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Numerical  Method for Computing  Nonlinear,  Time 
Dependent,  Buoyant  Circulation  of Air in  Rooms” 

Abstract: A method  is  described  which  solves the dynamic equations  for  air  circulation at Grashof  numbers that  are in the range 
of environmental  temperatures of  rooms.  Previous  two-dimensional computation  techniques were  limited to G = lo5 but  environmental 
conditions  require G = 1012. The higher  Grashof  numbers  become  calculable  through the design  of a mixed  system of nonlinear 
difference equations which  has  purely  leading-phase-error  properties. In addition  provision  is  made  for  nonlinear  stability by explicitly 
programming  cross  derivative  terms in lieu  of  employing “time  splitting.”  The  isotropic  behavior achieved through  time  splitting is 
retained by the system of difference equations.  Details of the required  algorithms  are  included. 

Introduction 
In  the past decade numerous advances have been made 
in  the use of numerical means to solve coupled nonlinear 
partial differential equations. The methods for obtaining 
solutions  fall roughly into two categories: 1) Expansion 
methods which make use of orthogonal polynomials, and 
2) finite difference methods. The former was used by 
Poots [l] and  the latter by Wilkes [2] for  the particular 
problem of interest here. The two methods were about 
equally successful for  the solutions  reported by these 
authors. Comparable  solutions were obtained for  the 
problems of buoyant fluid flow in  a two-dimensional 
enclosure with vertical walls at a fixed temperature  dif- 
ference and with horizontal walls that were either insulated 
or had a fixed temperature that varied linearly between 
the upright walls. These successes were important ones 
and led to  the hope that  the methods  could readily be 
extended beyond the range of parameters of those  studied 
into  the practical  problems of everyday engineering 
experience, in  particular to  the study of air  circulation at 
environmental room temperatures or under fire conditions. 

Both methods do possess the  potential of providing 
solutions to such problems. Currently, the greatest 
emphasis is on finite difference methods because they 
may be  applied in a  straightforward  manner if sufficiently 
accurate  algorithms are known.  Unfortunately, such 
algorithms have been slow in realization. Here we have 

* An earlier version of this paper was presented at the First Symposium 
on the Use of Computers for Environmental Engineering Related to Buildings, 
National Bureau of Standards, Gaithersburg, Md., December 1 ,  1970. 186 

utilized higher order approximations that depend upon 
flow direction.  This is essential in order  that detail may be 
maintained  without introduction of noise components 
that  are of numerical  origin. The  nature of the flow in 
the rectangular enclosure is such that  the common weak- 
nesses of nonlinear difference approximations are very 
pronounced. Thus although the geometrical situation is 
fairly simple, it provides a  crucial  test of the methods. 

Our primary objectives here are  to outline the numerical 
methods and  to give details of the required algorithms. 
The general procedure of finite difference computation 
using the vorticity and streamfunction as field variables 
is fairly well established [3-51. Also, the evolution of 
thought  on requirements relative to reduction of phase 
error, which is the primary cause of computational noise, 
has been documented [6, 71. The  additional modifications 
of the basic algorithms that  are pertinent for  the success 
of high-Grashof-number calculations are emphasized in 
the present paper. 

As a result of these efforts toward minimizing numerical 
noise and numerical damping, the two-dimensional compu- 
tation can to some extent be carried  out  up to  Grashof 
numbers of 10”. At these high values there are un- 
certainties about  the magnitude of viscosity and heat 
transfer coefficients relative to  truncation errors. Further, 
very small time increments are required for computation. 
Hence the limiting calculation of infinite Grashof  number 
would not be a reasonable  one. 

J. E. FRO” IBM J. RES. DEVELOP. 



Because turbulence is surely a factor  in the  real world, 
the present calculations using molecular coefficients 
should  be  regarded as idealizations. This does not mean 
that they are of little value. On  the  contrary, we can 
analyze the flow behavior and then explain the flow 
features and why they occur. Further, gross properties 
of the flows can  be given within the framework of the 
idealization. With this  information it should be possible, 
with the help of experiments, to determine where dis- 
crepancies occur between observation and  computation. 
Information so obtained is pertinent to modeling efforts 
where parameters must be assigned to turbulent diffusion 
and heat transport. 

It should also be noted that  our two-dimensional 
results will have to be contrasted with three-dimensional 
results when these become available. We have chosen to 
solve two-dimensional problems for large values of the 
parameter rather then to  attempt  the  far more difficult 
task of programming for three dimensions, where one 
has promise of results for only very slow viscous flows in 
terms of present computer capabilities. The present 
approach would tend to imply that three-dimensional 
laminar instabilities have little to  do with gross behavior 
if the experiment is designed to provide two-dimensional 
flow. This implication is known to be wrong in regard 
to flow features  but may not be seriously wrong in terms 
of heat  transfer measurements. 

Governing  equations  and  problem  description 
The conservation equations to be solved in a two-dimen- 
sional  rectangular region are: 

Mass: - + - = 0 ,  
du dv 
dx dy 

dU 
Momentum:  - + u - +- v - = -- ~- 

au du 1 d P  
at dx dy Po 

+ v v 2 u ,  

dT - + u ; l , + u ; ; =  dT dT 
at 

Energy: K V T .  (4) 

Here u and u are  the respective velocity components  in 
the x and y directions. The thermodynamic variables p, 
P,  and T are  the density, pressure and temperature, 
respectively. The subscript 0 indicates  constant reference 
values to be defined. The symbols v, K and g are  the 
kinematic viscosity, thermometric conductivity and gravi- 
tational constant. 

Numerical  computation is carried  out using the vorticity 
and streamfunction. We define 

Thus (1) is satisfied identically by (6), ( 5 )  becomes 

and P can  be eliminated from (2 )  and (3) yielding the 
vorticity equation 

Our system of computation  equations are then (7), (8), 
(4) and  the definitions (6). 

We take x as the horizontal  coordinate and impose 
the boundary  conditions for a square enclosure as 

u = v = O , T =  T1 a t x = O   f o r O < y < d ,  

u = v = O , T =  To a t x = d   f o r O < y < d ,  
(9) 

u = v = o  a t  y = O,d for 0 5 x 5 d,  

T = TI - x(T1 - To)/d 

a t  y = 0,d for 0 5 x 5 d .  

It is more convenient to deal numerically in terms of 
the dimensional variables because of the physical in- 
terpretation and  the number sizes encountered in numerical 
solution. Following Poots, we use the nomenclature 
u = V / K  as the  Prandtl number and A = u G  = (TI - To) 
gd3/T, ,~v for  the Rayleigh and Grashof  numbers A and G ,  
respectively. 

While numerous gross properties could be evaluated 
to lend understanding to  the flows, we here consider 
the dimensionless heat  transfer for comparison with 
results by Poots  and Wilkes. Heat transmission through 
the cold vertical boundary is not the  total heat transmission 
but is the value given  by Poots. Numerically, one must 
also include the convection flux because the discrete 
description requires it.  For  the square region considered 
we define the Nusselt number 

The  total heat transmission can be evaluated only by 
having the end  points of the integration  correspond to 
x = d/2 and y = 0,d. Nevertheless, for comparison 187 
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purposes we also measure the transmission at x = 0 with 
integration limits y = 0,d. 

Numerical approximations 
We now describe the nonlinear  approximation  method 
that was required for  the success of the given calculations. 
For completeness we shall first outline  all the numerical 
approximations,  postponing the details of the convective 
flux method for later discussion. 

For small values of A or G it may be advisable to 
begin calculation with no flow and  an initially prescribed 
linear  horizontal  temperature  variation inside the fluid 
region. If A is small, steady-state results are of primary 
interest and computation  time may be preserved by relay 
type calculations, always using steady-state  results from 
lower values of A to proceed to higher values. However, 
beyond A = lo6 the solutions are unsteady, e.g., A = lo6, 
u = 0.1 gives an oscillating solution. While it is always 
useful to begin with an approximate  solution to  the 
expected solution at  late time, it is more  reasonable to 
start calculation at high values of A with internal tem- 
peratures specified to be everywhere the mean of the 
given wall temperatures. If the initial  interior  temperature 
is specified to be that of the low-temperature wall, much 
computation would be  required to  approach  true late-time 
conditions. In all cases reported  here, we began with the 
temperature field at  the mean wall-temperature value. 
The streamfunction and vorticity were prescribed to be 
everywhere zero initially. 

With all field values given at  the time  t = 0 we proceed 
by updating the temperature field toward  ultimate pre- 
scription of field values TT, = T(iAx, j ay ,  nAt) for n = 1. 
Through convective flux computation we first obtain 
everywhere 

where F is the flux at half-cell distances from  the point 
(i, j).  Using everywhere the tentative values (except for 
fixed values at  the boundaries) we add  the conduction 
contribution to complete the  update of T.  Thus 

The use of tentative  updated values in the conduction 
calculation provides for less restrictive conditional stability 
of this explicit difference equation.  This has been suggested 

1 aa in  the work of Marchuk [8] and  has been observed em- 

pirically in the present calculations. Through  this  procedure 
the stability condition 

KAt/min [(Ax)', (Ay)'] < a (12) 

is strictly applicable. For small A ,  a  more stringent 
condition would otherwise be necessary. For A large, 
the convection condition uAt/Ax 5 1.0 governs the 
time-step size and  the use of updated ( p )  values would 
not be necessary. 

At  this stage one proceeds similarly with the vorticity 
equation, first obtaining 

where H is the vorticity flux analogous to F of (10). 
Here two tentative  updates are necessary because of the 
buoyancy term. For  the diffusion update we write 

Finally the buoya.ncy contribution gives the complete 
update of w :  

Note  that  the values obtained  in (11) are necessary in (15). 
If in (15) the old-times values were used, numerical 
instability would result. This follows from a simple linear 
analysis which we do  not include here. 

With T and w both  obtained for new times we next 
consider the streamfunction field. Simultaneous  solution 
of all net points is required to satisfy 

Because of the simplicity of the boundary  conditions 
on + a direct method may readily provide  solution. 
We have here  made use of a program developed by 
Bunemann [9], whose method involves cyclic matrix 
reduction  in  two directions. It is applicable to  an enclosed 
rectangular region with zero value specified for + at  the 
boundaries. The program is fast,  accurate to computer 
roundoff, and compact. It is estimated that,  to  attain 
equal accuracy, an iterative  method would have taken 
more than ten times as much computation. 
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The final step in  computation of the field variables, 
to have a complete solution at  the advanced  time  step, is 
to apply no-slip conditions at  the walls, i.e., obtain 
boundary vorticity values. The approximations  here 
used are 

m : , j  = -2($:,7 - +: , j> / (Ax>2  

w : , j  = 2($;,7 - $: - l . i> / (Ax)z  

d , o  = -2($i,1 - $ : , “ ) / ( A Y ) 2  
(1 7) 

U ; , J  1 2 ( $ : , ~  - $ ~ . J - ~ ) / ( A Y ) ~ ,  

where 0 refers to left or lower boundary and I and J 
refer to right and upper  boundaries, respectively. The 
equations (17) may readily be derived from (16). Corner 
values of w are always zero as implied by successive use 
of appropriate parts of (17). 

Stability of the explicit form of solution is tested at 
all time steps and provision is made to double or halve 
the time  step. If the larger of lul A t / A x  and Iu/ A t / A y  is 
less than 0.4, the time  step is doubled. If the larger of 
1u1 A t / A x  and Iu1 A t / A y  is greater than 1.0, the time step 
is cut in  half. Applying these conditions along with (12) 
maintains stability throughout  the solution process. 
While an initial  estimate of At is not required by this 
procedure  some early-time rapid  adjustment of At does 
occur for large A .  In these cases a maximum early time At 
should be used for  the first several time steps because a 
very large At is implied by the stability conditions. Equa- 
tion (15) is overstable and  no test is necessary for this 
part of the procedure. 

With a view of the over-all procedure we now give 
further consideration to F of Eq. (10) or H of Eq. (13). 
Both F and H are, in  computation,  handled by the same 
program. Prior experience led to  fourth-order, one- 
dimensional  approximations for F on  the assumption 
that “time splitting” methods would be used to provide 
isotropic behavior relative to  the finite lattice. “Time 
splitting” is here used throughout to mean the convection 
process which involves computation of tentative values 
through the addition of horizontal flux contributions 
followed by addition of vertical flux contributions. Here 
the latter  computation makes use of the tentative values 
derived from  the horizontal  additions. In a linear sense, 
time splitting results in  the inclusion of diagonal values 
of the field variable such that truly two-dimensional flow 
is treated. It is an efficient  way to  obtain isotropic behavior 
since without time splitting or some equivalent procedure 
one may, in the extreme case, obtain instability in  the 
flow direction simultaneous to numerical diffusion trans- 
verse to  the flow direction. Often these two effects can 
hold the numerical computation  in check but the results 
may be badly in  error, since distortion occurs here even 
if the flow  is uniform but not  along the coordinate axes. 

In two dimensions then we must in some sense bring in 
mesh values of the field variables that  are diagonally 
distributed relative to  the coordinate  directions at (i, j ) .  

Unfortunately, while time  splitting is an efficient 
procedure to use, it has been found  that a new type of 
instability can occur. This  instability is slow and occurs 
only  in  nonlinear cases. In  the given problem a vortex 
originating from buoyant effects may grow in intensity 
in a nonphysical manner.  This difficulty is not very 
different from  that of using nonconservative difference 
methods. It is perhaps less severe, since its degree of 
severity depends upon the nonlinearity of the problem 
and the  amplitude characteristics of the approximation. 
The difficulty has its origin in an inconsistency that occurs 
in  the velocity values that  are effectively present in  the 
implied cross differences. Since the cross derivatives are 
implied through  time splitting, this  short-coming goes 
unnoticed  until the slow-growing instability occurs. 

Here  the difficulty is circumvented by explicitly pro- 
gramming cross derivatives as required to provide the 
linear equivalent of time splitting procedures. By so doing 
the linear stability conditions are maintained and  the 
inconsistencies in velocity values are avoided. If one 
expands the time splitting equations into a single step 
the cross differences will appear. Using these terms as a 
guide, final layout of conservative expressions are de- 
veloped from a Taylor series expansion [lo].  Consider, 
for example, 

Because we are numerically separating convection and 
conduction, we take 

dT  duT  duT 
a t  ax d y  
” - - -~ - ” 

If  we use  (19) to obtain the second time derivative of (18) 
and  drop derivatives of velocity with respect to time, 
we obtain 

Here  the (uu) terms are  the first cross terms that must 
be explicitly programmed rather  than implied as in 
time splitting. The (uu) term  has two parts, one  part is 
regarded as a skew  flow correction to  the flux in  the x 
direction, the  other  part  as a skew flow correction to 
the flux in the y direction. With similar expansion of (18) 
to eighth order,  all cross derivatives required for fourth- 
order accuracy in spa.ce are included. The  additional 
terms involving orders higher than  fourth in  time  provide 189 
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for a stability in two dimensions that  is  not restricted 
beyond that of the one-dimensional counterpart of the 
approximation. Proper combination of spatial differences, 
so that they  enter the computation recursively, can  lead 
to reasonably fast  computation. The  fourth-order dif- 
ference method is given in the Appendix. 

We justify dropping velocity derivatives from  the 
expressions like Eq. (20) in that local averages are used 
which apply over a spatial  domain consistent with the 
numerical stability conditions. The local averages have 
the  additional merit that they preserve continuity.  A  more 
elaborate approach to this  problem would be expected 
to have difficulty in  this  connection. 

One further consideration  in the convective approxi- 
mation is phase  distortion. It is particularly  pertinent to 
the problem at  hand since the usual difference methods 
would quickly lead’ to meaningless results for A > lo7. 
It is essential to success of such calculations to have 
leading phase errors (i.e., to have short waves travel 
faster than they  should, rather  than slower) and these 
errors should  be small. Upstream  approximations may be 
linked through different magnitudes of a = uAt/Ax.  
Here we have used a combined fourth-order upstream 
and  central approximation (flow direction must here  also 
be tested) for 0.5 5 la1 5 1.0. For 0.09 5 la1 < 0.5 
the  fourth-order upstream  approximation alone is used. 
If la1 < 0.09 a  second-order  upstream  approximation 
is employed. Central approximations are used only for 
flow away from solid boundaries if data points for up- 
stream  calculation are  not available. In these latter 
instances lagging phase errors  do  not lead to noise. The 
use of second-order  upstream  approximations for la1 < 
0.09 has  to  do with an anomaly in  fourth-order charac- 
teristics not present in second-order ones. The above 
procedure, of course, is not  the only one  that may be used. 
In  the given case it was the most expedient on  the basis 
of available data  on phase  properties of the methods 
(see Ref. 7). 

The choice of nonlinear difference methods also included 
consideration of amplitude  properties to limit numerical 
damping.  A  rough  estimate of this  damping  compared 
with the viscous damping  indicates that they become 
comparable when A M 10’ for say a wavelength of 
X = 6Ax.  Nevertheless since the damping effects enter 
through different mechanisms, distinctions in  the time 
development continue to be observable between A = 10” 
and A = 10l2. We do not  currently  know whether the 
distinction is adequate at these high values of A but 
intuitively one also expects very little difference. 

The improved  amplitude characteristics of fourth  order 
best justify the increase in computation  time that would 
be  required for a given number of mesh points of the 
grid (65 X 65 in the present application). We estimate 
that $ as many  points in  one dimension would be required 
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for  equal accuracy for second-order  methods.  This means 
a  computer  time increase of ($)’ because of the stability 
condition and two dimensions. Since the increased 
complexity of fourth  order produces  a factor roughly 
inverse to this, the nonlinear  computation  alone would 
not justify programming for  fourth order. However since 
the nonlinear  computation is I or less of the over-all 
computation a pessimistic estimate is that  fourth-order 
computation provides a factor of 2 increase in  computation 
speed (since increased accuracy of the elliptic and parabolic 
parts of the equations is not needed). Also more  than 
twice as much output  data would have to be processed. 

Flow behavior 
At  the time of this writing we have  computed several cases 
to give an over-all view  of how flows vary with Rayleigh 
number and  Prandtl number. Computations have been 
made for A = lo4 through A = 10”  at intervals of a 
factor of 10 with u = 1.0. For even powers of A ,  runs 
were also  made for u = 10.0 and u = 0.1. From these 
computations the flows can be classed roughly into three 
groups: 

1) Steady-state flows (G 5 lo7); 
2 )  Transition flows, unsteady and highly variable in 

3) Single-circulation, high-Grashof-number flows (10’ 5 
behavior (lo7 5 G 5 lo’); and 

G < io”). 

The steady-state flows are also single-circulation flows 
characterized by the presence of a vertical temperature 
gradient  in the central region of the enclosure but little 
horizontal  temperature  gradient. The temperature  gra- 
dients increase strongly near the walls. This type of 
behavior is illustrated in  the steady  solution of A = lo5, 
u = 1.0 of Fig. 1. Figures l(a),  l(b)  and  l(c)  are  contour 
maps.  Figures l(d),  l(e)  and l(f) are perspective views 
corresponding to Figs. l(a),  l(b)  and  l(c), respectively. 

In  the transition flows (Fig. 2 )  the variable behavior 
includes sinusoidal behavior at  the low values of G. 
Midtransition flows deviate from sinusoidal to include 
random occurrences of buoyant plumes along the hori- 
zontal boundaries. In  the upper  transition flows random- 
ness is increased, and  boundary layer entrainment leads 
to  counter circulations mixed with buoyant  circulations. 
Figure  2 is an example of upper  transition  range flow. 
Again perspective views of Figs. 2(a), 2(b), and 2(c) are 
given in Figs. 2(d),  2(e) and 2 0 .  

Members of the last  group are classed together because 
visually they exhibit little difference in  behavior.  A single 
circulation (in the  square region) is the main  feature and 
is common to  the whole group. The interior fluid is 
essentially isothermal at  the mean temperature and 
vorticity is relatively absent  there.  One  can describe 
these flows as having an inner  core of nearly ideal fluid 
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( c )  
Figure 1 Steady-state 

( f )  
flows. (a) Steady  streamline so- 

lution  for A = lo', u = 1.0. The  plot  increment A+ = 0.05 
ft'/sec. $ = 0 at the  boundary  and  0.025 a t  the first contour 
from  the  boundary.  (b)  Contours of constant  vorticity for 
A = I o j ,  u = 1.0. The  plot  increment Aw = 0.2/sec.  The 
minimum  displayed  contour  value is -0.5 and is the  inner 
contour of the  two  symmetric  extremals. w maximum  at  the 
wall  is 2.47. (c)  Isotherms  for A = lo', u = 1.0.  The  plot 
increment is AT = 0.5"F  for  the  over-all wall temperature 
difference TI - TI, = 10.0. ( d )  Perspective view of Fig. 
I(a).  Note  that  the  corner  nearest  the  observer is the  lower 
left corner of Fig. 1 ( a ) .   ( e )  Perspective view of Fig.  1 (b ) .  
The  corner  nearest  the  observer is the  lower  left of Fig. 
1 (b).  The  boundary  layer  vorticity  is  the  dominant  fea- 
ture. ( f )  Perspective view of Fig. t ( ~ ) .  The  corner  nearest 
the  observer is the  lower  right of Fig. 1 (c) .  

flow and a highly variable  boundary layer behavior. 
The  thermal  and velocity boundary layers are  thin but 
corner regions are involved in the flow related to these 
layers. In Fig. 3 we include an example from this  group. 

Returning now to Fig. 1 we consider the steady-state 
flows in  more  detail. In Fig. l(a) the streamlines of the 

Figure 2 Transition flows. ( a )  Late-time  streamline solu- 
tion  for A = lo', u = 1.0. The  plot  increment A$ = 0.02 
ft'/sec. The  separation  streamline $ = 0 is given and  is  the 
reference  contour.  (b)  Vorticity  contours  corresponding to 
Fig. 2 (a ) .  Aw = 0.75/sec. w maximum  at  the  wall is 12.9. 
(c)  Isotherms  corresponding  to  Fig.  2(a) AT = 0 5 ° F .   ( d )  
Perspective view of Fig. 2(a).  The  corner  nearest  the  ob- 
server is the  lower  left of Fig. 2(a).  The  dominant positive 
excursion is the  counter  rotating  vortex  in  the  lower left 
corner.  (e)  Perspective view of Fig. 2(b).  The  corner 
nearest  the  observer  is  the  lower  left of Fig. 2 ( b ) .  Boundary 
layer  vorticity  at the vertical walls is here the dominant 
feature. ( f )  Perspective view of Fig. 2(c).  The  corner  near- 
est the  observer  is  the  lower  left of Fig.  2(c). 

flow are given, The highest speeds, as expected, are of flow 
near the vertical boundaries, while the flow near the 
center is slow. The separated centers of circulation are 
in  the same direction of rotation. They occur because of 
two regions of buoyant vorticity associated with the 
heated and cooled vertical walls. They are separated by 
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(C )  ( f )  

Figure 3 Single-circulation, high-Grashof-number flows. (a)  
Late-time streamline  solution for A = lo", u = 1.0. The 
plot increment A$ = 1.0 ft'/sec. The separation streamline 
$ = 0 is given and is the reference contour. (b) Vorticity 
contours  corresponding to Fig. 3(a). A m  = lO.O/sec. w 
maximum at the wall is 145.4. (c) Isotherms  corresponding 
to Fig. 3 (a ) .  AT = 0.5"F. (d) Perspective view of Fig. 3(a). 
The corner nearest the observer is the lower left of Fig. 
3(a).  This is true for the  remaining  perspective  views. (e) 
Perspective view of Fig. 3 ( b ) .  ( f )  Perspective view of 
Fig. 3(c). 

a reverse flow tendency which has its origin in a slight 
reversal in  the horizontal  temperature  gradient. 

In Fig. l(b)  one notes that  the highest values of vorticity 
occur at  the boundaries. The sign is opposite to  the two 
buoyant vorticity extremals occurring near the vertical 
walls. This is the boundary layer vorticity which follows 
from  our no-slip condition. The central extrema1 of 
vorticity is also of opposite sign to  the main buoyant 

192 contributions. It also has its origin in buoyancy but here 
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in reverse to the main buoyant  contributions.  This reversed 
vorticity contributes to  the  attainment of steady flow in 
this  range,  along with the dissipation of frictional  re- 
straining forces. The latter mechanism is, of course, 
strongest at  the boundaries. In  the isotherms of Fig. l(c), 
one clearly sees the slight reversal in  horizontal  temperature 
gradient at  the center (the slant of the isotherms is down- 
ward to  the right). Increased heat  transfer relative to a 
nonfluid material is obvious from Fig. l(c)  in  that  the 
flow leads to high gradients  in  temperature at  the vertical 
walls. Near  the walls conduction is enhanced by the 
high gradients and  in  turn  the flow in the center leads 
to exchange of warm and cold fluid  through the convective 
process. 

The results of Fig. 1 are  not new; similar results  have 
been obtained by Wilkes and Poots. To establish a point 
of departure  from this earlier work we have compared a 
calculation of A = lo4, u = 0.73 with the results by Poots. 
The results are  the same in all essentials in the visual 
sense of the solution. To further compare results we have 
numerically obtained the  Fourier coerficients  of our 
computed result for  the disturbance  temperature field 
[the linear gradient with TI - T,, = 10.0 must  be added 
to  obtain  the equivalent of Fig. l(c)]. In Table 1 we 
compare the numerical coefficients with coefficients given 
by Poots. Differences in the results cannot be  construed 
as error in the numerical results because Poots'  solution 
is a cruder  approximation. The differences in the second 
group of coefficients of Table 1 are puzzling and may 
be an  error by Poots in  recording the numbers. Con- 
sistencies for even smaller coefficients are good.  Measured 
heat  transfer at  the cold wall as obtained by Poots is 
N = 1.706. We obtained N = 1.750 with the finite dif- 
ference method, which should, of course,  be far more 
accurate because many more modes are included than 
were possible in the modest calculations by Poots. 

The sinusoidal range for G lo7 may cover as much 
as a decade of G. This range, like the steady state range, 
will have spatial symmetry. Asymmetry develops through 
fluid instabilities when roundoff errors relative to a line 
of symmetry differ. These instabilities grow exponentially 
and hence are manifest very quickly. While fluid in- 
stabilities are of interest  in themselves and can be identified 
in the early stages of solution, we do  not here analyze 
them. In general the instabilities follow upon one  another, 
with the latter  ones having such strong  disturbance 
amplitudes that they are  not traceable to well-defined 
equilibrium  states. The advantage of the numerical 
solution  is, of course, that these processes are accounted 
for without our need to know all the details, and we can 
concentrate on significant late-time flow features. Ani- 
mations of the solutions have proved to be of great value 
in providing insight. The most important mechanisms 
in Fig. 2 ( A  = los, u = 1) are  that  boundary layer separ- 
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Table 1 Fourier  coefficients of disturbance  temperature  dis- 
tribution for A = lo4, CT = 0.73 compared with Poots' 
calculations. 

1, 2 -0.1875 -0.1868 
2, 1  -0.1874 -0.1840 

1 , 4  0.0019 -0.0082 
2, 3  0.0063 -0.0166 
3, 2  -0.0107 0.0034 
4, 1 -0,0314 -0.0359 

1,  6 0.0017 0.0024 
2, 5 0.0026 - 0.0000 
3, 4  -0.0004 -0.0014 
4, 3  0.0016 0.0014 
5, 2  0.0017 0.0024 
6, 1 -0.0071 -0.0067 

1, 8 0.0009 0.0010 
2, 7 0. 0018 0.0011 
3, 6 0.0008 -0.0001 
4, 5 0.0007 0.0006 
5 ,  4  -0.0003 -0.0003 
6, 3 0.0006 0.0002 
7,  2 0.0008 0.0005 
8, 1 -0.0018 -0.0015 

1 ,  10 0.0001 0.0003 
2, 9 0.0004 0.0004 
3, 8 0.00O3 0.0001 
4, 7 0.0003 0.0001 
5, 6 -0.0002 -0.0001 
6, 5 0.0001 0.0002 
7,  4 o.oO01 -0.0001 
8, 3 0.0003 0.0001 
9, 2 0.0003 -0.0001 

10, 1 - 0.0006 - 0.0005 

1, 12 0.0001 
2, I I  0.0001 

11, 2 O.oo00 
12, 1 -0.0002 

ation occurs and  counter circulations to  the main buoyant 
tendency can arise. When these do arise they influence 
the temperature field  sufficiently to be enhanced by 
buoyant effects. In the transition  range, steady state is 
probably impossible, although  resonant effects might 
possibly be achieved through a highly critical choice of 
rectangular dimensions of the enclosure. 

In Fig. 2(a) the separation  streamline is  given and 
counter circulation may be identified by tracing  this 
streamline. Those circulations centered in regions toward 
the boundaries (exterior to  the separation streamline) 
are counter circulations. The remaining significant centers 
of rotation  are in the direction of the basic buoyant 
tendency. In the vorticity plots of Fig. 2(b) we note  that 
the buoyant  contribution from  the vertical walls  is con- 
fined to a very narrow vertical strip  and this  strip may 
be broken up  into small concentrations. These move 
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upward  along the heated wall much like air bubbles in 
water and give a wave character to  the streamlines. 
Dominant characteristics in  this  range of A ,  even in the 
presence of the rapid  time  variation, are  the strong 
circulations in the upper left and lower right  corners. 
These  circulations are enhanced by the rising and falling 
concentrations of buoyant vorticity from  the heated and 
cooled walls. Boundary layer separation occurs im- 
mediately downstream from these dominant circulations. 
The  counter circulations so developed usually migrate 
along the  horizontal boundaries. Buoyant enhancement 
of the counter circulation is most likely in the vicinity 
of the lower left and upper  right  corners, where thermal 
boundary layers become stretched into plumes. In Fig. 2(c) 
such a plume is evident near the left side of the lower 
boundary. 

In  the included perspective view [Fig. 2(d)] the positive 
excursion of the streamfunction  in the lower left corner 
is quite obvious. The vorticity plot  [Fig. 2(e)] reveals a 
very strong  shear layer at  the vertical walls, where the 
buoyant vorticity and  the wall generated vorticity are 
effective over a very short distance. A distinctive feature 
of Fig. 2(f) is the  sharp temperature rise of the plume at 
the lower left boundary. 

Measurement of the heat  transfer  in the transitional 
and upper  range is difficult because the unsteadiness can 
lead to wide extremes (i.e., numerically we cannot measure 
transfer  right at  the wall). Long-term averages must be 
taken.  Currently we are still in the process of dealing 
with these measurements along with necessary work that 
must be done on over-all data reduction. For  the calcula- 
tion of Fig. 2(a) ( A  = lo8, c = 1) we estimate N , X  32.0. 
Numerical  programs to give late-time average heat 
transfer values have not been employed at this writing. 

Finally we consider the last group (Fig. 3) in greater 
detail. The single circulation behavior of the high-Rayleigh- 
number flows  is somewhat of a surprise because here the 
character of the flow  is almost the same for a very wide 
range of values of the parameters.  Quantitatively the 
flows remain different, particularly in the speed of circula- 
tion at late times or the  rate  at which the circulation speed 
increases from  the initial no-flow state. In this  range the 
viscous and conduction effects are essentially absent at 
the central region but intense at  the boundaries. The 
results show dramatically why boundary layer theory 
has been so successful in many theoretical studies of 
fluid flow. While the unsteadiness far exceeds that of the 
transition  range, it is almost entirely confined to a thin 
layer at  the boundaries and  to  the corner regions. There 
is eccentricity in the flows that does not appear to diminish 
over the range of time covered by the calculations. An 
almost perfectly circular flow may be disrupted by  mi- 
grating  corner activity. Such a  disruption may lead to 
increasingly eccentric flow but never a return to the type 193 
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of flow of the transitional range. Early transitional 
behavior from  the no-flow initial  condition  does involve 
similar behavior to  that of the transitional  range flows. 

In Fig. 3(d) we note  that counter  circulations to  the 
main  circulation are very limited. The  apparent  smooth 
appearance of this still shot is not indicative of the  actual 
behavior. The activity of the flow is revealed in Figs. 3(e) 
and 3(f). The boundary generated vorticity is strong  on 
all  four walls and  the entrainment of this vorticity into 
the corner regions leads to considerable activity there. 
A  temperature greater than half the over-all temperature 
difference occurs within a short distance from  the vertical 
walls. This  phenomenon  can  account for  the high heat 
transfer  rates at high Grashof numbers. It occurs because 
the rapid  circulation transports a thin column of warm 
or cold fluid in  an overlapping manner to  the cold and 
hot walls, respectively. Small  extremals of vorticity 
[Fig. 3(b)] or hot  spots of temperature [Fig. 3(c)] that 
occur on occasion in the central part of the flow have 
been timed to estimate  a mean speed of the main circula- 
tion. In  an 8-ft-square enclosure the circulation time is 
roughly 5 sec. This is not  unreasonable but much work 
still needs to be done  in comparing our results with 
experiment. It is uncertain to what  extent the numerical 
result provides for  the mixing that could occur in  the 
turbulent flows observed in the laboratory. 
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Appendix 
In this  appendix we describe the  form of the convective 
approximation developed for  the calculations. We  shall 
give the  form of the flux term  in the x direction only  but 
include  various ranges of a = uAt /Ax  as indicated  earlier. 
It must be remembered that  the flux as given is only 
half of the required computation for a given mesh point. 
If the flux is added  to  the  point  on  the right and subtracted 
from  the point on  the left, the length of computation 
can be reduced by half. Also the same convective program 
can be used for both vorticity and temperature if these 
variables are defined the same relative to  the grid. The 
fluxes in the vertical direction may be inferred from those 
given here for  the horizontal. 

We define 

where 

U,-$,i = (+ i - l , j+ l  + +*.,+1 
- + t - l , i - l  - +,,?-1>/4 AY 

~ i - t , i  = ( + i - l , i  -  AX. 
If la1 < 0.09 we use an upstream  second-order  ap- 

proximation. We here write the central  approximation 
terms with the understanding that if a > 0, a is replaced 
by (a - 1) and i indices are reduced by 1. Further if 
a < 0, a is replaced by (a + 1) and i indices are in- 
creased by 1. To make  addition and subtraction of flux 
contributions possible, as previously mentioned, the 
powers of a must further be modified. For example CY' 
must be replaced by [(a - 1)' - l)] = a' - 2a so that 
Eq. (10) does indeed apply  without  a  shift of index on 
the leading term of this  equation.  Cancellation of the 
appropriate linear  terms  (terms that do not contain a)  
can readily be verified for  the difference forms here given. 
This, however, requires writing out  the complete expres- 
sion of both  the flux into  and  out of the cell of interest. 

Now define 

s s , o  = T t - ~ , i  + T,,;, 
0 3 . 0  Ti-l,i - Tt,j, 

S 8 , 2  = T<-1,,+1 + T < , i + l ,  

= Ti-l,i+l - and 

s i . 4  = T,-l,,-l + Ti,i-l, 
0 7 , 4  = Ti-1,i-l - T;,i-1. 

Here  the subscripts follow a layout as follows: 

22 15 10 14 21 
16 6 2 5 13 
11 3 0 1 9 
17 7 4 8 20 
23 18 12 19 24 

Now with index i - $ implied for a, 0 and F, we write 

At 
Ax  F = w 3 . 0  I- BaP(S7.4 - S R . 2 )  

" 

+ &'&,O + $d3'(s7,4 - 2s3,o + Sfi,,) 

+ &'P(D7.4 - 0 6 . 2 )  

+ h2P2(D7,4 - 2D3.0 + D6.2). 
For 0.09 5 la1 < 0.5 we use a fourth-order upstream 

expression and for 0.5 5 jal 5 1.0 we use the average 
of the upstream and central expressions. Here again we 
give only the central difference expression. The same 
rules apply on replacement of a appropriately with 
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Table 2 Leading terms and differences of fourth-order 
approximation. 

1 
2 

3 
4 
5 
6 

7 
8 

9 
10 
11 
12 

13 
14 
15 
16 

17 

18 
19 

20 
21 
22 
23 

24 
25 

26 

27 
28 

29 
30 

31 
32 

33 
34 

35 
36 

37 

38 
39 

40 

41 

42 

__ 

__ 

__ 

~ 

- 

~ 

~ 

__ 

__ 

~ 

__ 

~ 

~ 

__ 

__ 

" 

__ 

__ 

__ 

-I 

- 

" 

" 

Table 3 Coefficients of fourth-order approximation. 

A I I  7/12 A21 -1/12 
A n  15 /24 A 2 2  - 1 /24 

Ala - 3/24 A 2 4  1/24 
A13 -1/12 A 2 3  1 /12 

(a - 1) or (a + 1) and  shifting  indices as previously 
indicated. 

Define  in  addition  to  the  above  sums  and differences 

D22.14 = Ti -2 . i+2  - Ti+l>i+Z, 

and 

At 
-- F = Bl X I ,  
AX 1 = 1  

42 

where  the B's and X's are given in  Table 2, and  the 
numerical coefficients associated  with  the B's are given 
in  Table 3. 
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