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System Validation by Three-level Modeling Synthesis

Abstract: The experimental three-level system modeling technique discussed in this paper can be used during the design stage of a
system for identifying mismatches among the architectural, microprogramming, and hardware logic levels. Compatible switching
between modeling levels is emphasized. Execution of an application program by the architectural and microprogramming level models

with switching between levels is illustrated.

Introduction

To cbpe with the increased complexity of computers during
their design and development stages, the responsibility for
the system elements is usually delegated to separate groups.
Examples of such elements include microprogramming,
hardware logic design, and system programming. System
designers achieve compatibility among these elements by
defining interfaces from one to the other. Thus the designer
is not only interested in the individual functioning of the
parts, but also in their functioning in concert. This requires
system validation, which is usually accomplished by model-
ing the computer either in hardware or software [1-5].

In hardware models, it is fairly simple to demonstrate
the functioning of a number of interconnected system
elements. However, these models tend to lack flexibility.
Programming models, although more flexible, are often
incompatible between system elements. For example,
during the development of System/360 Model 40, the data
flow was agreed upon between the microprogrammers and
the logic designers, and the System/360 instruction set was
defined by the system architects. The logic designers em-
bodied the data flow together with its controls into hard-
ware, and the microprogramming group developed the
required microprogram [6, 7]. Each group used its own
simulator to debug its design, but the correlations between
designs were performed manually. As a result of the
manual correlation mismatches occurred, for example,
while developing the IBM 1401 emulator on the Model 40;
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the microprogram simulator gave incorrect results due to
the incomplete specification of decimal operations in the
microprogramming and hardware logic designs. Similarly,
the correlation between the instruction set usage and
microprogram was done manually. The validation of
those designs and the correction of the mismatch was not
effectively completed until the test model of the computer
was built and running.

This paper discusses an approach to preliminary com-
patibility validations of separately designed system
elements. We implemented an experimental method for
correlating system elements while a system is still in the
design and specification stage. Our purpose was to explore
the idea that mismatches can be identified before being
cast in hardware. The three-level technique described in
this paper integrates program models of a system design
and the switching between models, To test this concept,
we programmed the action of a simplified version of
System/360 Model 40 at two design levels using the APL
language [8, 9]. The detailed action of the system is dis-
cussed first from the architectural point of view (level I)
and then from the viewpoint of microprogramming design
(level I1.)

Also discussed is the hardware logic design (level III),
which was planned but not fully implemented. We ran
application programs at both the architectural and micro-
programming levels, and performed switching between
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levels at arbitrary points in a program. An annotated
example of such a two-level run, together with switching
between levels, is given in the Appendix.

System synthesis

The system chosen by us as a test vehicle can be viewed in
three distinct ways, which correspond to recognized
computer design disciplines. These viewpoints are those of
the system architect, the microprogrammer, and the logic
designer. Other aspects are possible, but these three were
chosen as being particularly well-defined and having
considerable practical significance. The technique of
system synthesis consists mainly of designing the three
modeling programs (referred to as levels I, II, and III) and
providing for switching between levels. Each level has its
own initialization and data entry procedures. Input data
at any level may be set up directly by the user, or may be
an output from either the same level or a different level.

e Level I1: Architecture

The system architect views the CPU as a device capable
of executing System/360 instructions. He is concerned
primarily with functional capabilities, but not with timing
or the order in which operations are performed during the
execution of a single instruction. The architect’s view of the
CPU, shown in Fig. 1, includes the following:

e byte-oriented main storage with up to 2°* bytes,

e sixteen 32-bit, fixed-point general registers,

o four 64-bit, floating-point registers,

e a 64-bit program status word (PSW) and

e a processor that recognizes and executes instructions.

System/360 allows four distinct types of processing:

1) logical operations on bits, character strings, and words,
2) decimal arithmetic on digit strings,

3) floating-point arithmetic and

4) fixed-point, binary arithmetic.

Instructions, such as tests and branches, are also provided
for directing the flow of a program.

The system architecture model is initialized by setting
zeros into all registers, the entire main storage, and the
PSW. Also set up is a navigation vector [8], which is a
table used to direct level I, wherein the instruction oper-
ation code is the table-lookup argument. The program and
data are loaded into simulated main storage, and the user
enters his application program in symbolic form. An
assembly routine recodes the application program into
8-bit bytes, and determines where they are stored. The
instruction address in the PSW is set to indicate the
location of the first program instruction.

Instruction execution consists of two distinct parts—
fetch-decode and execution. A fetch-decode program
locates the first byte of the instruction (the operation
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Figure 1 Architectural model of the CPU.

code) by reference to the PSW. By inspection of that byte,
the instruction format and the special data formats are
determined. The operation code is then used as the table-
lookup argument for the navigation vector. The modeling
process then branches to the appropriate part of the
execution program.

The level I execution program first calculates the length
in bytes of each instruction, and then determines the value
by which the instruction address in the PSW must be
incremented. However, the PSW is not updated at this
time because the instruction may later be aborted. The
effective addresses of operands in main storage are deter-
mined, and the appropriate action is taken if they are not
valid, e.g., an address value exceeds the highest address
in main storage or an address does not lie on an appro-
priate word boundary. Operands are then located, the
instruction function is executed, and the result is returned
to the appropriate location. This result is tested to deter-
mine the setting of the condition code bits in the PSW.
The next instruction address is updated, and the execution
program branches back to the fetch-decode program,
which fetches the next instruction. The loop is repeated
until the instruction address points to an empty storage
location.

The outputs of level I consist of the following system
contents: 1) main storage (expecially the calculated results),
2) the PSW and 3) the floating-point and general registers.
These outputs may be arranged in any desired format, and
displayed or recorded at the end of a system modeling
exercise or after the execution of any or all instructions.
Alternatively, only those items that have changed may be
displayed. Such displays constitute a useful trace facility.

Level I may be used by itself to validate a system
architecture and to determine the functional accuracy of
programs written to run on a system having that archi-
tecture. Alternatively, level I may be used to set up the
input data for level II (microprogramming).

o Level 11: Microprogramming
The microprogrammer deals with the first level of the
physical implementation of the system and the flow of data
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Figure 2 Microprogramming model of the CPU.

among the physical storage devices. A microprogramming
model of the CPU data flow is illustrated in Fig. 2. Main
storage contains 2'° two-byte words. The fixed-point and
floating-point registers are contained in the local store,
which consists of 128 words of two bytes each. The PSW is
also held in the local store. Hardware registers A, B, C, D,
H, J and Y are used as temporary storage for data during
the execution of an instruction, In addition, register A
functions as the address register for main storage and
register D is its data register. Registers H and J act as
address sources for the local store.

Arithmetic and logical operations take place in the
arithmetic and logical unit (ALU), and the hardware
registers are its input sources and output destinations. The
function executed by the ALU is determined by the content
of the 4-bit register F. The set of ALU functions includes
binary and decimal addition over 8-bit fields, shifts, and
various logical operations. Although the overall Model
40 was not implemented in leve] III, the ALU was modeled
in a manner close to that of hardware logic. The reason is

Figure 3 Microinstruction format.

that the ALU is so complex that the only way to represent
its function unambiguously is at (or close to) the hardware
logic rather than at a higher level.

Data are moved around the CPU under the control of a
microprogram stored in the read-only store (ROS). The
microprogram is written in a symbolic notation that is
translated into binary values for each microinstruction
field when the microprogram is loaded into the ROS.
Formatting of a microinstruction is indicated in Fig. 3.
Each word of the ROS contains one microinstruction,
which determines the function to be performed during one
control cycle, that is, the manner in which data are to be
moved among the hardware elements of the system. Each
microinstruction also determines the ROS location of the
next microinstruction to be executed. Some bits of the
ROS address may be modified by selected items of data
in the hardware registers, thus achieving conditional
branching in the microprogram.

A microinstruction is divided into fields, each of which
controls a particular segment of the data flow or a parti-
cular set of functions. The number of different combina-
tions of functions that a specified field can control depends
on the number of bits in that field. The combinations are
chosen to be as simple as possible, with the stipulation
that no two combinations are required at the same time.
For example, a single field of the microinstruction controls
the gating of data onto the 16-bit transfer bus, allowing
only one hardware register to be gated at a time.

Initialization of the microprogramming model begins by
setting the dimensions of the arrays representing main
storage, the local store, hardware registers and ROS, and
by loading all but ROS with zeros. The control program is
then entered in the appropriate ROS locations, and the
ROS address register is loaded with the address of the
first microinstruction of the instruction fetch routine.
(ROS controls the data flow shown in Fig. 2; therefore, the
ROS itself is not shown.) Input data to the microprogram-
ming model are a representation of the state of the CPU at
the beginning of the instruction to be executed. The
System/360 program containing that instruction is loaded
into main storage. Data being operated on by the level II
model are transferred into main storage in the state at
which it would exist at that point in the program, as

0 15 23 24 28 3031 33 34 3738 46 55
et . . 16bit | Local
Arithmetic and logic Emit field b store Condition Next
unit control fields controls Jlrsce address selection fields instruction address
T T f so control
Carry Status 16-bit
latch latch bus
control control destination
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shown, for example, by data ¢, in Fig. 4. Partial results are
also loaded at this time. Those locations in the local store
that represent the PSW, the floating-point, and general
registers are set with the appropriate values. Finally, the
two latches of register Y that represent the condition code
are set to the correct values. Execution of the micro-
programming model begins by locating the first microin-
struction defined by the contents of the ROS address
register shown in Fig. 5.

Each field of the microinstruction is decoded and used to
control the appropriate section of the data flow. Since the
control cycle consists of two phases, care must be taken
that all operations performed in phase I of the control
cycle are executed before any of the phase II operations.
The modeled functions include the 8-bit and 16-bit data
transfers, local and main storage addressing and accessing,
and the calculation of the next microinstruction address.
Because this calculation may depend on a number of
machine conditions, which may be set at different times in
the control cycle, it is necessary that the appropriate values
of those conditions be sensed. Conflicts can occur when
two data transfers take place simultaneously into the same
hardware register. These conflicts must be resolved by
performing dominant transfers after those that they over-
ride. Main storage read or write operations require more
than one control cycle. Therefore, data transfers initiated in
previous control cycles must be represented in addition to
those transfers initiated by the current microinstricution.
Moreover, checks are made to determine that conflicts in
the operation of main storage do not occur. Certain
operations, such as the arithmetic and logical functions,
are fairly complex and difficult to express precisely in any
concise way. It was therefore decided to implement these
functions in terms of their hardware logical implementa-
tion. That is, part of the level II microprogramming is
expressed in level II hardware logic terms.

At the end of the execution of each microinstruction,
level 11 is ready to begin executing the next microinstruc-
tion, as in going from m to m + 1 in level IT of Fig. 4. The
output data from one cycle are exactly the input data to the
next. After the last microinstruction of a machine instruc-
tion (m + q in Fig. 4), a subset of the output daia represents
the machine instruction output data. This subset is the
contents of the local store that represent the general and
floating-point registers, the PSW and the data in the main
storage.

Level IT may be used by itself to validate the design of a
microprogram, However, it is easier to derive level II
input data from level I, and then to switch to the micro-
programming level for that instruction whose micropro-
gram is to be tested. This is illustrated between ¢, and 1, in
Fig. 4. In order to determine the accuracy of a given system
implementation, the results of executing an entire program
sequence at the architectural level may be compared
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bit-for-bit with the results of executing the same sequence
with one instruction modeled at level II. (Such a compari-
son is made between level-1 and level-II results in the
Appendix.) The microprogramming model may also be
used to provide input data to the level III hardware logic
model, as illustrated for data #; in Fig. 4.

& Level IIl: Hardware logic

The hardware logic designer’s view of the system differs
fundamentally in many respects from both of the previ-
ously described views. The hardware designer deals with
continuously operating physical devices. Thus, he is
concerned not only with the elements of the data flow as
seen by the microprogrammer, but also with the control
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of those elements. He must implement the set of functions
required by the microprogrammer, and he must ensure that
no functions occur other than those that are called for in
any given machine cycle.

Each machine cycle is divided into two phases, and data
are latched at the end of each phase. During phase I, data
may be transferred from the data registers (A, B, C, D, H
and J) via the appropriate buses to the buffer registers
P, Q, R and L. During phase II, the results of logical
operations may be returned to the data registers. Data
registers and buffer registers are shown in Fig. 2.

The machine cycle control system is described with
reference to Fig. 5. The output from the ROS, which is
used to control the CPU during a particular cycle, is
available in the ROS data register at the beginning of
phase I of that cycle. Those fields that are used to control
data transfers taking place in phase I are directly decoded.
However, since the contents of the ROS data register are
changed during phase II of each cycle, those fields used to
control data transfers during phase II must be buffered.
Transfer to the buffer takes place during phase I, and the
fields are decoded for use in phase II.

Also during phase I, the ROS address register is changed
by transferring the next instruction address field (shown in
Fig. 3) from the ROS data register to the address register.
The least significant two bits of the ROS address are used
to effect microprogram branches. This is accomplished by
using each condition selector to select one of 16 one-bit
data sources, shown in Fig. 5 as machine conditions.

Hardware logic modeling differs in detail from archi-
tectural and microprogramming modeling in that hardware
logic consists of a set of interconnected functional units,
each of which responds to its input signals at all times.
Therefore, during hardware modeling, it is necessary to
ensure that each unit performs its particular function
only when required, and to constantly check the control
signals to all units. The function of each unit is described in
terms of its inputs and appropriate internal storage. It is
particularly difficult to model the inputs to a unit that can
be modified by its own output, however indirectly, in a
time interval undivided by clock pulses. (In the System/360
Model 40, this situation occurs only within a latch circuit.)
The hardware logic model, therefore, treats latches as
single storage cells.

In addition to the units described in the microprogram-
ming model (level II), level III contains control signal gen-
erators, decoders, timing generators and buffers. Each of
these is assumed to be continously operative. Provided no
malfunctions occur, the examination of clock pulse inputs
to the latches is frequently sufficient to enable large parts
of the logic to be ignored at any one time. To permit data
checking, every register and buffer has one or more parity
bits associated with it. Also the arithmetic and logical unit
is described in two-rail logic, wherein every function is
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defined by its true and its complement values. Checking
logic is introduced at various points in the data flow, and
must be sampled at appropriate times.

The hardware logic model is initialized by specifying the
dimensions of the arrays that represent main storage, the
local store, and all registers and buffers. The timing
generator is set to phase [ of the machine cycle. The con-
tents of the ROS, local store, and main storage are defined,
including parity bits. The contents of the registers are set
appropriately including the ROS address register. Flags
are set to indicate any incomplete storage operations to
ensure their correct modeling. The appropriate word of the
ROS is then loaded into the ROS output register, and the
model of phase I may proceed.

The output of each logic unit between the registers and
the buffers must be determined, and it is necessary to order
those units to ensure that all the inputs to any unit have
been defined for a given cycle. This is done by ordering the
sequence of each unit in such a way that its level is at least
one greater than the unit feeding it. A unit may not be
assigned a level until those of all its inputs have been
assigned. The model simulates units in order of their
increasing level. At the end of phase I, the buffers are set
to whatever values their inputs indicate. Similarly, at the
end of phase II, the registers are set according to their
inputs. Simulation terminates only at the end of phase II.
At that time, the output of the model consists of the
contents of the registers recognized by the microprogram,
and the contents of both the local store and main storage.

The hardware logic model would be useful for exercising
the machine logic under various conditions by using level
11T alone. Similarly, the effect of component malfunctions
may be observed by suitably modifying the hardware logic.
However, as previously suggested, a single machine cycle
that uses the hardware logic model may be embedded into a
microprogram model. This technique (illustrated in Fig. 4)
may be used to validate the logical operation of the CPU,
or to examine the effects of an intermittent malfunction
on the microprogram, and subsequently on the system
operation.

We have mentioned that one of the objectives of the
three-level system model is to validate a computer design,
i.e., to determine whether a machine has been designed so
as to perform its intended function. This is accomplished
by comparing the performance of a machine design at three
levels under the same conditions. The resultant states of
the models at each level should be identical. The simplest
way to obtain the same initial conditions for the different
levels of modeling is to generate them from the same
source. This is done by substituting a microprogram model
for one or more instructions in an architectural model, or
by substituting a hardware logic model for one or more
microinstructions. Such substitutions involve switching
among the three levels. An example of levels I and II and
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the switching between levels is presented in the Appendix.
When it is required to switch modeling levels, the input
data to the next level are completely and unambiguously
specified by the output data from the current level. It is
necessary to change only the formats and to set up certain
predefined initial conditions. For example, when switching
from level I to level 11, the contents of the machine registers,
PSW, and main storage are transformed to their appro-
priate formats, and the ROS address register is set to the
beginning of the instruction fetch routine. The program
execution may then continue at level II. At the end of the
more detailed program, the reverse process takes place.

System implementation

The three-level model was implemented in APL\360
because of the power of the language [9] and because it
allows interactive debugging of the modeling program.
(Since APL programs are executed in an interpretive
mode, it is also possible to alter a program and continue
execution without recompiling.) The elements of a machine
being modeled are described as arrays, which are con-
venient to reformat when switching levels. For example,
the main storage—described at the architectural level as
an 8192 X 8-bit matrix—is transformed to a 4096 X 16-bit
matrix at the microprogram level using one APL statement.

The modeling programs are carefully segmented so that a
change in any part can be made without affecting other
parts by spurious interactions. For example, the execution
of an instruction or microinstruction is separated from the
selection of the next instruction. For simplicity, application
programs and microprograms are entered in symbolic
form. An elementary assembler converts these programs
into appropriate bit patterns, and determines the format
of each instruction and the value to be inserted in each
field. The assembler also determines the length of each
instruction, which it uses to compute the location of the
next instruction. Similarly, the microprogram assembler
analyzes the symbolic statement of each microinstruction
and computes the value to insert into each field of the
appropriate ROS word.

Trace routines enable one to follow the course of each
exercise in as much detail as he requires. Printouts of the
data stored in the system elements modeled may be
obtained at any prescribed point, and may include data
from all system elements or only values that have changed
since the last printout.

Originally, certain restrictions were imposed by work-
space limitations on APL\360. This implied that only one
level of modeling could be contained in each workspace.
As a result, the switching of levels required manual
intervention and the use of APL system commands. Such
interventions, which are illustrated in the Appendix, are
limitations of the specific APL model and not of the
modeling system or the APL language itself.
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Concluding remarks

We developed the experimental three-level system vali-
dation model to ensure that the machine design will
perform its intended function as defined by its architecture.
The architectural model (level I) has been used by itself to
evaluate system implementation, and in combination with
the microprogram model (level II). Congruence of the
model outputs for the same function at both levels T and II
has validated the design of the microprogram data flow for
such functions on System/360 Model 40. A similar com-
parison between levels II and III may be used to verify the
logic design.

The multilevel model has also been used to generate
input data for a detailed model to test a section of micro-
program under a variety of application programming
conditions. Although setting up such tests can be very
tedious, the tedium may be conveniently avoided by using
the architecture model and by switching to the micro-
programming level at appropriate points.

Another motivation for the three-level modeling system
was to study the effects of machine failures (especially
intermittent failures) on the execution of a program. This
can be done by simulating the program at the architectural
level, then by switching to the microprogram and logic
levels at points where failures occur. Both the timing and
location of failures may be selected at random or in a pre-
defined way, particularly if an item is to be tested for
vulnerability.

Our system makes it possible to design computers in
sequence, with well defined interfaces, from the architecture
to the hardware logic levels. This and similar techniques
are being increasingly used in computer design, and can
possibly be extended to higher levels such as operating
systems where the user has no access to the machine
language in which the operating system is implemented.

Appendix: An example

We now describe System/360 Model 40 CPU modeling in
terms of an illustrative example called DEmo. Written in
the APL language, pDEmo resides in level I, as shown in
Fig. 6. It includes a number of statements that load a few
program steps written in System/360 instructions (indi-
cated by the shaded area of Fig. 6) into main storage. In
this example, the contents of storage location 52 are
doubled. If the result is negative, it is stored in location 60;
if positive, it is stored in the location determined by 60, plus
twice the contents of storage location 56. Model 40
validation at the architectural level is described first.

Two integers are inputs to the variable N shown in
Fig. 6. In statement [1], vALUES calls an APL function to
initialize the contents of the general registers, main storage,
and the PSW to all zeros, and to set values appropriate to
level 1. Statement [2] of DEMO causes the input data to be
loaded intoc main storage, and statement [3] sets the binary
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Figure 6 Illustrative example.

Figure 7 Execution at the architectural level.

YLOAD LEVEL1
SAVED 13.40.14 06/05/70
SUPERTRACE+«1
STOPAPR+1 0
DEMO 357 4
VALUES...S5YSTEM INITIALIZATION.
MLOAD..DATA BEING LOADFED,

representation of the decimal value 20 into the last 24 bits
of the PSW. Since this is the instruction address field, the
model begins executing the instruction in storage location
20.

Execution of the example begins by a call to the sup
function in statement [10] of pEmo. Figure 7 shows the
execution of DEMO at level 1. The level 1 workspace is
brought into the active workspace, and the APL system
responds with the time and date this workspace was last
saved. SUPERTRACE is a switch that is set to 1 to permit
tracing the loading and execution of the example. The
STOPAPR switch, which can stop execution at any desired
instruction, is turned off. Input data to pDEMO are 357
(number to be doubled) and 4 (store location displace-
ment).

The execution phase is signaled by the line of asterisks.
During execution, the trace facility prints each instruction

QR s ¢ 052@;32;‘2;2? gg - gg executed and the result. Execution in Fig. 7 shows 357

BC 4 0 0 36.. ..., STORED...LOC: 26 - 29 loaded into register 8; doubling to yield 714; the branch

i fo e ionee ro a5 - 38 not taken; register 10 set to zero (to which the input 4 is

RO ST TSSOV AL STORFD. . 10C: 36 = 39 added); and the result (714 in register 8) stored in location

s570REY i r0c. (52) o o 2 68. At this point, the program halts. The terminal was
24.,..AR 8 8

B St connected for 30.07 seconds, of which the CPU usage was

5 e . .
26 . BC N o o s 11.8 seconds. (CPU utilization varies with system con-

BRANCH Ngg TAKEN. . . figuration; for a given configuration, CPU time is
9.5,°0 7 ° essentially constant.) After the execution stops, the contents

’ 32...4 10 0 Y of storage are printed, the input data are in locations 52-55
4 =0 + 4 *

Coe2 and 56-59, and the result is in locations 68-71. (Note that

Tiecrey Samitoc.eay 10 o0 35750 = 165,4, and 714,, = 2CAj.)

PROGRAM HALT: 30,07 SFECONDS CONNECT...11.8 SECONDS CPU. II’l FlgS 8 through 11’ DEMO ilIuStrateS the Switching
from modeling level I to II and back to level I. In Fig. 8,

STOPAPR is set to 24. This halts the simulation prior to

HEXADECIMAL DISPLAY OF CONTENTS OF MAIN STORAGE

0 = 00000000 40 = 00000000 K R S K .

b0 g gg g g gg 4 = 00000000 execution of the instruction in location 24. The same input
= 48 = 00000000 . . .

12 = 00000000 52 = 00000165 data are used here as in the previously described level I

16 = 00000000 56 = 00000004

20 = 58800034 60 = 00000000 exanaple.

24 = 14884740 64 = 00000000 . . .

28 = 00241844 68 = 00000204 The load instruction L is executed, then stop 1A = 24

32z ANt T2 2 00000000 signals the simulation to halt. At this point, the command
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Figure 8 Start execution at the architectural level,

JLOAD LEVEL1

SAVED 8.45,13 06/08/70

STOPAPR+24
DEMO 357 4

20...0 8 0 0

357(R8) <« MEM.LOC.(52)
STOP: TA=2u4

suPL7]
YSAVE
8.48.30 06/08/70 LFVEL1

YLOAD LFVEL2
SAVED 8.46.27 06/08/70
DATATRANSFFRALEV1IATOALEV?2
INITVAL.. .NOW BEING EXECUTED.

TYPE: )COPY LEVFL1 LEVEL1AXMAXRAPSW
0: YCOPY LEVEL1 LEVEL1AXMAXRAPSW

DATA TRANSFER NOW COMPLETE.
TYPF: SUPEXC ..

52

.TO CONTINUE SIMULATION.

K. A. DUKE, H. D. SCHNURMANN AND T. I. WILSON

is given to save the active workspace. This freezes the
state of the machine, and stores the state data for later use.
To see the execution of L (load) in greater detail, we switch
to level II in Fig. 9, and execute this instruction at the
microprogramming level.

The switching between levels I and I1 is illustrated at the
bottom of Fig. 8, and proceeds as follows. Level II is
loaded, and the DATATRANSFER steps are executed by first
initializing level II and printing the request that the con-
tents of storage, registers, and the PSW (all of the level I)
be copied into the active workspace. When the exper-
imenter enters the )cory command, the contents of storage
xM are transferred to the level IT workspace using the level I
format. That is, the storage contents are one byte wide, and
are expressed as a matrix of eight columns and a number
of rows (N) equal to the number of bytes in storage. More-
over, xM in the level II workspace must exist in the same
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form as it does in the Model 40; that is, storage must be
two bytes wide. Thus the xM matrix is transformed by the
DATATRANSFER program from an N X 8 structure to an
N/2 X 16 structure. Since the 16 general registers Xr and
the PSW do not exist as separate entities in the Model 40
(but appear as particular words in the local storage), the
same procedure must be followed in level II. Registers xR
are thus placed into the first 32 rows of the Lost (local
storage) matrix, and the PSW into rows 32-35 by the
commands:

XM«((((pXM)[0])x2),8)p0,XH

XR+ 16 32 0,L0ST[1323]

PSW«,LOSTI32 33 35 34 ;1]

Data transfer is now complete, and level II (Fig. 9) is
ready to continue executing DEmo. The command is given
to stop the program execution at storage location 26.
Instruction L in storage locations 20-23 has already been
executed, and level I is now ready to execute the Ar
instruction in locations 24-25. The sTopAPR command
permits the execution of just one instruction.

The level II model emulates the execution of each
System/360 instruction by executing many microin-
structions. Hence, the execution of the AR instruction may
be thought of as a test to determine the validity of the
microprogram that is contained in the read-only or control
storage (ROS). The microprogram for the AR instruction
consists of several hundred microinstructions. For purposes
of this demonstration, a small segment of the micro-
program in mnemonic form necessary to execute the AR
instruction is shown in Fig. 10. To illustrate the execution
of the AR instruction in locations 44 to 49, the trace is
turned on, and each microinstruction shown being executed
in Fig. 9 is identified by its address in ROS in Fig. 10. Each
microinstruction in Figure 9 is preceeded by a printout of
the contents—in hexadecimal—of each of the Model 40
hardware registers (shown in Fig. 2) prior to its execution.

The first column of Fig. 10 gives the ROS location of the
microinstruction. The column headed X «— P/Q* shows
controls for the ALU and the 8-bit data path. In the
fourth column are the controls for the LosT and the 16-bit
data paths. Field E contains immediate data for use in the
microinstruction. One of the Misc functions is to initiate
main-storage read or write cycles. Branching and next-
instruction information is contained in the last three
columns.

Each of the major registers (A, B, C, D and H) consists
of two bytes. The 16-bit control field refers to each register
as a whole. Thus the microinstruction in location 44
results in a transfer of the contents of the entire LosT word
into register B. The 8-bit control field, however, different-
iates between most-significant and least-significant bytes
of the registers. In location 47, for example, the 8-bit
destination register is Bl (least-significant byte of register
B), and the two source registers are Al and BI,
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STOPAPR+26
STOPAMU«1 0
TRACEAMU«{(16) ,44+17
MICROTRACE+NANOTRACE+0
SUPEXC
Tk ko AR R Rk kA ko AR R KA R A AR A
EXRCUTING: INSTRUCTION IN XML[2u]
24, . AR 8 8
F=3 PJ=3342 A=0000 B=2208 (=1410 D=0165 Y=1C F
ERTRRN
F=0 KFJ=3343 A=0000 B=0165 (=1410 D=0165 Y=1C F
LOSTL671=0000
5., ..
E=0 HJ=3341 A=0000 B=0165 C=1410 D=0165 Y=1( F=F
LOST[671=0000
Y- JAN
F=0 HJ=3340 A=0165 B=0165 C=1410 D=0165 Y=1C F
L0ST{651=0000
47 ...
F=0 HJ=3340 A4=016b5 B=01CA (=1A10 D=0165 Y=1C F
8. ...
F=0 HJ=3341 A=0165 B=02CA (C=1410 D=0165 Y=1C F
LOSTI641=20000
49, L.,
E=0 #J=3340 A=0165 B=02CA €=1410 D=0165 Y=1C F=F
LOST[65]=02CA
50....

—T— T — T
————— e

EXECUTING: INSTRUCTION IN xM[26]
4 [+] 0 36

1t
3

It
]

fi
~

It
1

"
]

Srop: IA=26 )
sypExcl11]

)JSAVE
8.55.29 06/08/70 LEVEL?2

DISPLAYREG
GENERAL FIXED-POINT REGISTERS:
8 714

Figure 9 Continue execution at the microprogramming level.

Figure 10 Sample of mnemonic representation of the system
microprogram in the ROS.

roci | X<P/0 % [C«D{X) |YXx IR 1MISC |RCIBCN|CCN|NIA|
uu! I 1Re(J4) | 13l - | | us)
us| | I (J2) | [ [ ! | usl
u6 | | JA+(T-) | [ [ | [ u7l
47| |B1+41181 | | Pl [ ! | ue
ug| |Bo+401B0 | (J+) | [ [ ! ] u9l
49 | [(J=)«B | [ [ { | s0i

Upon completion of the execution of the AR instruction,
the program stop facility halts execution prior to beginning
the instruction in storage 26 as shown in Figure 9. The
level II workspace is saved via the )SAVE APL system com-
mand. A decimal display of the contents of the nonzero
registers reveals that register 8 contains the proper result of
714 at this time.

We now switch back to level I to complete the pEmo
program. The process of switching and transferring the
data from level II to level 1 is just the reverse of the previous
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26...HC 4 0 0 36
BRANCH NOT TAKEN.

30,..5R 10 10
0=0-0
cceo

32...4 10 0 0 56
4 = 0 + 4
cee2

36...5T 8 10 10 60

714(R8) » MEM.LOC.(68)
PROGRAM HALT: 526.47 SECONDS CONNECT...190.98 SECONDS CPU.

HEXADECIMAL DISPLAY OF CONTENTS OF MAIN STORAGE

0 = 00000000 40 = 00000000
4 = 00000000 4% = 00000000
8 = 00000000 48 = 00000000
12 = 00000000 52 = 00000165
16 = 00000000 56 = 00000004
20 = 58800034 60 = 00000000
24 = 14884740 64 = 00000000
28 = 00241BAA 68 = 00000204
32 = 54400038 72 = 00000000
36 = 5084403C 76 = 00000000

Figure 11 Completion of execution at the architectural level.

switching operation. The data transformation commands
are:

XMe((((pXM)[0])£2),16)p , XM
LOSTL 13231« 32 16 o,XR
LOST[32 33 35 34 ;1< 4 16 p,PSW

We now resume executing level I shown in Fig. 11, the
last four instructions of which are executed and printed
out. The result 714 computed by level II is stored at
location 68.

At this point, the program halts. There were 190.98
seconds of CPU time used, as compared with 11.8 seconds
when the entire simulation took place at level I with no
switching between modeling levels. The resulting printout
of the contents of main storage is identical to that of Fig. 7.
This demonstrates the validity of the microprogram as
well as the complete compatibility of the two simulation
levels.

K. A. DUKE, H. D. SCHNURMANN AND T. I. WILSON
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