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Adhesion  and Partial  Slip  between 
Normally  Loaded  Round  Surfaces 

Abstract: A simple  mechanism  is  sought to account  for the frictional  energy  losses  encountered  in the mutual  contact  surface of  two 
bodies  pressed  normally  against  each other.  The  mathematical  model  of  Coulomb  friction  is  assumed  valid,  and  it  is  shown that slip 
between the  contacting  surfaces  develops  in the outlying  regions of contact.  This  model,  used in conjunction  with a numerical  scheme, 
leads to a set of nonlinear  simultaneous  algebraic  equations  in  the  surface  tractions.  Two  specific  cases  are  computed:  those  of a rigid 
sphere  and of a rigid  roller each pressed  against an  elastic  medium.  The  relative  size of the  slip  region  is shown to depend on the 
material  properties.  Energy  dissipation  during a half contact cycle i s  calculated,  and  the  influence of the secondary  adhesive  tractions 
on the  contact  stresses  is  discussed. 

Introduction 
In modern  friction and wear investigations, extensive 
use is made of the contact  theory of deformable bodies. 
Contact stress analysis can successfully predict the distri- 
bution of tractions  in  a macroscopic sense. Thus  an 
estimate  can be made  (from previous measurements) of 
the performance of the surfaces in  the microscopic sense. 
Contact theory has also been applied directly to  the 
minute  surface asperities that can be considered to be 
statistically distributed over the contact  zone [l]. 

Sliding friction  studies  have shown that  the classical 
Coulomb theory of friction is applicable as a first-order 
approximation,  although the  true process depends on 
the  actual  area of contact. Sliding has also been found 
to be strongly affected by adhesion. 

This  paper deals with a  phenomenon caused by the 
normal  contact of two round, solid bodies that results 
in some relative sliding motion of adjacent surfaces. 
When an indenter is pressed against the surface of an 
elastic body, normal displacements, dependent on  the 
shape of the indenter, are induced at  the contact surface. 
There  is also a tendency for relative tangential displace- 
ments to  take place in the contact region but,  due to 
adhesion, relative motion between adjacent surfaces is 
always limited. The shear  tractions caused by the primary 
normal pressures, which are responsible for  the prevention, 
or at least  reduction, of tangential slip, constitute a 

I 

116 secondary stress system. 

In  the analysis of these problems one of three simple 
assumptions can be made: 

1 .  The contact is frictionless. 
2. Relative sliding cannot be allowed for adjacent points 
on  the surfaces once  they  enter the contact zone. 
3. Sliding in the contact  zone is governed by Coulomb’s 
law. 

In reality all three models are idealized. The second 
assumption  predicts the existence in  the contact  zone 
of a  peripheral area of large shear stress in which the 
ratio of shear to  normal stress becomes infinite. Clearly 
this is impossible. The  third assumption, in which limiting 
the  ratio of shear to  normal stress results in  partial slipping, 
appears to be more realistic. In addition,  this latter model 
can be used to predict the  amount of frictional energy 
dissipated during the growth of the contact  area. The 
mechanical surface loss, when added  to  the effects of 
material hysteresis and stress wave propagation,  deter- 
mines the  amount of recoverable work in  repeated  loading 
cycles. 

Following the classical Hertz  theory of a frictionless, 
normally  loaded  contact,  a successful analysis (based 
on  the second of the above  assumptions) of normally 
loaded, sticky elastic spheres was given  by Goodman [2]. 
Goodman treated the problem on  an incremental basis 
with infinitesimally thin annuli progressively entering the 
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contact region. He assumed that  the normal stresses were 
unaffected by friction. A numerical analysis of this prob- 
lem  was made by the authors [3] without this assumption. 
That numerical approach provided the  foundation of 
the analysis given in this paper. Partial slip under  a flat 
indenter was analyzed by Conway and  Farnham [4]. 
The effect  of fretting (small oscillation in contact) on wear 
was studied by Wayson [5] and placed into  the framework 
of the IBM engineering wear theory [6]. These latter 
studies provided grounds for comparison with the present 
investigation. 

The present work uses a numerical method of stress 
analysis for  the discrete normal and shearing tractions 
in  the contact zone. The partial slip problem is not only 
a mixed boundary value problem of the  theory of elasticity; 
it is also a nonlinear one because the friction coefficient 
is unknown at the  outset, even though  it is assumed to 
be constant. The analysis was made tractable by assuming 
only one lock-slip boundary within the  contact  area. 
This assumption is entirely reasonable in view  of Good- 
man's results [2], which indicate that for rough contact 
the  shear-to-normal pressure ratio increases monotonically 
with the  radius. Of course, Goodman's work is based on 
an infinite friction coefficient  between the materials and, 
when this  condition is not satisfied, the true situation may 
be  modified because several lock-slip boundaries  can be 
formed within the  contact region. Indeed, one of the 
questions answered in this paper concerns the configuration 
for which the single lock-slip boundary model is ap- 
plicable. However, further generalizations of the model can 
be made subsequently. 

The specific treatment considered involves a round 
rigid body indenting a linearly elastic infinite half-space. 
The indentation of a layer of finite thickness may also 
be treated by the  method in Ref. 3 and  the effects of 
indenter  deformation can be included [7]. The method 
can be applied also to linearly viscoelastic media [8]. 

This  paper presents the formulation of a rigid sphere 
indenting an elastic half-space, and this  treatment is 
shown to be generally valid for  a rigid cylinder indenting 
an elastic medium. Numerical results are presented for 
both of these cases. 

Nomenclature 
a in.  Contact  radius or semicontact length 

ai i in.3/lb Normal displacement of point i due 
to unit pressure loading of ring j 

bi i Tangential displacement of point i due 
to unit pressure loading of ring j 

ci I Tangential displacement of point i due 
to unit shear loading of ring j 

lb/in.2 

in. 

lb/in.' 

lb/in.3 

lb/in.' 

lb/in.3 

in. 

in. 

in. 

in." 

Ib-in. 

in. 

in." 

Normal displacement of point i due 
to unit shear loading of ring j 

Modulus of elasticity of indented 
medium 

Complete elliptic integral of the second 
kind 

Thickness of slab indented by cylinder 
(the  slab rests on a rigid frictionless 
base) 

Friction coefficient 

Complete elliptic integral of the first 
kind 

Ratio of lock-slip boundary to contact 
radius 

Normal pressure 

Pressure function 

Shear traction 

Shear  function 

Radial coordinate 

Radius of sphere or cylinder 

Tangential displacement 

Tangential displacement function 

Work 

Normal displacement 

Normal displacement function 

Poisson's ratio 

Analysis 

Rigid sphere indenting an  elastic halfspace 
When considering the axisymmetric contact of a rigid 
sphere indenting a linearly elastic half-space, the contact 
zone is a circle of radius a,  which is small compared 
with the  radius R of the sphere. For the  purpose of analysis, 
this circle is divided into n concentric rings of equal width 
Ar = a/n; we obtain  the values of the pressure and shear 
tractions over these annuli. 

The normal pressure distribution is approximated by 
square steps pi each of constant height over the pertinent 
annulus j [Fig. l(a)]. For shear loading q, ,  conical segments 
are substituted and these rise linearly from  the origin [91 
as shown in Fig. l(b). The larger the number of rings, 
the  more  accurate is the simulation of the actual stress 
distribution. In  the stress analysis that follows, the dis- 117 
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Figure 1 Loading  elements used in the analysis: (a)  ap- 
proximation of contact pressure distribution; (b) approxi- 
mation of shear tractions by piecewise linear segments; 
(c) pressure-influence  loading p j ;  (d) shear-influence  load- 
ing qj (r )  = r /a ,  ( j  - 1)Ar < r < jAr. 

placement influence coefficients aii, bii, cii and dtj, com- 
puted  for unit influence loading p j  and qi [Figs. l(c) 
and l(d)], are used. The computation of normal  and 
tangential displacements due  to constant pressures and 
linearly distributed  shear  tractions on  an infinite half- 
space is described in the Appendix. 

For the  normal displacement boundary  conditions n 
equations are written: 

w, = wo + i2(Ar)'/2R, 1 5 i 5 n. (1) 

The region of complete adherence is a circular segment 
devoid of differential tangential  motion between indenter 
and medium and, since the indenter is rigid, 

Au(r) = 0, r < a. (2)  

Slipping is assumed to  take place in  the remainder 
of the contact area,  and here  Coulomb's  friction law is 
assumed valid: 

q = kp. (3) 

From experimental observations, slip is expected only 
in the peripheral regions of the contact area, but the 
relative extent of the slipping region is unknown. In  the 

118 analytical approach,  the region of adherence is first fixed 

by assuming that  it occupies the interior rn annuli  out 
of the  total n. The unknown  quantities are  then computed 
for each configuration of the relative slip area, which 
is characterized by the nondimensional ratio rn/n. 

We now make use of a dimensional argument to prove 
that  the tangential displacements in  the adherence region 
are  proportional  to  the square of the radius. The tractions 
are linearly proportional  to a on  the basis of the  Hertz 
theory and  thus 

p(r, 4 = a W 4 ;  (4) 

q(r, 4 = aQ(r/a). 

The displacement influence coefficients a,!, . . . , dij 
are also linearly proportional  to  the  radial dimension 
of the annuli. Since the displacements are linear com- 
binations of the tractions and  the influence coefficients, 
they depend on  the  square of a, so that using the  non- 
dimensional radii we can write 

w(r, a) = a ' ~ ( r / a ) ;  

u(r, a) = a2u(r/a) .  

As the load is applied and a increases, a specific point r 
first enters the slip region and then,  according to the 
fixed m/n ratio, becomes locked in  the adherence region. 
From this  time on,  its  further tangential displacement 
is prevented. The  total tangential displacement, however, 
remains proportional  to  the  square of the radius. From 
this we can  conclude that 

u(r, a) = (r/r1)2u(rl, a), 0 < r1 5 r 5 am/n. (8) 

With the displacements written as linear  combinations 
of the discrete tractions, Eq. (1) yields 

n 

[(aii - a o i ) ~ i  f (dij - dojkjl = i2(Ar)'/2R, 
1 = 1  

The adherence  equations (8) yield 

n 

- i2bIj)pi + (cii - i2c l j )q j  = 0, 
j=1 

2 5 i 5 rn, (10) 

and  the  Coulomb friction  condition Fiq. (3) adds 

The above (2n - 1)  equations  in (2n + 1) unknowns 
( p ? ,  q j  and k )  may be  supplemented by the following 
statements. 

It follows from symmetry that  the shear is zero at  the 
origin and  thus, if n is sufficiently large, 

41 = q 2 .  
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An  additional  equation is obtained by writing the Hence the  total frictional work in extending the contact 
adherence  condition Eq. (8) for  the point i = i. These  zone from zero to a is 
simultaneous,  nonlinear algebraic equations may be 
written using vector notation: 

F,(x) = 0, 1 5 i 5 2n + 1, (1 3) 
(20) 

where x is the vector of unknown  quantities By carrying out  the analysis for various m/n values, 
the  radial slip can be calculated over the contact  area 

X = (PI, . . . 41, . . * , 4%; k) .  (14) with Eq. (18). The slip must be directed opposite to  the 

An iterative  solution of the system in  Eq. (13) by the 
Newton-Raphson process is expedient, and is outlined 
briefly below. 

A trial solution vector xn is taken as  the set of pressures 
for  the frictionless indenter with qi = 1 (1 5 j 5 n) and 

shear traction; where this is not the situation, the model 
of partial slip yields spurious results which must be 
discarded. Thus  for each indenter geometry, a consistent 
model considering a single lock-slip boundary exists 
only for a  certain  range of the friction coefficient. 

k = 0.1. By expanding the set about  the  trial vector x,, 
and truncating after  the linear  term, we obtain simul- 
taneous  linear  equations in  the increments Ax: 

An improved set of solutions is available for  the next 
cycle, 

Three cycles  were found sufficient for satisfactory con- 
vergence in  most cases. 

The friction coefficient k emerges as a single-valued 
function of the m/n ratio.  The horizontal displacement 
U(Y, a )  can  be  computed now for every value of m/n where 
0 < m/n < 1. The frictional energy loss is evaluated as 
the sum of the products of the shears and  the corresponding 
radial displacements. 

At one configuration of the contact  radius a, the shear 
stress distribution is q(r, a). The horizontal displacements 
u(r, a) can  be evaluated by the foregoing numerical 
analysis. An infinitesimal change da in the contact  radius 
gives rise to the work 

where the  radial slip is computed from 

Introducing the nondimensional  radius .$ = r /a ,  and 
using Eq. (5) with Eq. (7), we obtain 

where the integral is independent of the value of a. The 
derivatives dU/dE are computed numerically from  the 
discrete values of U obtained from  the stress analysis. 

Long rigid cylinder indenting an elastic medium in plane 
strain 
The plane  strain displacements due  to pressure loading 
on  an elastic half-space can be evaluated only in terms 
of an unknown constant; thus a thick slab  supported on 
a  smooth rigid foundation will be considered. The normal 
pressure elements are again chosen as steps, and this 
time the shears are also  constant steps [3]. 

If a/h is small, the dimensional  argument  for the 
horizontal displacement in the adherence region is a 
good approximation and  Eq. (10) can  be used. Equation 
(12) is now replaced by q1 = 3q2. Otherwise the analysis, 
using influence coefficients  of earlier work [3], proceeds 
along the previous lines. 

Since the elemental area is a  straight  strip,  there is a 
change indicated  in the value of the  total work corre- 
sponding to Eq. (20): 

Analytical results 
The rigid spherical  indenter pressed against an elastic 
half-space was first analyzed assuming v = 0.3. On  the 
basis of n = 16 elements, the limiting frictionless case 
yielded an accuracy of 0.3 percent in the stresses; even 
results  obtained with n = 8 were very close to these. 

When values of the friction coefficient k are plotted 
against the corresponding m/n values (Fig. 2) ,  the resulting 
curve  can be used to find the adherence region for any k .  
It was found, however, that  for values of m/n larger 
than 0.3 (k  > 0.3), the slip tendency is in the same  direction 
as  the shear  traction and  thus  the assumed model of a 
single lock-slip boundary appears  to break  down beyond 
this  limit. 

By noting the manner in which the surface stresses 
vary as m/n increases, several interesting observations 
can be made  (Fig. 3). The shear stress reaches a peak 
just past the lock-slip boundary, causing a slight down- 
turn in the normal pressure. The shears, in general, 119 

MARCH 1971 ADHESION AND SLIP 



0.: 

0.2 

0.1 

- 0  

: Spherical indenter, 
consistent model 

3 

Cylindrical indenter, 
consistent model 

/4 
21 4.' 

,9' 
I 

I 
I 
I 
I 

I 

I 

JT 

I 

IL 
20 
I 

0.10 0. 

t l n  

i 
f 

d 

- 
0 

bl 

I 

I 

L 
.30 

-Rigid spherical indenter 
on elastic half-space, 
v =0.3 

- -- Rigid cylindrical indenter 
on elastic slab, v =0.3 

- 
0.40 0.50 
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Figure 3 Contact stress distributions for various values of 
m/n and k ;  v = 0.3. 
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increase as m/n (and  thus k )  increases. Pressures are 
only slightly increased meanwhile and they  stay close to 
the  Hertz distribution. 

The effect of adhesion on  the  radial displacement is 
shown in Fig. 4. The  radial displacement for unlimited 
friction (k  = a) [2] has the opposite curvature  from 
that of the frictionless case. For  partial slip the  curvature 
changes sign past the lock-slip boundary. 

The frictional energy loss is plotted  against m/n in 
Fig. 5. Note  that  the curves would start  at  the origin 
corresponding to fully lubricated  conditions ( k  = 0) 
and reach a  maximum around m/n = 1/16. Calculations 
for  the smaller values of m/n,  however, involve a  large 
amount of computation. Since Fig. 2 gives the relation 
between k and m/n,  the value of k for a given combination 
of engineering materials in contact  can  be  entered in 
that figure, and  the relative magnitude of the lock-slip 
boundary m/n can be obtained. For a full cycle of loading- 
unloading, the  amount of work V indicated in Fig. 5 
may be doubled to estimate  surface energy losses due 
to  normal loading conditions. 

Computations  for a rigid cylinder indenting  a  thick 
slab were also  carried out, using influence coefficients 
for a  slab with Poisson's ratio 0.3 and a/h  = 1/20. The 
variation of k vs m/n in this case is shown in Fig. 2. 
The same general  trends in  the tractions and  the dis- 
placements were found  as  for  the spherical  indenter case. 
The range of a consistent model is limited by m/n = 0.21, 
corresponding to k = 0.23. 

Summary 
A numerical  method of contact stress analysis has been 
presented for normally  loaded round surfaces that exhibit 
partial slipping in  the contact zone. A unique  relation 
has been shown to exist between the relative size of the 
adherence region and  the coefficient of friction. The 
model is applicable for moderate values of the friction 
coefficient, k 5 0.3, for  the case of a rigid ball  indenting 
an elastic half-space. In  the region of larger values of k ,  
a  more complicated model with more than  one lock-slip 
boundary  should  be considered. The energy dissipation 
in  friction was also  computed in  the range of moderate 
k values. 

The general method is well suited to handle  most 
geometrical configurations, dissimilar materials in  contact, 
and viscoelastic materials. Thus  it is a useful analytical 
tool for predicting energy dissipation due  to surface 
resistance between repeatedly loaded solids. 

Appendix 

Displacements caused by a constant normal pressure 
loading ouer a circular area of radius a on an elastic haw- 
space 

IBM J. RES. DEVELOP. 



Normal displacements [IO]: 

w =  
4(1 - vz)pa 

TE 
E(-$) , r I a;  

r 2 a. 

Tangential displacements: 

u =  - (1 - 2v)(1 + v)pa r 
2E 

- 
a 

, r < a ;  

Displacements caused by linear surface shear [q(r) = 
qor over a circle of radius a] on an elastic half-space 
The following  formulas  result  from  writing  integrals of 
Bessel functions  in  terms of hypergeometric  functions 
which,  in  turn,  are  related to complete  elliptic  integrals [ll]. 

Normal  displacements. 

w =  0 ,  r > a .  

Tangential displacements: 

The  influence coefficients can be evaluated  from  the 
above  formulas  with  the  aid of superposition. Corre- 
sponding  displacements  for a slab  under  normal  and 
shear  loading are given  in [12]. 
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