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Adhesion and Partial Slip between
Normally Loaded Round Surfaces

Abstract: A simple mechanism is sought to account for the frictional energy losses encountered in the mutual contact surface of two
bodies pressed normally against each other. The mathematical model of Coulomb friction is assumed valid, and it is shown that slip
between the contacting surfaces develops in the outlying regions of contact. This model, used in conjunction with a numerical scheme,
leads to a set of nonlinear simultaneous algebraic equations in the surface tractions. Two specific cases are computed: those of a rigid
sphere and of a rigid roller each pressed against an elastic medium. The relative size of the slip region is shown to depend on the
material properties. Energy dissipation during a half contact cycle is calculated, and the influence of the secondary adhesive tractions

on the contact stresses is discussed.

Introduction

In modern friction and wear investigations, extensive
use is made of the contact theory of deformable bodies.
Contact stress analysis can successfully predict the distri-
bution of tractions in a macroscopic sense. Thus an
estimate can be made (from previous measurements) of
the performance of the surfaces in the microscopic sense.
Contact theory has also been applied directly to the
minute surface asperities that can be considered to be
statistically distributed over the contact zone [1].

Sliding friction studies have shown that the classical
Coulomb theory of friction is applicable as a first-order
approximation, although the true process depends on
the actual area of contact. Sliding has also been found
to be strongly affected by adhesion.

This paper deals with a phenomenon caused by the
normal contact of two round, solid bodies that results
in some relative sliding motion of adjacent surfaces.
When an indenter is pressed against the surface of an
elastic body, normal displacements, dependent on the
shape of the indenter, are induced at the contact surface.
There is also a tendency for relative tangential displace-
ments to take place in the contact region but, due to
adhesion, relative motion between adjacent surfaces is
always limited. The shear tractions caused by the primary
normal pressures, which are responsible for the prevention,
or at least reduction, of tangential slip, constitute a
secondary stress system.
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In the analysis of these problems one of three simple
assumptions can be made:

1. The contact is frictionless.

2. Relative sliding cannot be allowed for adjacent points
on the surfaces once they enter the contact zone.

3. Sliding in the contact zone is governed by Coulomb’s
law.

In reality all three models are idealized. The second
assumption predicts the existence in the contact zone
of a peripheral area of large shear stress in which the
ratio of shear to normal stress becomes infinite. Clearly
this is impossible. The third assumption, in which limiting
the ratio of shear to normal stress results in partial slipping,
appears to be more realistic. In addition, this latter model
can be used to predict the amount of frictional energy
dissipated during the growth of the contact area. The
mechanical surface loss, when added to the effects of
material hysteresis and stress wave propagation, deter-
mines the amount of recoverable work in repeated loading
cycles.

Following the classical Hertz theory of a frictionless,
normally loaded contact, a successful analysis (based
on the second of the above assumptions) of normally
loaded, sticky elastic spheres was given by Goodman [2].
Goodman treated the problem on an incremental basis
with infinitesimally thin annuli progressively entering the
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contact region. He assumed that the normal stresses were
unaffected by friction. A numerical analysis of this prob-
Iem was made by the authors [3] without this assumption.
That numerical approach provided the foundation of
the analysis given in this paper. Partial slip under a flat
indenter was analyzed by Conway and Farnham [4].
The effect of fretting (small oscillation in contact) on wear
was studied by Wayson [5] and placed into the framework
of the IBM engineering wear theory [6]. These latter
studies provided grounds for comparison with the present
investigation.

The present work uses a numerical method of stress
analysis for the discrete normal and shearing tractions
in the contact zone. The partial slip problem is not only
a mixed boundary value problem of the theory of elasticity;
it is also a nonlinear one because the friction coefficient
is unknown at the outset, even though it is assumed to
be constant. The analysis was made tractable by assuming
only one lock-slip boundary within the contact area.
This assumption is entirely reasonable in view of Good-
man’s results [2], which indicate that for rough contact
the shear-to-normal pressure ratio increases monotonically
with the radius. Of course, Goodman’s work is based on
an infinite friction coefficient between the materials and,
when this condition is not satisfied, the true situation may
be modified because several lock-slip boundaries can be
formed within the contact region. Indeed, one of the
questions answered in this paper concerns the configuration
for which the single lock-slip boundary model is ap-
plicable. However, further generalizations of the model can
be made subsequently.

The specific treatment considered involves a round
rigid body indenting a linearly elastic infinite half-space.
The indentation of a layer of finite thickness may also
be treated by the method in Ref. 3 and the effects of
indenter deformation can be included [7]. The method
can be applied also to linearly viscoelastic media [8].

This paper presents the formulation of a rigid sphere
indenting an elastic half-space, and this treatment is
shown to be generally valid for a rigid cylinder indenting
an elastic medium. Numerical results are presented for
both of these cases.

Nomenclature

a in. Contact radius or semicontact length
a;; in®/lb  Normal displacement of point i due
to unit pressure loading of ring j
b;; Tangential displacement of point i due
to unit pressure loading of ring j
Ci; Tangential displacement of point ; due

to unit shear loading of ring j
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d;; Normal displacement of point i due
to unit shear loading of ring j

E Ib/in.”  Modulus of elasticity of indented
medium

E(®) Complete elliptic integral of the second
kind

h in Thickness of slab indented by cylinder
(the slab rests on a rigid frictionless
base)

k Friction coefficient

K(®) Complete elliptic integral of the first
kind

m/n Ratio of lock-slip boundary to contact
radius

p Ib/in.>  Normal pressure

P(r/a) lb/in® Pressure function

q Ib/in.®  Shear traction

QO(/a) Ib/in.®  Shear function

r in. Radial coordinate

R in. Radius of sphere or cylinder
u in. Tangential displacement
U(r/a) in" Tangential displacement function
14 Ib-in. Work

w in. Normal displacement

W(r/a) in™" Normal displacement function
v Poisson’s ratio

Analysis

& Rigid sphere indenting an elastic half-space

When considering the axisymmetric contact of a rigid
sphere indenting a linearly elastic half-space, the contact
zone is a circle of radius «, which is small compared
with the radius R of the sphere. For the purpose of analysis,
this circle is divided into n concentric rings of equal width
Ar = a/n; we obtain the values of the pressure and shear
tractions over these annuli.

The normal pressure distribution is approximated by
square steps p; each of constant height over the pertinent
annulus j [Fig. 1(a)]. For shear loading g,, conical segments
are substituted and these rise linearly from the origin [9]
as shown in Fig. 1(b). The larger the number of rings,
the more accurate is the simulation of the actual stress
distribution. In the stress analysis that follows, the dis-
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Figure 1 Loading elements used in the analysis: (a) ap-
proximation of contact pressure distribution; (b) approxi-
mation of shear tractions by piecewise linear segments;
(c) pressure-influence loading p;; (d) shear-influence load-
ing q;(r) = r/a, (j — 1)ar < r < jAr.

placement influence coefficients a,;, b,;, ¢;; and d;;, com-
puted for unit influence loading p; and g¢; [Figs. 1(c)
and 1(d)], are used. The computation of normal and
tangential displacements due to constant pressures and
linearly distributed shear tractions on an infinite half-
space is described in the Appendix.

For the normal displacement boundary conditions »
equations are written:

w; = wo + i(AD°/2R, 1< i< n o))

The region of complete adherence is a circular segment
devoid of differential tangential motion between indenter
and medium and, since the indenter is rigid,

Au(r) = 0, r<a. 2

Slipping is assumed to take place in the remainder
of the contact area, and here Coulomb’s friction law is
assumed valid:

q = kp. 3

From experimental observations, slip is expected only
in the peripheral regions of the contact area, but the
relative extent of the slipping region is unknown. In the
analytical approach, the region of adherence is first fixed
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by assuming that it occupies the interior m annuli out
of the total »n. The unknown quantities are then computed
for each configuration of the relative slip area, which
is characterized by the nondimensional ratio m/n.

We now make use of a dimensional argument to prove
that the tangential displacements in the adherence region
are proportional to the square of the radius. The tractions
are linearly proportional to a on the basis of the Hertz
theory and thus

p(r, a) = aP(r/a); C))
q(r, @) = aQ(r/a). (%)
The displacement influence coefficients a;;, --- , d;;

are also linearly proportional to the radial dimension
of the annuli. Since the displacements are linear com-
binations of the tractions and the influence coefficients,
they depend on the square of a, so that using the non-
dimensional radii we can write

w(r, a) = a’W(r/a); ©)
u(r, a) = a’U(r/a). 0

As the load is applied and « increases, a specific point r
first enters the slip region and then, according to the
fixed m/n ratio, becomes locked in the adherence region.
From this time on, its further tangential displacement
is prevented. The total tangential displacement, however,
remains proportional to the square of the radius. From
this we can conclude that

u(r, a) = (r/r)’u(ry, a),

With the displacements written as linear combinations
of the discrete tractions, Eq. (1) yields

0< n<r<am/n ®)

Z: [(a;; — ao))p; + (dii — doj)a;] = i2(A")2/2R,
1 <i<Ln. 9)

The adherence equations (8) yield

2 by — b)dpi + (ci; — Pe)a; = 0,
i=1

2L il m, (10)
and the Coulomb friction condition Eq. (3) adds

q; = kp;, m<i<n. (11)

The above 2n — 1) equations in (2n + 1) unknowns
(pi, q; and k) may be supplemented by the following
statements.

It follows from symmetry that the shear is zero at the
origin and thus, if » is sufficiently large,

q1 X ga. (12)
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An additional equation is obtained by writing the
adherence condition Eq. (8) for the point i = %. These
simuitaneous, nonlinear algebraic equations may be
written using vector notation:

Fx=0 1<i<2n+1], 13)

where x is the vector of unknown quantities
s Gns k). a4

An iterative solution of the system in Eq. (13) by the
Newton—Raphson process is expedient, and is outlined
briefly below.

A trial solution vector X, is taken as the set of pressures
for the frictionless indenter with g, = 1 (1 < j< n)and
k = 0.1. By expanding the set about the trial vector x,
and truncating after the linear term, we obtain simul-
taneous linear equations in the increments Ax:

x=(171a"‘ s Dns Qs "0

Fi(x) + Q%x_) Ax = 0. (15)

An improved set of solutions is available for the next
cycle,

x = X, + Ax. (16)

Three cycles were found sufficient for satisfactory con-
vergence in most cases.

The friction coefficient k& emerges as a single-valued
function of the m/n ratio. The horizontal displacement
u(r, a) can be computed now for every value of m/n where
0 < m/n < 1. The frictional energy loss is evaluated as
the sum of the products of the shears and the corresponding
radial displacements.

At one configuration of the contact radius a, the shear
stress distribution is g(#, a). The horizontal displacements
u(r,a) can be evaluated by the foregoing numerical
analysis. An infinitesimal change da in the contact radius
gives rise to the work

dVv = f q(r,a) Au(r,a)2nr dr, (17)

m/n

where the radial slip is computed from

du du 6(r/a)] i

Aulr,a) = [52 T 9¢/a) oa (8)

Introducing the nondimensional radius ¢ = r/q, and
using Eq. (5) with Eq. (7), we obtain

dU(¢)

G ]dz, (19)

1
dV = 2ra" da f EQ(E)[Z U — &
m/n
where the integral is independent of the value of a. The
derivatives dU/df are computed numerically from the
discrete values of U obtained from the stress analysis.
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Hence the total frictional work in extending the contact
zone from zero to a is

_ 2rd” ! . du®
= /an@)[zU(s) e e oo

Vv

By carrying out the analysis for various m/nr values,
the radial slip can be calculated over the contact area
with Eq. (18). The slip must be directed opposite to the
shear traction; where this is not the situation, the model
of partial slip yields spurious results which must be
discarded. Thus for each indenter geometry, a consistent
model considering a single lock-slip boundary exists
only for a certain range of the friction coefficient.

o Long rigid cylinder indenting an elastic medium in plane
Strain

The plane strain displacements due to pressure loading
on an elastic half-space can be evaluated only in terms
of an unknown constant; thus a thick slab supported on
a smooth rigid foundation will be considered. The normal
pressure elements are again chosen as steps, and this
time the shears are also constant steps [3].

If a/h is small, the dimensional argument for the
horizontal displacement in the adherence region is a
good approximation and Eq. (10) can be used. Equation
(12) is now replaced by ¢, = 3¢,. Otherwise the analysis,
using influence coefficients of earlier work [3], proceeds
along the previous lines.

Since the elemental area is a straight strip, there is a
change indicated in the value of the total work corre-
sponding to Eq. (20):

4 1
a

V=4— m/n

dU ()

Q(E)[Z ue) — E—c}g*] df. (2D

Analytical results

The rigid spherical indenter pressed against an elastic
half-space was first analyzed assuming » = 0.3. On the
basis of # = 16 elements, the limiting frictionless case
yielded an accuracy of 0.3 percent in the stresses; even
results obtained with n = 8 were very close to these.

When values of the friction coefficient & are plotted
against the corresponding m/n values (Fig. 2), the resulting
curve can be used to find the adherence region for any k.
It was found, however, that for values of m/n larger
than 0.3 (k£ > 0.3), the slip tendency is in the same direction
as the shear traction and thus the assumed model of a
single lock-slip boundary appears to break down beyond
this limit.

By noting the manner in which the surface stresses
vary as m/n increases, several interesting observations
can be made (Fig. 3). The shear stress reaches a peak
just past the lock-slip boundary, causing a slight down-
turn in the normal pressure. The shears, in general,
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Figure 2 Coefficient of friction k vs m/n.

Figure 3 Contact stress distributions for various values of
m/nand k; » = 0.3.
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increase as m/n (and thus k) increases. Pressures are
only slightly increased meanwhile and they stay close to
the Hertz distribution.

The effect of adhesion on the radial displacement is
shown in Fig. 4. The radial displacement for unlimited
friction (k = <) [2] has the opposite curvature from
that of the frictionless case. For partial slip the curvature
changes sign past the lock-slip boundary.

The frictional energy loss is plotted against m/n in
Fig. 5. Note that the curves would start at the origin
corresponding to fully lubricated conditions (k = 0)
and reach a maximum around m/n = 1/16. Calculations
for the smaller values of m/n, however, involve a large
amount of computation. Since Fig. 2 gives the relation
between k and m/n, the value of k for a given combination
of engineering materials in contact can be entered in
that figure, and the relative magnitude of the lock-slip
boundary »1/n can be obtained. For a full cycle of loading-
unloading, the amount of work V indicated in Fig. 5
may be doubled to estimate surface energy losses due
to normal loading conditions.

Computations for a rigid cylinder indenting a thick
slab were also carried out, using influence coefficients
for a slab with Poisson’s ratio 0.3 and a/h = 1/20. The
variation of & vs m/n in this case is shown in Fig. 2.
The same general trends in the tractions and the dis-
placements were found as for the spherical indenter case.
The range of a consistent model is limited by m/n = 0.21,
corresponding to &£ = 0.23.

Summary

A numerical method of contact stress analysis has been
presented for normally loaded round surfaces that exhibit
partial slipping in the contact zone. A unique relation
has been shown to exist between the relative size of the
adherence region and the coefficient of friction. The
model is applicable for moderate values of the friction
coefficient, &k < 0.3, for the case of a rigid ball indenting
an elastic half-space. In the region of larger values of %,
a more complicated model with more than one lock-slip
boundary should be considered. The energy dissipation
in friction was also computed in the range of moderate
k values.

The general method is well suited to handle most
geometrical configurations, dissimilar materials in contact,
and viscoelastic materials. Thus it is a useful analytical
tool for predicting energy dissipation due to surface
resistance between repeatedly loaded solids.

Appendix
& Displacements caused by a constant normal pressure

loading over a circular area of radius a on an elastic half-
space
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Normal displacements [10]:

_ 2 2
_ 4(1 v )pa E(%) ’ .

wE a

40 = v)pr 9_2
h TE 2

Tangential displacements:

_ _(—=2)1 +vpar
2E a’

_ Q=21+ vpaa
2E r’

& Displacements caused by linear surface shear [q(r) =
qor over a circle of radius a) on an elastic half-space

The following formulas result from writing integrals of
Bessel functions in terms of hypergeometric functions
which, in turn, are related to complete elliptic integrals [11].

Normal displacements :

_ (1= 2)(1 + v)g0d’ (1 _r
2E

0, r> a.

Tangential displacements :

_ M —v)ad’a [<2_"2 ~ 1>E<L2)
“= 3rE r a a
r2 r2
—<'—2—-1>K<“§>:|, 0<r<a
a a
- - )
“= 3rE a 1)E r

r2 a2
— 2(-2 — 1>K<—2'>:| s r> a.
a 'a

The influence coefficients can be evaluated from the
above formulas with the aid of superposition. Corre-
sponding displacements for a slab under normal and
shear loading are given in [12].
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