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System  Validation  by  Three-level  Modeling  Synthesis 

Abstract: The  experimental  three-level  system  modeling  technique  discussed  in  this  paper  can be used during the design  stage of a 
system for identifying  mismatches  among  the  architectural,  microprogramming,  and  hardware  logic  levels.  Compatible  switching 
between  modeling  levels  is  emphasized.  Execution of an application  program by the  architectural  and  microprogramming  level  models 
with  switching  between  levels  is  illustrated. 

Introduction 
To cope with the increased complexity of computers  during the microprogram  simulator gave incorrect results due  to 
their design and development stages, the responsibility for  the incomplete specification of decimal operations  in the 
the system elements is usually delegated to separate  groups.  microprogramming and hardware logic designs. Similarly, 
Examples of such elements include microprogramming, the correlation between the instruction set usage and 
hardware logic design, and system programming. System microprogram was done  manually. The validation of 
designers achieve compatibility among these elements by those designs and  the correction of the mismatch was not 
defining interfaces from one to  the  other.  Thus  the designer effectively completed until the test model of the computer 
is  not only interested in the individual  functioning of the was built and running. 
parts,  but also in their  functioning  in  concert.  This requires This  paper discusses an  approach  to preliminary  com- 
system validation, which is usually accomplished by model- patibility validations of separately designed system 
ing the computer either in  hardware or software [l-51. elements. We implemented an experimental method for 
In hardware models, it  is fairly simple to demonstrate  correlating system elements while a system is still in the 

the functioning of a number of interconnected system design and specification stage. Our purpose was to explore 
elements. However, these models tend to lack flexibility. the idea that mismatches can be identified before being 
Programming models, although  more flexible, are often cast in hardware. The three-level technique described in 
incompatible between system elements. For example, this  paper  integrates  program models of a system design 
during the development of System/360 Model 40, the data  and  the switching between models. To test this  concept, 
flow was agreed upon between the microprogrammers  and we programmed the action of a simplified version of 
the logic designers, and  the System/360 instruction set was System/360 Model 40 at two design levels using the APL 
defined by the system architects. The logic designers em- language [8, 91. The detailed action of the system is dis- 
bodied the  data flow together with its  controls into  hard- cussed first from  the architectural  point of view (level I) 
ware, and  the microprogramming group developed the  and then from  the viewpoint of microprogramming design 
required microprogram [6, 71. Each group used its own (level 11.) 
simulator to debug its design, but the correlations between Also discussed is the hardware logic design (level III), 
designs were performed  manually. As a result of the which was planned but  not fully implemented. We ran 
manual  correlation mismatches occurred, for example, application  programs at both the architectural and micro- 
while developing the  IBM 1401 emulator on  the  Model 40; programming levels, and performed switching between 
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levels at  arbitrary points in a program.  An  annotated 
example of such a two-level run, together with switching 
between levels, is given in the Appendix. 

System  synthesis 
The system chosen by us as  a test vehicle can be viewed in 
three distinct ways, which correspond to recognized 
computer design disciplines. These viewpoints are  those of 
the system architect, the microprogrammer, and  the logic 
designer. Other aspects are possible, but these three were 
chosen as being particularly well-defined and having 
considerable  practical significance. The technique of 
system synthesis consists mainly of designing the three 
modeling programs (referred to as levels I, 11, and 111) and 
providing for switching between levels. Each level has  its 
own initialization and  data entry  procedures. Input  data 
at any level may be set up directly by the user, or may be 
an  output  from either the same level or a different level. 

Level I :  Architecture 
The system architect views the  CPU  as a device capable 
of executing System/360 instructions. He is concerned 
primarily with functional capabilities, but  not with timing 
or the  order  in which operations are performed  during the 
execution of a single instruction. The architect’s view  of the 
CPU, shown in Fig. 1, includes the following: 

byte-oriented main  storage with up to 224 bytes, 
sixteen 32-bit, fixed-point general registers, 
four 64-bit, floating-point registers, 
a 64-bit program status word (PSW) and 
a  processor that recognizes and executes instructions. 

System/360 allows four distinct types of processing: 

1) logical operations on bits,  character  strings, and words, 
2) decimal arithmetic on digit strings, 
3) floating-point  arithmetic and 
4) fixed-point, binary  arithmetic. 

Instructions, such as tests and branches, are also provided 
for directing the flow of a program. 

The system architecture  model is initialized by setting 
zeros into all registers, the entire main storage, and  the 
PSW. Also set up is a navigation vector [8], which is a 
table used to direct level I, wherein the instruction  oper- 
ation code is the table-lookup  argument. The program and 
data  are loaded into simulated  main  storage, and  the user 
enters his application  program in symbolic form. An 
assembly routine recodes the application  program into 
8-bit bytes, and determines where they are stored. The 
instruction  address in  the PSW is set to indicate the 
location of the first program  instruction. 

Instruction execution consists of two distinct parts- 
fetch-decode and execution. A fetch-decode  program 
locates the first byte of the instruction  (the  operation 
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Figure 1 Architectural  model of the CPU. 

code) by reference to  the PSW. By inspection of that byte, 
the instruction format  and  the special data  formats  are 
determined. The operation  code is then used as the table- 
lookup argument for  the navigation  vector. The modeling 
process then  branches to  the  appropriate  part of the 
execution program. 

The level I execution program first calculates the length 
in bytes of each instruction, and then determines the value 
by which the instruction  address in  the PSW must be 
incremented. However, the PSW is not  updated at this 
time because the instruction may later be aborted.  The 
effective addresses of operands  in main storage are deter- 
mined, and  the  appropriate action is taken if they are  not 
valid, e.g., an address value exceeds the highest address 
in  main  storage or an address  does  not lie on  an  appro- 
priate word boundary. Operands are then  located, the 
instruction  function is executed, and  the result is returned 
to  the  appropriate location. This result is tested to deter- 
mine the setting of the condition  code  bits  in the PSW. 
The next instruction  address is updated, and  the execution 
program branches back to  the fetch-decode program, 
which fetches the next instruction. The loop is repeated 
until the instruction  address  points to  an empty  storage 
location. 

The  outputs of level I consist of the following system 
contents: 1) main  storage (expecially the calculated results), 
2) the PSW and 3) the floating-point and general registers. 
These outputs may be arranged  in any desired format,  and 
displayed or recorded at  the  end of a system modeling 
exercise or after the execution of any or all  instructions. 
Alternatively, only those items that have changed may be 
displayed. Such displays constitute  a useful trace facility. 

Level I may be used  by itself to validate  a system 
architecture and  to determine the functional accuracy of 
programs written to  run  on a system having that archi- 
tecture. Alternatively, level I may be used to set up the 
input  data  for level I1 (microprogramming). 

Lewl I I :  Microprogramming 
The microprogrammer deals with the first level of the 
physical implementation of the system and  the flow of data 167 
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Figure 2 Microprogramming  model of the CPU. 

among ?he physical storage devices. A  microprogramming 
model of the  CPU  data flow is illustrated  in Fig. 2. Main 
storage  contains 215 two-byte words. The fixed-point and 
floating-point registers are contained  in the local  store, 
which consists of 128 words of two bytes each. The PSW is 
also held in  the local store.  Hardware registers A, B, C,  D, 
H, J and Y are used as temporary  storage for  data during 
the execution of an instruction, In  addition, register A 
functions as  the address register for main  storage and 
register D is its data register. Registers H and J act as 
address sources for  the local  store. 

Arithmetic and logical operations take place in  the 
arithmetic and logical unit  (ALU), and  the  hardware 
registers are its input sources and  output destinations. The 
function executed by the  ALU  is determined by the  content 
of the 4-bit register F. The set of ALU functions includes 
binary and decimal addition over 8-bit fields, shifts, and 
various logical operations.  Although the overall Model 
40 was not implemented in level 111, the  ALU was modeled 
in a manner close to  that of hardware logic. The reason is 

Figure 3 Microinstruction format. 

that  the  ALU is so complex that  the only way to represent 
its function unambiguously is at (or close to)  the  hardware 
logic rather  than  at a higher level. 

Data  are moved around  the  CPU under the  control of a 
microprogram  stored in  the read-only store (ROS). The 
microprogram is written in a symbolic notation  that  is 
translated into binary values for each microinstruction 
field when the microprogram is loaded into  the ROS. 
Formatting of a  microinstruction is indicated  in Fig. 3. 
Each word of the ROS contains one microinstruction, 
which determines the function to be performed  during one 
control cycle, that is, the  manner  in which data  are  to be 
moved among  the  hardware elements of the system. Each 
microinstruction  also determines the ROS location of the 
next microinstruction to be executed. Some  bits of the 
ROS address may be modified by selected items of data 
in  the  hardware registers, thus achieving conditional 
branching  in the microprogram. 

A  microinstruction is divided into fields, each of which 
controls a particular segment of the  data flow or a parti- 
cular set of functions. The number of different combina- 
tions of functions that a specified field can control depends 
on  the number of bits  in that field. The combinations are 
chosen to be as simple as possible, with the stipulation 
that  no two  combinations are required at  the same time. 
For example, a single field of the microinstruction  controls 
the gating of data  onto'the 16-bit transfer  bus, allowing 
only one  hardware register to be  gated at a time. 

Initialization of the microprogramming model begins by 
setting the dimensions of the  arrays representing main 
storage, the local  store, hardware registers and ROS, and 
by loading  all but ROS with zeros. The  control program is 
then  entered in  the appropriirte ROS locations, and  the 
ROS address register is loaded with the address of the 
first microinstruction of the instruction fetch routine. 
(ROS controls the  data flow shown in Fig. 2; therefore, the 
ROS itself is not shown.) Input  data  to  the microprogram- 
ming model are a representation of the  state of the  CPU at 
the beginning of the instruction to be executed. The 
System/360 program containing that instruction is loaded 
into main  storage. Data being operated on by the level I1 
model are transferred into main  storage in  the  state  at 
which it would exist at  that  point in the program, as 
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shown, for example, by data t1 in  Fig. 4. Partial results are 
also  loaded at this time. Those locations in the local store 
that represent  the  PSW, the floating-point, and general 
registers are set with the  appropriate values. Finally, the 
two latches of register Y that represent the condition code 
are set to the correct values. Execution of the micro- 
programming  model begins by locating the first microin- 
struction defined by the contents of the ROS address 
register shown  in Fig. 5. 

Each field of the microinstruction is decoded and used to 
control  the  appropriate section of the  data flow. Since the 
control cycle consists of two phases, care must be taken 
that all operations  performed  in  phase I of the  control 
cycle are executed before  any of the phase I1 operations. 
The modeled functions  include the 8-bit and 16-bit data 
transfers, local and main  storage addressing and accessing, 
and  the calculation of the next microinstruction  address. 
Because this  calculation may depend on a  number of 
machine conditions, which may be set at different times in 
the  control cycle, it is necessary that  the  appropriate values 
of those  conditions be sensed. Conflicts can occur when 
two data transfers take place simultaneously into  the  same 
hardware register. These conflicts must be resolved by 
performing  dominant  transfers  after  those that they over- 
ride. Main storage read or write operations  require more 
than  one  control cycle. Therefore, data transfers  initiated  in 
previous control cycles must be represented in  addition  to 
those transfers  initiated by the current  microinstricution. 
Moreover, checks are  made  to determine that conflicts in 
the  operation of main  storage do  not occur.  Certain 
operations, such as the arithmetic and logical functions, 
are fairly complex and difficult to express precisely in any 
concise way. It was therefore decided to implement these 
functions  in  terms of their hardware logical implementa- 
tion.  That is, part of the level I1 microprogramming is 
expressed in level 111 hardware logic terms. 

At  the  end of the execution of each microinstruction, 
level I1 is ready to begin executing the next microinstruc- 
tion,  as in going from m to m + 1 in level I1 of Fig. 4. The 
output  data  from  one cycle are exactly the input data  to  the 
next. After the last microinstruction of a machine instruc- 
tion (rn + q in Fig. 4), a subset of the output  data represents 
the machine instruction output  data.  This subset is the 
contents of the local store  that represent the general and 
floating-point registers, the PSW and  the  data in the main 
storage. 

Level I1 may be used by  itself to validate the design of a 
microprogram. However, it is easier to derive level I1 
input  data  from level I,  and then to switch to  the micro- 
programming level for  that instruction whose micropro- 
gram is to be tested.  This is illustrated between t ,  and f2 in 
Fig. 4. In  order  to determine the accuracy of a given system 
implementation, the results of executing an entire  program 
sequence at  the architectural level may be compared 
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Figure 4 Switching  between  levels. 

Figure 5 Machine cycle control system. 
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bit-for-bit with the results of executing the same sequence 
with one instruction modeled at level 11. (Such a compari- 
son is made between level-I and level-I1 results in the 
Appendix.) The microprogramming model may also be 
used to provide input  data  to  the level I11 hardware logic 
model, as  illustrated for  data t:% in Fig. 4. 

Leoel III :  Hardware logic 
The hardware logic designer's view  of the system differs 
fundamentally  in many respects from both of the previ- 
ously described views. The hardware designer deals with 
continuously  operating physical devices. Thus,  he is 
concerned not only with the elements of the  data flow as 
seen by the microprogrammer,  but also with the  control 169 
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of those elements. He must implement the set of functions 
required by the microprogrammer, and  he must  ensure that 
no functions occur other  than those that  are called for in 
any given machine cycle. 

Each machine cycle is divided into two phases, and  data 
are latched at  the end of each phase.  During  phase I, data 
may be transferred from  the  data registers (A, B, C,  D, H 
and J) via the  appropriate buses to  the buffer registers 
P, Q, R and L. During  phase 11, the results of logical 
operations may be returned  to  the  data registers. Data 
registers and buffer registers are shown in  Fig. 2. 

The machine cycle control system is described with 
reference to Fig. 5 .  The  output  from  the ROS, which is 
used to  control  the  CPU during  a  particular cycle, is 
available in  the ROS data register at  the beginning of 
phase I of that cycle. Those fields that  are used to  control 
data transfers  taking place in phase I are directly decoded. 
However, since the contents of the ROS data register are 
changed during  phase I1 of each cycle, those fields used to 
control  data transfers  during  phase I1 must  be buffered. 
Transfer to  the buffer takes place during  phase I, and  the 
fields are decoded for use in  phase 11. 

Also during  phase I, the ROS address register is changed 
by transferring the next instruction  address field (shown in 
Fig. 3) from  the ROS data register to  the address register. 
The least significant two  bits of the ROS address are used 
to effect microprogram  branches. This is accomplished by 
using each condition selector to select one of 16 one-bit 
data sources, shown in Fig. 5 as machine conditions. 

Hardware logic modeling differs in detail from archi- 
tectural and microprogramming modeling in that  hardware 
logic consists of a set of interconnected functional units, 
each of which responds to  its  input signals at all times. 
Therefore, during  hardware modeling, it is necessary to 
ensure that each unit  performs  its  particular  function 
only when required, and  to constantly check the  control 
signals to all units. The function of each unit is described in 
terms of its  inputs  and  appropriate internal  storage. It is 
particularly difficult to model the  inputs  to a unit that can 
be modified by its own output, however indirectly, in  a 
time  interval undivided by clock pulses. (In the System/360 
Model 40, this  situation  occurs  only within a  latch  circuit.) 
The  hardware logic model,  therefore, treats latches as 
single storage cells. 

In  addition  to  the units described in  the microprogram- 
ming model (level II), level I11 contains control signal gen- 
erators, decoders, timing generators and buffers. Each of 
these is assumed to be continously operative. Provided no 
malfunctions  occur, the examination of clock pulse inputs 
to  the latches is frequently sufficient to enable large parts 
of the logic to be ignored at  any  one time. To permit data 
checking, every register end buffer has  one  or more  parity 
bits associated with it. Also the arithmetic and logical unit 
is described in  two-rail logic, wherein every function is 

defined by its true  and  its complement values. Checking 
logic is introduced at various  points  in the  data flow, and 
must be sampled at  appropriate times. 

The  hardware logic model is initialized by specifying the 
dimensions of the  arrays  that represent main  storage, the 
local  store, and all registers and buffers. The timing 
generator is set to phase I of the machine cycle. The con- 
tents of the ROS, local  store, and main storage are defined, 
including  parity  bits. The contents of the registers are set 
appropriately including the ROS address register. Flags 
are set to indicate  any  incomplete  storage  operations to 
ensure  their  correct modeling. The  appropriate word of the 
ROS is then  loaded into  the ROS output register, and  the 
model of phase I may proceed. 

The  output of each logic unit between the registers and 
the buffers must  be  determined, and it is necessary to  order 
those  units to ensure that all the  inputs  to any  unit have 
been defined for a given  cycle. This is done by ordering the 
sequence of each unit  in such a way that its level is at least 
one greater than  the unit feeding it. A  unit may not be 
assigned a level until  those of all its  inputs have been 
assigned. The model simulates units  in order of their 
increasing level. At  the  end of phase I,  the buffers are set 
to whatever values their inputs indicate. Similarly, at  the 
end of phase 11, the registers are set according to their 
inputs.  Simulation  terminates  only at  the  end of phase 11. 
At that time, the  output of the model consists of the 
contents of the registers recognized by the microprogram, 
and  the contents of both  the local store  and main  storage. 

The hardware logic model  would  be useful for exercising 
the machine logic under  various  conditions by using level 
111 alone. Similarly, the effect of component  malfunctions 
may be observed by suitably modifying the  hardware logic. 
However, as previously suggested, a single machine cycle 
that uses the  hardware logic model may be embedded into a 
microprogram model. This  technique  (illustrated  in Fig. 4) 
may be used to validate the logical operation of the  CPU, 
or to examine the effects of an intermittent  malfunction 
on  the microprogram, and subsequently on  the system 
operation. 

We  have  mentioned that one of the objectives of the 
three-level system model is to validate  a  computer design, 
i.e., to determine whether a  machine has been designed so 
as  to perform its intended  function.  This is accomplished 
by comparing the performance of a machine design at three 
levels under the same conditions. The resultant  states of 
the models at each level should be identical. The simplest 
way to obtain  the same  initial  conditions for  the different 
levels of modeling is to generate  them from  the same 
source. This is done by substituting  a  microprogram model 
for one or more  instructions in  an architectural model, or 
by substituting  a  hardware logic model for  one or more 
microinstructions. Such substitutions involve switching 
among  the three levels. An example of levels I and I1 and 
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the switching between levels is presented in  the Appendix. 
When it is required to switch modeling levels, the  input 
data  to  the next level are completely and unambiguously 
specified by the  output  data  from  the current level. It is 
necessary to change only the formats and  to set up certain 
predefined initial  conditions. For example, when switching 
from level I to level 11, the contents of the machine registers, 
PSW, and main  storage are transformed to their appro- 
priate  formats, and  the ROS address register is set to  the 
beginning of the instruction fetch routine. The  program 
execution may then continue  at level 11. At  the  end of the 
more detailed program, the reverse process takes place. 

System  implementation 
The three-level model was implemented in APL\360 
because of the power of the language [9] and because it 
allows interactive debugging of the modeling program. 
(Since APL programs are executed in  an interpretive 
mode, it is also possible to alter  a  program and continue 
execution without recompiling.) The elements of a machine 
being modeled are described as arrays, which are con- 
venient to reformat when switching levels. For example, 
the main storage-described at  the architectural level as 
an 8192 X 8-bit matrix-is transformed to a 4096 X 16-bit 
matrix at  the microprogram level using one  APL statement. 

The modeling programs are carefully segmented so that a 
change in any part can  be  made  without affecting other 
parts by spurious  interactions. For example, the execution 
of an instruction or microinstruction is separated from  the 
selection of the next instruction. For simplicity, application 
programs and microprograms are entered in symbolic 
form. An elementary assembler converts these programs 
into  appropriate bit patterns, and determines the  format 
of each instruction and  the value to be  inserted in each 
field. The assembler also determines the length of each 
instruction, which it uses to compute the location of the 
next instruction. Similarly, the  microprogram assembler 
analyzes the symbolic statement of each microinstruction 
and computes the value to insert into each field of the 
appropriate ROS word. 

Trace  routines  enable one  to follow the course of each 
exercise in  as much detail  as he requires. Printouts of the 
data stored  in the system elements modeled may be 
obtained at any prescribed point, and may include data 
from  all system elements or only values that have changed 
since the last printout. 

Originally, certain restrictions were imposed by work- 
space limitations on APL\360. This implied that only one 
level  of modeling  could be contained  in each workspace. 
As a result, the switching of levels required  manual 
intervention and  the use of APL system commands. Such 
interventions, which are illustrated in  the Appendix, are 
limitations of the specific APL model and  not of the 
modeling system or the  APL language itself. 

Concluding  remarks 
We developed the experimental three-level system vali- 
dation model to ensure that  the machine design will 
perform  its  intended  function as defined by its  architecture. 
The architectural  model (level I)  has been used by  itself to 
evaluate system implementation, and in  combination with 
the microprogram  model (level 11). Congruence of the 
model outputs  for  the same  function at  both levels I and I1 
has validated the design of the microprogram data flow for 
such functions on System/360 Model 40. A similar com- 
parison between levels I1 and I11 may be used to verify the 
logic design. 

The multilevel model has also been used to generate 
input  data  for a detailed model to test a section of micro- 
program under a variety of application  programming 
conditions. Although  setting  up such tests can be very 
tedious, the tedium may be conveniently avoided by using 
the architecture  model and by switching to  the micro- 
programming level at  appropriate points. 

Another  motivation for  the three-level modeling system 
was to study the effects of machine failures (especially 
intermittent failures) on the execution of a  program. This 
can be done by simulating the program at  the architectural 
level, then by switching to  the microprogram and logic 
levels at points where failures occur. Both the timing and 
location of failures may be selected at  random or in  a  pre- 
defined way, particularly if an item is to be tested for 
vulnerability. 

Our system makes it possible to design computers in 
sequence, with well defined interfaces, from  the architecture 
to  the hardware logic levels. This  and similar techniques 
are being increasingly used in computer design, and can 
possibly be extended to higher levels such as operating 
systems where the user has  no access to  the machine 
language in which the operating system is implemented. 

Appendix: An example 
We now describe System/360 Model 40 CPU modeling in 
terms of an illustrative example called DEMO. Written  in 
the  APL language, DEMO resides in level I,  as shown in 
Fig.  6. It includes a  number of statements that  load a few 
program steps written  in System/360 instructions  (indi- 
cated by the shaded  area of Fig. 6) into main  storage. In 
this example, the contents of storage  location 52 are 
doubled. If the result is negative, it is stored  in  location 60; 
if positive, it is stored  in the location determined by  60, plus 
twice the contents of storage  location 56. Model 40 
validation at  the architectural level is described first. 

Two integers are  inputs  to  the variable IN shown in 
Fig. 6. In statement [l], VALUES calls an  APL function to 
initialize the contents of the general registers, main storage, 
and  the PSW to all zeros, and  to set values appropriate  to 
level I.  Statement [2]  of DEMO causes the  input  data  to be 
loaded into main storage, and statement [3] sets the binary 171 
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64 = 0 0 0 0 0 0 0 0  
6 8  = 0 0 0 0 0 2 C A  
72 = 00000000 
76 = 00000000 

2 4  = 1 ~ 8 ~ ~ 7 4 0  

3 2  = S A A O O O ~ R  

Figure 8 Start execution  at  the architectural level. 

S A V E D  8.45.13 06/08/70 
) L O A D  L F V E L I  

STOPAPRc211  
D E M O  357 4 

2 0 . .  .I, 
3 5 7 ( R 8 )  + M F M . L O C . ( 5 2 )  

8 0 0 5 2  

S T O P :  I A - 2 s  

SUPC 7 1 
) S A V E  

8.48.30 06/08/70 LFVF1,l  

S A V F D  8.46.27 06/08/70 
) L O A D   L F V E L 2  

D A T A T R A N S F F R h L B V l d T O A l ~ E V 2  

T Y P E :  ) C O P Y  I ,FVFI , I  L F V E L I A X M A X R A P S W  
I N I T V P L . .  .?JOW R E I N G  EXECUTFD.  

n: )COPY L F V R L l  L F V E L l A X M A X R h P S W  -. . ~ 

D A T A   T R A N S F F R  NOW COMPLETE.  
T Y P F :   S U P E X C  , . . T O   C O N T I N U E   S I X U b P T I O N .  

68. At this point,  the  program  halts.  The  terminal was 
connected for 30.07 seconds, of which the CPU usage was 
11.8 seconds. (CPU utilization varies with system con- 
figuration; for a given configuration, CPU time is 
essentially constant.)  After the execution stops, the contents 
of storage are printed, the  input  data  are  in locations 52-55 
and 56-59, and  the result is in  locations 68-71. (Note  that 
35710 = 165,,, and 714,, = 2CA1,.) 

In Figs. 8 through 11 ,  DEMO illustrates the switching 
from modeling level I to I1 and back to level I. In Fig. 8, 
STOPAPR is set to 24. This  halts the simulation prior  to 
execution of the instruction in location 24. The same input 
data  are used here  as in  the previously described level I 
example. 

The  load instruction L is executed, then STOP IA = 24 
signals the simulation to  halt. At  this point,  the command 
is given to SAVE the active workspace. This freezes the 
state of the machine, and stores the  state  data  for later use. 
To see the execution of L (load) in greater  detail, we switch 
to level I1 in  Fig. 9, and execute this  instruction at  the 
microprogramming level. 

The switching between levels I and I1 is illustrated at  the 
bottom of Fig. 8, and proceeds as follows. Level I1 is 
loaded, and  the DATATRANSFER steps are executed by first 
initializing level I1 and printing the request that  the con- 
tents of storage, registers, and  the PSW (all of the level I) 
be copied into  the active workspace. When the exper- 
imenter  enters the )COPY command, the contents of storage 
XM are transferred to  the level I1 workspace using the level I 
format.  That is, the storage  contents are  one byte wide, and 
are expressed as a matrix of eight columns and a  number 
of rows ( N )  equal to the number of bytes in storage.  More- 
over, XM in the level I1 workspace must exist in  the same 
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form  as it does in  the  Model 40; that is, storage must be 
two bytes wide. Thus  the XM matrix is transformed by the 
DATATRANSFER program from  an N X 8 structure  to  an 
N/2 X 16  structure. Since the 16  general registers XR and 
the PSW do  not exist as separate entities  in the Model 40 
(but  appear as particular  words in  the local  storage), the 
same  procedure  must  be followed in level 11. Registers XR 

are  thus placed into  the first 32 rows of the LOST (local 
storage)  matrix, and  the PSW into rows 32-35  by the 
commands: 

x r r c ( ( ( ~ p x n ~ c o l ~ ~ 2 ~ , a ~ ~ , x ~  
XRc 16 32  p,LOST[I32;1 
PSKc.LOSTC32 33 3 5  34 ; I  

S T O P b P R e 2 6  
S T O P ( I M I I + I  0 

t:ICROTRACF+NANOTRACF*O 
T R A C F A l . I U * ( t 6 ) , 4 4 t , 7  

S U P F X C  

F X F C l l T I ? I G :   I N S T R I I C T I O N  IN XFli 2 4  1 
****t******t*t*********** 

2 4 . .  .AR  8 8  
F r 3  V J = 3 3 4 2  A = 0 0 0 0  R.2208 C = l A l O  O r 0 1 6 5  Y = l C  F-F 

K = O  h 'J .3343  A - 0 0 0 0  B.0165 C - 1 A l O  D - 0 1 6 5  ? = I C  F = F  
L O S T C 6 7 1 - 0 0 0 0  

E - 0  H J - 3 3 9 1  A = 0 0 0 0  R . 0 1 6 5   C - 1 A l O  D s O 1 6 5  Y = l C  F = F  
L O S T C 6 7 1 = 0 0 0 0  

F = O  i ! J = 3 3 4 0  A 1 0 1 6 5  R = 0 1 6 5  C = l A 1 0  D - 0 1 6 5  Y = l C   F = F  
I , O S T T 6 5 1 = 0 0 0 0  

F = O  H J - 3 3 4 0  A = 0 1 6 : ,  R = O l C A  C - I A 1 0  D = 0 1 6 5  Y=lC F = F  

F = O  i i J . 3 3 4 1  A . 0 1 6 5  B - 0 2 C A  C = I A 1 0  0=0165 Y:lC F = F  
L O S T 1 6 4 3 = 0 0 0 0  

4 4 . .  . . 

u s . . . .  

4 6 . .  . .  

47 . . . .  

b e . . . .  

Data transfer is now complete, and level I1 (Fig. 9) is 4 9 . .  . . 
F = O   I ! J = 3 3 4 0   A . 0 1 6 5  J ? = 0 2 C A  C = l A I O  D.0165 ?=lC F = F  
L D S T C 6 5 1 = 0 2 C A  ready to continue executing DEMO. The command is given 5 0 . .  . . 

to  stop  the program execution at storage  location 26. 
Instruction L in storage locations 20-23 has already been 
executed, and level I1 is now ready to execute the AR 

instruction in locations 24-25. The STOPAPR command 
permits the execution of just  one instruction. 

The level I1 model emulates the execution of each 
System/360 instruction by executing many  microin- 
structions. Hence, the execution of the AR instruction may 
be thought of as a test to determine the validity of the 
microprogram that is contained in the read-only or  control 
storage (ROS). The microprogram for  the AR instruction 
consists of several hundred microinstructions. For purposes 

" """ 
E X E C U T I N G :   I N S T R U C T I O N  IN X M C 2 6 I  

2 6 . .  .RC 4 0 0 3 6  
STOP:  I P = Z ~  

S U P E X C l 1 1 1  

) S A V E  
8 . 5 5 . 2 9  0 6 / 0 8 / 7 0  L E V E L 2  

G E N E R A L   F I X F n - P O I N T   R E G I S T E R S :  
D I S P L A Y R E G  

8 7 1 4  

Figure 9 Continue execution at the  microprogramming  level. 

of this  demonstration,  a  small segment of the micro- 
program  in mnemonic form necessary to execute the AR microprogram in the ROS. 
instruction is shown  in Fig. 10. To illustrate the execution 
of the AR instruction in locations 44 to 49, the  trace is LOCI I X + P / R  * Ir+D(X) l Y X *  I F  I ' r I S C  I R C l R C N l C C N l f l ' T A I  

turned  on,  and each microinstruction  shown being executed _"_""____""_""""""""""""""""""" 
in Fig. 9 is identified by its address in ROS in Fig. 10. Each 4 4 1  I IR*(JA) I I 3 1  I 1 I 1 4 5 1  

Figure 10 Sample of mnemonic  representation of the  system 

microinstruction  in Figure 9 is preceeded by a printout of 
the contents-in  hexadecimal-of each of the Model 40 
hardware registers (shown in Fig. 2) prior to its execution. 

The first column of Fig. 10 gives the ROS location of the 
microinstruction. The column  headed X +- P/Q* shows 
controls  for  the ALU and  the 8-bit data  path.  In  the 
fourth column are  the controls  for the LOST and  the 16-bit 
data paths. Field E contains immediate data  for use in  the 
microinstruction.  One of the MISC functions is to initiate 
main-storage  read or write cycles. Branching and next- 
instruction  information is contained  in the last  three 
columns. 

Each of the major registers (A, B, C, D and H) consists 
of two bytes. The 16-bit control field refers to each register 
as a whole. Thus  the microinstruction  in  location 44 
results in a transfer of the contents of the entire LOST word 
into register B. The 8-bit control field, however, different- 
iates between most-significant and least-significant bytes 
of the registers. In location 47, for example, the 8-bit 
destination register is B1 (least-significant byte of register 
B), and  the two  source registers are A1 and B1. 

Upon completion of the execution of the AR instruction, 
the program STOP facility halts execution prior to beginning 
the instruction  in  storage 26 as shown in  Figure 9.  The 
level 11 workspace is saved via the )SAVE APL system com- 
mand. A decimal display of the contents of the nonzero 
registers reveals that register 8  contains the proper result of 
714 at this  time. 

We now switch back to level I to complete the DEMO 

program. The process of switching and transferring the 
data  from level I1 to level I is just  the reverse of the previous 173 
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2 6 . .   . B C  4 0 0 3 6  

3 0 . .   . S R  10 10 
BRANCH  NOT  TAKEN. 

0 1 0 - 0  
cc+o 
4 = 0 t 4  

3 2 . .  .A 10 0 0 56 

c c + 2  
3 6 . .  .ST  8 10 10 60 

7 1 4 ( R 8 )  * M E M . L O C . ( 6 8 )  
PROGRAM H A L T :   5 2 6 . 4 7   S E C O N D S   C O N N E C T . .  .190.98 S E C O N D S   C P U .  

H E X A D E C I M A L   D I S P L A Y  O F  CONTENTS  O F  M A I N   S T O R A G E  

0 = 00000000 
4 = 00000000 

1 2  = 0 0 0 0 0 0 0 0  
8 = 00000000 

16 = 0 0 0 0 0 0 0 0  
2 0  = 5 8 8 0 0 0 3 4  
24 = 1 A 8 8 4 7 4 0  
2 8  = 0 0 2 4 1 B A A  
3 2  5 A A 0 0 0 3 8  
36 = 5 0 8 A A 0 3 C  

40 = 0 0 0 0 0 0 0 0  

48 = 00000000 
4 4  = 00000000 

5 2  = 0 0 0 0 0 1 6 5  
5 6  = 0 0 0 0 0 0 0 4  
60 = 0 0 0 0 0 0 0 0  
64 = 0 0 0 0 0 0 0 0  
68 = 0 0 0 0 0 2 C A  
7 2  = 0 0 0 0 0 0 0 0  
7 6  = 0 0 0 0 0 0 0 0  

Figure 11 Completion of execution at  the  architectural level. 

switching operation. The  data transformation  commands 
are: 

X M c ( ( ( ( p X M ) C O l ) i 2 ) , 1 6 ) p , X M  
L O S T C I ~ ~ ; I +  3 2  16 p , X R  
LOSTC32 3 3  3 5  34 ; I +  4 16 p.PShr 

We now resume executing level I shown  in Fig. 11, the 
last four instructions of which are executed and printed 
out.  The result 714 computed by level I1 is stored at 
location 68. 

At  this point,  the program  halts. There were 190.98 
seconds of CPU time used, as  compared with 11.8 seconds 
when the entire  simulation took place at level I with no 
switching between modeling levels. The resulting printout 
of the contents of main  storage is identical to  that of Fig. 7. 
This  demonstrates the validity of the microprogram as 
well as  the complete compatibility of the two simulation 
levels. 
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