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J. E. Fromm

Numerical Method for Computing Nonlinear, Time
Dependent, Buoyant Circulation of Air in Rooms*

Abstract: A method is described which solves the dynamic equations for air circulation at Grashof numbers that are in the range
of environmental temperatures of rooms. Previous two-dimensional computation techniques were limited to G = 105 but environmental
conditions require G = 102, The higher Grashof numbers become calculable through the design of a mixed system of nonlinear
difference equations which has purely leading-phase-error properties. In addition provision is made for nonlinear stability by explicitly
programming cross derivative terms in lieu of employing ‘“‘time splitting.” The isotropic behavior achieved through time splitting is
retained by the system of difference equations. Details of the required algorithms are included.

Introduction
In the past decade numerous advances have been made
in the use of numerical means to solve coupled nonlinear
partial differential equations. The methods for obtaining
solutions fall roughly into two categories: 1) Expansion
methods which make use of orthogonal polynomials, and
2) finite difference methods. The former was used by
Poots [1] and the latter by Wilkes [2] for the particular
problem of interest here. The two methods were about
equally successful for the solutions reported by these
authors. Comparable solutions were obtained for the
problems of buoyant fluid flow in a two-dimensional
enclosure with vertical walls at a fixed temperature dif-
ference and with horizontal walls that were either insulated
or had a fixed temperature that varied linearly between
the upright walls. These successes were important ones
and led to the hope that the methods could readily be
extended beyond the range of parameters of those studied
into the practical problems of everyday engineering
experience, in particular to the study of air circulation at
environmental room temperatures or under fire conditions.
Both methods do possess the potential of providing
solutions to such problems. Currently, the greatest
emphasis is on finite difference methods because they
may be applied in a straightforward manner if sufficiently
accurate algorithms are known. Unfortunately, such
algorithms have been slow in realization. Here we have

* An earlier version of this paper was presented at the First Symposium
on the Use of Computers for Environmental Engineering Related to Buildings,
National Bureau of Standards, Gaithersburg, Md., December 1, 1970.
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utilized higher order approximations that depend upon
flow direction. This is essential in order that detail may be
maintained without introduction of noise components
that are of numerical origin. The nature of the flow in
the rectangular enclosure is such that the common weak-
nesses of nonlinear difference approximations are very
pronounced. Thus although the geometrical situation is
fairly simple, it provides a crucial test of the methods.

Our primary objectives here are to outline the numerical
methods and to give details of the required algorithms.
The general procedure of finite difference computation
using the vorticity and streamfunction as field variables
is fairly well established [3-5]. Also, the evolution of
thought on requirements relative to reduction of phase
error, which is the primary cause of computational noise,
has been documented [6, 7]. The additional modifications
of the basic algorithms that are pertinent for the success
of high-Grashof-number calculations are emphasized in
the present paper.

As a result of these efforts toward minimizing numerical
noise and numerical damping, the two-dimensional compu-
tation can to some extent be carried out up to Grashof
numbers of 10'°. At these high values there are un-
certainties about the magnitide of viscosity and heat
transfer coefficients relative to truncation errors. Further,
very small time increments are required for computation.
Hence the limiting calculation of infinite Grashof number
would not be a reasonable one.
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Because turbulence is surely a factor in the real world,
the present calculations using molecular coefficients
should be regarded as idealizations. This does not mean
that they are of little value. On the contrary, we can
analyze the flow behavior and then explain the flow
features and why they occur. Further, gross properties
of the flows can be given within the framework of the
idealization. With this information it should be possible,
with the help of experiments, to determine where dis-
crepancies occur between observation and computation.
Information so obtained is pertinent to modeling efforts
where parameters must be assigned to turbulent diffusion
and heat transport.

It should also be noted that our two-dimensional
results will have to be contrasted with three-dimensional
results when these become available. We have chosen to
solve two-dimensional problems for large values of the
parameter rather then to attempt the far more difficult
task of programming for three dimensions, where one
has promise of results for only very slow viscous flows in
terms of present computer capabilities. The present
approach would tend to imply that three-dimensional
laminar instabilities have little to do with gross behavior
if the experiment is designed to provide two-dimensional
flow. This implication is known to be wrong in regard
to flow features but may not be seriously wrong in terms
of heat transfer measurements.

Governing equations and problem description
The conservation equations to be solved in a two-dimen-
sional rectangular region are:

Ju dv
Mass: r» + Oy 0, ¢))
Cou ou  eu_ _1oP . .
Momentum: Fy -+ U “+v 3y = o dx + vNVu,
(2)
dv v v 1 9P
T e TPay T Ty
_ g<T__ﬂ) + VVQU, 3)
T,
oT
Energy: — 4+ u or + v or _ «V°T. ®
at ox dy

Here u and v are the respective velocity components in
the x and y directions. The thermodynamic variables p,
P, and T are the density, pressure and temperature,
respectively. The subscript 0 indicates constant reference
values to be defined. The symbols », ¥ and g are the
kinematic viscosity, thermometric conductivity and gravi-
tational constant.
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Numerical computation is carried out using the vorticity
and streamfunction. We define

v u
@ = ax dy )
and
_ 9 _ 9%
“= dy ’ UT Tk ®)

Thus (1) is satisfied identically by (6), (5) becomes

Fy | Y
axz + ayz - w, (7)
and P can be eliminated from (2) and (3) yielding the
vorticity equation
do | Ouw | dvw g 0T 2
0t+6x +6y - T08x+va' ®
Our system of computation equations are then (7), (8),
(4) and the definitions (6).

We take x as the horizontal coordinate and impose
the boundary conditions for a square enclosure as

u=v=0,T=7T, atx=0 for0 <y <d,
u=v=0T=T, atx=dfor0§y§d,(9)
u=v=20 aty = 0,d for0 < x < d,
T =T, — x(T: — Ty)/d

aty = 0,d for0 < x < 4.

It is more convenient to deal numerically in terms of
the dimensional variables because of the physical in-
terpretation and the number sizes encountered in numerical
solution. Following Poots, we use the nomenclature
o = v/x as the Prandtl number and 4 = oG = (T, — T,)
gd’/ Toxv for the Rayleigh and Grashof numbers 4 and G,
respectively.

While numerous gross properties could be evaluated
to lend understanding to the flows, we here consider
the dimensionless heat transfer for comparison with
results by Poots and Wilkes. Heat transmission through
the cold vertical boundary is not the total heat transmission
but is the value given by Poots. Numerically, one must
also include the convection flux because the discrete
description requires it. For the square region considered
we define the Nusselt number

d d
oT
xf —dy—}—f uT dy
N = o Ox 0 )
K(Tl—To)

The total heat transmission can be evaluated only by
having the end points of the integration correspond to
x = d/2 and y = 0,d. Nevertheless, for comparison
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purposes we also measure the transmission at x = 0 with
integration limits y = 0,d.

Numerical approximations

We now describe the nonlinear approximation method
that was required for the success of the given calculations.
For completeness we shall first outline all the numerical
approximations, postponing the details of the convective
flux method for later discussion.

For small values of 4 or G it may be advisable to
begin calculation with no flow and an initially prescribed
linear horizontal temperature variation inside the fluid
region. If 4 is small, steady-state results are of primary
interest and computation time may be preserved by relay
type calculations, always using steady-state results from
lower values of A to proceed to higher values. However,
beyond A = 10° the solutions are unsteady, e.g., 4 = 10°,

= 0.1 gives an oscillating solution. While it is always
useful to begin with an approximate solution to the
expected solution at late time, it is more reasonable to
start calculation at high values of A4 with internal tem-
peratures specified to be everywhere the mean of the
given wall temperatures. If the initial interior temperature
is specified to be that of the low-temperature wall, much
computation would be required to approach true late-time
conditions. In all cases reported here, we began with the
temperature field at the mean wall-temperature value.
The streamfunction and vorticity were prescribed to be
everywhere zero initially.

With all field values given at the time ¢ = 0 we proceed
by updating the temperature field toward ultimate pre-
scription of field values T ; = T(iAx, jAy, nAf) forn = 1.
Through convective flux computation we first obtain
everywhere

Tl-.,-—Tl,+ (F — Fiiy.)

i—4,7

Fio) (10)

At
+ 5, Flims = Flis
where F is the flux at half-cell distances from the point
(i, /). Using everywhere the tentative values (except for
fixed values at the boundaries) we add the conduction
contribution to complete the update of 7. Thus

~ kAt & 7
T:‘,j =T+ (Ax )2 (Tz+1 i — 20+ Tiorh)
At~ = =
+ (%)2 (Tiin = 2755 + Tii-0)- (1D

The use of tentative updated values in the conduction
calculation provides for less restrictive conditional stability
of this explicit difference equation. This has been suggested
in the work of Marchuk [8] and has been observed em-
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pirically in the present calculations. Through this procedure
the stability condition

kAt/min [(Ax)®, (Ay)’] < } (12)

is strictly applicable. For small 4, a more stringent
condition would otherwise be necessary. For A4 large,
the convection condition uAt/Ax < 1.0 governs the
time-step size and the use of updated (7) values would
not be necessary.

At this stage one proceeds similarly with the vorticity
equation, first obtaining

At
W = w?,,» + X; (H?_%,,» - H?4%,j)
At
+ 5y (Hlis = Hii, (13)

where H is the vorticity flux analogous to F of (10).
Here two tentative updates are necessary because of the
buoyancy term. For the diffusion update we write

At
wr; = &;; + &C‘)E @1, = 20;,; + @io1,9)
At ) N
+ (ny @i g — 2:,; + @i,5-1)- (14)

Finally the buoyancy contribution gives the complete
update of w:
s = ol F gmar (T = Tha), (15)
Note that the values obtained in (11) are necessary in (15).
If in (15) the old-times values were used, numerical
instability would result. This follows from a simple linear
analysis which we do not include here.

With 7 and « both obtained for new times we next
consider the streamfunction field. Simultaneous solution
of all net points is required to satisfy

¢1+1,7' _ 21”,;‘ + \1’1»1,1‘
(Ax)’
1pﬂ»1+1 2¢17+‘l/171 1

-+ By = —w. (16)

Because of the simplicity of the boundary conditions
on ¢ a direct method may readily provide solution.
We have here made use of a program developed by
Bunemann [9], whose method involves cyclic matrix
reduction in two directions. It is applicable to an enclosed
rectangular region with zero value specified for ¢ at the
boundaries. The program is fast, accurate to computer
roundoff, and compact. It is estimated that, to attain
equal accuracy, an iterative method would have taken
more than ten times as much computation.
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The final step in computation of the field variables,
to have a complete solution at the advanced time step, is
to apply no-slip conditions at the walls, i.e., obtain
boundary vorticity values. The approximations here
used are

wll),j = _2(‘%,7' - llfé,j)/(Ax)z
w},j = 2(51/}.7' - ¢}41.f)/(Ax)2 an
wio = =21 — ¥i0)/(Ay)

wll',J = Z(Kblf,J - \bt',J—l)/(Ay)?;

where 0 refers to left or lower boundary and I and J
refer to right and upper boundaries, respectively. The
equations (17) may readily be derived from (16). Corner
values of w are always zero as implied by successive use
of appropriate parts of (17).

Stability of the explicit form of solution is tested at
all time steps and provision is made to double or halve
the time step. If the larger of |u| Ar/Ax and |v| A#/Ay is
less than 0.4, the time step is doubled. If the larger of
lu| At/Ax and |v| At/Ay is greater than 1.0, the time step
is cut in half. Applying these conditions along with (12)
maintains stability throughout the solution process.
While an initial estimate of Ar is not required by this
procedure some early-time rapid adjustment of Az does
occur for large 4. In these cases a maximum early time Af
should be used for the first several time steps because a
very large Ar is implied by the stability conditions. Equa-
tion (15) is overstable and no test is necessary for this
part of the procedure.

With a view of the over-all procedure we now give
further consideration to F of Eq. (10) or H of Eq. (13).
Both F and H are, in computation, handled by the same
program. Prior experience led to fourth-order, one-
dimensional approximations for F on the assumption
that “time splitting” methods would be used to provide
isotropic behavior relative to the finite lattice. “Time
splitting” is here used throughout to mean the convection
process which involves computation of tentative values
through the addition of horizontal flux contributions
followed by addition of vertical flux contributions. Here
the latter computation makes use of the tentative values
derived from the horizontal additions. In a linear sense,
time splitting results in the inclusion of diagonal values
of the field variable such that truly two-dimensional flow
is treated. It is an efficient way to obtain isotropic behavior
since without time splitting or some equivalent procedure
one may, in the extreme case, obtain instability in the
flow direction simultaneous to numerical diffusion trans-
verse to the flow direction. Often these two effects can
hold the numerical computation in check but the results
may be badly in error, since distortion occurs here even
if the flow is uniform but not along the coordinate axes.
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In two dimensions then we must in some sense bring in
mesh values of the field variables that are diagonally
distributed relative to the coordinate directions at (i, j).

Unfortunately, while time splitting is an efficient
procedure to use, it has been found that a new type of
instability can occur. This instability is slow and occurs
only in nonlinear cases. In the given problem a vortex
originating from buoyant effects may grow in intensity
in a nonphysical manner. This difficulty is not very
different from that of using nonconservative difference
methods. It is perhaps less severe, since its degree of
severity depends upon the nonlinearity of the problem
and the amplitude characteristics of the approximation.
The difficulty has its origin in an inconsistency that occurs
in the velocity values that are effectively present in the
implied cross differences. Since the cross derivatives are
implied through time splitting, this short-coming goes
unnoticed until the slow-growing instability occurs.

Here the difficulty is circumvented by explicitly pro-
gramming cross derivatives as required to provide the
linear equivalent of time splitting procedures. By so doing
the linear stability conditions are maintained and the
inconsistencies in velocity values are avoided. If one
expands the time splitting equations into a single step
the cross differences will appear. Using these terms as a
guide, final layout of conservative expressions are de-
veloped from a Taylor series expansion [10]. Consider,
for example,

it or (Azj(ajz)
T _T+A’<az>+ > \og) T U

Because we are numerically separating convection and
conduction, we take
aT ouT ovT
at ox dy

If we use (19) to obtain the second time derivative of (18)
and drop derivatives of velocity with respect to time,
we obtain

T a aT
7‘a—< +“”—y>

OT 4 v ﬂ)- (20)

d

+ 5 <uu o +v oy
Here the (uv) terms are the first cross terms that must
be explicitly programmed rather than implied as in
time splitting. The (uv) term has two parts, one part is
regarded as a skew flow correction to the flux in the x
direction, the other part as a skew flow correction to
the flux in the y direction. With similar expansion of (18)
to eighth order, all cross derivatives required for fourth-
order accuracy in space are included. The additional
terms involving orders higher than fourth in time provide
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for a stability in two dimensions that is not restricted
beyond that of the one-dimensional counterpart of the
approximation. Proper combination of spatial differences,
so that they enter the computation recursively, can lead
to reasonably fast computation. The fourth-order dif-
ference method is given in the Appendix.

We justify dropping velocity derivatives from the
expressions like Eq. (20) in that local averages are used
which apply over a spatial domain consistent with the
numerical stability conditions. The local averages have
the additional merit that they preserve continuity. A more
elaborate approach to this problem would be expected
to have difficulty in this connection.

One further consideration in the convective approxi-
mation is phase distortion. It is particularly pertinent to
the problem at hand since the usual difference methods
would quickly lead to meaningless results for 4 > 10°.
It is essential to success of such calculations to have
leading phase errors (i.c., to have short waves travel
faster than they should, rather than slower) and these
errors should be small. Upstream approximations may be
linked through different magnitudes of o = uAt/Ax.
Here we have used a combined fourth-order upstream
and central approximation (flow direction must here also
be tested) for 0.5 < |a] < 1.0. For 0.09 < |af < 0.5
the fourth-order upstream approximation alone is used.
If |a] < 0.09 a second-order upstream approximation
is employed. Central approximations are used only for
flow away from solid boundaries if data points for up-
stream calculation are not available. In these latter
instances lagging phase errors do not lead to noise. The
use of second-order upstream approximations for (o] <
0.09 has to do with an anomaly in fourth-order charac-
teristics not present in second-order ones. The above
procedure, of course, is not the only one that may be used.
In the given case it was the most expedient on the basis
of available data on phase properties of the methods
(see Ref. 7).

The choice of nonlinear difference methods also included
consideration of amplitude properties to limit numerical
damping. A rough estimate of this damping compared
with the viscous damping indicates that they become
comparable when A = 10° for say a wavelength of
A = 6Ax. Nevertheless since the damping effects enter
through different mechanisms, distinctions in the time
development continue to be observable between 4 = 10"
and 4 = 10", We do not currently know whether the
distinction is adequate at these high values of 4 but
intuitively one also expects very little difference.

The improved amplitude characteristics of fourth order
best justify the increase in computation time that would
be required for a given number of mesh points of the
grid (65 X 65 in the present application). We estimate
that 3 as many points in one dimension would be required
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for equal accuracy for second-order methods. This means
a computer time increase of (2)° because of the stability
condition and two dimensions. Since the increased
complexity of fourth order produces a factor roughly
inverse to this, the nonlinear computation alone would
not justify programming for fourth order. However since
the nonlinear computation is % or less of the over-all
computation a pessimistic estimate is that fourth-order
computation provides a factor of 2 increase in computation
speed (since increased accuracy of the elliptic and parabolic
parts of the equations is not needed). Also more than
twice as much output data would have to be processed.

Flow behavior

At the time of this writing we have computed several cases
to give an over-all view of how flows vary with Rayleigh
number and Prandtl number. Computations have been
made for 4 = 10" through 4 = 10" at intervals of a
factor of 10 with ¢ = 1.0. For even powers of A4, runs
were also made for ¢ = 10.0 and ¢ = 0.1. From these
computations the flows can be classed roughly into three
groups:

1) Steady-state flows (G < 107);

2) Transition flows, unsteady and highly variable in
behavior (10 < G < 10°); and

3) Single-circulation, high-Grashof-number flows (10° <
G < 10%).

The steady-state flows are also single-circulation flows
characterized by the presence of a vertical temperature
gradient in the central region of the enclosure but little
horizontal temperature gradient. The temperature gra-
dients increase strongly near the walls. This type of
behavior is illustrated in the steady solution of 4 = 10°,
o = 1.0 of Fig. 1. Figures 1(a), 1(b) and 1(¢) are contour
maps. Figures 1(d), 1(e) and 1(f) are perspective views
corresponding to Figs. 1(a), 1(b) and 1(c), respectively.

In the transition flows (Fig. 2) the variable behavior
includes sinusoidal behavior at the low values of G.
Midtransition flows deviate from sinusoidal to include
random occurrences of buoyant plumes along the hori-
zontal boundaries. In the upper transition flows random-
ness is increased, and boundary layer entrainment leads
to counter circulations mixed with buoyant circulations.
Figure 2 is an example of upper transition range flow.
Again perspective views of Figs. 2(a), 2(b), and 2(c) are
given in Figs. 2(d), 2(e) and 2(f).

Members of the last group are classed together because
visually they exhibit little difference in behavior. A single
circulation (in the square region) is the main feature and
is common to the whole group. The interior fluid is
essentially isothermal at the mean temperature and
vorticity is relatively absent there. One can describe
these flows as having an inner core of nearly ideal fluid
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Figure 1 Steady-state flows. (a) Steady streamline so-
lution for 4 = 10°, ¢ = 1.0. The plot increment Ay = 0.05
ft’/sec. v = 0 at the boundary and 0.025 at the first contour
from the boundary. (b) Contours of constant vorticity for
A = 10°, ¢ = 1.0. The plot increment Aw = 0.2/sec. The
minimum displayed contour value is —0.5 and is the inner
contour of the two symmetric extremals. w maximum at the
wall is 2.47. (¢) Isotherms for 4 = 10°, ¢ = 1.0. The plot
increment is AT = 0.5°F for the over-all wall temperature
difference T, — T, = 10.0. (d) Perspective view of Fig.
1(a). Note that the corner nearest the observer is the lower
left corner of Fig. 1(a). (e) Perspective view of Fig. 1(b).
The corner nearest the observer is the lower left of Fig.
1(b). The boundary layér vorticity is the dominant fea-
ture. (f) Perspective view of Fig. 1(c). The corner nearest
the observer is the lower right of Fig. 1(c).

flow and a highly variable boundary layer behavior.
The thermal and velocity boundary layers are thin but
corner regions are involved in the flow related to these
layers. In Fig. 3 we include an example from this group.

Returning now to Fig. 1 we consider the steady-state
flows in more detail. In Fig. 1(a) the streamlines of the
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Figure 2 Transition flows. (a) Late-time streamline solu-
tion for 4 = 10%, ¢ = 1.0. The plot increment Ay = 0.02
ft*/sec. The separation streamline y = 0 is given and is the
reference contour. (b) Vorticity contours corresponding to
Fig. 2(a). Aw = 0.75/sec. » maximum at the wall is 12.9.
(c) Isotherms corresponding to Fig. 2(a) AT = 0.5°F. (d)
Perspective view of Fig. 2(a). The corner nearest the ob-
server is the lower left of Fig. 2(a). The dominant positive
excursion is the counter rotating vortex in the lower left
corner. (e) Perspective view of Fig. 2(b). The corner
nearest the observer is the lower left of Fig. 2(b). Boundary
layer vorticity at the vertical walls is here the dominant
feature. (f) Perspective view of Fig. 2(c). The corner near-
est the observer is the lower left of Fig. 2(c).

flow are given. The highest speeds, as expected, are of flow
near the vertical boundaries, while the flow near the
center is slow. The separated centers of circulation are
in the same direction of rotation. They occur because of
two regions of buoyant vorticity associated with the
heated and cooled vertical walls. They are separated by
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Figure 3 Single-circulation, high-Grashof-number flows. (a)
Late-time streamline solution for 4 = 10", ¢ = 1.0. The
plot increment Ay = 1.0 ft*/sec. The separation streamline
¢ = 0 is given and is the reference contour. (b) Vorticity
contours corresponding to Fig. 3(a). Aw = 10.0/sec. w
maximum at the wall is 145.4. (¢) Isotherms corresponding
to Fig. 3(a). AT = 0.5°F. (d) Perspective view of Fig. 3(a).
The corner nearest the observer is the lower left of Fig.
3(a). This is true for the remaining perspective views. (e)
Perspective view of Fig. 3(b). (f) Perspective view of
Fig. 3(c¢).

a reverse flow tendency which has its origin in a slight
reversal in the horizontal temperature gradient.

In Fig. 1(b) one notes that the highest values of vorticity
occur at the boundaries. The sign is opposite to the two
buoyant vorticity extremals occurring near the vertical
walls. This is the boundary layer vorticity which follows
from our no-slip condition. The central extremal of
vorticity is also of opposite sign to the main buoyant
contributions. It also has its origin in buoyancy but here
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in reverse to the main buoyant contributions. This reversed
vorticity contributes to the attainment of steady flow in
this range, along with the dissipation of frictional re-
straining forces. The latter mechanism is, of course,
strongest at the boundaries. In the isotherms of Fig. 1(c),
one clearly sees the slight reversal in horizontal temperature
gradient at the center (the slant of the isotherms is down-
ward to the right). Increased heat transfer relative to a
nonfluid material is obvious from Fig. 1(c) in that the
flow leads to high gradients in temperature at the vertical
walls. Near the walls conduction is enhanced by the
high gradients and in turn the flow in the center leads
to exchange of warm and cold fluid through the convective
process.

The results of Fig. 1 are not new; similar results have
been obtained by Wilkes and Poots. To establish a point
of departure from this earlier work we have compared a
calculation of 4 = 10*, & = 0.73 with the results by Poots.
The results are the same in all essentials in the visual
sense of the solution. To further compare results we have
numerically obtained the Fourier coetficients of our
computed result for the disturbance temperature field
[the linear gradient with T) — T, = 10.0 must be added
to obtain the equivalent of Fig. 1(c)]. In Table 1 we
compare the numerical coefficients with coefficients given
by Poots. Differences in the results cannot be construed
as error in the numerical results because Poots’ solution
is a cruder approximation. The differences in the second
group of coefficients of Table 1 are puzzling and may
be an error by Poots in recording the numbers. Con-
sistencies for even smaller coefficients are good. Measured
heat transfer at the cold wall as obtained by Poots is
N = 1.706. We obtained N = 1.750 with the finite dif-
ference method, which should, of course, be far more
accurate because many more modes are included than
were possible in the modest calculations by Poots.

The sinusoidal range for G &~ 10’ may cover as much
as a decade of G. This range, like the steady state range,
will have spatial symmetry. Asymmetry develops through
fluid instabilities when roundoff errors relative to a line
of symmetry differ. These instabilities grow exponentially
and hence are manifest very quickly. While fluid in-
stabilities are of interest in themselves and can be identified
in the early stages of solution, we do not here analyze
them. In general the instabilities follow upon one another,
with the latter ones having such strong disturbance
amplitudes that they are not traceable to well-defined
equilibrium states. The advantage of the numerical
solution is, of course, that these processes are accounted
for without our need to know all the details, and we can
concentrate on significant late-time flow features. Ani-
mations of the solutions have proved to be of great value
in providing insight. The most important mechanisms
in Fig. 2 (4 = 10°, ¢ = 1) are that boundary layer separ-
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Table 1 Fourier coefficients of disturbance temperature dis-
tribution for 4 = 104, & = 0.73 compared with Poots’
calculations.

Finite
Term (k,, k.) Poots difference
1,2 —0.1875 —0.1868
2,1 —0.1874 —0.1840
1,4 0.0019 —0.0082
2,3 0.0063 —0.0166
3,2 —0.0107 0.0034
4,1 —0.0314 —0.0359
1,6 0.0017 0.0024
2,5 0.0026 —0.0000
3,4 —0.0004 —0.0014
4,3 0.0016 0.0014
5,2 0.0017 0.0024
6,1 —0.0071 —0.0067
1,8 0.0009 0.0010
2,7 0.0018 0.0011
3,6 0.0008 —0.0001
4,5 0.0007 0.0006
5,4 —0.0003 —0.0003
6,3 0.0006 0.0002
7,2 0.0008 0.0005
8,1 —0.0018 —0.0015
1,10 0.0001 0.0003
2,9 0.0004 0.0004
3,8 0.0003 0.0001
4,7 0.0003 0.0001
5,6 —0.0002 —0.0001
6,5 0.0001 0.0002
7,4 0.0001 —0.0001
8,3 0.0003 0.0001
9,2 0.0003 -0.0001
10, 1 —0.0006 —0.0005
1,12 0.0001
2, 11 0.0001
11,2 0.0000
12,1 —0.0002

ation occurs and counter circulations to the main buoyant
tendency can arise. When these do arise they influence
the temperature field sufficiently to be enhanced by
buoyant effects. In the transition range, steady state is
probably impossible, although resonant effects might
possibly be achieved through a highly critical choice of
rectangular dimensions of the enclosure.

In Fig. 2(a) the separation streamline is given and
counter circulation may be identified by tracing this
streamline. Those circulations centered in regions toward
the boundaries (exterior to the separation streamline)
are counter circulations. The remaining significant centers
of rotation are in the direction of the basic buoyant
tendency. In the vorticity plots of Fig. 2(b) we note that
the buoyant contribution from the vertical walls is con-
fined to a very narrow vertical strip and this strip may
be broken up into small concentrations. These move
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upward along the heated wall much like air bubbles in
water and give a wave character to the streamlines.
Dominant characteristics in this range of 4, even in the
presence of the rapid time variation, are the strong
circulations in the upper left and lower right corners.
These circulations are enhanced by the rising and falling
concentrations of buoyant vorticity from the heated and
cooled walls. Boundary layer separation occurs im-
mediately downstream from these dominant circulations.
The counter circulations so developed usually migrate
along the horizontal boundaries. Buoyant enhancement
of the counter circulation is most likely in the vicinity
of the lower left and upper right corners, where thermal
boundary layers become stretched into plumes. In Fig. 2(c)
such a plume is evident near the left side of the lower
boundary.

In the included perspective view [Fig. 2(d)] the positive
excursion of the streamfunction in the lower left corner
is quite obvious. The vorticity plot [Fig. 2(e)] reveals a
very strong shear layer at the vertical walls, where the
buoyant vorticity and the wall generated vorticity are
effective over a very short distance. A distinctive feature
of Fig. 2(f) is the sharp temperature rise of the plume at
the lower left boundary.

Measurement of the heat transfer in the transitional
and upper range is difficult because the unsteadiness can
lead to wide extremes (i.e., numerically we cannot measure
transfer right at the wall). Long-term averages must be
taken. Currently we are still in the process of dealing
with these measurements along with necessary work that
must be done on over-all data reduction. For the calcula-
tion of Fig. 2(a) (4 = 10°, ¢ = 1) we estimate N X 32.0.
Numerical programs to give late-time average heat
transfer values have not been employed at this writing.

Finally we consider the last group (Fig. 3) in greater
detail. The single circulation behavior of the high-Rayleigh-
number flows is somewhat of a surprise because here the
character of the flow is almost the same for a very wide
range of values of the parameters. Quantitatively the
flows remain different, particularly in the speed of circula-
tion at late times or the rate at which the circulation speed
increases from the initial no-flow state. In this range the
viscous and conduction effects are essentially absent at
the central region but intense at the boundaries. The
results show dramatically why boundary layer theory
has been so successful in many theoretical studies of
fluid flow. While the unsteadiness far exceeds that of the
transition range, it is almost entirely confined to a thin
layer at the boundaries and to the corner regions. There
is eccentricity in the flows that does not appear to diminish
over the range of time covered by the calculations. An
almost perfectly circular flow may be disrupted by mi-
grating corner activity. Such a disruption may lead to
increasingly eccentric flow but never a return to the type
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of flow of the transitional range. Early transitional
behavior from the no-flow initial condition does involve
similar behavior to that of the transitional range flows.

In Fig. 3(d) we note that counter circulations to the
main circulation are very limited. The apparent smooth
appearance of this still shot is not indicative of the actual
behavior. The activity of the flow is revealed in Figs. 3(e)
and 3(f). The boundary generated vorticity is strong on
all four walls and the entrainment of this vorticity into
the corner regions leads to considerable activity there.
A temperature greater than half the over-all temperature
difference occurs within a short distance from the vertical
walls. This phenomenon can account for the high heat
transfer rates at high Grashof numbers. It occurs because
the rapid circulation transports a thin column of warm
or cold fluid in an overlapping manner to the cold and
hot walls, respectively. Small extremals of vorticity
[Fig. 3(b)] or hot spots of temperature [Fig. 3(c)] that
occur on occasion in the central part of the flow have
been timed to estimate a mean speed of the main circula-
tion. In an 8-ft-square enclosure the circulation time is
roughly 5 sec. This is not unreasonable but much work
still needs to be done in comparing our results with
experiment. It is uncertain to what extent the numerical
result provides for the mixing that could occur in the
turbulent flows observed in the laboratory.
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Appendix

In this appendix we describe the form of the convective
approximation developed for the calculations. We shall
give the form of the flux term in the x direction only but
include various ranges of @ = uAz/Ax as indicated earlier.
It must be remembered that the flux as given is only
half of the required computation for a given mesh point.
If the flux is added to the point on the right and subtracted
from the point on the left, the length of computation
can be reduced by half. Also the same convective program
can be used for both vorticity and temperature if these
variables are defined the same relative to the grid. The
fluxes in the vertical direction may be inferred from those
given here for the horizontal.

We define
U,y ; At v;_r ; At
oy ;= TrTaad T and T i-g,1 &% ,
po= e By = 20
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where

Uiy & Wioin + Yiina
- Kbi—l,j—l - ‘pi,i—l)/4 Ay
vig,;= (i1, — ¥i.i)/ Ax.

If |«] < 0.09 we use an upstream second-order ap-
proximation. We here write the central approximation
terms with the understanding that if o > 0, « is replaced
by (e« — 1) and i indices are reduced by 1. Further if
a < 0, a is replaced by (« + 1) and i indices are in-
creased by 1. To make addition and subtraction of flux
contributions possible, as previously mentioned, the
powers of o must further be modified. For example o
must be replaced by [(« — 1)° — 1)] = o® — 2a so that
Eq. (10) does indeed apply without a shift of index on
the leading term of this equation. Cancellation of the
appropriate linear terms (terms that do not contain «)
can readily be verified for the difference forms here given.
This, however, requires writing out the complete expres-
sion of both the flux into and out of the cell of interest.

Now define

Ss0 = Ticayy + Tisis

Dyo=Tiov; — T,
S6,2 = Ti—l,j-}l —,_ Ti,f+19

Dgo=T; 1;:1 — T; i1, and
Sia=Tiq,i1+ Tiions

Dyy=Ti 100 — T; 1.

Here the subscripts follow a layout as follows:

22 15 10 14 21
16 6 2 5 13
11 3 0 1 9
17 7 4 8 20
23 18 12 19 24

Now with index i — § implied for «, 8 and F, we write
At 1 1
Z_ F = 308, + 3af(S7,4 — Ss.2)

x

+ %OIZD&O + T12—01,32(S7,4 - 283,0 + Sa,z)
+ %azﬁ(D7.4 — D;5)
+ %CYZBZ(DLz; - 2D3,0 + D6.2)~

For 0.09 < |a| < 0.5 we use a fourth-order upstream
expression and for 0.5 < || < 1.0 we use the average
of the upstream and central expressions. Here again we
give only the central difference expression. The same
rules apply on replacement of « appropriately with
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Table 2 Leading terms and differences of fourth-order
approximation.
B X

1 Ana S30

2 A o Si11

3 Andn of/2 Sa,4— Se.2

4 AnAsy aB/2 Sis.12 — Ss,2 — Sis,10

5 AnAi af/2 S17,8 — Ste,s

6 AnAs o /2 S23,00 — S17,8 + S16,5 — S22,14
7 A o? Ds o

8 Asp o Dy,

9 AnAiz af?/3 S7,4 — 2830 + Se,2

10 ApnAszs af?/3 Sis,10 — S7,4 — Se,2 + Sis,10
11 Az Adrs af?/3 Si7,8 — 2811 + Stes

12 AnAzs 0f?/3 Sas,19 — Si7,8 — Sie,5 1+ S2z14
13 2A12A11 a2ﬁ/3 D7,4 - De,2

14 2412401 o*8/3 Dis,1o — D7,s + De2 — Dis,10
15 2420411 &*8/3 Di1,5 — Dys,s

16 24244 *8/3 Do319 — Dyigs 4+ Diss — Dasis
17 Az a3 Xo — X1

18 A11A23 aﬁ3/4 X4 - X3

19 A21A23 aﬂ3/4 Xﬁ _ X5
20 AyeAye o282 /2 D74 — 2Dy 4 Ds.2
21 ArAss o?B2/2 Dis2 — D30 — Ds2 + Dis,i0
22 AssAys 282/2 Di7,5 — 2D1i1 + Disys
23 AzsAze a?2/2 Dys 19 — Divs — Diss + Dasis
24 34534y o38/4 X; — X
25 3A23A21 a3ﬁ/4 X(i - X4
26 Aag ot Xs — 3X;

27 Andss aft/5 X0 — 3Xs

28 AnAsza 11,34/5 X — 3X11

29 2A41:A40; ?83/5 Xt — Xi3

30 2A50A453 o2B83/5 Xig — Xis

31 3As3A,2 a38/5 X — X,

32 3A23A22 a3[3/5 X12 - Xw

33 4450411 o*B/5 X5 — 3X1s

34 4A24A21 0145//5 Xig — 3X14

35 AyAsg o?84/3 Xo1 — 3Xa

36 AssAsy o?B84/3 X2z — 3Xoo

37 A23A23 a363/2 X19 - Xm

38 2A494A1: &'62/3 Xas — 3Xa0

39 2A24A22 a4ﬁ2/3 X23 hd 3X21
40 3423424 &364/7 Xog — Xay
41 4454455 o233 /7 30 — 3X29

42 AsgAos o'B/2 X36 — 3X55
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Table 3 Coefficients of fourth-order approximation.

An 7/12 Aa
Az 15/24 Asp
Az —1/12 Aas
A —3/24 Aa

—1/12
—1/24
1/12
1/24

(e« — 1) or (@ + 1) and shifting indices as previously

indicated.

Define in addition to the above sums and differences

S50 = Ticv,ie2 + T iz,

Diso = Tior,iv2 — Ti 42,
Sig2 = Tioy,i-2 + T i-2s

Dyg1o = Ticv,5-0 — Ti o2
S = Tis; -+ Tiiris

Dy = Tia,i — Tiv1,is
Si6,5 = Tiog i1 + Tisi,ie1s

Dys,5 = Ti 2,501 — Tiv1,i41s
Si7,8 = Tiog,i + Tiv1i-1s

Dizs = Timai-1 = Tiviimns
S04 = Tig 42 + Tiirjres

Dysna = Ticz,iu2 = Tis1,i40,
and
Saste = Tia 2 + Tivy -2

Dyz 19 = Tiog,i-2 — Tivr,5-2.

We may now write, with index i — % implied for

a, 3 and F,
anF= Z‘, B, X,

where the B’s and X’s are given in Table 2, and the
numerical coefficients associated with the B’s are given

in Table 3.
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