R. L. Hoffman
J. W. McCullough

Segmentation Methods for Recognition

of Machine-printed Characters

Abstract: This paper reports an investigation of some methods for isolating, or segmenting, characters during the reading of machine-
printed text by optical character recognition systems. Two new segmentation algorithms using feature extraction techniques are pre-
sented; both are intended for use in the recognition of machine-printed lines of 10-, 11- and 12-pitch serif-type multifont characters.
One of the methods, called quasi-topological segmentation, bases the decision to “‘section” a character on a combination of feature-
extraction and character-width measurements. The other method, topological segmentation, involves feature exiraction alone,

The algorithms have been tested with an evaluation method that is independent of any particular recognition system. Test results
are based on application of the algorithm to upper-case alphanumeric characters gathered from print sources that represent the
existing world of machine printing. The topological approach demonstrated better performance on the test data than did the quasi-

topological approach.

Introduction

When character recognition systems are structured to
recognize one character at a time, some means must be
provided to divide the incoming data stream into segments
that define the beginnirig and end of each character.
Writing about this aspect of pattern recognition in his
review article, G. Nagy [1] stated that ‘“‘object isolation
is all too often ignored in laboratory studies. Yet touching
characters are responsible for the majority of errors in
the automatic reading of both machine-printed and
hand-printed text. ...”

The importance of the touching-character problem in
the design of practical character recognition machines
motivated the laboratory study reported in this paper.
We present two new algorithms for separating upper-case
serif characters, develop a general philosophy for evalu-
ating the effectiveness of segmentation algorithms, and
evaluate the performance of our algorithms when they
are applied to 10-, 11- and 12-pitch alphanumeric
characters.

The segmentation algorithms were developed specifi-
cally for potential use with recognition systems that use
a raster-type scanner to produce an analog video signal
that is digitized before presentation of the data to the
recognition logic. The raster is assumed to move from
right to left across a line of printed characters and to

MARCH 1971

make approximately 20 vertical scans per character.
This approach to recognition technology is the one most
commonly used in IBM’s current optical character
recognition machines. A paper on the IBM 1975 Optical
Page Reader [2] gives one example of how the approach
has been implemented.

Other approachies to recognition technology may not
require that decisions be made to identify the beginning
and end of characters. Nevertheless, the performance of
any recognition system is affected by the presence of
touching characters and the design of recognition
algorithms must take the problem into account (see
Clayden, Clowes and Parks [3]).

Simple character recognition systemds of the type we
are concerned with perform segmentation by requiting
that bit patterns of characters be separated by scans
containing no “black™ bits. However, this method is
rarely adequate to separate characters printed in the
common business-machine and typewriter fonts. These
fonts, after all, were not designed with machine recognition
in mind; but they are nevertheless the fonts it is most
desirable for a machine to be able to recognize. In the
12-pitch, serif-type fonts examined for the present study,
up to 35 percent of the segments occurred not at blank
scans, but within touching character pairs.

153

SEGMENTATION ALGORITHMS

154

Definitions

What we have so far referred to as ‘“‘segmentation” is a
process that is executed in three distinct, sequentially
applied steps:

1) identifying start-of-character features,

2) identifying end-of-character features (sectioning), and
3) deciding which scan is to represent the dividing line
between two characters (segmenting).

From now on, the term ‘segmentation” will be used
only to refer to the entire process. The term ‘‘segmenting”
is used in reference to the third part alone. It is the second
step, which we call “‘sectioning,” that we concentrate on
in this paper. The first step is touched upon only lightly.

Many segmenting algorithms developed by IBM and
others use either the analog video signal or the digitized
video bit pattern as the basis for correlation measurements
that are thought to be reliable indicators of the character
end. These methods determine which scan should be
the dividing line by comparing the correlation measure-
ments of several adjacent scans. Scan correlation tech-
niques are obvious outgrowths of searching for blank
scans between characters and can be economically
implemented in hardware. However, their performance
may be unacceptable if they are “free running” across
characters; i.e., if they are permitted to make a segment
after any scan at which the decision criteria are satisfied.
If the bit patterns of adjacent characters touch each
other to the extent commonly found in serif-type fonts,
then a free-running correlation scheme that is strong
enough to make valid separations between ‘“‘hard-touching”
characters is sure to make invalid separations within
characters.

Whenever one chooses to use a non-free-running
segmenting scheme, he must also provide a sectioning
function which, by our definition, generates a signal that
permits the segmenting algorithm to begin. The sec-
tioning function, in effect, makes the judgment that the
end-of-character region has been reached and that it is
now appropriate to test for the particular scan that will
be identified as the end-of-character.

One method of sectioning is based on an a priori
pitch (character width) measurement. Here the segmenting
algorithm is permitted to operate whenever a specified
number of scans has occurred since the start-of-character
scan. However, pitch measurement can locate the end-of-
character region only approximately since the ratio
between character widths in a fixed-pitch font can be as
much as 2 to 1.

Another class of sectioning techniques is based on
pattern feature extraction. The features chosen might be
very simple or they might be complex enough for use in
character recognition itself. Two important constraints
are encountered when the latter type of feature extraction

R. L. HOFFMAN AND J. W, MC CULLOUGH

is used for sectioning. For one, the features must be
“tuned” to characters from specific fixed-pitch fonts
if high recognition performance is to be achieved.

For another, this approach to sectioning makes it eco-
nomically unfeasible to useé any approach to recognition
other than feature extraction. Both constraints are in-
compatible with our desire to provide a segmentation
algorithm that is useful over a range of pitch sizes and is
independent of machine logic.

In this study we investigated several feature extraction
schemes. We chose a middle course and looked for
medium-power feature extraction techniques more ap-
plicable to sectioning than to recognition. One approach,
referred to as quasi-topological, makes use of character
width measurements (in number of scans) as well as
pattern geometry. The other approach, termed topological,
depends only on the geometry of the character under
consideration. We undertook the investigation of both
approaches because it appeared that each would have
its own area of special usefulness. We thought that the
quasi-topological algorithm could be adjusted for better
performance on a single type font (12-pitch serif, in
particular), while the topological algorithm could provide
good performance over a wide range of character styles
and widths (possibly even including fonts with propor-
tionally spaced characters).

All of the work reported here is based on a right-to-left
direction of scanning. This basic design decision was
made because strong end-of-character indicators, such as
full-height vertical strokes and closures, occur more
frequently on the left side than on the right side. This fact
led us to expect that the performance of segmenting
algorithms would be enhanced by right-to-left scanning.
On the other hand, we realized that it is possible for
the weaker right-side indicators to degrade performance
of the start-of-character algorithms. Consideration of
performance trade-offs between right-to-left and left-to-
right scanning, however, are beyond the scope of this

paper.

Segmentation based on quasi-topological
sectioning

Three feature-extraction schemes were proposed as
candidates for quasi-topological sectioning: 1) a vertical
scan black-bit peak-contour histogram pattern, 2) a
horizontal stroke pattern and 3) a character envelope
contour pattern.

o Black-bit histogram

It was postulated that the histogram obtained by counting
the number of black bits in each vertical scan through a
character could be used for sectioning characters from
fixed-pitch type fonts. A peak occurs in the black-bit
histogram for each vertical stroke of the character (over-

IBM J. RES. DEVELOP.

hanging serifs, as in a T, are considered vertical strokes).
Characters from serif-type fonts have one, two or three
peaks, as demonstrated by I, 8 and T, respectively. For
fixed-pitch fonts it was postulated that the spacing between
peaks and the contour of the black-bit histogram could
be used as sectioning criteria.

A computer program to detect peaks in the black-bit
histogram was written and tested. Simple filtering of the
digitized video pattern was effective in reducing the
number of missing or false peaks caused by noisy charac-
ters, i.e., patterns with white spots in predominantly
black areas and vice versa. However, many unresolvable
conflicts were encountered in formulating logic to use
peak-count and contour information for sectioning. For
example, peaks missed because of overlapping characters
such as LT and WA led to inappropriate sectioning action.

The primary problem was to determine whether the
character being scanned had one, two or three peaks.
Peak spacing and slope of the line connecting two peaks
were found to be unreliable indicators of the true peak
count even for fixed-pitch characters. Unless the maximum
character width (in number of scans) is known, one
cannot determine whether sectioning should be done
after observing the first peak because a single-peak
character has been encountered or whether sectioning
should be held off until two (or three) peaks have been
observed. The black bit histogram method was discarded
as a candidate for use in a segmentation algorithm.

e Horizontal stroke pattern sectioning

A sectioning algorithm was developed based on recogni-
tion of patterns in the sequence of stroke-count values
computed as the character is traversed horizontally.
The stroke count is the number of times a given vertical
scan encounters part of the character. Examples of
stroke-count sequences for several characters are shown
in Fig. 1. The characters I, S, T and A produce patterns
in their stroke-count sequences that are symmetric about
the center line of the character, while characters like L
and 7 have unsymmetric patterns. The character T, for
example, shows the pattern (12121), which is symmetric
about the center vertical stroke. A vertical stroke, by
definition generates only one horizontal stroke in the
scans that it occupies.

Stroke counting, when applied to the entire alphabet
of upper-case alphanumeric characters, clusters patterns
into a few general classes. Serif characters like M, N,
T, U, W and Y that are symmetric about the center
line exhibit a (12121) pattern, while D, V and 7 exhibit
a (121) pattern. In all, 11 classes or subclasses were
identified during experiments on serif characters.

Sectioning decisions are made by finding the closest
match between the exhibited stroke-count pattern and
one of a set of stored, reference stroke-count patterns.

MARCH 1971

1 2 3 3 32

8 7 6 5 4 3 21

1222 2 2 21 112 2 2 21

Figure 1 Horizontal stroke patterns. The numbers above
the character identify the scan number and those below, the
stroke count.

The references were determined a priori and each was
“tuned” to data from the particular type font under
consideration. These references yield decisions that are
statistical rather than deterministic since there is no
unique correspondence between stroke-count patterns
and references. Matching of stroke-count patterns to
references is attempted after each scan.

During each scan, certain measurements are extracted
and stored in a table. The measurements used are the
current stroke count and the number of scans for which
that count has existed, the previous stroke count and
the number of scans for which it existed, and the second
previous stroke count and the number of scans for which
it existed. For an example see Fig. 2.

Matching of data in the six-item table to the stored
references is performed by the following procedure:

1) The group of references assigned to the stroke count
of the current scan is retrieved from storage. For a current
stroke count of 1, the group contains seven references and
for a current stroke count of 2, the group contains four

155

SEGMENTATION ALGORITHMS

156

Scan No.
1413 12 1110 9 8 7 6 5 4 3 2 1

111122 11221111
\ Stroke count
Number of strokes Number of strokes

Current Past 2nd past Current Past 2nd past

1 2 1 1 2 1

Number of scans

2

Number of scans
2 | 4 1

2 4

Figure 2 Feature extraction from horizontal stroke patterns.

Figure 3 Pattern contour measurements.

Coarse upper
contour

Coarse lower
contour

Coarse upper
contour

Coarse lower
contour

Contour check points

Contour check points

references. Accessing the references is not undertaken if
the count is 3 since no “ideal” character exists that has
such a count in its end-of-character region. Whenever
the stroke count is 0, a sectioning decision is made inde-
pendently of the references.

2) The references that have stroke counts matching the
current, past and second-past values of the table are
identified.

3) The number of scans for which each stroke count has
existed is compared with these references to determine
whether the number falls within the range prescribed for
one of them. If a match occurs, a decision to section is
made.

Early in the scanning of a character, patterns containing
fewer than three sequences of non-zero stroke counts

R. L, HOFFMAN AND J. W. MC CULLOUGH

are likely to be encountered. Nevertheless, tests for
sectioning are still made after some predetermined number
of scans because some characters actually do have fewer
than three stroke-count sequences. For instance, a dash (—)
has but one sequence of one-stroke scans.

An important disadvantage of the above procedure
is that it does not appear capable of producing reliable
results when characters of variable width are presented
to the scanner. What happens is that a reference which
validly indicates the end-of-character region for some
characters may also cause an invalid sectioning at the
center region of other characters. A primary example of
such a conflict is seen in the stroke-count patterns for
L and T. The first three sequences of stroke counts are
121 for both characters. However, the second one-count
of this pattern occurs in the long vertical stroke at the
end of the L and in the long stroke at the center of the T.

If the sectioning algorithm were restricted for use with
only a single character font, it would be easy to design
a reference pattern to discriminate between the L and
the T: the first one-count would always exist for many
more scans through the L than through the T. But if
one also wishes to distinguish a narrow L from a wide T,
sectioning on this basis will not be successful.

In our experiments the L, T problem, as well as others
of similar nature, could not be solved by ‘“‘tuning” the
references. To resolve these conflicts a technique involving
measurements of character “envelope” outlines was
combined with the stroke-count pattern method of
sectioning. At each of the first three scans in which the
stroke count changed value, the number of black bits
was counted and the vertical positions of the top and
bottom bits were noted. This made it possible to detect
the envelope outlines of the right sides of characters
and thus to distinguish many of those which had previously
been unresolvable. Figure 3 shows the envelope contours
of the L and the T. A sectioning algorithm based entirely
on the contour characteristics was not considered, although
there may be some merit in doing so.

e The quasi-topological segmentation algorithm

Figure 4 shows the flow diagram of a segmentation
algorithm which incorporates a combination of the
stroke-count and contour measurement methods of
sectioning just described. For experimental purposes, the
algorithm operates on input data stored on a magnetic
tape that contains the digitized video signals obtained
by scanning the lines of a printed document.

The procedure used to detect the start of a character
is a simple scheme that tends to reduce the effects of
“ragged” line edges. Two successive scans that contain
at least one pair of horizontally adjacent black bits are
sought out. When such scans are found, the number C
of horizontally adjacent black bit pairs is counted. Also,

IBM J. RES. DEVELOP.

Write output tape Character
of segmented video tape
characters output

Find segment More
scan and enter characters in
into audit trail the line?

Compute stroke
count for all
scans in the line

Find start Find section
of character scan

Figure 4 Flow chart for quasi-topological segmentation algorithm.

C, the number of horizontally adjacent pairs in which
one bit is black and the other is white is computed.
If C > C, the first of the two scans starts the character. If
C < C, and is also less than some specified number, the
second scan starts the character. Under any other con-
ditions, the first scan starts the character.

After the character-start decision, a further test is
performed to determine whether or not the pattern
encountered should really be considered to be a character.
The pattern is said to be a character if a sufficient number
of horizontally adjacent bit pairs continues to be both
black for some prescribed number of successive scans. If
this condition is not satisfied (because of too many “‘noise”’
bits or a ragged leading edge), the character-start procedure
begins again.

Once the character-start decision has been made, the
sectioning procedure begins. To obtain reasonable
reliability and to cover a sufficiently large portion of a
character while storing just three stroke-count sequences,
it became necessary to do some filtering of the measure-
ments made during sectioning. In the vertical (scan)
direction the stroke count is increased only if two or
more adjacent black bits are surrounded by white bits.
A maximum count of three strokes is permitted per
scan since, ideally, none of the characters in the type
fonts studied has more than three horizontal strokes in
any one scan. Filtering in the horizontal direction is
used to smooth the variation in stroke count from scan
to scan.

When the sectioning procedure has resulted in a decision
that the end-of-character region has been reached, a
sequence of logic tests is made to determine exactly where
to segment the character. A given scan is said to represent
the character end if any of the following conditions is
satisfied:

1) The scan column contains fewer than some specified
number of black bits horizontally adjacent to black bits in
the previous column. This may indicate that a discontinuity
between characters has been reached.

2) The scan column contains a specified number of
white bits horizontally adjacent to black bits in the
previous column. This may indicate that the end of a
serif or some other character feature has been reached.

3) The next scan column contains a slightly larger number
of black bits than the given column. This may indicate

MARCH 1971

that a diagonal stroke at the right side of a new character
has been reached.

4) The next scan column contains a significantly higher
number of vertically adjacent black bits than the given
column. This may indicate that some feature at the
leading edge of a new character has been found.

Segmentation based on topological sectioning

The sectioning procedure used in the ‘‘topological”
segmentation algorithm is based on the detection and
measurement of the leading and trailing edges of character
strokes as the bit pattern moves through a scan-storage
shift register. At each scan three parameters are computed
from logical tests of the bit pattern. Each parameter is
assigned a weighting factor and all are combined in a
“threshold” function that is sensitive to end-of-character
(i.e., left-hand side) features when scanning from right
to left.

The approach to sectioning discussed here is derived
from the observation that in the bit pattern of any isolated
character the sum of the vertical lengths (in bits) of all
leading edges must be equal to the sum of the vertical
lengths of all trailing edges. To use this observation for
detecting the end-of-character region, one can examine
the character bit pattern column-by-column. During
examination of the right-most columns there is an accumul-
ation of leading-edge bits and as the pattern is traversed
toward the left, the number of trailing-edge bits begins
to build up. It can be specified that when the accumulation
of trailing-edge bits has become sufficiently near the
total of leading-edge bits, the character should be sectioned.
Here we define a leading-edge bit as a black bit with a
horizontally adjacent white bit in the previous scan, and
a trailing-edge bit as a white bit with a horizontally
adjacent black bit in the previous scan.

Notice that in every column (scan) of a bit pattern that
begins with a blank scan (i.e., L, = 0) the following
relation holds:

> P, — 2 N,— L, =0,)
i=0 i=0

where P; is the number of leading-edge bits in scan j,
N, is the number of trailing-edge bits in scan j, and L, is
the number of black bits in scan n, the scan currently
being examined. When a scan is reached in which L, = 0,

SEGMENTATION ALGORITHMS

158

.
H
H
H
X
H
M
H
:
‘
a :
:
:
H
H
H
H
i
H
H
H
o
H
. H
: :
: H
s :
b ss H
s H
s :
s :
iz :
H
.
s .
:
gy -4
:
-y .
. e
i
13
b3
H
»
.
:
H
4
C I3
11
s
13
IS LS
el
ias
» $:3
4 143
H LS
H

I}

Figure 5 Examples of touching characters showing scans
where sectioning is desirable,

all leading and trailing edges have been accounted for
and a “natural” segmenting point has appeared.

The relationship of Eq. (1) can be adapted for use in the
sectioning of touching, noisy characters. In the procedure
used in the ‘“‘topological” segmentation algorithm the
parameters are combined in an equation of the form

T, = Z U,P; — E V;N;, + Y,P, — W,L, — X,.
i=0 i=0 Q)

Whenever a scan is reached in which T, < 0, sectioning
occurs.

The design problem is to choose suitable definitions
for P, L and N and appropriate values for the coefficients
U, V, W, X and Y so that sectioning will occur in the
desired region of the character. The general considerations
for choosing the terms and coefficients of Eq. (2) can be
illustrated with some observations about character
geometry in the regions where sectioning should occur.
A few examples of touching bit patterns as well as the
first scan where sectioning should be allowed are shown
in Fig. 5. For characters that terminate in left-side vertical
strokes, as does the E in line (a) of Fig. 5, the threshold
function can be satisfied after the left vertical is detected
if the coefficient ¥ is increased in this area. Since the
terminating feature of the character N in line (b) is largely
obscured in the section area, a portion of the connecting
bits must, in effect, be subtracted by the W, L, and X, terms
as the section area is entered. The character A in line (c)
illustrates the occurrence of decreasing bit density in
the section area.

R. L. HOFFMAN AND J. W. MC CULLOUGH

In general, the characteristics of the section area of
characters can be summarized as follows:

& The parameter N has a relatively large value as left-side
trailing edges are encountered. This suggests that its
coefficient V' should be increased near the desired sec-
tion area.

o It is unlikely that the value of the parameter P will
get much larger at the left-hand side of a character.
Thus the term Y, P, inhibits the satisfaction of the threshold
condition if new leading-edge bits are detected in what
would otherwise be the section area.

& The bit-density parameter L tends to decrease in value
as the section area is encountered. However, the bit
density in the first scan of the section area is likely to be
almost as large as the maximum density of the character.
These considerations lead to the following definition for
the bit-density parameter: a bit in scan n is counted if
it is black and is horizontally adjacent to the middle
bit of three vertically adjacent black bits in scan n — 1.
The bit density L, is the number of such bits counted
in scan n.

To reduce the effects of single-bit wide noise on the
measurement results, the definitions of leading- and
trailing-edge bits are restated: A bit in scan » is counted
as a leading-edge bit if it is one of three horizontally
adjacent bits in scans #n, n — 1 and n — 2 that are re-
spectively, black, black and white. The parameter P, is
the sum of leading-edge bits detected in scan n. Similarly,
a bit in scan »n is counted as a trailing-edge bit if it is one
of three horizontally adjacent bits in scans n, n — 1 and
n — 2 that are respectively, white, black and black.
The parameter N, is the sum of trailing-edge bits in scan 7.

The coefficients U and Y of the P parameters in Eq. (2)
were designed to be constant for all scans and their
specific values resulted from experiments on the character
sets that were candidates for sectioning. The other co-
efficients ¥, W and X have values that vary as the bit
pattern is traversed. They each have the form

Vn :'YV+ 6VFn+EVFn,

W. = vy + ewF.,

X, = 0xF, 3)
U, = vv

Y, =y,

where the v’s, §’s and €’s are positive constants determined
experimentally for a given character set, and F, and F, are
computed from a Connective Feedback Request (CFR),
function, which is determined at the end of each scan.
By definition,

0 when (CFR), < A
(CFR), — A when (CFR), > A,

F, = (4a)

IBM J. RES. DEVELOP.

[FM when (CFR), > 1

F, = and (CFR), = (CFR), , (4b)
IF,LI when (CFR), = (CFR),_; + 1
and
(CFR), — {(CFR),H + 1 when G, = nF, > 0 g,
(CFR),_, when G, — 3F, < 6,
where

G.= 2 (UP;, — V;N)
i=0

and A, n and @ are positive constants experimentally
determined from the geometry of the characters to be
sectioned. The starting values F,, F, and (CFR), are
all zero.

Equation (5) indicates that in the early scans the CFR
count will increase by one as soon as G, becomes greater
than 6. It takes A increases of CFR before F can have
a nonzero value. Then F increases by one at every scan
in which CFR increases. The F count increases by one
at every scan in which CFR is not increased, provided
that CFR has increased at least once for that character.

The value of G, remains large as the character is tra-
versed if the bit pattern is “heavy” or if it is composed
largely of horizontal strokes, as in the character S (where
many leading-edge bits and few trailing-edge bits are
encountered). This condition indicates a large likelihood
of connectivity between adjacent bit patterns and, con-
sequently, a high probability of a difficult section. In this
case the “heavy” feedback term F becomes large, causing
the coefficient ¥, and to a lesser extent X, to increase
with the number of scans and, hence, to force the threshold
function 7T, negative. On the other hand, low connectivity
between adjacent bit patterns, such as occurs when
characters are lightly printed or are composed of diagonal
or vertical left-hand side strokes, causes F to increase.
The dependence of the coefficients W and ¥ on F produces
proper sectioning in these characters by forcing 7', negative
in the desired region.

The flow diagram in Fig. 6 illustrates the sequence of
computations in the sectioning procedure as the bit
pattern is examined scan-by-scan. First, the measurement
coefficients are set to their initial values. Then the logical
measurements are made, the P, N and L parameter
values are computed and the CFR function is updated
at each scan. Finally, the threshold function T, is computed
and tested to determine whether the requirements for
sectioning have been met. If not, the next scan is examined.
If so, the segmenting procedure is enabled.

The segmenting procedure makes use of two algorithms
applied in parallel. One is called the “density increase”

MARCH 1971

algorithm and the other is called the “terminating line-
element” algorithm. The character is segmented if the
decision criterion for either algorithm is satisfied.

In the first algorithm a bit-density function is computed
for the section scan. Then another bit-density function
is computed at each succeeding scan until a scan is found
in which the difference between the two density functions
exceeds a certain number ¢. Taking the section scan
as j = 0, the condition is expressed as

2. Pl — N.> ¢,)
i=1

where 7 is the current scan.

A bit contributes to the P; count if it is black and
horizontally adjacent to a white bit in scan j — 1, or if it is
horizontally adjacent to bits in scans j — 1 and j — 2
that are, respectively, black and white. A bit in scan »
contributes to the N/, count if it is white and horizontally
adjacent to a black bit in scan » — 1. It can be seen in
Eq. (6) that when N’ becomes sufficiently small, as will
happen with touching characters when a transition occurs
from a left-side trailing edge of the current character to a
right-side leading edge of the next character, the current
character will be segmented.

The second algorithm searches the scans, including and
following the section scan, in a vertical direction for
bit configurations indicative of terminating features. It does
this by testing the bits of a 3 X 3 matrix. The first measure-
ment M; looks for a 9-bit square containing all white bits.
When this is found, a second measurement M, seeks
a configuration of black and white bits as shown in
Fig. 7. If M, is satisfied then M; checks to see if the M,
configuration is followed by another 9-bit square of all
white bits. When a scan is found in which all three measure-
ments are satisfied in sequence, a decision to segment
the character is made.

Figure 8 shows an example in which segmenting
decisions were made by the two algorithms. The per-
formance of the entire topological segmentation algorithm
is discussed in the section on ““Test results.”

Segmentation testing philosophy and procedure

The performance of a segmentation algorithm on touching
characters can be measured by the percent of “correctly”
segmented characters. It may seem simple to measure
segmentation error rates, but in theory and in practice
it is not. Basically, no one universal definition of ““correct”
segmentation is available, as compared to the reject-
substitution figure of merit used for evaluating recognition
algorithms. One point of view is that segmentation is
an integral factor in recognition and that recognition
figure of merit [2] is a useful criterion for segmentation.
We did not choose this approach because the results are
constrained and influenced by the particular recognition

159

SEGMENTATION ALGORITHMS

160

Set initial values of
Vo Wy and X, Set n=0

(CFR)(=0, F=0,F;=0

!

i

Count leading- Count trailing- - .
scann: P, scann: N, 1L,
Compute Compute

nl n=1 Compute
UP, + 2 UP, VN + 2V, N, WL,
; H nn F RS
j=0 j=0
Compute G, =

n n
PRZEDRA
=0 j=0

Compute T
(CFR)_ >0 No ; n
" [see Eq. (2)]
Yes
(CFR)n=(CFR)n—-1+1 Fn=in—l+1 No Setn=n+1
Yes
Update
. No Vn and Wn
Section
Yes
F,=F,_;+1
Segment
e No
Yes
Update
X, and V,
Start new
I character
Figure 6 Flow chart of sectioning procedure used in the topological segmentation algorithm.
system employed. To explain further, consider that classify misregistered (shifted) characters. Template

segmentation ““‘errors” in general appear to the recognition
system as characters shifted horizontally by some number
of scans from a yet to be defined “ideal” registration.
Recognition systems vary in their ability to correctly

R. L. HOFFMAN AND J. W. MC CULLOUGH

matching recognition schemes work poorly if at all, on
misregistered patterns, while adaptive techniques can
“learn” to correctly classify shifted patterns. The point
is that the figure of merit is useful for evaluating how

IBM J. RES. DEVELOP.

well a segmentation algorithm and a recognition system
work together, but figure of merit tells little about what
may happen when that same segmentation algorithm is
used with another recognition system.

The basic premise of the segmentation analysis pro-
cedures developed for this study is that for every touching
character pair there is an “ideal” segment scan—ideal in
the sense that the information lost by both characters
is minimized if segmenting occurs at that scan. To find
the ideal segment scans, a powerful pattern recognition
system was used—the human observer. The ideal scan
was selected as the point of minimum video density
between characters, the scan where new features were
encountered, or the scan that minimized the total feature
loss.

Rules were established for counting segmentation
errors. After observing many touching serif characters at
a resolution of approximately 17 to 20 scans per character,
we concluded that:

Segments at 0 and 41 scan from the ideal are correct,
segments at =2 and 43 scans from the ideal may be
correct, and segments at more than 43 scans from the
ideal are errors.

At this resolution a recognition system of reasonable
sophistication should tolerate -1 scan errors since rarely
is a new feature added or a feature lost by deviating
from the ideal by one scan. Deviations of more than
1 scan may, however, produce errors. Deviations_ of 42
or %3 scans are more likely to produce recognition errors.
Deviations of four or more scans usually lead to recognition
errors irrespective of the recognition system since im-
portant features of the character are lost. In the statistics
that follow, a segment is considered correct if it deviates
0 or +1 scan from a manually chosen ideal segment
scan, and probably is an error otherwise.

This method of analysis, named scan deviation seg-
mentation analysis, can be automated for any one data
set once ideal segment scans have been encoded. Editing
these scans onto line video data by human observation
is a time-consuming task. However, when ideal segment
scans are available, the error rate for any segmentation
algorithm may be computed without human intervention.
An analysis program that simultaneously compared the
scan deviations of each of two algorithms with respect
to the ideal segments was developed. Pertinent summary
statistics such as number of isolated characters (non-
touching on both left and right) and number of touching
characters were also generated.

The program also developed a matrix showing the
number of segments per block of touching characters
for each algorithm. When the number of segments made
by a test algorithm differed from the ideal number, the
block of characters was judged unsuitable for reliable

MARCH 1971

M, 0 0 0
0 0 0
0 0 0
n n-1 n—2 n n-1 n-2
0 - - 0 - X
M,
0 X X or 0 X X
0 - X 0 - -
n n-1 r-2
0 0 0
M,
0 0 0
0 0 0

Figure 7 Measurements used in the “terminating line-
element” segmenting algorithm. White bits are represented
by 0’s, black bits by X’s and “don’t care” bits by —'s. n is
the current scan.

Figure 8 Sample of segments determined by the “terminat-
ing line-element” and “density increase” segmenting al-
gorithms.

Terminating
line-element

Density increase

automated analysis and scan difference statistics were
not generated. Generally, not all characters in the block
are completely lost if an algorithm puts in the wrong
number of segments. Therefore, automatic printout of
character blocks with too many or too few segments was
included in the program. These printouts were later
inspected to determine which, if any, character-pair
segments were in error by less than 15 scans gnd thus
should be included in the scan deviation statistics. The
automated scan difference segment error analysis tech-
niques were found useful for obtaining performance
trends and for sorting out high performance algorithms.
However, the statistics generated by counting segment
errors are not directly comparable to other analysis
technigues, such as counting the number of mis-segmented
characters. Character error rate, a statistic more closely
related to recognition figure of merit, is computed by
considering the error in the two segments that isolate a
character from its neighbors, not the error in each in-
dividual segment. For example, a character is put into
the +2 scan error bin if either the segment on the left

161

SEGMENTATION ALGORITEMS

162

or the segment on the right or both are in error by +2
scans, and the other segment right or left, respectively, is
in error by 2 or fewer scans. At the conclusion of the
study, character error rates were generated for selected
algorithms to establish a positive correlation between the
two measurement techniques.

Test data set

During the development phase of this study, segmentation
algorithms were tested and their parameters were optimized
on a tape of approximately 18,000 characters. Most of
these characters were from 12-pitch type sources. About
4500 segments (25%), involving about 409, of the charac-
ters, occurred at touching character pairs. The entire
tape was coded with ideal segment information. For
conclusive testing of the segmentation algorithms that
evolved, a larger collection of characters was gathered.
An IBM page scanner system scanned nearly 700,000
serif characters as obtained from field-generated docu-
ments printed on a wide range of 10-, 11- and 12-pitch
printing devices. In this data set some 229, of the segments
(more than 150,000) occurred at touching character pairs.
To reduce the manual effort required to edit ideal segments
onto this data, a statistically representative sample was
chosen. The basic concern in sampling the 700,000-
character test set was how large a sample to select in
order to obtain reliable projections of error rates and to
detect actual differences between segmentation algorithms.
The following calculations describe how reasonable
sample sizes were selected.

Assume that the performance of a segmentation
algorithm can be described by a binomial distribution [4].
That is, the algorithm makes either a correct segment
or an incorrect segment and these are the only possible
outcomes. Also, assume that individual segments are
independent events and the sample chosen is representative
of the world.

If the probability that the segmentation algorithm makes
an error is p, and we take a sample of segments of size n,
we can show that the observed error rate p, and the
sample variance o, are related to n by

n=p(l — p)e’.

From this sample, we obtain p, an estimate of the actual
error rate p. The error in this estimate is important.
A more useful statistic for describing p is the “confidence
interval.” Since large sample sizes are involved, the

normal approximation of the binomial confidence interval
can be used. For example, the 959, confidence interval is

P(p — 1.965¢ > p > p + 1.9650) = 0.95.

In other words, the probability is 0.95 that the actual
error rate p is greater than p — 1.965¢ and less than
p + 1.9650.

R. L. HOFFMAN AND J. W. MC CULLOUGH

The above expressions may be used to relate an ap-
propriate sample size to a desired confidence interval, the
approximate error rates, and the allowable error range.
For example, given a sample of 80,000 segments of
which 59 are incorrect, and using the above relations, one
can state that the error rate of that algorithm on the
entire test set will be within the range 39, =+ 0.159,
with 959, confidence.

For our tests we concluded that a randomly selected
sample of 80,000 segments would give adequate error
rate resolution and yet represent a feasible coding effort.
About 229, or some 16,000 segments, would occur at
touching character pairs and thus require human observa-
tion. Should the actual error rate for algorithms operating
on this sample be higher than expected, or should two
algorithms have nearly equal sample error rates (which
could preclude accurate relative ranking on the entire
data set), an additional sample could be drawn, coded
and tested. This was not necessary.

Test Results

Scan deviation statistics obtained by applying the topo-
logical and the quasi-topological algorithms to the sample
set of 10-, 11- and 12-pitch serif patterns are summarized
in Table 1. Detailed statistics by pitch and print quality
are presented in Table 2. As described in the ““Segmentation
testing philosophy and procedures™ section, three classes
of segments are recognized. Those segments which differ
by 0 and -1 scans from the ideal are called correct, those
differing from =4=4 to 4=15 scans from the ideal are definite
errors and the segments at =2 or 43 scans from the
ideal may be in error.

Table 1 illustrates that relatively small variations
between algorithms in the 0, 41 category indicate im-
portant characteristics of algorithm performance. This
category contains almost all of the non-touching characters
(rarely did any of the algorithms mis-segment a non-
touching character) and some of the touching characters.
Since the ratio of non-touching to touching characters was
high in this data set (about 5:1), small changes in the
percentage of correct segments imply larger changes in
the percentage of correctly segmented touching characters,
as Table 1 shows.

Table 2 presents segmentation scan deviation informa-
tion in greater detail. The effects of pitch and quality
are illustrated for each algorithm.

Discussion of results

o Quasi-topological system

Sectioning errors of the quasi-topological algorithm using
stroke count and outline contour have two major sources.
First, many errors are related to variations in width
or pitch. The stroke pattern section algorithm uses a

IBM J. RES. DEVELOP.

Table 1 Summary of segment scan deviation data.

Percent of segments differing
from the ideal by

Percent of touching
pairs within

Segmentation

algorithm 0, =1 +2, 3 +4 to +15 0, 1 0to +3
Topological 96.9 1.7 1.4 84.8 93.3
Quasi-topological 95.4 2.4 2.2 77.0 89.0

Table 2 Segmentation scan deviation performance comparison.

Pitch Character Topological Quasi-topological
shade
0, 1 +2,3 +4 to £15 0, 1 +2,3 *4 to £15

10 Dark 97.2% 1.69, 1.29% 96.9% 1.7% 1.4%
10 Light 98.0 1.1 0.9 97.5 1.1 1.4
10 Good 98.3 1.1 0.6 97.6 1.1 1.3

Total 98.0 1.2 0.8 97.5 1.2 1.3
11 Light 98.5 1.0 0.5 96.9 1.2 1.9
11 Good 98.9 0.6 0.5 97.5 1.3 1.2

Total 98.7 0.8 0.5 97.2 1.3 1.5
12 Dark 94.3 2.8 2.9 90.1 4.4 5.4
12 Light 97.2 1.8 1.0 95.5 2.9 1.6
12 Good 96.2 2.1 1.7 93.8 3.2 3.0

Total 96.0 2.2 1.8 94.2 3.3 2.5

Total 96.9 1.7 1.4 95.4 2.4 2.2

statistical masking system for finding the left character
features and, like other masking schemes, the degree of
match to a mask set depends in part on character width.
The mask set was purposely tuned to 12-pitch characters
and, as might be expected, on 10-pitch characters (which
are generally wider) many blocks of touching characters
were mis-segmented with too many segments. Design
calculations indicated that it would not be reasonable to
adjust parameters to tune the mask set to a compromise
value and successfully handle both 10- and 12-pitch
characters. Thus, for this section algorithm to be effective,
an a priori character pitch (width) measurement should
be available to adjust the mask width limits. A rather
coarse measurement of pitch could be used. For example,
the average width of previous non-touching characters

MARCH 1971

might be sufficient. No experiments were conducted to
substantiate this theory.

The second source of sectioning errors was responsible
for many failures in 12-pitch data. On 12-pitch characters,
where low error rates were expected, but were not ob-
tained, many character blocks were mis-segmented with
too few characters. Upon inspection, much of the 12-pitch
data from the test set was found to be dark with heavy
line strokes. There was a strong tendency for these charac-
ters to be filled with noise. Quite obviously, the stroke
count unique to a given character will be obscured in
this type of printing. As a result, sectioning action became
highly unreliable. At the opposite extreme, a few light
characters with thin or broken line elements were found.
These characters, which lead to character blocks with too

163

SEGMENTATION ALGORITHMS

223 R LI MU XK B33 3 K36 B 26 R 3R B 3 B O K 36 24 M 2 36 336 BN 3636 36 MM MK 2 56 bR R 36 3K M B % B33 36 3 3¢ R 30K B2 3 24 3¢ X X X 3636 X B K

X

(a)

~~ NN NN NN

FRvRvv s
-
ENFNIY [N
oo
R e e ke

3¢ e 2 9 X

(b)

B3 30X 26 I e 3R 36 MM R M e R M X X K 3¢ 2
e
>

PR
>

s
w

o Yo

NN

oo
X3 % % 2 MR X MM % R R R R 3 K MK MM N N X

3 2622 R M X 3 e R M X

- oo
-

-

~~ ~

°

e w EICICIRV I
~

"

~
1) sgeo
¢ MM 26k 3R 2 3 X %K 3632 6 M 6 X M 3 M M X X X X X

°

~

0w e MR R 2 MR R R B M R R R R R RO R R KRR

~

% e ke R R e

e ¢ 3¢ v 302030 3¢ e e 2 30 3

uxxx-x—xxnnlnllj

N NN
L

oo a
¢ 2026262 26 3¢ e b2 36 R R R M 2R R XX e e XX

P R N L R]

~~ N~ -~
°

Ve

>

wWow w -

~ o
ace

20 o0 SER R e e 2030 3¢ 2R R

»
.
H

EE R R R N L L L L L]

> XS

NN N~ ~ N
Lt Y > - o
» anaaa

[NEPEI

° oo
R L LS L T

~ NN N

]

]
PEE TR 4

x0

20 R R e B R XM R MM R R M

e P T TR
NN N ~——~
o
»

P L b
-

@

- " w

ww
~

~
se 000
» @ w w

onn ~

o

oo ce e
R L L L L L R LT T T -

Figure 9 Examples of good segmentation on 10- and 12-pitch character sets.

many segments, may not produce as many errors since
light characters are less likely to be linked together in
long strings.

This experiment leads us to believe that in machine
printing, the problem of video quality spread would
preclude developing a high performance sectioning
algorithm based on patterns in the horizontal stroke
count derived from digitized video. The stroke pattern
can be successfully computed only for printing of reason-
able quality. The possibility of an analog video imple-

164 mentation exists but this same limitation is likely to appear.

R. L. HOFFMAN AND J. W. MC CULLOUGH

o Topological system

Figure 9 shows a few examples of the topological segmenta-
tion system performance. These examples also illustrate
the quality range of the data for which it was designed
and on which it was evaluated. The vertical bars show
the best human estimate of the optimum segment points.
The horizontal bar in the retrace area above the characters
indicates where the section algorithm was active. The X
denotes the segment scan, that is, the first scan of the next
pattern. Below each line in Fig. 9 is the running com-
putation of the section threshold function for each scan.

IBM J. RES. DEVELOP.

In general, the topological sectioning algorithm demon-
strated that its performance capability was substantially
independent of pitch over the range of 10-, 11- and
12-pitch data on which it was evaluated. This was evidenced
by its ability to correctly segment touching characters
ranging from 12 to 13 scans wide up to 24 scans wide.
Error causes were attributed primarily to characters with
heavy noise fill-in, those which exhibited minimal ter-
minating features, and cases where there was a significant
feature overlap between adjacent characters.

The general form of the algorithm lends itself well to the
broad range of optical character recognition applications.
If the average character width is fixed or can be pre-
measured, the measurement coefficient feedback control
can depend more heavily on width constraints. On the
other hand, for proportional space and variable pitch
applications, where a very large width variation must be
tolerated, the coefficient feedback parameters may be
updated by topology change, rather than by scan as has
been described.

The discussion so far describes one form that the
general algorithm might take for a particular application.
However, the algorithm can be modified depending on
the source data to which it is applied. For example, if the
data are of particularly low quality with a high incidence
of noise bits, the P and N measurements may be extended
over more adjacent scans which, in effect, averages their
incidence over a localized area. The form of the L measure-
ment may be expanded over a larger vertical or horizontal
area to account for extreme variations in line width or
particular character geometries.

A different form of measurement coefficient control
may be introduced by using the convolution property of
the geometry of many characters. For example, characters
like M and O are characterized by multiple line elements
when the character is cut by a horizontal plane. The
coefficients of the resulting N and P measurements for
subsequent line edges following the first line edge can be
increased or decreased, respectively, to support the section
threshold function independent of character width for
proportionally spaced data. Furthermore, for this appli-
cation the connective feedback function might be updated
at specific geometry changes rather than by scan to
further reduce the character width dependence. Also, for
application to predetermined-pitch fonts, constraints can
be introduced more heavily by scan count than in the
example shown.

Conclusions
Several results can now be established. First, extremes in
video quality degrade the performance of the segmentation

MARCH 1971

algorithms studied. While there are problems peculiar to
individual algorithms, extremely light video with thin,
broken lines generally leads to early segments and heavy
dark video leads to late segments. Often the digitized
video has little information for determining a segment
point between two dark, hard-touching characters.

Second, from a performance standpoint alone, the
results of this investigation demonstrated that topological
segmentation was the preferred choice in the uncontrolled
printing environment used for evaluation.

Third, a perfect segmenting-sectioning algorithm has
not been found. What is not portrayed by our figures is
how the segmentation errors are distributed among the
character start, sectioning, and segmenting functions of
each algorithm. For the algorithms developed during
this study (topological and quasi-topological), human
observation of segmentation errors revealed that the
major source of error was due to improper sectioning.
Segmentation errors chargeable to improper character
start conditions were essentially nonexistent. Errors due
to improper action by the segmenting function were
present but were outnumbered by sectioning errors.
In general, if sectioning activated segmenting in the
correct area of the character, any error that resulted
was relatively small in magnitude. To summarize, the
majority of incorrect segments were caused by improper
sectioning.

Acknowledgements

The authors acknowledge the design and programming
contributions of A. Cutaia and D. W. Piller of IBM
Rochester, Minn., and the personnel of the Recognition
Systems Development Department at Rochester for
providing consultation, documents, and the video collec-
tion facilities that made this study possible.

References

1. G. Nagy, “State of the Art in Pattern Recognition,”
Proc. IEEE 56, 836 (1968).

2. R. B. Hennis, “The IBM 1975 Optical Page Reader, Part
1: System Design,” IBM J. Res. Develop. 12, 346 (1968).

3. D. O. Claydon, M. B. Clowes and J. R. Parks, “Letter
Recognition and the Segmentation of Running Text,”
Inform. and Control 9, 246 (1966).

4. M. A. Mood and F. A. Graybill, Introduction to the
Theory of Statistics, McGraw-Hill Book Co. Inc., New
York, 1963.

Received August 8, 1969
Revised, June 24, 1970 and November 11, 1970

The authors are located at the IBM General Systems
Division Laboratory in Rochester, Minnesota.

165

SEGMENTATION ALGORITHMS

