay rate measurements
were on two different samples in different laboratories.
Below 200 V the measured photodischarge rate decreases
to less than the calculated value. The voltage at which this
departure takes place increases with the starting voltage.
This is interpreted to be due to the buildup of positive
space charge in deep traps as was discussed at the end
of Section 3. Evidence for the presence of such deep traps
in amorphous Se has been reported recently [21]. Measure-
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Figure 6 Comparison of the measured dV/dt vs V (dashed
curve) in a photodischarge process of amorphous Se with
quasi-steady-state theory (solid curve). The curve is cal-
culated from Eq. (24) using published data on the photo-
injection efficiency.

ments on samples of different thickness gave similar
agreement but the effect of deep traps increased with the
thickness.

7. Discussion
It has been shown by theoretical analysis and by numerical
computation that the electrophotographic discharge
process can take place in the quasi-steady state. The condi-
tions for the establishment of the quasi-steady state have
been clearly derived in terms of external conditions of
the electrophotographic process and basic material
properties of the photoconductor. It can be seen by
examining these conditions that in prevailing electro-
photographic applications the quasi-steady-state analysis
will describe the essential features of the photodischarge
process in most cases. As a direct consequence of this
state the voltage decay rate or conduction current is
proportional to the photoinjection efficiency. Since the
conduction current is limited by the photoinjection process
the transport properties of the carriers play only a secon-
dary role in the decay process. As seen in Egs. (24) and (AS)
the mobility and recombination affect the decay process
through the photoinjection efficiency but details of the
trapping dynamics play a relatively minor role.

An important ramification of the quasi-steady-state
analysis and its verification in the case of amorphous Se
is that it shows that measurement of the electrophoto-
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graphic discharge process provides an effective and simple
technique to directly measure the photoinjection efficiency.
Unlike the pulse technique [4, 9-11] this approach gives
the injection efficiency as a continuous function of the
electric field. This technique is being used in this laboratory
on an organic photoconductor with considerable suc-
cess [22]. Since the photoinjection efficiency is related to
important basic phenomena such as photogeneration of
free carriers and recombination [9], the direct measurement
of its field dependence should prove quite valuable. It
should be noted that in such a measurement care must be
taken to avoid misinterpretation which may result from
the effects of deep traps, as was discussed at the end of
Section 3. One method is to take a series of measurements
at various starting voltages. The envelope or overlap of
the resulting family of curves of dV/dr vs E will give the
desired field-dependent photoinjection efficiency.
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Appendix A. Photoinjection efficiency

The photoinjection efficiency is derived here for the case
where the light is totally absorbed at the surface (x = 0)
and the recombination process is characterized by a
recombination velocity v.. When Eq. (10) is combined with
Eq. (1) the surface-free carrier density is given by

f(t)g[E0, D] + D 3”_((90,_!_)
X

v, + EQ, 1) |

and using Eq. (5) the time derivative at the surface for E is

n0, 1) = (Al)

v ) 90, 1)
, felEQ, DIEQ, 1) =% D =

dE©, 1) _ _ e
dt e EQ©, 1) +0./u

(A2)
The photoinjection current density is

an(0, 1)

ef()g[EO, DIEQO, t) — e = D
u ox

EO, 1) +v./u

Jo(0, 6) =

(A3)
When the diffusion term is negligible these equations are
greatly simplified, e.g., Eq. (A2) gives the differential
equation for E(0, 1)

dE

7 (A4)

e E
i 1()g(E) E+o/n’

and using Eq. (11) the photoinjection efficiency becomes
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E

Y(E) = g(E) E+o/n (AS5)
It should be noted that, when the diffusion term is neg-
ligible, the photoinjection efficiency is a product of the
generation efficiency and a recombination loss factor. It
is seen that at fields where E 3> v, /u the loss factor ap-
proaches unity and the photoinjection efficiency approaches
the free-carrier generation efficiency.

Appendix B. Quasi-steady state
Here it is useful to let

E(x, t) = E©, 1) + AE(x, 1) (B1)
Jolx, ) = jo(0, 1) + Ajlx, ) (B2)
nix, ) = n0, t) + An(x, 1) (B3)

Then by Egs. (2) and (14)

AE(x, ) = Lf (n + Z ny,) dx < L Nror (B4)

e €y€ €0€
and by Egs. (15) and (16)
AE(x, t)
oA, 2 1. BS
E0. 1) < (B5)
From Egs. (3) and (4)

/0 ACEY 3 ) d

an dnz|

Ajolx, )
e

IN

L

Then by Eqgs. (5), (15) and (17)

Ajo(x, 1)
Jo(0, 1)

It follows from Eq. (1), with diffusion neglected, that

< 1. (B7)

An(x, t)

20, 1) < 1.

Thus, in steady state the deviations of »n, E, and j, from
their values at the surface are negligible. In other words,
these quantities are spatially uniform.
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